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ABSTRACT

Objective: Drug combination screening has advantages in identifying cancer treatment options with higher effi-

cacy without degradation in terms of safety. A key challenge is that the accumulated number of observations in

in-vitro drug responses varies greatly among different cancer types, where some tissues are more understudied

than the others. Thus, we aim to develop a drug synergy prediction model for understudied tissues as a way of

overcoming data scarcity problems.

Materials and Methods: We collected a comprehensive set of genetic, molecular, phenotypic features for can-

cer cell lines. We developed a drug synergy prediction model based on multitask deep neural networks to inte-

grate multimodal input and multiple output. We also utilized transfer learning from data-rich tissues to data-

poor tissues.

Results: We showed improved accuracy in predicting synergy in both data-rich tissues and understudied tis-

sues. In data-rich tissue, the prediction model accuracy was 0.9577 AUROC for binarized classification task and

174.3 mean squared error for regression task. We observed that an adequate transfer learning strategy signifi-

cantly increases accuracy in the understudied tissues.

Conclusions: Our synergy prediction model can be used to rank synergistic drug combinations in understudied

tissues and thus help to prioritize future in-vitro experiments. Code is available at https://github.com/yejinjkim/

synergy-transfer.
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INTRODUCTION

Discovering synergistic drug combinations in cancer treatment has

been widely studied as it identifies candidates with higher efficacy

without degradation in terms of safety.1–4 Many previous studies

show great promise in finding potent drug combinations that cannot

be identified by 1 drug–1 target approaches.5–10 A considerable

amount of drug synergy prediction methods has been investigated

including pharmacokinetic and pharmacodynamic methods,10,11

posttreatment transcriptome,12,13feature-based machine learn-

ing,5,7,8,14,15 neural networks with multimodal data sources,4,16 and

large community efforts.17,18 These studies utilize various features,

such as molecular profiles, chemical structure, pre- or posttreatment

transcriptome. Their prediction target usually remains in a specific

pathway, cell line, or tissue. These studies are usually based on sin-

gle databases, and the prediction was also made within the data-
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base.3–5,18 A systematic integration of multiple drug synergy data-

bases has been recently proposed,19,20 which sheds light on develop-

ing unbiased drug synergy prediction models.

On the developing unbiased and generalizable drug synergy

prediction model, a key challenge is an imbalance of synergy

experimental data, in which the accumulated number of observa-

tions in in-vitro drug responses varies greatly for different tissues.

Traditional methods target studying commonly observed tissues

such as breast, kidney, skin, and lungs.4,7,17,21–25 These methods

take known drug response data at certain cell lines and attempt to

find other drug responses from other cell lines within the same data-

rich tissues. The understudied tissues include bone, prostate, and

pancreas (Figure 1a and b). A number of obstacles impede the drug

response study in these tissues. For example, bone cancer drug re-

sponse has been poorly understood due to physical difficulty of cul-

turing bone tissue as cell lines, the rarity of tumors in sarcoma type,

the difficulties of obtaining tumor tissue fragments from human

patients for bone metastasis, and thus the limited number of cell

models.26 The lack of cell line models makes the high-throughput

screening difficult, which in turn makes these tissues even more

understudied. There is, therefore, a critical need to develop a com-

putational drug combination prediction tool for the understudied

tissues.

Our goal is to develop a generalizable in-silico drug synergy pre-

diction model for understudied tissues. The most critical challenge is

data scarcity. Understudied tissues inevitably lack enough training

data; they have a limited number of experimental observations and

also lack important features, such as post-treatment transcriptome.

