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ABSTRACT

Objective: Recent studies on electronic health records (EHRs) started to learn deep generative models and syn-

thesize a huge amount of realistic records, in order to address significant privacy issues surrounding the EHR.

However, most of them only focus on structured records about patients’ independent visits, rather than on chro-

nological clinical records. In this article, we aim to learn and synthesize realistic sequences of EHRs based on

the generative autoencoder.

Materials and Methods: We propose a dual adversarial autoencoder (DAAE), which learns set-valued sequen-

ces of medical entities, by combining a recurrent autoencoder with 2 generative adversarial networks (GANs).

DAAE improves the mode coverage and quality of generated sequences by adversarially learning both the con-

tinuous latent distribution and the discrete data distribution. Using the MIMIC-III (Medical Information Mart for

Intensive Care-III) and UT Physicians clinical databases, we evaluated the performances of DAAE in terms of

predictive modeling, plausibility, and privacy preservation.

Results: Our generated sequences of EHRs showed the comparable performances to real data for a predictive

modeling task, and achieved the best score in plausibility evaluation conducted by medical experts among all

baseline models. In addition, differentially private optimization of our model enables to generate synthetic

sequences without increasing the privacy leakage of patients’ data.

Conclusions: DAAE can effectively synthesize sequential EHRs by addressing its main challenges: the synthetic

records should be realistic enough not to be distinguished from the real records, and they should cover all the

training patients to reproduce the performance of specific downstream tasks.

Key words: electornic health records (EHRs), sequential data generation, generative adversarial networks (GANs), generative

autoencoder, differential privacy

INTRODUCTION

To deploy electronic health records (EHRs) while protecting sensi-

tive or regulated medical information about patients, healthcare

organizations have generated anonymized data by using de-

identification techniques.1 Nevertheless, the de-identification only

can reduce the privacy risks, but there is no guarantee that attackers

cannot find the membership of the patient (ie, reidentification) or

link them with external data through inferences (ie, linkage attack

or inference attack). A variety of mathematical methods2–5 have

been studied to assess and minimize reidentification risk that
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individuals could be identified by linkage to publicly available data.

In particular, the trajectory patterns of individual patients are still

very distinctive if there are sufficient observations, and this unique-

ness of individuals is known to increase reidentification risk, as the

U.S. Department of Health and Human Services referred.6 For this

reason, a better way to ensure privacy is to synthesize realistic data

by learning real EHRs. Because no synthetic record has a one-to-one

relationship to the original patient’s records, privacy attacks can be

effectively mitigated, and the adoption of differential privacy (DP)

can guarantee to further limit the disclosure of private information.

With the success of generative adversarial networks (GANs), sev-

eral generative models have been proposed to synthesize the EHR

for a wide range of clinical usage, including privacy-preserving

cross-institutional data sharing,7,8 exploratory data analysis, and

data preparation for hosting a competition. Existing models mainly

focused on medical images,9,10 clinical texts,11 knowledge bases,12

and structured records about patients’ visits7,13; however, the most

important data sources of the EHR have not been studied, which are

the collections of set-valued sequences describing chronological

medical conditions of patients. In this work, we focus on generating

the realistic sequences of high-dimensional discrete records that rep-

resents the set of medical entities assigned to the patients (eg, diag-

noses, procedures, medications).

On the one hand, most existing studies on deep generative mod-

els basically adopt the architecture of GAN14,15 or variational

autoencoder (VAE),16 and they have been successfully applied to

high-dimensional continuous data such as images.17–19 On the other

hand, training such models for high-dimensional and discrete

sequences is known to be much more challenging, for example, the

generation of sentences (ie, sequence of word tokens) or EHRs (ie,

sequence of patients’ structured records). One approach is to model

the sequence generation as a sequential decision-making process and

train GAN with policy gradient methods20–22; particularly, these

models are mainly applied to the text generation because it can ef-

fectively deal with the sampling of a word from an output distribu-

tion, which is a nondifferentiable operation.

