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Abstract 
Applications of machine learning in healthcare are of high interest and have the potential to 
significantly improve patient care. Yet, the real-world accuracy and performance of these 
models on different patient subpopulations remains unclear. To address these important 
questions, we hosted a community challenge to evaluate different methods that predict 
healthcare outcomes. To overcome patient privacy concerns, we employed a Model-to-Data 
approach, allowing citizen scientists and researchers to train and evaluate machine learning 
models on private health data without direct access to that data. We focused on the prediction 
of all-cause mortality as the community challenge question. In total, we had 345 registered 
participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries. 
The top performing team achieved a final area under the receiver operator curve of 0.947 (95% 
CI 0.942, 0.951) and an area under the precision-recall curve of 0.487 (95% CI 0.458, 0.499) on 
patients prospectively collected over a one year observation of a large health system. Post-hoc 
analysis after the challenge revealed that models differ in accuracy on subpopulations, 
delineated by race or gender, even when they are trained on the same data and have similar 
accuracy on the population. This is the largest community challenge focused on the evaluation 
of state-of-the-art machine learning methods in a healthcare system performed to date, 
revealing both opportunities and pitfalls of clinical AI. 
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Introduction 

Applications of machine learning applied to patient data are undergoing wide development and 

implementation in healthcare scenarios ​1,2​. The performance of these methods as they are used 

in the clinic - and their associated impact on patient outcomes - are not well understood. An 

important risk in the design and implementation of machine learning algorithms is the 

self-assessment bias, where the implementer and evaluator are the same person or team, 

which can result in overfitting and poor generalization ​3​. At the same time, health systems and 

journals are inundated with new methods that overwhelm the ability of healthcare providers to 

assess effective solutions. This is further exacerbated by varying business practices across 

healthcare institutions resulting in vastly different data characteristics at each site. At each of 

these institutions, clinical practice and data collection practices can change over time, in some 

cases, rendering EHR data obsolete in as little as 3-6 months, as it no longer reflects current 

data distributions ​4​. Healthcare data can also contain hidden biases that reflect social and 

institutional disparities within clinical practice ​5​. Risks of biases in medicine have been well 

documented, and models built using biased data will propagate these biases into practice 

through model recommendations ​5,6​. Addressing these issues requires a rigorous, unbiased 

framework that can evaluate algorithm performance using independent honest brokers, assess 

generalizability over time and across institutions, and report on performance disparities across 

sub-populations.  

 

Access to electronic healthcare record (EHR) data for AI research, and subsequent evaluation, 

is complicated by HIPAA regulations, privacy concerns, and business risks. To overcome these 
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barriers to access, we have developed an approach called Model-to-Data (MTD) that delivers 

analytical models to protected data without sharing the data directly with model developers ​7​. 

We previously piloted this method on an EHR dataset from the University of Washington and 

demonstrated the feasibility of accurate model development without the model developer having 

direct access to the patient data ​8​. This approach has two benefits: (1) it protects patient data 

while allowing researchers to build machine learning methods and (2) it forces a more 

standardized and transferable approach to building models allowing the data host to perform 

rigorous evaluations of submitted models.  

 

We leveraged this platform to implement the ​EHR DREAM Challenge: Patient Mortality 

Prediction​ to assess machine learning approaches applied to a clinical data warehouse while 

protecting patient privacy. DREAM Challenges are crowdsourced, biomedical competitions, 

where the challenge organizers solicit the broader research community to develop methods to 

answer a specific set of biomedical questions ​9​, and to assess these methods using hidden, 

gold standard datasets. Community challenges have proven to be a robust setting for the 

objective evaluation of prediction models since they remove the researcher from the evaluation 

process ​10–14​, limiting the self assessment bias ​3​. We focused on the clinical question of 

predicting all-cause mortality, as the clinical phenotype is clearly defined and complete 

(University of Washington merges patient records with state death records to minimize 

missingness) and previous mortality prediction methods have been developed ​15–18​. In this 

Challenge, we asked participants to predict whether patients would pass away within 180 days 

of their last visit to the UW medical system based on that patient’s previous medical history. We 

evaluated models for population level accuracy, longitudinal generalizability - evaluating models 
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on a prospectively collected data set - and demographic generalizability - evaluating model 

performance across sensitive demographic strata. 