A potential way to mitigate this data scarcity problem is to utilize in-

formation from the data-rich tissues to the data-poor tissues as these

different tissues share biological commonality, partly in terms of

gene expression, and therefore respond to drugs in similar ways.27

Several previous studies support that anticancer drug sensitivity in

cell lines is not tissue-specific and that tissue-specific drugs can bring

additional benefits to other tissues.28,29 Accordingly we proposed to

utilize interaction between drugs and cell lines learned from the

data-rich tissues to help increase the performance of the data-poor

tissue using transfer learning. Transfer learning is to transfer knowl-

edge (in the form of parameters in machine learning models) from a

previously learned model (teacher model) with more data to a new

model (student model) with fewer data. Several methods have been

proposed to utilize transfer learning in drug sensitivity prediction to

link complementary data sources, different modality of auxiliary

features, and different diseases.30,31 To learn generalizable and thus

transferable knowledge on drug target and cell line gene expressions,

we integrated all types of available tissues into 1 model with a large

dataset (ie, 4150 drugs; 112 cell lines; 710 242 monotherapy sensi-

tivity; 1 175 220 combinations synergy from 15 different synergy

studies). We maximally utilized various types of multimodal inputs

(molecular, genetic, phenotypic features) and multiple outputs (drug

sensitivity and synergy) using flexible neural network models, and

we validated our ranking models and drug combinations with inde-

pendent external databases.

MATERIALS

Drug sensitivity and synergy
We used a publicly available large-scale drug synergy database from

DrugComb Portal,19 which combines 15 drug synergy studies into 1

integrated database including O’Neil, Cloud, ALMANAC, NCATS

Matrix, Forcina, Mathews, Phelan, Wilson, and Yohe (Supplemen-

tary Table S1).3,32–38 The number of unique drugs and cell lines

were 4150 and 112, respectively (Figure. 1). There were 2843 exper-

imental drugs and 1307 FDA-approved drugs. There was a total of

710 242 monotherapy sensitivity (ie, a pair of drug and cell line)

and 466 259 drug combinations synergy (ie, a triplet of drug1,

drug2, and cell line). For monotherapy sensitivity we calculated rela-

tive inhibition (RI) from a dosage combination matrix (Supplemen-

tary Material S1). For drug combinations synergy we used Loewe

synergy score (Figure 1), which ranged from �100 (antagonistic ef-

fect) to 75 (strong synergistic effect).39 Loewe synergy score is to

quantify the excess over the expected response if the 2 drugs are the

same compound.40,41 We selected Loewe score for comparison with

the baseline study.4

Drug features
We extracted the drug’s molecular and genomic features. For molec-

ular features, we used both Molecular ACCess System (MACCS)

fingerprints42 and native chemical compounds. MACCS fingerprints

contain 166 chemical structures, such as the number of oxygen, S-S

bonds, and rings. We used RDKit (http://www.rdkit.org) to extract

MACCS fingerprints. In addition, we represented drugs as a native

chemical structure using SMILES. SMILES is a linear notation to

represent chemical compounds uniquely; in the SMILES representa-

tion, atoms are represented as their atomic symbols (eg, c for car-

bon); special characters are also used to represent relationship (eg,

“¼”: double bonds; “#”:triple bonds; “.”:ionic bond; “:”: aromatic

bond).43 SMILES can provide richer features space that strictly rep-

resent functional substructures and express structural differences,

such as a compound’s chirality.44 We used the state-of-the-art natu-

ral language processing model, Transformer, to encode the SMILES

sequence.45 For genomic features, we integrated 3 different drug

databases—DrugBank,46 Therapeutic Targets Database (TTD),47

and NIH-LINC48—for a complete view of a drug’s target genes

(Supplementary Table S2). We filtered nonhuman target genes in

TTD.

Cell line features
We used the cell line’s cancer type and genomic features. There were

14 tissues including lung, ovary, and skin and 14 cancer types, in-

cluding carcinoma, adenocarcinoma, and melanoma (Supplemen-

tary Table S3). We also extracted gene expression profiles by

Fragments Per Kilobase of transcript per Million reads mapped

(FPKM) from CCLE and COSMIC.49,50 We found 75 cell lines with

37 260 genes from Broad Institute and 25 cell lines with 35 004

genes from Sangar (Supplementary Table S2). In total, we found 88

cell lines with 22 586 genes after excluding zero-variance genes. We

normalized the FPKM values into z-score in a gene-wise manner, as

FPKM varies greatly depending on gene. We only used baseline (be-

fore-treatment) gene expression profiles without after-treatment

gene profiles because our objective is to test our models in under-

studied tissues, which rarely has after-treatment gene profiles.

