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ABSTRACT

Objective: The development of machine learning (ML) algorithms to address a variety of issues faced in clinical

practice has increased rapidly. However, questions have arisen regarding biases in their development that can

affect their applicability in specific populations. We sought to evaluate whether studies developing ML models

from electronic health record (EHR) data report sufficient demographic data on the study populations to demon-

strate representativeness and reproducibility.

Materials and Methods: We searched PubMed for articles applying ML models to improve clinical decision-

making using EHR data. We limited our search to papers published between 2015 and 2019.

Results: Across the 164 studies reviewed, demographic variables were inconsistently reported and/or included

as model inputs. Race/ethnicity was not reported in 64%; gender and age were not reported in 24% and 21% of

studies, respectively. Socioeconomic status of the population was not reported in 92% of studies. Studies that

mentioned these variables often did not report if they were included as model inputs. Few models (12%) were

validated using external populations. Few studies (17%) open-sourced their code. Populations in the ML studies

include higher proportions of White and Black yet fewer Hispanic subjects compared to the general US popula-

tion.

Discussion: The demographic characteristics of study populations are poorly reported in the ML literature

based on EHR data. Demographic representativeness in training data and model transparency is necessary to

ensure that ML models are deployed in an equitable and reproducible manner. Wider adoption of reporting

guidelines is warranted to improve representativeness and reproducibility.
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INTRODUCTION

The ubiquity of electronic health records (EHRs) has facilitated the

development of machine learning (ML) models to assist with clinical

decision-making for diagnosis, treatment, and prognosis.1 The use

of ML models in clinical practice has increased in recent years, and

specific models have approached the performance of expert clini-

cians in specialties such as pathology and radiology.2–4 However,

questions remain as to whether these models will generalize more

broadly and deliver benefit to diverse populations.5,6 As ML tools

proliferate across clinical settings, it is important to understand po-

tential demographic biases underlying model development.

Recently, reports have questioned whether ML models in health-

care might perpetuate discrimination if trained on historical data—

which is often poorly representative of broader populations.7 Repre-

sentativeness may be a larger problem in countries with significant

health disparities on the basis of demographics, such as the United

States (US). If ML models are not trained on populations for which

they will be applied, these advances may further perpetuate dispar-

ities and fail to demonstrate external validity in broader patient

communities.8 Recent evidence highlights this issue, particularly in

the US, where ML-drive decision support often falls short for non-

white populations, likely due to a lack of diversity in the training

data.8,9

Another challenge in the EHR ML literature is the reproducibil-

ity of results.10–13 This may be further exacerbated by the lack of

clarity related to model development and evaluation. Indeed, recent

studies showed an alarming lack of reproducibility using the same

data, suggesting that public sharing of model code could enhance re-

producibility.14,15 Furthermore, the paucity of shared code means

that many ML models are not validated on external health sys-

tems.13 Recently, 2 evaluations of ML models on EHR data

highlighted important gaps related to these issues, including limita-

tions such as single-center data collection and inadequate reporting

of missing data as well as concerns regarding the clinical impact of

models.16,17 Promoting access to ML models’ code and details about

the training data is crucial to advance the applicability and general-

izability of ML in biomedicine.

The goal of the current study is to evaluate the reporting of de-

mographic data in ML models using EHRs and the availability of in-

formation needed for reproducibility. Our work specifically focuses

on whether studies disclose and/or include the demographic varia-

bles in the models, validation protocols, and reproducibility aspects

of the models. To identify and provide best practices for designing

useful ML studies, the transparent reporting and documentation of

key demographic variables as well as reproducibility and generaliz-

ability safeguards are necessary to ensure the equitable implementa-

tion of these technologies.

MATERIALS AND METHODS

Literature selection
We systematically searched PubMed (Medline) for studies applying

ML models to support clinical decision-making using EHR data—

specifically structured and unstructured EHR data (eg, laboratory

tests, vitals, medications, diagnosis codes, clinical notes, etc.). We

limited our search to papers published between January 1, 2015 and

April 30, 2019 (final search completed on May 1, 2019). We in-

cluded English-language studies using EHR data as their primary

data source for development of a prediction or classification model.

