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ABSTRACT

Objective: Providing behavioral health interventions via smartphones allows these interventions to be adapted

to the changing behavior, preferences, and needs of individuals. This can be achieved through reinforcement

learning (RL), a sub-area of machine learning. However, many challenges could affect the effectiveness of these

algorithms in the real world. We provide guidelines for decision-making.

Materials and Methods: Using thematic analysis, we describe challenges, considerations, and solutions for algo-

rithm design decisions in a collaboration between health services researchers, clinicians, and data scientists. We use

the design process of an RL algorithm for a mobile health study “DIAMANTE” for increasing physical activity in un-

derserved patients with diabetes and depression. Over the 1.5-year project, we kept track of the research process us-

ing collaborative cloud Google Documents, Whatsapp messenger, and video teleconferencing. We discussed, cate-

gorized, and coded critical challenges. We grouped challenges to create thematic topic process domains.

Results: Nine challenges emerged, which we divided into 3 major themes: 1. Choosing the model for decision-

making, including appropriate contextual and reward variables; 2. Data handling/collection, such as how to deal

with missing or incorrect data in real-time; 3. Weighing the algorithm performance vs effectiveness/implementation

in real-world settings.

Conclusion: The creation of effective behavioral health interventions does not depend only on final algorithm

performance. Many decisions in the real world are necessary to formulate the design of problem parameters to

which an algorithm is applied. Researchers must document and evaulate these considerations and decisions

before and during the intervention period, to increase transparency, accountability, and reproducibility.

Trial Registration: clinicaltrials.gov, NCT03490253.
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INTRODUCTION

Mobile health applications (apps), such as smartphone and text-

messaging interventions, have proven effective in eliciting beneficial

health outcomes, including better mental health management,1,2 weight

loss,3 and increased physical activity.4–6 However, only a small percent-

age of users use behavior change apps over a long period of time,7 and

mobile applications have not become part of routine medical care.8,9

Engagement is particularly low for unsupported interventions.10

One explanation for low retention and declining effectiveness of

apps is that they are not responsive enough to users’ changing needs.

More recently, an increasing interest in machine learning to opti-

mize digital behavioral health interventions has emerged. Delivery

via smartphones allows personalization of these interventions to

individuals’ preferences and needs.11 Using machine learning, the

content of interventions can also dynamically adapt to changes in

participant behavior over time to maximize outcomes.12

Reinforcement learning (RL), a subfield of machine learning, is a

powerful method to use in various healthcare settings because it can

optimize sequences of decisions.13,14 Several studies have started us-

ing RL for optimizing the delivery of text messaging.15,16 For exam-

ple, using simulations, Piette et al showed that using RL to optimize

text-messaging for medication adherence could produce a 5%–14%

increase in adherence, could predict medication barriers, and detect

when messages were sent too frequently.15 RL algorithms for mobile

health make predictions based on incoming participant data and use

these to make decisions for individuals (eg, what message should the

participant receive and when). As more information is collected over

time, the algorithm improves its predictions and, hence, makes more

effective decisions. A previous mobile health study elucidated that

RL algorithms can learn new strategies over time to maximize physi-

cal activity.17 The algorithm altered its decision-making strategy

when participants changed their exercise behavior (eg, walked less)

because the weather worsened.17

However, the use of RL presents multiple challenges in the real

world. A systematic review on machine learning in mobile health

(beyond solely RL) identified only a few randomized controlled tri-

als (RCTs), the highest level of evidence in clinical medicine,18 and a

lack of studies in clinical practice settings.12 Guidelines for designing

and using these algorithms in clinical settings are needed. For in-

stance, as opposed to simulation studies, clinical studies may have

unforeseen difficulties (such as data errors), involve a large interdis-

ciplinary team, and need to be executed within a limited timeframe.

Outlining the challenges and decisions to make throughout the

process of algorithm development for a clinical RCT increases trans-

parency, replicability, and likely outcomes of behavior health studies

using RL. Further, identifying and solving issues related to differen-

ces in scientific strategies of disciplines will help to increase the pro-

ductivity of interdisciplinary collaborations.19

We recently started the Diabetes and Mental Health Adaptive

Notification Tracking and Evaluation (DIAMANTE) RCT: a smart-

phone application that uses RL to optimize physical activity text-

messaging in underserved patients with diabetes and depression.20

We analyzed study notes of a 1.5-year design process of imple-

menting an RL algorithm: a collaboration between computer scien-

tists, behavioral scientists, physicians, psychologists, and

statisticians. We discussed the challenges of developing these algo-

rithms for mobile health in real-world settings and the solutions we

implemented. This provides guidelines for decision-making that can

be used by other clinical and healthcare researchers.