METHODS

Method overview
Our transfer learning approach to enhance synergy prediction in

data-poor tissue is to transfer parameters from a pretrained general

prediction model to the specific tissue’s prediction models. We first

learned the general prediction model with data-abundant tissues (in-
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Figure 1. Summary statistics of the DrugComb database. (a) Number of drug combinations and (b) cell lines in each tissue. “Hem&lymp” ¼ hematopoietic and

lymphoid tissue. Data-rich tissues include hematopoietic and lymphoid, lung, skin, ovary, kidney, brain, breast, and colon, which have more than 20 000 drug

combination tests with more than 5 different cell lines per each tissue. Data-poor tissues include prostate and bone, which have less than 15 000 drug combina-

tion tests within 3 or 4 cell lines per tissue. Soft tissue, endometrium, and pancreas have less than 1000 drug combination tests within less than 3 cell lines per tis-

sue. (c) Number of tested drugs that overlap between tissues. Drugs for each tissue are rarely overlapped with drugs for other tissues except the brain,

hematopoietic and lymphoid tissue, bone, and lung. (d) Distribution of monotherapy sensitivity (ie, relative inhibition) (e) Distribution of combination synergy

score (f) Distribution of sensitivity and synergy. Concentrated and dense spikes lie in relative inhibition between 10 and 50, implying that many experiments have

been performed within the relative inhibitions between 10 and 50. Loose spikes lie in relative inhibition below 0. Here we set the relative inhibition’s binarization

threshold at 50, as synergy scores show different distribution after 50.
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cluding brain, breast, colon, endometrium, hematopoietic and lym-

phoid, kidney, lung, ovary, and skin) from the pooled drug synergy

databases containing the 15 different databases. We used neural net-

works as the prediction model due to its flexibility in parameter

sharing. The prediction model for the data-poor tissue was

initialized with the pretrained general model’s parameters and

retrained with its own data accordingly.

General prediction model
Our objective is to predict whether unobserved drug combinations

have synergistic effects in a given cell line and provide a list of com-

binations that researchers can prioritize for experiments. We formu-

lated it as a prediction problem. Given an experimental block

xn :¼ fdi; dj; ckg of drug combination (di, dj) and cell line ck, the

prediction model is a function f such that

yijk � f ðdi; dj; ckÞ;

where yijk is the synergy score of the drug combination. In addition

to the synergistic effect, we used the drug’s monotherapy sensitivity

as another prediction objective to boost the synergy prediction. For

monotherapy sensitivity in the cell line, the prediction model is g:

zik � gðdi; ckÞ and zjk � gðdj; ckÞ;

where zik is the sensitivity score of drug di in cell line ck: We jointly

optimize sensitivity and synergy as multitask learning. To incorpo-

rate multimodal sources of inputs and formulate nonlinear relation-

ships between chemical and genomic features, we used deep neural

networks as the prediction function. Our prediction model consists

of drug encoders (Figure 2a), cell line encoder (Figure 2b), and merg-

ing layers (Figure 2c) for final prediction in an end-to-end manner.

Using the estimated drug response, we can rank drug combinations

at a cell line that are expected to have synergistic effect.

Drug encoder
Drug encoder learns an embedding representation of each drug di or

dj. Each drug’s features are fMACCS fingerprints, canonical

SMILES, target genesg (Table 1). Binary indicators of MACCS fin-

gerprints were used as raw input. Binary vectors of target genes

were represented as compressed embedding with a single layer of

denoising autoencoder.51 As SMILES has variable length, we needed

more specific consideration. We used a Transformer encoder, a nat-

ural language processing model that converts the sequence into a

representation.45 Each symbol in SMILES was first represented as

(a)

(b) (c)

Figure 2. Drug synergy prediction model. (a) Drug encoder. It learns an embedding representation of a drug. Inputs are MACCS fingerprints, canonical SMILES,

and target genes. (b) Cell line encoder. It learns an embedding representation of a cell line. Inputs are cancer type and gene expressions. (c) Merging drug en-

coder and cell line encoder. Sensitivity was an auxiliary output to boost synergy prediction.
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one-hot vectors with size of (#SMILES length * #unique symbols),

where #unique symbols were 48 and the maximum SMILES length

was 288. The symbol’s one-hot vector was then represented as em-

bedding. This embedding sequence was fed into a separate Trans-

former encoder, which consists of a multihead attention layer and a

feed-forward layer with repeated residual connections. Once we de-

rived all the embedding representations, they were concatenated

into 1 and fed into 2 feed-forward layers with Relu activation and

dropout (Figure 2a).