Papers were excluded if they used only imaging or genomic data

that were not linked to patient demographics. Studies using statisti-

cal regression models, such as logistic regression without any train/

test splitting or cross validation, were also excluded because they are

generally constructed based on theory and assumptions, do not learn

automatically from data, and hence are not designed as a machine

learning model framework. The complete search strategy and inclu-

sion/exclusion criteria are shown in Figure 1.18 Four reviewers (SB,

EMC, RS, JALV) independently reviewed the studies (each study

was assessed by 2 reviewers), reaching a consensus on all eligible

studies after 2 adjudication meetings. Inclusion and exclusion crite-

ria are highlighted in Figure 1. Our search strategy included MeSH

terms and keywords that appeared in the title or abstract. Our com-

plete query can be found in the Supplementary Material S1.

Data collection, extraction, and analysis
Eligible articles were downloaded, and the full text was indepen-

dently assessed by the same 2 reviewers who performed the first se-

lection. A randomly selected subset of 20 articles was screened by all

reviewers, and disagreements were discussed in a focus group meet-

ing with an ML expert.

Of the 4298 retrieved articles, 164 matched the inclusion criteria

and were further analyzed. Papers were evaluated on 5 aspects:

1) study design, which includes sample size, clinical setting, disease

condition; 2) reporting of demographic variables, specifically

gender, age, socioeconomic status, race/ethnicity, and any other

sensitive demographic indicators; 3) comparisons of overall demo-

graphics of the samples evaluated in type 2 diabetes mellitus

(T2DM) studies to National Health and Nutrition Examination

Survey (NHANES) population to provide a use case demonstrating

US population representation; 4) model validation setting, including

internal and external validation; and 5) data sharing and code

open-sourcing.

A standardized form was used for data extraction from each

study, including authors, year, journal type (clinical, biomedical in-

formatics, and other), clinical setting (inpatient, outpatient, emer-

gency department, intensive care unit), clinical condition (eg,

oncology, cardiovascular disease, diabetes) and sample size. This in-

formation was collected from the abstract, main text, and any sup-

plementary material available.

Evaluation of demographic variables
Demographic variables were evaluated across 3 domains: 1) varia-

bles reported for the study population; 2) variables included as fea-

tures in the model; and 3) representativeness of the training data to

the target population. All categories were presented as frequencies

and percentages.

Training data characteristics
Comparison with NHANES population

In studies where race/ethnicity and gender were reported, we com-

bined populations from all US studies to generate the average demo-

graphic statistics of all ML studies included in this report and

compared it to the NHANES population. For the calculation of gen-

der distributions, we excluded 9 studies focused on breast cancer

(n¼3), obstetric patients (n¼4) and systemic lupus erythematosus

(n¼2). Age distribution among studies was not compared due to

the inconsistent reporting formats (mean, median or frequencies).

P values were calculated using the 1 sample test for proportions.
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T2DM use case

To investigate whether the training data of ML models used is repre-

sentative of the target population, we evaluated papers focused on

type 2 Diabetes Mellitus (T2DM) because data exist regarding the

real distribution of T2DM in the US population.19 We compared the

overall race/ethnicity and gender percentages of T2DM studies in-

cluded in our study to the T2DM patients within the NHANES pop-

ulation using sample weights to represent overall population

distribution.

Validation protocols
Validation protocols of the papers were evaluated based on the fol-

lowing definitions. Internal validation (including cross-validation) is

defined as the performance of the model in verifying that the conclu-

sions drawn from a subset of the collected data are consistent in the

remaining data of same origin.20 External validation of the models

uses unseen data that are entirely separate from the data used for

model development, verifying that the conclusions drawn from the

collected data were based on a new dataset of different origin to as-

sess the model’s generalizability.21

Data sharing and code sourcing
Evaluation of data and code availability was performed in 2 steps:

1) we searched for the following keywords: “GitHub,” “GitLab,”

“Bitbucket,” “open source,” “available,” “availability,” “data,”

and “code” in the full text; 2) wherever none of the keywords were

found, we manually reviewed the article text for any mention of

data or code availability. In addition, missing data reporting in the

studies were evaluated as reported or/and imputed.

