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ABSTRACT

Objective: A growing body of observational data enabled its secondary use to facilitate clinical care for complex

cases not covered by the existing evidence. We conducted a scoping review to characterize clinical decision

support systems (CDSSs) that generate new knowledge to provide guidance for such cases in real time.

Materials and Methods: PubMed, Embase, ProQuest, and IEEE Xplore were searched up to May 2020. The

abstracts were screened by 2 reviewers. Full texts of the relevant articles were reviewed by the first author and

approved by the second reviewer, accompanied by the screening of articles’ references. The details of design,

implementation and evaluation of included CDSSs were extracted.

Results: Our search returned 3427 articles, 53 of which describing 25 CDSSs were selected. We identified

8 expert-based and 17 data-driven tools. Sixteen (64%) tools were developed in the United States, with the

others mostly in Europe. Most of the tools (n ¼ 16, 64%) were implemented in 1 site, with only 5 being actively

used in clinical practice. Patient or quality outcomes were assessed for 3 (18%) CDSSs, 4 (16%) underwent user

acceptance or usage testing and 7 (28%) functional testing.

Conclusions: We found a number of CDSSs that generate new knowledge, although only 1 addressed con-

founding and bias. Overall, the tools lacked demonstration of their utility. Improvement in clinical and quality

outcomes were shown only for a few CDSSs, while the benefits of the others remain unclear. This review sug-

gests a need for a further testing of such CDSSs and, if appropriate, their dissemination.
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INTRODUCTION

Since the 1990s, when the concept of evidence-based medi-

cine was first introduced, it has become the leading para-

digm in clinical practice, shaping the way we view medicine

today. Accumulated scientific evidence informs clinical deci-

sions to reach optimal care, improve patient outcomes, and

reduce costs.1–3 Moreover, evidence-based practice, as op-

posed to intuitive care, allows reliable intervention compari-

son.4

Nevertheless, medical evidence is neither comprehensive

nor precise. Randomized clinical trials (RCTs), which are the

backbone of medical evidence, have pitfalls and biases. Owing

to an inherited tradeoff between accuracy and generalizability,

RCTs are oftentimes not applicable to real-world patients.5
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Many of them consider only a subset of the population, exclud-

ing patients with advanced cancer, patients with chronic kid-

ney disorder or systemic disorders, the elderly, pregnant

women, and other vulnerable populations.6,7 Clinical trials also

tend to focus narrowly on one condition at a time, which pro-

duces recommendations that are entirely relevant to a patient

with a single disorder and rarely provide clear guidance for

patients with multiple conditions7,8 or complex interventions.9–11

As trials are expensive and time-consuming, large-scale clinical

trials may not be readily available for new drugs or rare

disorders.12,13 When current evidence fails to provide guidance

for the previous scenarios, clinicians have to rely on their limited

experience.

However, a growing body of observational data, along with

the continuing accumulation of practice-based evidence, has

made new approaches to evidence generation available.3,14,15

Observational studies have a potential to inform clinical deci-

sion making by generating and disseminating new knowledge

across medical community,16 but they are also time-

consuming. There are new clinical decision support systems

(CDSSs) that generate new knowledge in real time.17 While the

more traditional rule-based systems are developed using exist-

ing clinical knowledge and can only provide recommendations

for a limited number of cases,18 these CDSSs have a potential

to address a broad range of clinical questions in a timely man-

ner. It is unclear, though, to what extent such CDSSs inform

decision making at the bedside.16 Moreover, a comprehensive

review of such CDSSs, their design, capacities and impact is

lacking. We conducted a scoping19 review of CDSSs that use

patient data for generating new knowledge to assist with com-

plicated clinical cases, and examined their adoption and im-

pact on decision making and patient outcomes.

MATERIALS AND METHODS

Search strategy
We conducted a scoping review, including the use of a formal

search strategy, appraisal of study quality, and a narrative syn-

thesis of findings. To inform our analysis, we performed a sys-

tematic search of 4 databases (PubMed, Embase, ProQuest,

and IEE Xplore) for articles published in English before May 22,

2020.

The focused question that drove this review was, “What are

the features and impact of clinical decision support tools that

generate new knowledge to address complex clinical cases not

covered by the existing evidence?” To answer this question,

we identified 4 components of our search:

1. Electronic health records (EHRs)

2. Clinical decision support tools

We began with browsing available literature to identify terms

that can be used for article retrieval. After having found that the

articles of interest included disparate keywords (eg, CDSSs,

health service, prototype), together with librarians we expanded

the list of our search terms to achieve better coverage (the de-

tailed search strategy can be found in Supplementary Appendix

A).