Cell line encoder
Cell line encoder learns an embedding representation of each cell line

ck. Each cell line’s features are fcancer type, gene expressionsg
(Table 1). To combine the multimodal inputs, we derived embedding

from each source and merged them into 1 embedding. The cancer

types were represented as the same sized embedding. The gene expres-

sion of each cell line was represented as compressed embedding from

the normalized FPKM values with 1 layer of denoising autoencoder.

We concatenated all 3 embeddings into 1 and fed them into 2 feed-

forward layers with Relu activation and dropout (Figure 2b).

Note that we did not include drug ID or cell line ID as an input.

The IDs are useful in collaborative filtering techniques, which

assumes that 2 drugs will react to a cell line similarly if these drugs

have responded similarly to certain cell lines. In contrast, our focus

was to derive transferable general knowledge in prediction models

from a data-abundant domain to a data-scarce one. The cell lines be-

tween the 2 domains are disjointed from each other in most cases

(cold start for all cases), and the data-scarce tissues usually do not

have a past drug-response history.

Merging layers
For synergy prediction, we merged embedding representations of di;

dj; ck into 1 and fed them into 2 feed-forward layers with Relu acti-

vation. For sensitivity prediction, we merged embedding representa-

tion from (di; ck) and (dj; ck), respectively, and fed them into 2 feed-

forward layers (Figure 2c).

Training loss
We trained the model as multitask learning that predicts synergy

and sensitivity simultaneously. For combination synergy prediction,

the training loss was mean squared error (MSE):

losssyn ¼ jj yijk � f ðdi;dj; ckÞ jj2

where yijk is the synergy score. The training loss for monotherapy

ðdi; ckÞ and ðdj; ckÞ was similarly defined:

losssen ¼ jj zik � gðdi; ckÞ jj2 þ jj zjk � gðdj; ckÞ jj2

for all drugs and cell lines in the training set. In addition to these

regressions, we also developed classification models. We first binar-

ized the drug responses by setting a threshold. That is, yijk ¼ 1if

yijk > threshold; 0 otherwise, and zik ¼ 1if zik > threshold; 0 oth-

erwise. The synergy and sensitivity thresholds were set at 30 and 50

following the previous study.4,52 Then the classification model’s

training loss was binary cross entropy:

losssyn ¼ �y
ijk

log rðf ðdi; dj; ckÞÞ � ð1� y
ijk
Þ log½1� rðf ðdi; dj; ckÞÞ�

losssen ¼ �z
ik

log rðf ðdi; ckÞÞ � ð1� z
ik
Þ log½1� rðf ðdi; ckÞÞ�

� z
jk

log rðf ðdj; ckÞÞ � ð1� z
jk
Þ log½1� rðf ðdj; ckÞÞ�

where r is a sigmoid function. We alternated the 2 optimization

tasks with respect to synergy or sensitivity in every epoch. That is,

we first minimized losssyn with all training batches and then

switched to losssen for the next training round. Optimizer was adap-

tive gradient descent with Autograd in PyTorch 1.3.0.

Fine-tuning to data-poor tissues
We focused on transfer learning from the pooled data-rich tissues

to bone and prostate (Figure 3a), respectively. For the transfer

learning experiments, we chose the bone and prostate tissue (num-

ber of observations > 1000) over soft tissue, endometrium, and

pancreas (number of observations < 1000) (Figure 1a), because

they have too few observations to build their own prediction model

for comparative experiments. We first pretrained the general drug

response prediction model with the data-rich tissues, to learn the

underlying mechanism between drugs and cell lines, and built a sep-

arate prediction model for the specific tissue of interest (ie, bone or

prostate), transferred the pretrained model parameters from the

general model, and fine-tuned the specific tissue models’ parame-

ters. Possible fine-tuning strategies include i) retraining all the

parameters, ii) fixing drug encoders, retraining cell line encoders,

and merging layers; iii) fixing drugs and cell line encoders and

retraining merging layers; and iv) no retraining at all. We compared

Table 1. Multimodal input and multitask output to predict drug response

Type Size Format

Input

Drug features MACCS fingerprint 166 Binary indicator vector

Canonical SMILES Variable length (max 288) Sequences of characters

(molecules and relation)