Methods 

The University of Washington clinical data repository 

The UW Medicine enterprise data warehouse (EDW) includes patient records from clinical sites 

within the UW Medicine system, including more than 300 specialty and primary care clinics. The 

EDW gathers data from more than 60 sources, including laboratory results, microbiology 

reports, demographic data, diagnosis codes, medications prescribed, and procedures 

performed. An analytics team at the University of Washington transformed the patient records 

from 2010 to 2019 into a standardized data format, the Observational Medical Outcomes 

Partnerships Common Data Model (OMOP CDM v5.0) ​19​. For the EHR DREAM Challenge, we 

selected all patients who had at least one visit in the UW OMOP repository, which represented 

1.3 million patients, 22 million visits, 33 million procedures, 5 million drug exposure records, 48 

million condition records, 10 million observations, and 221 million measurements covering 

approximately 10 years of patient histories. 
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Table 1. Demographic makeup as a percentage of the individual data sizes across the different versions                
of data used in the DREAM Challenge. All values represent the percentage of the total number of patients                  
in the dataset of interest. We include a 100+ category as a standalone age category because that age                  
range is of questionable quality. This gives some idea to the quality of the data made available. 

Synthetic data 

We made synthetic data available to participants for local model development and debugging 

purposes, and used it in the Challenge platform environment to validate that submitted models 

could be successfully executed. (Figure 1, Stage 1) Running containers on synthetic data 

removed the privacy concerns intrinsic in real clinical data allowing us to return logs and error 

messages to participants without screening. We derived a synthetic dataset from the SynPuf 

Synthetic OMOP dataset ​20​. Starting with the original SynPuf dataset we adapted it to our 

 
Demographic 

Leaderboard Phase Validation Phase Post Challenge Resplit  
Training 

(n=979,184) 
Validation 
(n=284,883) 

Training 
(n=942,381) 

Validation 
(n=200,855) 

Holdout Test 
(n=168,708) 

Training 
(n=1,067,084) 

Validation 
(n=273,597) 

Age (%) 
0 - 17 

18 - 34 
35 - 64 
65 - 99 

100 + 

       
6.12 6.38 6.18 7.31 6.04 5.62 9.42 

23.77 22.18 23.84 24.61 20.98 22.07 29.2 
46.82 45.31 46.68 44.84 45.58 47.36 41.12 
22.86 26.03 22.85 23.13 27.33 24.55 20.09 

0.35 0.09 0.37 0.1 0.06 0.34 0.1 
Race (%) 

White 
Asian 
Black 

Other/Nan 

       
54.42 64.05 54.39 62.76 66.74 58.07 53.83 

8.36 10.29 8.36 10.59 9.57 8.9 8.44 
6.3 7.41 6.22 6.82 8.39 6.81 5.51 

30.93 18.25 31.03 19.83 15.30 26.22 32.22 
Gender (%) 

Female 
Male 

       
52 54.2 51.92 53.82 54 52.59 51.6 

47.94 45.78 48.02 46.16 46 47.37 48.35 
Other/Nan 0.05 0.01 0.05 0.02 0.01 0.04 0.05 

Ethnicity (%)        

Hispanic 
Not Hispanic 

Other/Nan 

5.79 6.45 5.78 6.47 7.09 5.80 7.03 
50.17 77.13 49.90 75.42 80.09 56.09 63.71 
44.04 16.42 44.31 18.11 12.81 38.11 29.26 

Mortality Status 
(%)        

Passed 0.83 0.75 0.90 1.12 1.32 0.93 1.33 
Alive 99.17 99.25 99.10 98.88 98.68 92.55 98.67 
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challenge by randomly sampling concepts and terms that occurred more than 100 times in the 

structured EHR data from the University of Washington OMOP repository and then populated 

the tables of the original SynPuf dataset with these random samples to create a synthetic 

derivative that more closely represents the UW OMOP data. We also adjusted the size of the 

data to match the distribution of records across patients resulting in a synthetic dataset that 

represented 1,264,000 patients with 6300 true positives, 19,945,000 visits, and 189,605,000 

measurements (see the supplemental material).  