METHODS

The DIAMANTE study
DIAMANTE is a 6-month physical activity text-messaging study,

which sends individuals motivational text messages to help them in-

crease their physical activity. The DIAMANTE study is an RCT

with 3 groups (uniform random [UR], RL, and a control group).

Phone-pedometers passively collect daily step counts on partici-

pants’ personal phones. The study recruits low-income English- and

Spanish-speaking patients with depression and diabetes served in a

safety net setting. In a user-centered design period, we developed

our motivational messages based on a cognitive behavioral frame-

work, Cognition, Opportunity, Motivation, and Behavior (COM-

B).21 This process included qualitative interviews, usability phases,

and crowdsourcing to categorize the messages.22 In these phases, we

identified issues that may harm user engagement related to missing

data due to internet connectivity problems, server errors in sending

out messages, and participants’ low technical skills to access the app

on their phone and transmit their data.22

Figure 1. Shows a schematic overview of our study and algo-

rithm. The study is registered on clinicaltrials.gov: NCT03490253

and described elsewhere.20

Algorithm
The DIAMANTE study is an RCT with 3 groups (UR, RL, and a

control group). In the RL group, the algorithm estimates the optimal

combination of message category and timing. It thus picks the com-

bination that will likely maximize the increase in steps for every par-

ticipant in the upcoming day. In the UR group, participants receive

the same messages, but they are microrandomized. This means that

messages from different categories and timings are delivered with

equal probabilities. This allows us to assess the causal effects of in-

tervention components and how they change over time.23 Microran-

domization is different from regular randomization because

interventions (here text messages) are repeatedly (eg, daily) random-

ized within participants.

The algorithm chooses the types of messages from different cate-

gories, their frequency, and delivery time period. We assumed that

our reward variable (ie, the daily change in steps), is a linear func-

tion of contextual variables, action variables, and interactions be-

tween actions and action-contextual variables (see Figure 1). The

model contains contextual variables for each participant. These in-

clude time-fixed variables, such as demographics and clinical char-

acteristics, and time-varying variables, such as day of the week and

day of study. See Supplementary Material for the list of contextual

variables and algorithm details.

Data sources to identify challenges and solutions
Over the 1.5 years of the project, the team kept track of the research

process using a combination of Google Docs tools, Whatsapp mes-

senger communication, and video conferencing (Zoom/Skype). Fur-

ther, the team convened to discuss, categorize, and code critical

challenges and solutions on numerous occasions. CAF and JJW took
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field notes and recorded audiotapes of key discussions, which were

transcribed and coded.

CAF reviewed the initial list of challenges and coded the docu-

ments and recordings, which were revised by AA and CRL. We classi-

fied and grouped challenges to create thematic topic process domains.

RESULTS

Over the 1.5 year time period, the behavioral science team (Behav-

ioral scientists, physicians and psychologist from the University of

California Berkeley and San Francisco) met once per week. Addi-

tionally, AA, CAF, and RHR met weekly with the developer CK

from January 2019 onwards. Starting February 2019, the data sci-

ence team (computer scientists and statisticians from the University

of Toronto, the National University of Singapore, and the University

of Rome La Sapienza) met with a member of the behavioral science

team (CAF) on a weekly basis until April 2020. JJW and ND held in-

dependent meetings with BC. JJW also held internal team meetings.

Finally, the team, including CAF, JJW, JA, ND, and AM discussed

the project over WhatsApp messenger.

We coded 119 pages of notes and 82 pages of exported What-

sApp conversations from February 2, 2019 to May 7, 2020. Further,

we transcribed around 7 hours of data of key meetings, using an on-

line automatic transcription service (otter.ai) combined with our

own transcription where the automatic transcription failed.

Nine challenges emerged which we divided into 3 major themes:

defining the model for decision-making; data handling/collection in

real time; and appropriate algorithm performance vs effectiveness/

implementation issues. These challenges are shown in Figure 2. We

describe challenges, considerations, and solutions in more detail in

Table 1.