Target gene 24 342 (Total number of unique genes) Binary indicator vector

Cell line features Cancer type 14 One-hot indicator vector

Baseline gene expression 24 342 (Total number of unique genes) Z-score of FPKM

Output

Monotherapy sensitivity Relative inhibition Continuous value or binarized value at 50

Combination synergy Loewe synergy score Continuous value or binarized value at 30

Abbreviations: FPKM: Fragments Per Kilobase of transcript per Million reads mapped; SMILES: Simplified molecular-input line-entry system.
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the accuracy of the 4 different strategies in each tissue and reported

the best 1.

Evaluation
Training and test set

We evaluated the general and specific prediction models with cross

and external validation. For cross validation, we randomly sepa-

rated the pooled databases into training (80%) and testing sets

(20%) (Figure 3b). For external validation, we set aside 1 indepen-

dent database as a test set and used the remaining pooled databases

as a training set (Figure 3b); the independent test set had only a few

overlapping cell lines or drugs compared with that of the training set

(eg, 9 cell lines and 36 drugs were common in training and test sets

in data-rich tissues). Each data-poor tissue (bone and prostate) had

4 distinct cell lines, respectively (Figure 1a and b); different tissues

sometimes shared drugs, such as the bone tissue sharing 1437 drugs

and the prostate tissue sharing 127 drugs with the data-rich tissues.

Accuracy measures

We measured accuracy of the regression and classification task. The

regression accuracy measure was MSE; the classification accuracy

measures were area under the receiver operating curve (AUROC)

and area under precision-recall curve (AUPRC).

(a)

(b)

Figure 3. Transfer learning for understudied tissue. (a) Transfer model parameters from data-rich tissues to data-poor tissue, such as bone and prostate (b) Train/

test split for data-rich tissues and data-poor tissue. Cell lines from different tissues are disjointed. Some cell lines from different tissues sometimes share drugs.
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Baselines

We compared our accuracy with two baseline methods: i) DeepSy-

nergy that utilizes deep neural networks using drug’s descriptors and

cell line’s gene expression on O’Neil database4 and ii) ALMANAC

þ XGBoost that utilizes gradient boosting trees.5 We also imple-

mented the collaborative filtering method that uses drug and cell

line ID as input to compare our contents-based approach with col-

laborative approach. Benchmark accuracy values of various machine

learning methods (including support vector machines, gradient

boosting machines, and random forest) are listed in the referred pa-

per.4 Note that each training or testing set was a triplet fdi; dj; ckg
of the drug pair and cell line in corresponding tissue. We did not re-

port sensitivity prediction accuracy because the train/test split was

disjointed in terms of synergy triplets but sometimes overlapped in

terms of sensitivity pairs. For example, let us say we split the data as

fd1; d2; c1g in the training set and fd1; d3; c1g in the testing set for

synergy prediction. This split implies fd1; c1g, fd2; c1g in training

and fd1; c1g, fd3; c1g in the testing set for sensitivity prediction. Due

to the overlapped pairs fd1; c1g, the sensitivity prediction accuracy

can be too optimistic.

RESULTS

Prediction accuracy of general model
We evaluated the accuracy of our synergy prediction models. The

first experiment was to evaluate the accuracy of general models

trained and tested with data-rich tissues (Table 2). We achieved

f0.9577 AUROC, 0.8335 AUPRC, 132.4 MSEg for cross-validation

(randomly split from 15 pooled databases) and f0.6376 AUROC,

0.5564 AUPRC, 742.1 MSEg for external validation (ie, trained

with 14 pooled databases, tested with O’Neil). The collaborative fil-

tering method based on drugs and cell IDs showed lower accuracy

compared to our multimodal contents-based model. The lower accu-

racy in external validation compared to cross-validation might be

partly due to different experimental settings on measuring the drug

response scores and gene expression values across various synergy

databases.