RESULTS

A total of 164 studies were eligible for inclusion in the analysis (Sup-

plementary Table S1). Of these, 74 (45%) articles were from clinical

journals, 42 (26%) from medical informatics journals and 48 (30%)

from other journals. The number of ML papers using EHR data in-

creased over the course of the 5-year inclusion period. Studies origi-

nated from EHRs in 16 different countries, with the majority

conducted in the US (n¼121, 74%) and China (n¼13, 8%). The

sample size in the studies ranged between 73 and 4 637 297 patients,

with a median of 1237. The studies reviewed differed in their tar-

geted age groups. A majority of studies, 133 (81%), were conducted

in adult populations, whereas 15 (9%) addressed pediatric cohorts,

and 13 (8%) included both adults and children. Two (1%) studies

focused only on geriatric patients and 1 (0.6%) study focused on

neonates.

A large number of studies (n¼57, 35%) used EHR data from in-

patient settings exclusively; followed by 36 (22%) studies using out-

patient data only; 15 (9%) using intensive care unit (ICU) data only;

and 10 (6%) emergency department data only. Additionally, the

Figure 1. Study selection flowchart.
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included studies considered a variety of clinical conditions and dis-

eases with cardiovascular disease being the most frequently pre-

dicted condition covered by 23 (14%) of the articles and followed

by sepsis in 10 (6%) articles.

Demographic variable reporting
The reporting of sensitive demographic variables is summarized in

Table 1. There was heterogeneity in whether, and how, the distribu-

tion of demographic variables was defined and reported. For in-

stance, age distribution of a cohort was reported either as a range,

median or mean. Relevant demographic variables were absent from

several papers, yet a large number of studies reported gender

(n¼124, 76%) and age (n¼129, 79%) distributions. However,

race/ethnicity and socioeconomic status were not reported in 105

(64%) and 150 (92%) studies, respectively. The distribution of

other sensitive demographic variables was rarely reported.

Sensitive variables as model inputs
The inclusion of demographic variables as model inputs varied

across studies (Table 1). Age and gender were often included as

model features, regardless of whether their distribution was

reported. For instance, 23 studies (14%) did not report the age dis-

tribution of the training dataset, yet age was declared as an input

feature in their model. Race/ethnicity was reported and included as

a feature in 41 (25%) studies and socioeconomic status in 13(8%)

studies. Other sensitive variables were rarely included as features in

the model.

Training data characteristics
Comparison with the NHANES population

Figure 2 shows the overall percentages of gender and race/ethnicity

in US papers (121, 74%). The percentage of male subjects varied be-

tween 27% and 71% with a mean of 50%, which is close to the

population rate of 49% in NHANES (P¼ .056). Race/ethnicity per-

centages show slight differences compared to NHANES; the per-

centage of White subjects was higher in ML studies vs NHANES

(68% versus 62%, respectively P< .001). Yet Black subjects were

overrepresented (18% versus 12%, respectively P< .001) and His-

panics underrepresented in ML models compared to NHANES

(11% versus 18%, respectively P< .001).

T2DM use case

Figure 3 shows the overall percentages of gender and race/ethnicity

in articles related to T2DM that were US-based (7 articles, 5%).