Potential challenges during the design process and

their solutions
Choosing a learning algorithm

Standard RL algorithms may perform poorly with the limited data

collected in mobile health studies: treatment (here, text messages) is

provided up to a few times per day. We chose algorithms for contex-

tual multi-armed bandit (MAB) problems: a problem of deciding

which arm of an experiment to try when the goal is maximizing re-

ward from a distribution with unknown parameters. The MAB

framework has been applied in diverse decision-making problems

including online advertisements and has been proposed for clinical

trials.24

We used these algorithms based on our previous work and be-

cause they might be particularly effective for mobile health.13,25

MAB algorithms simultaneously attempt to acquire new knowledge

by exploring the different intervention options (here, text messages),

and optimize decisions based on acquired knowledge (eg, which text

messages led to a positive reward before).26 Each intervention op-

tion is associated with a different reward function, also depending

on participants’ context: here participant characteristics (eg, age,

gender) or daily time-varying variables (eg, day of the week). Specifi-

cally, we employed Thompson sampling (TS) with Bayesian Linear

Regression. TS (also called “posterior sampling” or “probability

matching”) is an algorithm for solving multi-armed bandit prob-

lems. Using a Bayesian approach, it tries to balance between explo-

ration, choosing a strategy that would provide more information

(eg, testing a new type of text message) versus exploitation, making

the current optimal predicted decision (eg, sending the text message

that was previously associated with the higher reward). TS has been

widely used in real-world applications, including other mobile

health studies,16 showing promising results (also with small amounts

of data).27

Figure 1. The DIAMANTE study is a randomized controlled trial with 3 groups (uniform random, reinforcement learning, and a control group). In the reinforce-

ment learning group each morning, the algorithm evaluates which messages, delivered at what time period, will likely increase steps for every participant in the

upcoming day. The algorithm training data consist of the historical data of all participants (contextual variables), which include time-varying variables, and select

clinical/demographic data to improve prediction abilities.20 Our action space is defined by the 5x4x4x2 DIAMANTE factorial design (5 intervention options for a

“feedback” message and 4 intervention options for a “motivational” message, including the “no-message” category, 4 options for the time frame, and 2 social

categories [individual or family]).
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MABs have been applied in education research28 and mobile be-

havioral interventions, including physical activity29,30 and sleep.31

Using simulations, we previously showed that contextual MABs for

educational technology interventions resulted in better student out-

comes than noncontextual MABs or randomization.32

MAB algorithms have limitations. For instance, they are slow to

adapt to changing circumstances due to external factors, including

the weather or new illness.13 Additionally, because they take only

short-term rewards into account, they are not optimal for maximiz-

ing long-term outcomes. However, we expect that slight increases in

walking from day to day may result in changes in habits13 and,

thereby, increases in overall steps over the duration of the study (6

months).

Choosing design variables

The DIAMANTE study collects a wealth of contextual variables at

baseline (Supplementary Table 1), but guidelines for choosing varia-

bles to include in the model are lacking.

We decided on the following approach:

• We initially include all contextual variables that may impact

physical activity behavior, based on our (incomplete) empirical

knowledge, to avoid missing potential important variables. To

provide regularization, we use Bayesian linear regression with a

normal-inverse gamma prior to the regression coefficients (mean

and variance). This keeps coefficients small and minimizes over-

fitting.33

• During the study, we will evaluate the model every 3 months to

improve performance through an iterative process. This includes

assessing if we should remove certain terms from the regression

model (ie based on high correlations), or choose a different type

of regression method (ie, LASSO-related regression, which auto-

matically selects variables by removing predictors from the

model34) We expect that algorithm tweaks will become less nec-

essary as the study progresses.

Choosing a reward variable

There are no guidelines for choosing the reward variable: the mod-

el’s outcome/feedback. In testing phases of our study, users indicated

that receiving messages in the morning motivated them to be active

later in the day, varying with their schedules. Therefore, we chose

the change in steps within a 24-hour time window. This is a trade-

off, as this longer time period could introduce noise, but a short

time window may miss meaningful activity. The “correct” reward

thus depends on the purpose of the study. Future work should evalu-

ate algorithm performance for various types of reward variables.