Owing to the difficulties of modeling this type of nondifferentiable

objectives, the autoencoder-based models recently have gained much

attention and shown promising results.23–27 However, they are not

suitable for being applied to the EHR for the following reasons. First,

most of them are designed for the text-generation task, which aims to

model the sequence of word tokens. Their sequence decoders map the

hidden state at each time step into the probability distribution over all

words in the vocabulary by the softmax layer, so they are not able to

capture the interactions or co-occurrences among the entities within a

single set-valued record. Second, they still have the limited perfor-

mance in terms of the data generation; for example, some of them us-

ing a simple fixed prior (eg, the Gaussian distribution) suffer from the

mode collapse problem (ie, produce limited varieties of samples), and

some of them output the sequences not realistic enough because of

their decoders that are only optimized to capture local sequential con-

texts (ie, only learns sequence models).

To address these limitations, we propose the dual adversarial

autoencoder (DAAE), a deep generative model for the sequences of

set-valued medical records. The main difference of our model is that

DAAE adversarially learns both the continuous latent (or code) distri-

bution and the discrete data distribution, while the existing models do

one of them. Our parametric generator is capable of generating varied

latent codes that cover the code space induced by the encoder, and

our decoder can produce the realistic discrete sequences by taking the

latent codes as its inputs. Unlike the conventional autoencoders that

only minimize the reconstruction loss between input and output

sequences, our sequence decoder is additionally guided to include

global realistic features by a critic.

MATERIALS AND METHODS

Data description
We use 2 EHR datasets with different characteristics: MIMIC-III

(Medical Information Mart for Intensive Care-III)28,29 and UT

Physicians clinical database (UTP). Both of them contain longitudi-

nal patients’ records including a set of medical entities for each visit.

MIMIC-III is a public EHR dataset about intensive care unit patients

over 11 years; thus, a single visit includes intense information, such

as tens of assigned diagnosis codes, but the length of a patient’s visit

sequence is short. On the contrary, UTP is about outpatients of UT

Physicians from 2012 to 2015, so the patients visited the hospital

more frequently, but the amount of information in each visit is

much less compared with MIMIC-III. Among various types of medi-

cal entities, we only use diagnosis codes (specifically based on Inter-

national Classification of Diseases–Ninth Revision [ICD-9]), and it

can be easily extended to other types of discrete variables. For hold-

out tests, we split the set of all patients by 7:1:2 ratio into a training

set, a validation set, and a test set. Table 1 summarizes the statistics

of the datasets.

Dual adversarial autoencoder
Building blocks of the generative autoencoder

Generative autoencoders aim to learn the underlying distribution

of training data by using their encoder Enc/ and decoder Decw. In

general, an encoder is optimized so that the distribution of its out-

put (ie, code distribution PQ) fits into a simple prior distribution

(ie, latent distribution Pz), and a decoder is trained to make its out-

put distribution (ie, model distribution Pw) approximate to the

original input distribution (ie, data distribution Px). The key tech-

nique here is effectively matching the distributions, which are PQ

and Pz, while minimizing the reconstruction errors for all data

inputs. For example, VAE16,23 directly minimizes the Kullback-

Leibler divergence between the 2 distributions, whereas adversarial

autoencoders24–26 implicitly match them by using a single GAN,

referred as to the inner GAN in our work. However, all the existing

generative autoencoders fail to generate synthetic data realistic

enough not to be distinguished from real ones because their

decoders are only trained by the reconstruction errors. To over-

come this limitation, our proposed DAAE adopts an additional

GAN, referred to as the outer GAN, which adversarially optimizes

the decoder to make Pw further close to Px. That is, DAAE introdu-

ces the following deterministic functions: a generator Gh, an inner

Table 1. Statistics of electronic health record datasets

Dataset MIMIC-III UTP

Unique ICD-9 codes 4893 3144

Patients 7537 13 025

Patients’ visits 19 993 85 845

Average visits per patient 2.65 6.59

Maximum visits per patient 42 52

Average ICD-9 codes per visit 13.02 2.58

Maximum ICD-9 codes per visit 39 30

ICD-9: International Classification of Diseases–Ninth Revision; MIMIC-

III: Medical Information Mart for Intensive Care-III; UTP: UT-Physicians.
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critic fz, and an outer critic fx. The subscript letters denote their

trainable parameters; in cases of fz and fx, they are parameterized

by xz and xx, respectively.