3. Evidence-based medicine

We included the hyponyms and synonym terms for evidence-

based medicine, including broader concepts (evidence and deci-

sion making) to obtain all relevant results.

4. Complex clinical cases

Based on the previous literature,20–26 we included not only the

terms representing complicated cases, but also additional terms

such as “polypharmacy,” “comorbidity,” “patient like mine,”

“patient-related questions,” and others (Supplementary Appen-

dix A).

The search terms included MeSH (Medical Subject Head-

ings) concepts (PubMed), Emtree (Embase), and free-text

terms, combining the 4 groups of terms described above.

Inclusion and exclusion criteria
We included articles that described any type of clinical decision

support system, which was defined as any computer system

designed to impact clinician decision making about individual

patients at the point in time that these decisions are made,27

that use patient data to address clinical questions not covered

by existing evidence and are designed to be used by clinicians.

We focused on those CDSSs that either modify existing evi-

dence, tailoring it to the patient of interest or generate previ-

ously unknown knowledge to facilitate decision making. Thus,

this article does not include CDSSs that use existing guide-

lines, clinical trials, or literature as is.

We excluded articles meeting any of the following criteria:

1. The CDSSs only used existing evidence (clinical trials, guidelines,

published literature)

2. The study was in a language other than English

3. The study used data other than clinical (eg, genomic or protein

data) or simulated datasets

While review articles were excluded from the review itself,

they were used to obtain relevant references and to inform this

discussion.

Study selection and data synthesis
Two reviewers (A.O. and L.Z.) independently screened the title

and abstract for each study for inclusion and exclusion criteria.

The level of agreement between the 2 reviewers was assessed by

a Cohen’s kappa score. Disagreements between the 2 reviewers

were resolved by discussion until consensus was reached. The

list of studies selected for full text review was screened for rele-

vant references. A.O. reviewed the full text of the selected studies

and further excluded irrelevant studies. For each tool, we

extracted the year of its implementation or evaluation, the site of

intervention, its main area (specialty), focus (patient care, re-

search, quality improvement), methods used, evaluation type and

evaluation outcomes. Additionally, a manual search was con-

ducted to identify other articles describing included CDSSs.

Extracted data were reviewed and approved by L.Z.

RESULTS

We retrieved 3427 articles, of which 172 articles were poten-

tially relevant based on abstract, title, and keywords screening.

A total of 144 articles were identified as duplicates and re-

moved. The level of agreement between the 2 reviewers was

reflected by a Cohen’s kappa of 0.84.We additionally found 83

articles through reference lists. 53 manuscripts describing 25

CDSSs were selected for this review. Figure 1, following the

PRISMA (Preferred Reporting Items for Systematic Reviews
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and Meta-Analyses) reporting standards, summarizes the arti-

cle selection process and its results.

The number of tools peaked in 2015 and 2019 (Figure 2).

Only 36% (n ¼ 9) of them were implemented in more than 1

site with 64% (n ¼ 16) of the tools developed in the United

States, the others—in Europe (n ¼ 6), the United Kingdom (n ¼
1) or China (n ¼ 2).

While all of the CDSSs included in the study were either

used or planned to be used for clinical care, 68% of CDSSs

also focused on quality of care or research (n ¼ 8 [32%] and n

¼ 9 [36%] respectively) (Supplementary Appendix B). Oncol-

ogy was the main area of use (9 CDSSs, 36%) followed by sur-

gery, psychiatry, and internal medicine (n ¼ 2, 8% each). The

other tools did not have a specific area of use, albeit specific

use cases were used to show the features of some prototypes

(potentially unrestricted) (Supplementary Appendix B). Only

40% (10) of the tools were deployed and used in practice.

The tools in this review can be classified into 2 groups

based on the main approach used to infer new knowledge: (1)

data-driven tools, which use patient data to generate practice-

based evidence18 in real time; and (2) expert-based tools,

which require experts to incorporate practice-based evidence

into algorithms subsequently used in CDSSs. Both of these

groups produce knowledge that does not explicitly exist out-

side of CDSSs and should be useful for decision making for a

patient of interest. Based on the analytical component, data-

driven tools can further be classified into (1) visual non–analyt-

ics-based tools and (2) analytics tools (Table 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart for the article selection and review.