Gender distribution was reported in 6 (86%) studies whereas race/

ethnicity was reported in 2 (29%) studies, although neither of these

included the percentage of Hispanic T2DM patients. Due to the

Table 1. Demographic variables reported in the studies

Variables

N (%)

Distribution reported Distribution not reported

Total

Not included

in the model

Included in

the model Total

Not included

in the model

Included in

the model

Gender 124 (76) 30 (18) 94 (57) 40 (24) 20 (12) 20 (12)

Age 129 (79) 16 (10) 113 (69) 35 (21) 12 (7) 23 (14)

Race/ethnicity 59 (36) 18 (11) 41 (25) 105 (64) 86 (52) 19 (12)

Socio-economic status 14 (8) 1 (1) 13 (8) 150 (92) 145 (88) 5 (3)

Other sensitive demographic variables

Marital status 9 (6) – 9 (6) 155 (95) 149 (91) 6 (4)

Zip code – – 164 (100) 160 (98) 4 (2)

Employment status 1 (1) – 1 (1) 163 (99) 160 (98) 3 (2)

Education level 2 (1) – 2 (1) 162 (99) 160 (98) 2 (1)

Religion 1 (1) – 1 (1) 163 (99) 161 (98) 2 (1)

Childhood status – – 1 (1) 163 () 1 (1)

Housing status – – 1 (1) 163 () 1 (1)

Figure 2. Percentages of gender and race/ethnicity variables in ML studies compared to the NHANES population.
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small number of studies we did not provide P values for

comparisons.

Validation protocols
The generalizability of clinical studies can be tested via internal vali-

dation and/or external validation. In 147 (88%) studies, only inter-

nal validation was performed; the remaining 12% of studies showed

results for external validation. In addition, in 10 (6%) studies, the

validation results for all the data without splitting it into subgroups

(train, test, or leave-one-out) were given.

Data and code availability
Among 164 studies, 12 (7%) used a publicly available dataset,

8 (5%) shared their data in an anonymized (deidentified) format

and 1 study shared an example subset of the real-world data. Among

studies using publicly available datasets, 9 (6%) used the MIMIC

dataset, a freely available dataset containing deidentified health data

associated with over 55 000 intensive care unit admissions.22 Among

all studies, 82 (50%) reported missing data, of which 37 (22%) used

imputation techniques (eg, mean/median imputation or regression

imputation) while 8 (5%) excluded those cases with missing data. In

27 (17%) studies, authors open-sourced their code through online

repositories such as GitHub or GitLab.

DISCUSSION

The proliferation of ML models offers novel opportunities for im-

provement in clinical decision-making. However, demographic

descriptions of training data are poorly reported. This study demon-

strates that key demographic variables such as race/ethnicity and so-

cioeconomic status are often not reported in the clinical ML

literature. Moreover, ML models were rarely validated in external

populations and authors rarely share the code associated with pub-

lished studies. This work highlights the need for improved reporting

standards along with code-sharing across the EHR research

community.

In the studies included in this report, data essential to interpret

the outcome and intended target populations of ML models were in-

consistently described. When demographic information was

reported, we observed trends similar to previous analyses,23 with an

unbalanced distribution of race/ethnicity. While we do not expect

every clinical cohort to match the general population, differences in

population distributions must be transparent, particularly when

applications are developed with the intention to deploy in popula-

tions outside their training population. Transparency of demo-

graphic representation in the training data is essential for end users

intending to use the model to guide clinical decisions.21,24

To assess population representativeness of ML models’ training

population, direct access to study data is often necessary, as is some-

times done for randomized controlled trials.19,22 Other approaches

include qualitative analyses based on consensus of authors for each

target population.25 However, this approach also requires disclosure

of demographic data and inclusion/exclusion criteria. In an attempt

to appraise ML models sample representative of the population to

which they will be applied, we evaluated T2DM models as an exam-

ple. We found only 2 of 7 articles include population demographics

and, in these papers, White and Black populations included in the

training data were similar to the US T2DM population. However,

neither study reported Hispanics in their training data. This raises

concern given Hispanics higher prevalence and complication rates

for T2DM compared to Whites.26 It is unclear how T2DM models

trained without representation of Hispanics would fair more

broadly in nationwide healthcare systems to benefit diverse popula-

tions. The inability to quantify sample representativeness in ML

models demonstrates a strong need for a framework to evaluate

sample representativeness to ensure appropriate downstream appli-

cations of the ML models.