As illustrated in Figure 1, DAAE consists of 3 building blocks.

First, the sequence-to-sequence (seq2seq) autoencoder learns the

hidden code space where semantic features of target sequences are

encoded. We employ recurrent neural networks (RNNs) for the en-

coder and decoder in order to capture the temporal contexts within

input sequences. The encoder maps an input sequence from the dis-

crete data distribution Px into the continuous code distribution PQ,

and the decoder generates the model distribution Pw that approxi-

mates the original data distribution by serving as a sequence model

conditioned on PQ. Second, the inner GAN, including the inner

critic and the generator, aims to match the latent distribution Pz

with the code distribution PQ. The inner critic distinguishes sam-

ples of Pz from those of PQ, and simultaneously, the generator

transforms a random noise s � Nð0; IÞ into a latent vector that

can fool the inner critic. Third, similarly, the outer GAN adversari-

ally optimizes the decoder to produce the model distribution Pw,

which cannot be separated from the real data distribution Px by

the outer critic. Unlike the conventional GANs whose generator

maps each sample from the latent space to the model space, in our

outer GAN, the decoder plays the role instead of any additional

generators.

Generative adversarial training

For the optimization of our model, we define a reconstruction loss

for the autoencoder and 2 adversarial losses for the inner and outer

GANs; each loss alternately optimizes the target building block in

our model. The reconstruction loss Lrec is defined based on the bi-

nary cross entropy between the input sequence x and its recon-

structed sequence bx, which is dBCE xi; bxið Þ ¼ �
P

t½xitlogbx it

þ
�

1� xitÞlogð1� bx itÞ�, and the encoder and decoder are trained to

minimize this loss. The inner adversarial loss Lz optimizes the inner

critic so that it can tell the code samples z obtained by the encoder

from the latent sample ~z obtained by the generator. At the same

time, it tunes the generator to fool the inner critic. Finally, the outer

adversarial loss Lx aims to make the outer critic learn the realistic

and unrealistic features to discriminate between the real samples

and the synthetic samples generated by the decoder, and simulta-

neously it trains the decoder to generate realistic outputs that can

fool the outer critic. The objective of DAAE can be summarized as

min
/;w;h

max
xz ;xx2W

Lrec /; wð Þ þ Lzðh; xZÞ þ Lxðw; xxÞ; (1)

and the losses are formulated as

Lrec /; wð Þ ¼ Ex�Px
½dBCEðx;DecwðEnc/ðxÞÞÞ�

Lz h; xZð Þ ¼ Ex�Px
½fzðEnc/ðxÞÞ� � Es�Ps

fzðGhðsÞÞ½ �
Lx w; xxð Þ ¼ Ex�Px

fxðxÞ½ � � Ez�PQ ;Pz
½fxðDecwðzÞÞ�:

(2)

W is the set of 1-Lipschitz function set, and the constraint xz;xx

2 W makes our losses correspond to the Wasserstein-1 distance be-

tween 2 distributions. We enforce a soft version of the Lipschitz con-

straint by directly constraining the gradient norm of the critic’s

output with respect to its input, known as gradient penalty.30 The

detailed algorithm is presented in algorithm 1.

Note that our decoder is optimized by 2 different losses. On the

one hand, the reconstruction loss makes the decoder copy the input to

the output conditioned on the latent code, so the decoder learns the

local context features for sequence modeling. On the other hand, the

outer adversarial loss computes the gradient to capture additional fea-

tures that make the output realistic by the help of the outer critic.

Differentially private training

DP31 has demonstrated itself as a strong standard to provide rigor-

ous privacy guarantees for aggregate dataset analysis algorithms.

Definition 1. (ðe; dÞ-Differential privacy) Let D and D0 be 2 neigh-

boring datasets that differ in at most 1 entry. A randomized algo-

rithm A is ðe; dÞ-differentially private if for all S � RangeðAÞ:

Pr A Dð Þ 2 S½ � � e� � Pr A D0ð Þ 2 S½ � þ d;

where A Dð Þ represents the output of A with an input of D.