The EHR DREAM Challenge: Patient Mortality Prediction 

The challenge infrastructure 

The EHR DREAM Challenge was developed and run using a “Model to Data” (MTD) approach 

7,8​. This method relies on containerization software (Docker) ​21​, a common data model (OMOP) 

19​, a model intake mechanism (Synapse) ​22​, and a synthetic dataset for low risk technical 

validation of submitted models (Synpuf) ​20​. Challenge participants were required to submit 

“containerized” models to be applied to protected data by the Challenge organizers. ​At no time 

during the Challenge did participants have direct access to real patient data and models 

never had access to patient identifiers ​. Participants were allowed to submit ​pretrained 

models using data they already have, such as their own institution’s clinical data warehouse. 

The containerized algorithms submitted by participants were able to use a training split of the 

UW dataset to train a predictive model ​de-novo​, or to further optimize a pretrained model. To 

enable model debugging prior to evaluation on real clinical data, submitted models were first 

applied to the synthetic data to check for technical compliance (Figure 1, Stage 1: Model 

Validation). Log files generated by the models in the synthetic data environment were returned 
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to participants for technical debugging purposes. Following successful execution on the 

synthetic data, the models were pulled into a University of Washington secure environment that 

was disconnected from the internet where they were trained on the UW OMOP repository. The 

UW OMOP repository did not contain patient identifiers. The models had no access to the 

internet during training and evaluation. (Figure 1, Stage 2: Model Evaluation) The trained 

models were tested on a holdout set and the Area Under the Recall Curve (AUROC) and Area 

Under the Precision Recall Curve (AUPRC) were returned to participants via the Synapse 

platform. No logs, model parameters, or other information other than the performance metrics, 

were returned to participants after models were applied to the UW patient repository (including 

the final models themselves). Participants were allowed a total of 10 hours to train and test their 

models in this environment. The models were run on a server environment with access to 70 GB 

of RAM, 32 2.3 GHz CPU cores and no GPUs during this process. Model predictions were 

never linked to identified patient records. 
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Figure 1. Model-to-data architecture to evaluate the performance of EHR prediction models in the Patient 
Mortality DREAM Challenge. Models were developed on local environments using synthetic data that 
resembled the real private EHR data. Docker images were submitted through the Synapse collaboration 
platform to a submission queue. Images were pulled into the NCATS provided AWS cloud environment 
and run against a synthetic dataset for technical validation (Stage 1). Once validated, images were pulled 
into the UW Medicine secure infrastructure and run against the private EHR data. Model predictions were 
evaluated using Area Under the Receiver Operator Curve (AUROC) and Area Under the Precision Recall 
Curve (AUPRC) which were returned to participants through Synapse. 

Challenge Question 

For this challenge, we asked participants to predict the 180-day all-cause mortality from the last 

patient visit at UW Medicine. True positives were defined as patients who had a death record in 

the first 180 days of their last visit record and true negatives were defined as patients who either 

had a death record more than 180 days from their last visit, or who did not have a death record. 

Death records were derived from the medical record and Washington State death records. 
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Timeline 

The EHR DREAM Challenge lasted from September 9, 2019 to February 23, 2020 and was 

conducted in three phases: the open phase, the leaderboard phase, and the validation phase. 

During the open phase, participants could submit models for technical validation using only 

synthetic data in the Challenge cloud environment (Figure 1, Stage 1). During the leaderboard 

phase, models that were technically validated against the synthetic data were applied to the 

leaderboard training data and evaluated against the leaderboard validation data (Table 1). This 

phase was designed to give participants the opportunity to build and tune their models, 

receiving model performance metrics on the leaderboard validation data set. We carried out this 

phase in 3 rounds, where each team was allowed 3 successful submissions per round. During 

the open and leaderboard phases, new data accumulated in the UW EHR. We gathered this 

data (called the “holdout test data”) which represented patients who visited UW medical facilities 

during 2019. During the validation stage, models were trained on the leaderboard training data 

(excluding the patients transitioned to the holdout test data) and were tested on this new 

prospectively-collected data. See supplementary materials for details on the timeline and data 

generation processes. 

Model evaluation 

Challenge Evaluation Metrics 

The Area Under the Receiver Operator Curve (AUROC) was used as the primary metric for 

assessing model performance. A Bayes Factor, ​K​, (bootstrapped distributions ​n ​= 10,000) was 

computed to determine if the AUROCs between two models were consistently different. If two 
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models were found to have a small Bayes Factor (​K < 19​), we used the Area Under the 

Precision Recall Curve (AUPRC) as a tie-breaking metric. Both the AUROC and AUPRC were 

computed for all submissions and were used to rank teams on the Challenge leaderboard. 