Dealing with missing data

Our passive step-data collection relies on participants’ built-in

phone pedometers as opposed to physical activity trackers. This

facilitates easier implementation but perhaps less reliable data.35

Participants may forget to carry their phones, or lack Internet con-

nection necessary to transmit their data, leading to faulty decision-

making of the algorithm. Further, in our testing phases, participants

received messages remarking they had walked 0 steps when their

data was missing. These errors could lead to lower engagement and

higher dropout.

To solve this issue, we took the following approach:

• We consider 0 steps faulty, since it is unlikely for a participant to

walk 0 steps daily. When 0 steps are detected, participants do

not receive messages.
• We code 0 steps as “NA” in the training data. This avoids poten-

tial biases in the estimation process.
• We use the last observation carried forward technique,36 using

participants’ last available steps, for dealing with missing reward

Figure 2. Challenges and considerations when using reinforcement learning in clinical mobile health studies.
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Table 1. Challenges, considerations and solutions

Themes Challenge Considerations Solution

Defining the model for decision

making

1. Choosing a learning algorithm We considered algorithms that

maximize short-term outcomes

and deal with small amounts of

data. We examined different

types of sampling methods used

previously in mobile health stud-

ies.

We use algorithms for contextual

multi-armed bandit problems

(MAB) and employ Thompson

Sampling (TS), successfully ap-

plied in mobile health before.

This algorithm can deal with

small amounts of data and ad-

dress the exploration/exploita-

tion trade-off.

2. Choosing design variables (con-

textual and action variables)

We employ a 5x4x4x2 design for

the action variables, and collect

demographic, time-varying and

clinical characteristics for per-

sonalization (contextual varia-

bles). To deal with this large

number of terms, we considered:

� Selecting terms based on our be-

havioral scientists’ prior knowl-

edge and hypotheses

� Selecting terms based on prior

analysis results of pilot studies

� Using regression with regulariza-

tion

� Including all variables of possible

interest

In the absence of reliable estimates

at the start of the study (not

enough data from pilot phases),

we included all variables of in-

terest to avoid missing important

variables. To provide regulariza-

tion by shrinking coefficients, we

use Bayesian linear regression

with a Normal-Inverse Gamma

prior on the regression coeffi-

cients. During the study, we will

evaluate the model once per 3

months to assess if it would be

useful to remove certain terms

from the regression model, and/

or employ a different regulariza-

tion technique.

3. Choosing the reward variable Physical activity studies can have

many different reward variables.

Possible reward variables we dis-

cussed include:

� The total increase in steps within

a number of hours after sending

a message.

� The total increase in steps from

one day to the next

� The total increase in steps after

sending a message until sending

the next message

We chose the increase in step from

one day to the next (24 hour

time window, from 00:00 to

23:59 pm). Our overall aim is to

motivate participants to increase

steps during the day, regardless

of when. Some participants

noted that the messages received

early in the day motivated them

to plan their activity at a later

time during the day.

Data handling/collection in real

time

4. Dealing with missing data Questions we considered were:

�How should the model handle

missing data?

�What text-messages should be

sent out to participants when we

register missing data?

We used the last observation car-

ried forward (LOCF) technique

for missing reward data (steps).

Feedback messages will not be

sent to participants when there

is missing data. Instead, the sys-

tem sends a message asking

them to open the app (which

pulls their steps). The research-

ers will call participants when

there are >2 days of missing

data.

5. Dealing with real time algorithm

errors

Dealing with data issues in real

time, such as errors in execution

of the script or in the algorithm

training data.

Our developer sends a log of data

errors to the researchers on a

daily basis. Researchers use the

app to identify issues in real

time. The researchers check the

data output every 2-3 months

for missing values and micro-

randomization errors.

6. Speed up algorithm learning To speed up the learning of the al-

gorithm, it is recommended to

have data to inform the prior

distributions of the algorithm.

We took the following approach:

� Conduct simulation studies using

pilot data (n¼ 10). Based on our

simulations, we confirmed that

(continued)
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data. In simulations, we will examine if various methods of im-

putation for longitudinal data improve our algorithm perfor-

mance.37

• We send participants a message asking them to open their app to

automatically transmit their data.
• We contact participants by phone if we have not received their

step data for > 2 days.