To guarantee the synthetic samples of our generative model do not

leak private information about the training data, we adopt the dif-

ferentially private stochastic gradient descent32 with its variant (ie,

DP-Adam) as the optimizer, which injects the calibrated noise by the

Gaussian mechanism to the clipped gradient during the model train-

ing process. The privacy cost for each epoch is bounded by the

Gaussian mechanism, while the total privacy cost during the model

training is accumulated by using a moments accountant.

Theorem 1. (Gaussian mechanism) For e 2 ð0; 1Þ and

c2 > 2lnð1:25=dÞ, the Gaussian mechanism with the parameter r

Figure 1. The dual adversarial autoencoder architecture that is composed of the sequence-to-sequence autoencoder, the inner generative adversarial network,

and the outer generative adversarial network.
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� cD2ðAÞ=e; which adds noise scaled by Nð0; r2Þ to each compo-

nent of the output of algorithm A, is ðe; dÞ-differentially private.

Because DAAE generates its synthetic samples by using the decoder

and the generator of the inner GAN, we adopt DP-Adam only for

these 2 functions when updating their parameters during the model

training. Therefore, the overall privacy cost for training our model is

the sum of the privacy cost induced by the decoder and generator.

Owing to the postprocessing property of the DP, after the generative

model is trained with differential privacy guarantee, it can generate

as many synthetic samples as we need without increasing the privacy

leakage of the private training data.

Model architecture
Notations

We assume that there exist M distinct medical entities e1; e2; . . . ; eM

2 E identified from a dataset (ie, ICD-9 diagnosis codes), and we

consider 2 additional entities to represent the start and the end of

each sequence (denoted by esos and eeos, respectively). Then, each

set-valued record can be represented as a multihot vector of the size

Mþ 2; ie, a binary vector whose j-th entry indicates the correspond-

ing entity is included or not in the record. Formally, the sequential

record of the i-th patient is represented as xi ¼ xi0; xi1; . . . ; xiT ; xi	½ �
where T is the maximum length of the original sequences, and its t-

th record is denoted by xit 2 0;1f gMþ2. The lengths of sequences are

all different, but we use just T for notational convenience. Note that

2 set-valued records xi0ð
 fesosgÞ and xi	ð
 feeosgÞ are respectively

inserted at the beginning and end of each sequence.

Sequence-to-sequence autoencoder

We employ gated recurrent unit (GRU) for our sequence encoder

and decoder. The encoder adopts a bidirectional structure to encode

both the forward and backward contexts of the sequences into low-

dimensional code vectors. At first, the entity embedding layer Wemb

2 R
Mþ2ð Þ�D which learns the semantics of all the entities maps a

high-dimensional set-valued record xit 2 0; 1f gMþ2 to the low-

dimensional embedding vector of the record vit 2 R
D. Then, the

GRU layer takes the sequence of embedding vectors as its inputs and

produces a final code vector by concatenating the last hidden states

of the forward and backward GRUs. We finally apply the tanh acti-

vation to this encoder output.

Similarly, the GRU layer of the decoder sequentially takes the

embedding vector of the set-valued record, which is generated at the

previous time step. Its entity decoding layer Wdec 2 R
D�ðMþ2Þ out-

puts final high-dimensional vectors sit 2 0; 1ð ÞMþ2 whose values are

the assignment scores of all the entities, which represent how likely

each entity would be assigned in the next record. Using the sigmoid

activation, the entity decoding layer computes the scores that range

in (0, 1), and we filter out the entities with the scores less than the

predefined threshold. This decoding is repeated until the generated

record contains the entity eeos. Figure 2 illustrates how our seq2seq

autoencoder encodes a sequence into a code vector and decodes (or

reconstructs) the sequence from the code vector.