Figure 2. Temporal trend in development of tools described in this study. CDSS: clinical decision support system.
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Data-driven tools
Visual non–analytics-based tools

Visual non–analytics-based tools allow defining patients based

on the criteria of interest, aggregating them according to a set

of rules defined by a clinician and visually inspecting resulting

patient cohorts. Individual patient data or aggregated data can

be aligned by timeline and presented to a clinician for compari-

son. With rare exceptions,28 they do not require a third party to

perform an analysis: clinicians can obtain relevant information

on their own. Patient criteria can be selected from a predefined

list28,29 or from any structured data in the EHR system.30 The

latter increases the variety of questions clinician can ask as any

diagnosis, procedure, or laboratory test from the EHR system

can be selected. While such tools are not capable of generating

gold-standard evidence, they allow clinicians to learn from pre-

vious care, observe, and compare patient outcomes.

One of the tools, PatternFinder,31–35 visualizes patient

records according to temporal queries and allows specifying

an index event and 2 additional events only (Figure 3B). Visual-

ization is limited to matched events, so that clinicians can only

explore the common events but not those that differ among

patients. The authors performed extensive 4-month usability

testing for patients with contrast nephropathy.

CaVa28 visually represents the changes in the predefined

variables of interest through line thickness, where lines con-

nect clinical events and are aligned by timeline. As opposed to

PatternFinder, it does not limit the number of events to display

but requires the study team to identify patients and select vari-

ables in advance. A prototype, developed for cardiology

patients, could also support similarity measurements and utili-

zation analysis. CareFlow,36 developed independently, has a

similar interface and features (Figure 3C). It was similarly

tested for cardiology patients (congestive heart failure).

A CDSS for radiologists presented by Morrison et al37 aims

at identifying patients with similar demographic and lung

cancer-related characteristics. It displays descriptive statistics,

mainly focusing on cancer characteristics, and unlike the other

tools, it is characterized by limited visualization. Another dis-

tinctive feature is repurposing of a lung screening trial data set,

which limits its ability to learn from the new patient data.

Similarly to the previous tool, Composer29 was developed

for a single specialty, assisting orthopedic surgeons in assess-

ing patient state after spinal procedures. The developers pre-

specified outcome measures and subsequently plotted them

for individual patients or aggregated cohorts (Figure 3D). As

the tool has recently been developed, we have no information

about its evaluation.

The ePEPS toolbox30,38,39 was built on top of the nationwide

French EHR database, leveraging the benefits of linking patient

data across multiple institutions. It supports constructing pa-

tient cohorts based on all available structured data, not limiting

variables to a predefined set. Clinicians can then compare the

cohorts based on geographic distribution, explore the distribu-

tion of the events of interest across groups, and inspect patient

trajectories.

A tool presented by Li et al40 used elastic search to search

for patients of interest in real time. The tool preserves the abil-

ity to transparently explore “what-if” scenarios for cohorts of

patients. It is achieved by comparing the trajectory of a given

person to the trajectories of similar patients and visually ana-

lyzing if his or her trajectory is within normal bounds.

Analytics tools

Analytics tools aggregate patient data and use statistical

approaches to compare patient cohorts. Data analysis can vary

from simple descriptive statistics to comparative effectiveness

studies, but generally allows not only learning from previous

patient care, but also reliably comparing patient outcomes and

characteristics. The tools described in this section mainly differ

in the methods used to obtain cohorts and the ways results are

presented to clinicians.

We start with the tools that combine visual representation

of patient cohorts with statistical analysis that allows clinicians

to obtain estimates (odds ratios or relative risk) for the groups

of interest.

CoCo,41 which stands for Cohort Comparison, provides vi-

sualization of interactively refined patient cohorts as well as in-

dividual patient records as time sequences (Figure 3A).

Clinicians can then compare the cohorts using formal statisti-

cal approaches (survival analysis and log-rank test).