Addressing algorithm errors in real time

In user-testing phases, the app did not always collect steps, and mes-

sages sent by our online server were occasionally inconsistent with

messages registered in our data export file.

To prevent these errors throughout the study, we took the fol-

lowing approach:

• The researchers receive an automated daily log of data errors

(such as 0-step measurements).
• Throughout the study, we compare the data export (which mes-

sages participants received according to our analysis file) to 1)

the messages logged on our online server, HealthySMS, and 2)

the messages we receive ourselves, through our enrollment in the

program as a continuous internal test.
• We conduct preliminary checks of the data quality every 3

months. These consist of checking for missing values, assessing

microrandomization errors (eg, check the uniform assignment

Table 1. continued

Themes Challenge Considerations Solution

Our study was however not

designed with a period of large-

scale data collection and experi-

mentation with the algorithm

before the start of the trial.

TS has a lower bias in estimation

of reward with an initial uni-

form random policy.

� All participants receive 2 weeks

of uniform random policy, and

then by using the data collected

during this period, we update

priors for parameters of TS.

Appropriate algorithm perfor-

mance vs. effectiveness/imple-

mentation issues.

7. Comparison group in the con-

text of a Randomized Controlled

Trial

In the original protocol we planned

to compare the RL Algorithm to

a pre-specified text messaging

program, that delivers brand-

new messages with educational

concepts. But, throughout our

design process it became appar-

ent that this is not a clean com-

parison, as both arms would

receive different types of text-

messages.

We compare the RL condition to a

uniform random (UR) Policy.

We removed the program with

different content. Both arms will

receive the same types of mes-

sages, but the UR policy picks

the messages with equal proba-

bility; the RL condition will

learn a decision policy. This

allows us to scrutinize the bene-

fit of RL.

8. Evaluating algorithm perfor-

mance within an implementation

study

We had to find a design to optimize

algorithm performance, and

maximize usability in low re-

source settings, and to evaluate

performance and usability.

We chose a three-arm (TS, UR and

control) trial to balance the need

of efficacy vs. effectiveness. By

comparing the UR (micro-ran-

domized) messages to the con-

trol group we can evaluate the

effect of our text-messages irre-

spective of the use of RL. Out-

comes of only the UR condition

can be used to inform future RL

algorithms.

9. Limited time for algorithm de-

velopment in a clinical trial

We had to discover a balance be-

tween focusing on algorithm

performance versus implement-

ability of the app. We knew we

would have limited time for al-

gorithm preparation, a slow roll-

out for participant recruitment

(12-15 people per month) and

less data from trial participants

upfront. We had to implement a

variety of strategies simulta-

neously.

� In the preparation phase, we

tested the app and algorithm in

the study team, user design

phases and simulations. We bal-

anced content and structure

liked by participants, with de-

sign to maximize algorithm per-

formance to yield an externally

valid approach.

�We ran preliminary quality data

checks on pilot data.

�We analyzed the algorithm data

from the study team members

and a small group of participants

in a pilot.
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in the UR group), and evaluating consistency among collected

data.

Speeding up algorithm learning with limited time available

The rate of algorithm learning slows with sparse data. In our study,

we only enroll approximately 10–15 participants per month—and

even fewer during the COVID-19 pandemic. To speed up algorithm

learning, we implemented a 2-week UR policy at the start of the

study for every participant in the RL arm. UR data can be used to

create informed prior distributions for the TS condition. This way,

algorithm decisions are based both on prior knowledge and incom-

ing data, which increases the speed of algorithm personalization.38

We lacked recommendations on how long to collect uniform data

before the learning phase. Based on our experience, most partici-

pants who drop out do so in the first month. Therefore, we settled

on 2 weeks of UR, before switching to TS, to maximize the probabil-

ity that most participants will receive RL for at least 2 weeks. In sim-

ulation studies using pilot data from our user design phases (n¼10),

we confirmed that TS has a lower bias in estimation of reward with

an initial UR policy.

Choosing a comparison group

We originally planned to compare RL to an arm with fixed content

derived from the National Diabetes Prevention Program.39 Although

this approach was most comparable to existing health education

interventions, we decided to cleanly evaluate the effect of RL by

changing the comparison group to UR. Both arms will receive the

same types of messages, but UR picks the messages with equal prob-

ability. The RL condition dynamically adapts treatment, allowing us

to assess if sending messaging using a RL decision-making algorithm

is superior to choosing message categories and timings at random.