Inner GAN and outer GAN

Our generator and inner critic in the inner GAN use a multilayer

perceptron equipped with the batch normalization and the ReLU ac-

tivation for each layer. The last layer of the generator adopts the

tanh activation to match its outputs with the encoder’s. In case of

the outer critic, we choose a convolutional neural network (CNN)

to effectively extract discriminative features for the real and fake

sequences. A simple CNN model designed for sentence classifica-

tion33 showed a high accuracy while employing a simple architec-

ture, so its architecture has been widely used for modeling various

sequential data.34–36

More specifically, the CNN critic takes the score vector sit

(rather than the multihot vector bx it or ~x it) from the decoder as its

inputs, so that the gradients from the outer GAN loss can be deliv-

ered to the GRU decoder. It utilizes the entity embedding layer,

which maps the input score vectors into the low-dimensional vec-

tors, and this layer shares the parameters with the embedding layer

in the seq2seq autoencoder.

Baseline models
To evaluate the performance of DAAE in terms of data generation,

we choose baseline models from (1) variants of EHR-GANs: such as

ALGORITHM 1: TRAINING THE DAAE MODEL
Enc/;Decw;Gh; fx ; fz  initialize the parameters

For each training iteration do

Sample xðiÞ
m

i¼1 � Px and sðiÞ
m

i¼1 � Nð0; IÞ
nn

Compute zðiÞ ¼ Enc/ðxðiÞÞ and bx ið Þ ¼ DecwðzðiÞÞ
Compute ~z ið Þ ¼ GhðsðiÞÞ and ~x ið Þ ¼ Decwð~z ið ÞÞ
(1) Train the outer critic (f x)

Update xx by ascending Lx ¼ 1
m

Pm
i¼1 fx ðx ið ÞÞ � 1

2m

Pm
i¼1 fx bx ið Þ

� �
þ fx ~x ið Þ

� �� �
(2) Train the inner critic (f z)

Update xz by ascending Lz ¼ 1
m

Pm
i¼1 fzðz ið ÞÞ � 1

m

Pm
i¼1 fzð~z ið ÞÞ

(3) Train the decoder (Decw)

Update w by descending Lrec ¼ � 1
m

Pm
i¼1 x ið Þlogbx ið Þ þ ð1� x ið ÞÞlog 1� bx ið Þ

� �� �
Update w by descending Lx ¼ 1

m

Pm
i¼1 fx ðx ið ÞÞ � 1

2m

Pm
i¼1 fx bx ið Þ

� �
þ fx ~x ið Þ

� �� �
(4) Train the encoder (Enc/)

Update / by descending Lrec ¼ � 1
m

Pm
i¼1 x ið Þlogbx ið Þ þ ð1� x ið ÞÞlog 1� bx ið Þ

� �� �
(5) Train the generator (Gh)

Update h by descending Lz ¼ 1
m

Pm
i¼1 fzðz ið ÞÞ � 1

m

Pm
i¼1 fzð~z ið ÞÞ
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medical GAN (medGAN)7; and (2) generative autoencoders: VAE,16

VAE-GAN,37 Wasserstein autoencoder (WAE),25 and adversarially

regularized autoencoder (ARAE).26 As medGAN learns independent

set-valued records, not a sequence, we randomly select 2 noises and

sequentially synthesize the samples by using interpolated noises.

This setting can be interpreted that a patient’s medical condition

changes from a random point to the another random point during T

time steps. Each length T is sampled from the length distribution of

the original data. Note that medGAN is the only baseline model

designed for EHRs because generative models for the set-valued

sequences from the EHR do not exist. Although several variants of

medGAN have been proposed to improve their performances, all of

them are not able to synthesize the sequential clinical records, which

is necessary for representing the chronological medical history of

each patient; for this reason, we only choose medGAN as our base-

line.13,38 Thus, for fair comparisons, we employ the same architec-

ture of the seq2seq autoencoder for all the other baseline models (ie,

VAE, VAE-GAN, WAE, and ARAE) with that of DAAE.

Evaluation strategy
In our experiments, we demonstrated the superiority of our model

to other baseline models by quantitatively and qualitatively compar-

ing them in terms of the following aspects: (1) the quality of syn-

thetic sequences, (2) the obtained code distributions, and (3) the DP

guarantee.