Bernard et al42 developed a dashboard similar to CoCo to

visualize multiple patient trajectories for patients with prostate

cancer. Clinicians can select patients and compute correlations

between variables and a patient cohort. Patient histories are

synchronized, and each history is shown as a line with a color

corresponding to a phase of prostate cancer treatment. The

Table 1. Included articles grouped by the inference mechanism and analytical component

Group Sub-group Included CDSSs

Data-driven CDSSs

(n ¼ 17 )

Visual non–analytics-based tools (n ¼ 6) “Composer,” “ePEPS,” “CaVa,” “CareFlow,” “Patient-like-

mine,” “PatternFinder”

Analytics tools

(n ¼ 11)

“Care Pathway Workbench,” “Green Button,” “CoCo,”

“VisualDecisionLinc,” “Melanoma Rapid Learning Utility,”

“DICON,” CDSSs for radiologists (Morrison et al),37 2

CDSSs for prostate cancer (Bernard et al),42 2 CDSSs for

diabetes mellitus and acute coronary syndrome (Xia et

al)47,48

Expert-based CDSSs

(n ¼ 8)

“MayoExpert,” “e-bipolar,” ROAD2H CDSSs, “Oncology

Expert Advisor,” “P4 Pathways,” “Level I Pathways,”

“ViaOncology,” “eviti”

CDSS: clinical decision support system.
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authors further explored this area by developing dashboard

networks to allow cohort comparison.43 To conduct user ac-

ceptance testing, Barnard et al asked clinicians to run an obser-

vational study using the prostate cancer dashboard. They

showed that the system increased the efficiency of analytics

and provided visual assistance for complicated temporal rela-

tionships in the data. Malik et al41 took the same evaluation ap-

proach for CoCo and generated use cases to access perceived

usefulness of the tool in emergency department settings.

Melanoma Rapid Learning Utility (MLRU)44 and VisualDeci-

sionLinc45 similarly enable physician-driven cohort selection and

comparative effectiveness analysis for melanoma and major de-

pressive disorder, respectively. Physicians construct cohorts

based on demographic data, drug exposure data, and

melanoma-related variables (MLRU), and can subsequently in-

spect odds ratios of outcomes produced by survival analysis.

MLRU underwent user acceptance testing, with positive feedback

and physicians more interested in using it for research purposes.

It was deployed, but the actual use of the tool is unknown.

Cao et al46 used a glyph-based visualization system (DICON)

to show structured data from patients’ EHR and compute similar-

ity scores across patient data elements. The tool calculates the

correlation between selected features (eg, International Classifi-

cation of Diseases–Tenth Revision–Clinical Modification codes)

and the cluster of similar patients. The authors conducted a for-

mal mixed (qualitative and quantitative) user acceptance testing

with domain experts and nonexperts focusing on the design of

the icons that represented patient cohorts. They found that their

design provided higher efficiency on group comparison; they

provided limited information about user feedback.

Xia et al47,48 developed 2 separate prototypes that use clus-

tering techniques to identify patient subgroups within a disor-

der (acute coronary syndrome and diabetes mellitus). Upon

clinical encounter, a clinician can see a cluster of patients who

are similar to the patient of interest and inspect their character-

istics, including demographics, disease onset and progression,

drug exposure, and outcomes.

As opposed to visual analytics-based tools, Green But-

ton17,49,50 presents cohort comparison in the form of reports

that the developers supply to clinicians. Developed primarily

for clinical care, it leverages observational studies to answer

clinical questions ranging from simple descriptive statistics to

comparative effectiveness studies. A fast search engine

retrieves patients of interest and visualizes their medical events

as temporal sequences, allowing fast and efficient iterations.

This is the only tools that mitigates confounding (propensity

score matching) in addition to survival analysis, incidence

rates, or descriptive statistics. Compared with the other tools

described here, clinicians have to supply their questions to the

study team and cannot execute analysis on their own. The

CDSSs delivers reports through protected email and phone

conversations, rather than through a standalone user interface.

The last tool in this section, Care Pathway Workbench,51

transitions from pure data-driven approaches to integration of

newly generated real practice evidence into existing care path-

ways. It uses hidden Markov Models to identify the deviations

of real practice from clinical guidelines and mines EHR data to

obtain clinical event sequences. It then presents these insights

from real-world practice to clinicians so that they can modify

care plans for a specific patient.

Figure 3. Snapshots of visual tools described in this study: (A) CoCo, (B) PatternFinder, (C) CareFlow, and (D) Composer. Permissions for image reuse were

obtained from the authors of the tools.

1972 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 12



Expert-based (knowledge-aggregative) tools
Expert-based CDSSs rely on a study team (usually a multidisci-

plinary clinical team) to synthesize multiple sources of evi-

dence into a knowledge base incorporating evidence-based

recommendations and local insights of previous patient care

and outcomes. Similarly to the traditional rule-based CDSSs,

such tools use an existing evidence knowledge base comple-

mented by the newly generated practice-based evidence,

which is not available outside of the tool.