During the leaderboard phase, models were scored against the leaderboard validation data to 

build the initial leaderboard phase model ranking. During the final validation phase, models were 

scored against the prospectively-collected holdout test set. The top performing teams of the 

EHR DREAM Challenge: Patient Mortality were declared from the resulting validation phase 

model rankings. This holdout test set served to evaluate models on prospectively collected 

clinical data, testing a models ability to generalize over shifting clinical practice and data 

collection. 

Re-split Data Validation 

During the challenge, we used the validation phase holdout test set to build a final ranking of 

model performance. This holdout set only contained patients who appeared in the UW medical 

system in 2019. This left a 6-month longitudinal gap between the end date of the training data 

and the start date of the holdout test data. We combined all the datasets (training, validation, 

and holdout test) and re-divided the dataset into an 80/20 split between training and testing data 

using the same prospective splitting method we used to split the initial leaderboard data (details 

in the supplemental material). We trained the models on the 80% training data and evaluated 

the trained models against the 20% test data. This allowed us to compare the effect of the 

6-month gap on model performance. 
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Subpopulation Accuracy Comparison  

We evaluated model performance across various subpopulations which were defined by 

different demographic or clinical features including race, gender, ethnicity, age, and type of last 

visit. We compared model accuracy for each subpopulation against the accuracy of every other 

subpopulation within the same demographic or clinical group, calculating a paired Bayes Factor 

to evaluate the magnitude of accuracy differences. We ran this experiment on the prospectively 

gathered validation phase data. 

Model Features 

The top 5 performing teams were asked to output a list of features with accompanying weights 

in order to assess which features were most important in their models. We gathered a list of 

information that included the name of the feature, the “concept_id”s that were used to build 

those features, along with a weight or score that indicated the impact of that feature. 

Results 

The EHR DREAM Challenge on all-cause patient mortality prediction was held between 

September 9, 2019 and February 23, 2020. Participants were asked to submit software 

programs that the Challenge organizers - acting as an honest broker - applied to hidden EHR 

data for training and model validation (Figure 1, Supplemental Figure 2). Data was split into 

training, validation, and holdout testing data sets that were used across two phases of the 

Challenge: a leaderboard phase and a final validation phase. Within the final validation phase, 

942,381 patients were available for model training and 168,708 patients were used for model 
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validation, with mortality rates of 0.90% and 1.32% respectively (Table 1).  The Challenge 

received a total of 132 submissions from 25 teams that were able to be successfully executed 

with valid predictions.  

 

 
Figure 2. The Receiver Operator Curves and the Precision Recall Curves from all the models submitted in 
the validation phase. The top 5 models were not the top 5 models in the evaluation phase, but were more 
robust to longitudinal changes in the data. AUROCs and AUPRCs are reported in Table 1 for the 
leaderboard data, validation data, and the Resplit data. Comparison of leaderboard phase to validation 
phase scores are found in Figure 5. 
 
During the leaderboard phase, of the 25 successfully validated models, ten teams exceeded 

AUROC > 0.9. AI4Life led the leaderboard phase - achieving an AUROC = 0.979 (0.977, 0.981) 

and AUPR = 0.614 (Table 2). In the final validation phase, 15 teams submitted successfully 

validated models, with three teams achieving an AUROC > 0.9 (Table 2, Figure 2). The top 

performing team, UW-biostat, achieved an AUROC=0.947 (0.924,0.952) and an AUPR=0.478. 

Between the leaderboard and validation phases, the average decrease in AUROC was 0.069 

with the top 5 models decreasing by an average of 0.024 and the bottom 8 models decreasing 
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by an average of 0.10. The top 5 models from the validation phase were ranked second, third, 

11th, 10th, and 7th respectively at the end of the leaderboard phase but were ranked in the top 

5 due to having the lowest decrease in performance. 

 

Table 2. Top 15 teams and the metrics for their highest performing models. 95% confidence intervals 
were calculated using bootstrapped (n=1000) distributions. The Delong test p value was generated by 
comparing each team’s model with the team’s model ranked below them. Leaderboard phase scores 
were generated using the models submitted during the final validation phase. 
 