Evaluation of synthetic sequences

We first compared the accuracy of prediction models trained using

synthetic sequences obtained from our model and other baseline

models. To be specific, we trained single-layer long-short-term mem-

ory (LSTM) (to be specific, we employ the model architecture of

DoctorAI, which is designed for the same task based on the EHR)39

to predict top-N diagnosis codes in the next set-valued record within

a sequence (ie, many-to-many LSTM). The same number of syn-

thetic sequences as the number of real sequences were used to train

each model, and we measured top-N recall and precision values as

performance metrics. We repeated the experiments 5 times using dif-

ferent sets of generated sequences, and reported the average results.

Then, we measured the classification accuracy of 2 different dis-

criminators trained to classify the real and fake samples. A CNN with

a single convolutional layer33 and a single-layer bidirectional LSTM

(ie, many-to-one LSTM) were selected as the classifiers in order to con-

sider context features as well as realistic and unrealistic features. They

were trained using the synthetic samples mixed with the same number

of real samples. In general, the more similar the data and model distri-

butions are, the worse performance a discriminator would achieve. In

the ideal case that the model distribution is exactly identical to the

data distribution, their classification accuracy should be 0.5, which

means that a classifier cannot distinguish the 2 distributions at all.

Finally, we compared the plausibility scores of synthetic sequen-

ces, qualitatively assessed by domain experts. We synthesized

sequences (40 for each model) and asked 3 medical experts, who do

not know the model each sequence is generated by, to score how re-

alistic each sequence is using the scale [0, 10]. The raters conducted

comprehensive evaluation on the realistic-ness of the sequences in

terms of (1) the plausibility of set-valued records (eg, co-occurrences

of diagnosis codes), (2) the sequential contexts within a sequence,

and (3) the characteristics of the target dataset (eg, intensive care

unit patients or outpatients).

Figure 2. The detailed architecture of the sequence-to-sequence autoencoder in dual adversarial autoencoder architecture. The embedding layer encodes the se-

mantics of all the medical entities, and the gated recurrent unit layer learns the temporal contexts within patients’ sequential records.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 9 1415



Qualitative analysis on code distribution

Analyzing the fidelity and coverage of the generated samples on the

data space is challenging because of the discreteness and high dimen-

sionality of the EHR, so we instead investigated the continuous code

space obtained by each generative model. We observed that the

sequences in the EHR do not have distinctly different classes (or

modes), unlike the other benchmark datasets that have few represen-

tative classes (eg, MNIST [modified National Institute of Standards

and Technology). Thus, we first ran the DBSCAN (density-based spa-

tial clustering of applications with noise) algorithm40 on each code

space to identify several significant modes. We visualized the code dis-

tribution (ie, a marginalized posterior) induced by the encoder by us-

ing t-distributed stochastic neighbor embedding (t-SNE).41

Analysis on DP guarantee

We also investigated the performance of DAAE under different pri-

vacy cost induced by the DP-Adam optimizer. The privacy cost is

represented by the value of e, as we fixed d to 0.001 and varied the

noise scale c (defined in theorem 1) from 0.5 to 10. Note that a

smaller e value indicates the stronger privacy protection guaranteed

by the model. We reported the test recall values of the subsequent

code prediction task (ie, sequence modeling) on real sequences, after

training the LSTM model using the synthetic sequences.

RESULTS

Evaluation of synthetic sequences
Table 2 shows how effective synthetic sequences are to train the se-

quence model for subsequent code prediction, compared with real

Table 2. Recall@N and Precision@N for the subsequent code prediction task (%). The sequence models are trained on the synthetic samples