A significant portion of the tools presented in this group

relates to cancer care. The latter is characterized by multiple

“best” treatments that accommodate specific patients’ charac-

teristics. Such treatments or pathways are often selections of

the most cost-effective treatments and are developed collabo-

ratively with local specialists. P4 Pathways,52–54 ViaOncol-

ogy,55,56 Level I Pathways,57–63 and eviti64,65 have been widely

adopted across the United States. They aggregate and modify

cancer clinical guidelines according to the community-based

practices and practice-based evidence so that these human-

curated pathways reflect the way care is delivered. These tools

can be used to query EHR data and obtain the cohorts of simi-

lar patients for whom specific pathways are applicable.

On the one hand, disadvantages of such tools include sensi-

tivity to incomplete data, dependence on local experts and pre-

vious practices, and focus on treatment cost. On the other

hand, they have established feedback loops for fast evidence

modification on practices changes, or new knowledge

becomes available. As treatment pathways are curated by the

leaders in the field, they can be perceived as trustworthy,

which may have facilitated their adoption.66

Pathway-related tools underwent extensive evaluation, in-

cluding patient and quality outcomes. Level I Pathways was

made available to the clinicians within the U.S. Oncology Net-

work (a network of more than 400 integrated, community-

based oncology practices) in 2013 and was proven to reduce

costs of treatment for patients with lung, breast and colorectal

cancer; reduce duration of treatment; and lower cancer-related

re-admission rates.57,59 Nevertheless, no statistically signifi-

cant difference in survival rates was found. P4 Pathways re-

duced inpatient admission rate and duration of therapy for

chronic lymphocytic leukemia.53 ViaOncology showed the

same results for metastatic colorectal cancer.56

Oncology Expert Advisor67 is a closely related CDSS that

also provides pathway-like recommendations related to cancer

care. While it also aggregates multiple sources of evidence, the

core function of this tool is to promote sharing best practices

by incorporating peer-to-peer consultations based on the pa-

tient profile created by this tool. It subsequently includes the

advice management system that allows consultation tracking.

ROAD2H68,69 and MayoExpert70 are 2 other practice-based

evidence learning health systems, which aggregate recom-

mendations from international, national, local guidelines, and

institutional practices to provide tailored knowledge. ROAD2H

uses argumentation with a clear provenance trail to resolve

conflicting recommendations, while MayoExpert represents

care models as sequence of nodes, in which a node is a deci-

sion point. They provide clinicians with a patient-specific rec-

ommendation based on hospital EHR data prioritizing

institutional best practices. ROAD2H has been piloted in 2 sites

and currently provides recommendations for patients with

chronic obstructive pulmonary disorder and chronic kidney

failure. MayoExpert, on the other hand, incorporated 106 mod-

els at the time of publication and was used by 60% of clinicians

at the Mayo Clinic sites. The authors found that general prac-

tice specialists and less experienced practitioners used the tool

more often than specialists and more experienced clinicians.

The application e-bipolar71 stands on its own in this review.

As opposed to the “top-down” approach used by pathway-

related tools, e-bipolar emphasizes providing reliable assess-

ments of patients with bipolar disorder. Under this initiative,

participating French practices can assess their patients and get

a comprehensive patient review including personalized treat-

ment strategy. The coordinating center manages assessments,

provides guidance on optimal treatment, and shares practice-

based evidence by providing anonymized data through e-bipo-

lar.

DISCUSSION

In this study, we explored the tools that aim at guiding clini-

cians in complicated clinical cases for which they do not have

gold-standard evidence. Existing reviews focus on the tools

that facilitate evidence-based practices, but the latter cannot

answer all questions outside of guidelines or trials.72–74 Mean-

while, the availability of knowledge plays an important role in

the quality of decision making (Figure 4).75–77 For questions not

covered by existing evidence, clinicians must rely on their lim-

ited experience. For example, there is no clear consensus on

common clinical questions like, “Should a diabetic patient on

angiotensin-converting enzyme (ACE) inhibitors, diuretics and

sodium glucose co-transporter 2 (SGLT2) inhibitors be taken

off diuretics as SGLT2 inhibitors act as diuretics?” which

results in clinical practice variation.

Among other solutions, CDSSs can generate additional

knowledge to guide clinicians. They vary in approaches, target

audience, level of flexibility and automation, and are at differ-

ent stages of adoption. Nevertheless, they all share the main

feature: they produce new knowledge by either generating

new evidence or adjusting and personalizing the existing one.