We trained and tested our model with O’Neil database in par-

ticular to compare our model’s accuracy with DeepSynergy.4 Our

model achieved significantly higher AUROC/AUPRC and lower

MSE. DeepSynergy showed f0.90 AUROC, 0.59 AUPRC, 255.5

MSEg, whereas our proposed model showed f0.95 AUROC, 0.94

AUPRC, 181.7 MSEg. In addition, we also trained our model

with the ALMANAC database to compare our accuracy with that

of NCI-ALMANAC þ XGBoost model.5 Our model achieved

f0.97 AUROC, 0.84 AUPRC, 75.4 MSEg, whereas the baseline

XGBoost model achieved 77.8 MSE. The increased accuracy was

mainly due to more diverse multimodal features (such as target

genes and native SMILES) and multitask learning with the mono-

therapy sensitivity.

Prediction accuracy of specific model with transfer

learning
In the subsequent experiments, we shifted our focus to understudied

tissues. These experiments compared the 4 different strategies on

transferring model parameters from data-rich tissues to bone and

prostate, respectively. We also compared accuracy with and without

the transferred model parameters. We found that an adequate trans-

fer learning increases accuracy in both bone and prostate (Table 3).

In external validation of bone cell lines, we achieved f0.6647

AUROC, 0.4150 AUPRC, 297.4 MSEg without transfer learning,

and f0.8015 AUROC, 0.4676 AUPRC, 195.9 MSEg with transfer

learning (transferred all parameters and no fine-tuned). In the exter-

nal validation of prostate cell lines, we achieved f0.6505 AUROC,

0.5220 APPRC, 528.5 MSEg without transfer learning, and f0.8542

AUROC, 0.7804 AUPRC, 327.9 MSEg with transfer learning (fixed

drug and cell line encoders and retrained last merging layers).

Ranking
We listed predicted drug combinations for bone and prostate using

the externally validated model. We selected the top 20 combinations

based on estimated probability of being synergistic (Table 4, S3).

For the bone cell lines, among the top 20, 5 combinations were actu-

ally synergistic (5/20¼25% hit) in the independent validation set

(ES Naampt_PARP). Considering the fact that only 1.56% of com-

binations are synergistic in bone, our model effectively ranked syner-

gistic drug combinations. For the prostate cell lines, all top

20 combinations were actually synergistic in the independent

O’Neil database (only 2.15% of combinations are synergistic in the

prostate).

DISCUSSION

The objective of this study was to develop the drug combination syn-

ergy prediction model, which can be used even in understudied tis-

sue with less observation. To meet this end, we i) collected a

comprehensive set of multimodal features from multiple databases,

ii) integrated the multimodal features and multiple tasks using deep

neural networks, iii) transferred the prediction model from data-rich

tissues to data-poor ones. As a result, the proposed model predicted

drug synergy accurately with 0.8015 AUROC for bone and 0.8542

AUROC for prostate in external validation with an adequate trans-

fer learning strategy.

Table 2. Drug synergy prediction accuracy for data-rich tissues

Train Test Methods AUROC AUPRC MSE

15 pooled databases 15 pooled databases collaborative filtering 0.9336 0.7484 151.9

14 pooled databases O’Neil 0.6030 0.5081 706.0

O’Neil O’Neil Proposed method 0.9477 0.9388 181.7

ALMANAC ALMANAC 0.9688 0.8376 75.4

15 pooled databases 15 pooled databases 0.9577 0.8335 132.4

14 pooled databases O’Neil 0.6376 0.5564 742.1

Note: Cross validation with randomly split train/test from the 15 pooled databases. External validation with the O’Neil for test and the remaining 14 pooled

databases for training. For classification tasks, AUROC and AUPRC were computed after binarizing synergy at threshold 30.

Abbreviations: AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating curve; MSE: mean squared error.

48 Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 1



The main contribution of our study is that we tackled under-

studied but critical tissues for drug synergy prediction. The difficulty

of obtaining cell lines in these understudied tissues has limited the

in-vitro experiments, which consequently become an obstacle to

drug development in these tissues. As we focused on understudied

tissues, we avoided using post-treatment gene expression profiles as

an input feature. The posttreatment gene expression is the most

powerful feature to estimate drug response, but it is only accessible

after drug compounds are tested in cell line.7 Our drug response pre-

diction model was able to successfully bypass the posttreatment fea-

tures while achieving competitive accuracy.