generated from each model, and evaluated on real data

MIMIC-III UTP

Recall@ Precision@ Recall@ Precision@

Metric 10 20 30 10 20 30 5 10 15 5 10 15

medGAN 13.3 19.5 23.8 17.5 13.1 10.9 18.9 27.2 33.4 10.4 7.3 5.8

VAE 21.7 29.0 33.7 26.5 18.6 14.7 17.3 21.3 23.9 9.5 5.8 4.3

VAE-GAN 22.4 30.5 35.5 27.9 19.7 15.6 12.1 13.4 13.8 6.8 3.8 2.6

WAE 26.1 35.9 42.0 32.1 23.1 18.4 31.4 37.4 41.1 16.5 9.9 7.3

ARAE 26.3 36.1 42.6 31.8 23.1 18.5 31.0 40.3 45.2 16.7 10.5 7.9

DAAE 26.7a 36.9a 43.3a 32.8a 23.7a 19.0a 32.4a 40.8a 46.2a 17.0a 10.7a 8.1a

Real 26.8 37.2 43.9 32.9 23.8 19.1 33.6 42.4 47.8 17.5 11.1 8.3

ARAE: adversarially regularized autoencoder; DAAE: dual adversarial autoencoder; medGAN: medical generative adversarial network; MIMIC-III: Medical In-

formation Mart for Intensive Care-III; UTP: UT-Physicians; VAE: variational autoencoder; VAE-GAN: variational autoencoder with generative adversarial network;

WAE: Wasserstein autoencoder.

Table 3. Binary classification accuracies of simple discriminators trained to distinguish real samples from fake samples generated by each

model

Dataset Discriminators medGAN (%) VAE (%) VAE-GAN (%) WAE (%) ARAE (%) DAAE (%)

MIMIC-III CNN 98.7 97.5 95.5 78.2 74.5 71.3a

Bi-LSTM 97.6 94.3 95.4 76.3 74.1 70.7a

UTP CNN 99.4 99.4 99.3 99.5 86.2 83.8a

Bi-LSTM 99.5 99.6 99.5 99.8 86.7 84.3

ARAE: adversarially regularized autoencoder; Bi-LSTM: bidirectional long-short-term memory; CNN: convolutional neural network; DAAE: dual adversarial

autoencoder; GAN: generative adversarial network; medGAN: medical generative adversarial network; MIMIC-III: Medical Information Mart for Intensive

Care-III; UTP: UT-Physicians; VAE: variational autoencoder; WAE: Wasserstein autoencoder.

A

B

Figure 3. Plausibility scores evaluated by medical experts. (a) Dataset: MIMIC-

III (b) Dataset: UTP. ARAE: adversarially regularized autoencoder; DAAE: dual

adversarial autoencoder; medGAN: medical generative adversarial network;

VAE: variational autoencoder; WAE: Wasserstein autoencoder.
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sequences. DAAE achieves the best accuracy among all the base-

lines, and notably, training on our synthetic data shows the compa-

rable accuracy to the case of training directly on real data. DAAE

significantly improves the performance against ARAE, and it implies

that our outer GAN is helpful to improve the sample quality.

We observe that the sequence model trained on the samples syn-

thesized by medGAN cannot predict subsequent codes as accurately

as the others do. Existing generative models designed for EHRs, in-

cluding medGAN, learn medical records independently while ex-

cluding their temporal contexts, and consequently they fail to

generate sequential records that are similar to real ones in the train-

ing set. In other words, even though medGAN turned out to be ef-

fective in generating realistic EHRs compared with naı̈ve baselines,2

such as random noise and independent sampling, it still has a limita-

tion to reproduce complex relationships (or co-occurrences of diag-

nosis codes) among different records within a single patient

trajectory.

Table 3 presents the indistinguishability of synthetic and real

samples based on binary classification using parametric classifiers.

As shown in the results, both the classifiers achieve the worst perfor-

mance on our synthetic samples. This result indirectly shows that

DAAE can generate more realistic sequences that are not easy to be

distinguished from real sequences, compared with the other base-

lines.

Before comparing the plausibility scores of synthetic sequences

evaluated by medical experts, we first tested the Kendall coefficient

to investigate the interrater reliability on ordinal rating scores, and

the results of 0.66 (for MIMIC-III) and 0.83 (for UTP) indicate the 3

raters consistently evaluate the samples. Figure 3 summarizes the

plausibility scores as a boxplot, and the sequences of DAAE achieve

higher scores than do those of ARAE, the state-of-the-art generative

model. Interestingly, in case of MIMIC-III, the sequences of VAE

are ranked as the best, but most of their records turn out to contain

only 1 or 2 diagnosis codes (ie, not informative enough); this is simi-

lar to the situation where a mode-collapsed model synthesize only

few types of realistic images easy to learn. In addition to the evalua-

tion by the parametric classifiers, this medical review emphasizes the

qualitative aspect of DAAE.