Visual tools focusing at presenting longitudinal patient data

has been known for a long time, starting with LifeLines78 and

KNAVE.79 They evolved in 2 directions: (1) adding more sophis-

ticated features to individual views and (2) aggregating patient

data into groups with a subsequent visual or statistical analy-

sis. The main highlights of visual systems are automated pro-

cess, fast execution, flexibility, relatively small maintenance

cost, and intuitive representation of the results. On the one

hand, an ability to quickly explore aggregated patient data

facilitates fast answers to clinical questions in real time. It also

means that tool utilization is relatively cheap as it does not rely

on a team supporting query execution and report generation.

On the other hand, it demands familiarity with the data, which

can be unfeasible for nonexperienced clinicians. Additionally,

such tools are inferior to analytic CDSSs in terms of scientific

rigor, as they do not imply that observed differences in patient

cohorts are statistically significant or unbiased.80

Another approach, implemented in CaVa, Green Button,

and expert-based CDSSs, requires a third party (study team or

experts) to generate knowledge either by running small-scale

observational studies on patient data or incorporating new

practice-based evidence into personalized recommendations.

An advantage of such approach is involvement of skilled pro-
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fessionals, who are familiar with the data and research meth-

ods. In expert-based tools, the knowledge has to be gathered

in advance and then tailored to patient’s characteristics. New

knowledge, therefore, cannot readily be made available if com-

plicated clinical scenarios are not covered by the existing pool

of care models. As timely answers can be critical in decision

making, another approach adopted by Green Button is to run

observational studies in real time. On the one hand, while it

can address a broader spectrum of questions in a timely man-

ner, such a type of CDSS must rely on efficient communication

with clinicians in order to capture additional details and refine

questions. On the other hand, such CDSSs have a potentially

broader audience since they do not require specific skills or

knowledge and the results can be interpreted by skilled person-

nel or introduced in a simplified form in the reports.

Regardless of knowledge inference methods, CDSSs for new

evidence generation were mainly developed and implemented at

one site and rarely disseminated. Data-driven tools used the local

EHR data, and there mostly the structured (mainly International

Classification of Diseases revisions; Current Procedural Terminol-

ogy, Fourth Edition; and Anatomical Therapeutic Chemical Classi-

fication) data. Unstructured data was processed by only 2

tools,40,81,82 but none of the tools harmonized data from disparate

data sources or used common data models.83 Lack of data stan-

dardization can pose a challenge if generating knowledge requires

gathering data from multiple sites or sources, for example, if a dis-

order or event is rare.

Lack of evaluation is another finding in our study. For some of

the tools, there was no information about evaluation including the

types of tests that should be performed at the initial stages. The

pathway-related group was the only group for which an impact

on patient and quality outcomes has been shown. These CDSSs

are based on pathways supported by payors,52 which may be a

reason for their wide adoption and evaluation. Another possible

reason may be expert involvement.

As long as traditional RCTs cannot deliver sufficient evi-

dence in a timely manner, such tools may be a good alternative

to disparate intuitive clinical practices. Due to the limitations of

the current tools, new robust CDSSs may be needed. They

should build on previous designs and incorporate their

strength in delivering new evidence at the point of care. Ease

of use and intuitive result presentation should be combined

with robust statistical methods and phenotyping. While full-

scale observational studies usually undergo rigorous asses-

sment,14,15small-scale real-time studies may not produce unbi-

ased estimates. For example, rule-based phenotyping with

chart review validation84 may not be feasible in real time,

which creates a need for best practices for fast yet accurate pa-

tient identification. If a tool aims to answer questions from dif-

ferent areas or specialties, the ability of a particular data

source to supply accurate data should be articulated to clini-

cians and any data quality issues or other limitations should be

acknowledged. If phenotyping is done by an individual other

than the end user, phenotyping principles, accuracy, and limi-

tations should be transparently described as well. Regardless

of the design used, a CDSS has also to be seamlessly inte-

grated in the workflow. Finally, the impact of such CDSSs on

decision making, quality, and patient outcomes should be eval-

uated.

CONCLUSION

We found 25 CDSSs that can generate new knowledge for com-

plicated clinical cases in the absence of existing evidence, al-

though only 1 analytic tool addressed confounding and bias.

Most of the tools were data-driven and accompanied by expert-

based (knowledge aggregative) tools. Overall, evidence regarding

their effectiveness was lacking. Positive improvement on clinical

and quality outcomes were shown only for a limited number of

interventions, while the benefits from the others remain unclear.

This review suggests that there is a need for a further testing of

CDSSs and, if appropriate, dissemination.
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