Evaluating algorithm performance within an implementation study

The DIAMANTE study is a hybrid effectiveness and implementation

trial, set up to ensure the effectiveness of the app in a real-world set-

ting. Hybrid designs combine effectiveness and implementation re-

search to reduce the time from initial concept to a working

product.40 This is important because traditional designs often result

in efficacious interventions that are not effective in real-world stud-

ies, particularly for digital interventions.41

Our team navigated between making decisions to optimize algo-

rithm performance and maximize usability. For instance, sending

messages more than once a day with shorter reward periods may im-

prove algorithm performance16,17 but may also decrease user en-

gagement.42 Because our target users did not frequently use apps or

texting, and were therefore at higher risk for dropout,43–45 we prior-

itized decisions that would benefit user engagement where possible.

To further examine clinical effectiveness and implementation,

we implemented a 3-arm trial design, including RL, UR, and a con-

trol group to balance the need of evaluating algorithm performance

vs effectiveness and implementation of the overall intervention. Do-

ing so, we will also be able to evaluate the effect of our text messages

irrespective of the use of RL by comparing the UR (microrandom-

ized) messaging to the control group.

Limited time for algorithm development within the context of a

clinical trial

Typical RL-algorithm research involves several preparation phases,

which improve algorithm performance but may take years to com-

plete before a clinical trial. Here, we were only able to employ a pre-

paratory phase of 9 months before the start of the RCT. Most of the

limited years of study funding were dedicated to the clinical trial.

Given the limited amount of time for research on algorithm perfor-

mance we:

• Conducted simulation studies for debugging and defining model

parameters;
• Ran preliminary quality data checks on pilot data;
• Analyzed the algorithm data from the study team members and a

small group of participants in a pilot. This testing revealed cru-

cial errors that we could fix before deploying the algorithm.

DISCUSSION

We described the challenges, decisions, and solutions of designing

RL algorithms to personalize mobile health applications in real-

world settings. We use the design process of a physical activity study

(DIAMANTE) as an example. Qualitative analyses from 1.5 years

of study notes showed that the most important decisions and chal-

lenges were related to the choice of the model and design variables

for decision-making, handling missing data and algorithm errors in

real time, and maintaining a balance between intervention imple-

mentation and optimal model performance. These issues need to be

taken into account and should be documented during the design

process of RL algorithms for clinical studies.

Approach with multiple phases
Despite the limited time to develop our RL algorithm, we employed

a multiphased approach. This included simulation studies, pilot user

testing, and testing of the mobile application within our own study

team. We recommend that all researchers using RL or other types of

machine-learning to personalize digital health interventions employ

multiple phases, which can happen simultaneously, in preparation

of a rollout with clinical participants. This is crucial for identifying

and fixing algorithm errors. Because of the complexity of the design

process, developing these models requires a multidisciplinary team

with both deep technical expertise and profound knowledge of the

clinical population of interest.

Further, the RL algorithm design process should not stop when

the clinical study starts. Instead, decisions should continuously be

evaluated, and algorithm development should work through an iter-

ative process. Frequent data checks, automated reports about miss-

ing data, and internal testing are essential throughout the study in its

entirety.

Microrandomization
Another important lesson is that an RL study must have an adequate

comparison condition to disentangle the performance of the algo-

rithm and the characteristics of the digital intervention overall on

clinical outcomes. Such a comparison, as we choose here, is con-

trasting RL to UR, in which messages are microrandomized (ie, de-

livered with equal probability). This will allow us to quantify the

benefit of “adaptive tailoring” using RL. We also used a period of

UR for all participants to inform priors for the algorithm, with the

aim to speed up learning with sparse data, which is an important

consideration for mobile health. Researchers may also choose to in-

clude a period of microrandomization in order to determine decision

rules23 (eg, at what times to send messages based on participants’

availability [not performed in this study]).
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Increasing engagement through RL
The type and delivery frequency of text messages will adapt over