It is important to remember that EHRs were not intended for

secondary analyses; missing and inaccurate data are common.27

Clearly, many sensitive variables, such as socioeconomic or housing

status may not be available in EHRs, hence the low reporting we

found on these variables is not surprising. In addition, missing data

can substantially affect the results of predictive models and in our

analyses half of the studies included reported missingness and of

those, 22% used imputation techniques to address missingness.

While not all data can be imputed, a clear statement of missingness

and imputation methods should be provided. While imperfect for

secondary analyses, EHRs are a dominant data source for clinical

decision support. Their unbiased application is dependent on the

representativeness of the training data to the applied population, a

measure that can only be determined through the thoughtful com-

parison of sensitive variables across populations.

The performance of any predictive model attempting to influence

clinical decision-making broadly depends on its reliability and gen-

eralizability to other settings and populations than those represented

Figure 3. Percentages of 2 demographic variables in ML studies on T2DM cohorts compared to the NHANES T2DM population.
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in the training data.21,28 However, many of the studies screened ex-

clusively used data from a single facility, and the models were rarely

validated in external populations. This compounds the aforemen-

tioned nonrepresentativeness of the majority of models and may en-

hance the risk of generalization failure if these models were utilized

in more diverse patient cohorts. Indeed, lack of data sharing or a

deidentified EHR data source for researchers to validate and evalu-

ate the models could help mitigate this problem. However, data are

not being shared across systems or entities, in part due to a lack of

interoperability and in part due to a lack of appropriate incentives

for data sharing.29 There is a need to develop strategies and policies

to facilitate data sharing and regulations are moving in this direc-

tion, but clarification on what data can and should be made avail-

able to improve the applicability of ML models is needed.23,30

To facilitate broader dissemination of ML technologies, pub-

lished models should strive to provide their source code where possi-

ble. Wiens et al31 presented a framework for accelerating the

translation of ML-based interventions in healthcare and suggested

that it is good practice to share code, packages, and inputs, as well

as supporting documentation. The lack of models available for

open-source review also presents a risk that the code underlying the

model may be tailored specifically to attributes of the training data

and therefore could not be extrapolated effectively to other settings.

Our work suggests that reporting guidelines must be adapted to

studies proposing new ML models to clearly elaborate on the pres-

ence or absence of sensitive demographic variables31,32 as we and

others have highlighted.10,33,34 Additionally, efforts need to be

made to explicitly report the representativeness of training data to

the applied population. When feasible, all models developed need to

be externally validated on datasets containing relevant variables and

outcomes of interest. Finally, similar to preregistration of clinical tri-

als serving to ensure their accountability, adopters, journals, regula-

tors, and other stakeholders should push for open-sourcing of code

as a prerequisite to its broad scale acceptability.

This empirical assessment of ML studies has certain limitations.

First, the studies included were limited to journal articles published

in English and indexed only in Medline. A more robust search for

articles disseminated in other sources, such as ACM digital library

and IEEE eXplore, could extend the scope of this work and merit

further investigation. Second, some studies included may be proof of

concept and not intended for implementation in a clinical setting.

However, the plurality of the articles included in this study were

published in clinical journals with a goal to use their approaches in

clinical decision-making. Third, though we aimed to include studies

that would be relevant to the general populations when reporting

descriptive statistics, caution should be employed in interpreting our

results. Some study populations may genuinely deviate from the gen-

eral population and the goal of representativeness needs to be care-

fully defined on a case by case basis. Finally, lack of sufficient

reporting leaves substantial ambiguity for some variables considered

in these studies. Better reporting standards would address this

ambiguity.

CONCLUSION

Our empirical assessment of a large number of studies provides

insights into whether demographic data has been sufficiently consid-

ered and/or appropriately managed when developing ML models.

We found demographic characteristics of training data are poorly

reported in the ML EHR literature. Additionally, external model

validation and code open-sourcing is infrequently performed. These

factors limit the generalizability and reproducibility of ML research.

Wider adoption of reporting guidelines with an explicit focus on de-

mographic inclusion and equity is critical for the safe and equitable

deployment of ML models in practice.
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