Although our study’s focus is on predicting synergy in under-

studied tissues, our model achieved better accuracy even on general

data-rich tissues than that of the baseline model. This increased

accuracy is possibly due to the large-scale and multimodal data with

multitask optimization. We used the 15 complementary drug syn-

ergy databases including the NCI-ALMANAC, Cloud, O’Neil, and

NCATS Matrix. We incorporated diverse and comprehensive multi-

modal sources of features. This large-scale data collection allowed

us to maximize the power of data-driven computational models

based on deep neural networks.

Our model was designed to predict combination synergy to-

gether with monotherapy sensitivity simultaneously. Here mono-

therapy sensitivity was an auxiliary output to boost accuracy of

synergy prediction. A previous study uses monotherapy sensitivity as

an input feature to predict synergy,7 but understudied tissues do not

have enough experimental observation including monotherapy re-

sponse features. To utilize this partial input feature in data-rich tis-

sues (not in data-poor tissues), we used the monotherapy sensitivity

as an auxiliary output in data-rich tissue models so that we can still

transfer the information to data-poor tissues via the model parame-

ters when minor tissues do not have monotherapy sensitivity.

The major limitation of this study is that the general prediction

model was not able to achieve high accuracy in external validation.

A possible explanation for this might be that the various synergy

studies and various tissues may have different experimental settings

on measuring the drug responses and gene expressions values, thus

validation on the mixed tissues in the independent synergy experi-

ment could cause the discrepancy in the predicted and observed

values.

CONCLUSION

In conclusion, our model is an end-to-end drug synergy prediction

model that learns interaction between drugs and cell lines. Based on

the fact that different tissues share common gene expression and

therefore respond to drugs in similar ways, we used transfer learning

from data-rich tissues to data-poor tissues to make the synergy pre-

diction model work in data-poor tissues. For future work, our drug

prediction model for understudied tissues can potentially shed light

onto other diseases that share drug targets and underlying

mechanisms and offer a novel way of efficient and low-cost drug

discovery.
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Table 3. Drug synergy prediction accuracy for bone and prostate cancer (data-poor tissue) with different transfer learning strategies in cross

or external validation

Tissue Train Test Transfer AUROC AUPRC MSE

Bone DIPG, ES (FAKi/AURKi),

ES (Naampt_PARP)

DIPG, ES (FAKi/AURKi),

ES (Naampt_PARP)

No transfer 0.8283 0.5922 61.3

Transfer and retrain all parameters 0.8357 0.5904 48.4

DIPG, ES (FAKi/AURKi) ES (Naampt_PARP) No transfer 0.6647 0.4150 297.4

Transfer and no retrain 0.8015 0.4676 195.9

Prostate ALMANAC, ONEIL ALMANAC, ONEIL No transfer 0.9775 0.8575 78.5

Transfer and retrain all parameters 0.9928 0.9628 47.4

ALMANAC ONEIL No transfer 0.6505 0.5220 528.5

Fix encoders and retrain

last merging layers

0.8542 0.7804 327.9

Table 4. Top 5 drug combinations in bone and prostate

Drug1 Drug2 Cell line Hit?

Bone

AZD1775 AZACITIDINE TC-71

ZINC34894448 ZINC34894448 TC-71 �

ZINC34894448 ZINC34894448 EW-8

AZD1775 AZACITIDINE EW-8

thapsigargin thapsigargin TC-71 �

Prostate

TOPOTECAN BEZ-235 LNCAP �

GELDANAMYCIN BEZ-235 LNCAP �

DOXORUBICIN BEZ-235 LNCAP �

BORTEZOMIB BEZ-235 LNCAP �

5-FU BEZ-235 LNCAP �

The bone model was trained with DIPG and ES (FAKi/AURKi), and tested

with ES (Naampt_PARP). The prostate model was trained with ALMANAC

and tested with O’Neil. “Hit” was marked if the predicted drug combinations

show Loewe synergy score > 30. Full list of top 20 drug combinations in Sup-

plementary Table S4.
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