time throughout the study based on data collected from participants

every day. This learning algorithm aims to maximize the outcome

(increases in steps) learning and updating over time based on incom-

ing data. More commonly, digital health studies only tailor their

content in a user-centered design process to the needs, wishes, and

norms of a group of individuals. In this study, we tailor both the

content as a whole through a user-centered design process and the

text-messaging delivery on a daily basis using RL. We hypothesize

that this approach will increase participant engagement and thereby

will be more effective. We will assess participant engagement by ex-

amining the times they accessed the app and read the messages, how

they rated the app’s usability, and their qualitative opinions.20

The importance of developing guidelines for machine

learning in mobile health
A framework article discussing the machine learning literature in

health argued that the field lacks transparency, clear reporting, ex-

ploration for ethical concerns, and demonstrations of effective-

ness.46 While several studies have discussed RL algorithm

performance for mobile health, (for example in simulations), few

discuss all the steps needed to develop these algorithms for clinical

studies. Because this is a novel field, machine learning algorithms

used in applied health settings often undergo less scrutiny compared

to other clinical interventions.46 Additionally, because of the excite-

ment around artificial intelligence (AI), some have warned that digi-

tal medicine must avoid a crisis of reproducibility like that found in

other biomedical fields.47 Recent RCT reporting guidelines for AI

studies for clinical decision-making have begun to emerge.48 Here,

we provide guidelines specifically for the algorithm design part of

mobile behavioral health studies.

We recommend that all studies using machine learning to opti-

mize digital health interventions document their decision-making

process and identify critical issues and challenges they encountered.

This further avoids the “black box” problem of not knowing how

and why algorithms are making decisions.

Issues around choosing a model for decision-making also need to

be explored more. Here we chose an algorithm for contextual multi-

armed bandit problems, as this algorithm may be particularly suit-

able for mobile health studies. There is a lack of research that com-

pares the effectiveness of different RL models and assesses what

kind of problems within mobile health they should be applied to.

Similarly, we chose changes in daily steps as our reward. Other

physical activity studies using an RL algorithm made different

choices. One study used 30-minute steps after participants received

a motivational message (up to 5 times per day to increase short

bouts of physical activity).16 Other research chose the increase in ac-

tivity since the last motivational text message.17 Algorithm perfor-

mance with various reward functions needs to be explored.

Strengths
To our knowledge, this is the first study to describe RL algorithm

design decisions in the context of a multidisciplinary collaboration

for mobile health clinical studies in the real world. Notably, we con-

duct this work in a low-income ethnic minority population for

whom the greatest health disparities exist yet where novel methods

are not often designed.43,49,50 This work brings the challenge of bal-

ancing decisions that boost algorithm performance and those that

maximize usability. Clinical studies with low-income populations

are complex because of data errors, low-tech skills of users, working

within a large interdisciplinary team, and executing studies within a

limited timeframe (eg, related to funding). Many of these issues are

less relevant in simulation studies or work with convenience sam-

ples. This article can be used as a framework of considerations for

other interdisciplinary teams working, or wanting to work, in this

space.

Limitations
Researchers working with other populations and/or health problems

may encounter issues not described here. Further, we provide a

framework of decision-making, but, because this is an evolving field,

we cannot be certain that our choices are optimal. Detailed analyses

on the final dataset, in combination with results from other studies,

will provide these answers. Additionally, here we did not discuss

considerations such as privacy and algorithm bias in detail, but these

issues must be further explored. Further, user ratings and experien-

ces of the content are not included as variables in the current model.

Future work should focus on incorporating engagement into RL

algorithms. Because user engagement can be quantified in many dif-

ferent ways,51 future guidelines should also define consistent en-

gagement measurements for studies to be comparable. Finally, here

we measured steps using participants’ pedometers on their personal

phones to facilitate real-world implementation. The reliability of

pedometers may depend on the phone model52 and where partici-

pants carry their phone (eg, closer to the body may be more reli-

able).53 Future implementation work should compare the use of

wristbands and phone pedometers to measure physical activity in

low-income populations.

CONCLUSION

Creating effective behavioral health interventions using RL involves

many decisions beyond evaluating algorithm performance. These

considerations need to be documented and evaluated before and

during the intervention period to increase transparency, accountabil-

ity, and replicability. As the application of machine learning into

digital healthcare interventions increases, we need effective collabo-

rations between different disciplines to do this work well in real-

world settings.
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