Figure 4. The code distribution (gray points) with identified modes (colored points). (a) VAE, (b) WAE, (c) ARAE, and (d) DAAE. Dataset: UT Physicians. ARAE:

adversarially regularized autoencoder; DAAE: dual adversarial autoencoder; medGAN: medical generative adversarial network; VAE: variational autoencoder;

WAE: Wasserstein autoencoder.
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Qualitative analysis on code distribution
Figure 4 illustrates the code distributions induced by the encoder of

DAAE and other generative models. A few modes are identified

from the code spaces of WAE, ARAE, and DAAE, whereas

DBSCAN cannot find any modes from that of VAE and VAE-GAN.

This implies that VAE-based models suffer from the posterior col-

lapse problem, whose encoder carries no information and decoder

degenerates into an unconditional sequence model. On the contrary,

specific disease-related patient groups are identified in case of

DAAE, which demonstrates that DAAE is capable of effectively

encoding the semantics of sequences into the code space. From these

observations, we can conclude that DAAE effectively learns the un-

derlying latent distribution of the data by adversarially optimizing

the inner critic and the generator.

Analysis on differential privacy guarantee
Figure 5 shows the performance changes of our model with respect

to its privacy guarantees. DAAE is successfully optimized to guaran-

tee the differential privacy while slightly compromising the perfor-

mance. In case of UTP, our synthetic sequences with a very tight

privacy guarantee (e¼1.06, d¼0.001) achieve the recall value of

44.8, showing that DAAE preserves a good model utility (see Table 2

for the performances without DP). In conclusion, the DP optimizer

enables DAAE to publish synthetic patients’ sequences realistic

enough for research purposes, with the rigorous privacy guarantee.

DISCUSSION

This research has been conducted to build synthetic EHRs, specifically

the sequences of high-dimensional and discrete clinical records. First

of all, by designing a novel seq2seq autoencoder for set-valued records

and combining it with GANs, this work makes it possible to synthe-

size a bunch of clinical trajectories of fake patients. Second, the outer

GAN and inner GAN in our proposed model successfully address the

important challenges of sequential EHR generation, which are that

(1) the synthetic records should be realistic enough not to be distin-

guished from the real records and (2) they should cover all the training

patients to reproduce the performance of specific downstream tasks.

Finally, our model is trained with rigorous privacy guarantee by a dif-

ferentially private optimizer, while preserving the good model utility.

These implications mitigate the difficulties in obtaining real EHR data

as well as handling their privacy issues, and consequently contribute

to the technical progress of machine learning in medicine.

Nevertheless, there still remain several limitations that this study

has not taken into consideration. First, we mainly validate our pro-

posed model by using the subsequent code prediction task, which in-

directly evaluates the synthetic records. Although the comparable

performance of our synthetic sequences to that of real sequences

strongly indicates that they accurately capture sequential contexts

within the trajectories of training patients, the evaluation depends

on the specific sequence model (ie, LSTM) and does not consider

other properties of clinical records. Furthermore, we only modeled

and learned ICD-9 codes for medical entities in EHR. There exist

other types of structured codes, including medication codes and pro-

cedure codes, so our model should be extended so that it can model

the causal relationships between different types of codes. We leave

these challenges as our future work.

CONCLUSION

This article proposes DAAE, a novel deep generative model to learn

set-valued sequences about patients’ longitudinal records. DAAE

improves both the mode coverage and quality of synthetic samples

with the help of 2 adversarial networks. As a result, our synthetic

sequences achieve the comparable results to real data for predictive

modeling, and they are assessed to be realistic enough by parametric

classifiers and domain experts. Finally, the fake sequences generated

by DAAE with strict privacy guarantee are expected to be widely uti-

lized for machine learning researches on the medical domain, with-

out increasing the privacy leakage of real patients’ data.
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