 
Teams used a variety of machine learning techniques in their submitted models. Of the 15 

validated models, 12 were boosted methods (LightGBM ​23​, XGBoost ​24​, CatBoost ​25​, 

Generalized Boosted Regression ​26​), 2 were logistic regression, and 1 was a neural network 

(Supplemental Table 3). Of the top 5 models, 2 were LightGBM, 1 was logistic regression, 1 was 

CatBoost, and 1 was Generalized Boosted Regression. Each model used a different feature 

selection method ranging from randomly sampling all available concepts (Team IvanBrugere), 

carefully selecting a few features from the literature (Team LCSB_LUX), and using the structure 

 
Team 

Leaderboard Phase Validation Phase Post Challenge Resplit 

AUROC AUROC 95% CI AUPR AUROC AUROC 95% CI 
Delong p 

value AUPR AUROC AUROC 95% CI AUPR 

UW-biostat 0.972 (0.969, 0.975) 0.524 0.947 (0.942, 0.951) 1.70E-04 0.478 0.964 (0.961, 0.967) 0.43 
I​vanbrugere 0.968 (0.964, 0.971) 0.474 0.938 (0.933, 0.942) 1.96E-07 0.3 0.956 (0.953, 0.96) 0.409 
ProActa 0.943 (0.937, 0.948) 0.458 0.91 (0.903, 0.918) 2.84E-03 0.383 0.904 (0.898, 0.91) 0.43 
AMbeRland 0.942 (0.937, 0.947) 0.288 0.897 (0.89, 0.903) 4.18E-02 0.163 0.929 (0.924, 0.934) 0.284 
DMIS_EHR 0.915 (0.91, 0.92) 0.111 0.887 (0.88, 0.89) 5.95E-02 0.093 0.939 (0.936, 0.943) 0.347 
PnP_India 0.958 (0.954, 0.963) 0.449 0.876 (0.87, 0.883) 1.26E-01 0.182 - - - 
ultramangod671 0.882 (0.874, 0.891) 0.289 0.865 (0.856, 0.875) 2.45E-03 0.264 0.868 (0.86, 0.876) 0.37 
HELM 0.951 (0.948, 0.955) 0.323 0.842 (0.834, 0.85) 5.65E-01 0.135 - - - 
AI4Life 0.979 (0.977, 0.981) 0.614 0.831 (0.82, 0.841) 5.28E-01 0.302 0.971 (0.969, 0.974) 0.63 
Georgetown - ESAC 0.938 (0.933, 0.942) 0.168 0.839 (0.832, 0.848) 1.64E-02 0.073 0.938 (0.933, 0.941) 0.272 
LCSB_LUX 0.956 (0.952, 0.959) 0.307 0.82 (0.81, 0.829) 8.41E-01 0.116 0.936 (0.932, 0.94) 0.201 
QiaoHezhe 0.925 (0.92, 0.93) 0.16 0.819 (0.81, 0.827) 2.92E-01 0.073 - - - 
chk 0.903 (0.896, 0.908) 0.159 0.808 (0.8, 0.817) 1.38E-05 0.062 0.811 (0.804, 0.818) 0.061 
moore 0.955 (0.951, 0.958) 0.313 0.771 (0.757, 0.784) 9.51E-45 0.122 0.947 (0.943, 0.95) 0.377 
tgaudelet 0.904 (0.898, 0.91) 0.278 0.807 (0.798, 0.817)  0.201 0.158 (0.151, 0.166) 0.007 
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of the concept ontologies to roll up low-level granular concepts into broad categories of disease 

and drugs as features (Team UW-biostat). We developed an ensemble model with the top 

performing models but observed that the ensemble did not meaningfully improve prediction 

accuracy over the top models (see Supplementary materials).  

Top performing model 

UW-biostat’s (University of Wisconsin-Madison, Biostatistics and Medical Informatics) model 

achieved the highest Area Under the Recall curve during the final validation phase. While they 

were not the highest scoring model during the leaderboard phase, their model had the smallest 

decrease in performance of any model between the leaderboard phase and the validation 

phase, leading to their model having the highest score during the validation phase. The team 

used ontology-rollup to reduce feature dimensionality and used time binning and sample 

reweighting to capture longitudinal characteristics. For model development, they trained and 

tuned a LightGBM model to predict the mortality risk of each patient. To take into account 

potential data drift in EHRs ​4,27–29​, the team upweighted more recent patients during optimization 

and training of their model. In order to validate the model’s “future-proof” ability, they ordered 

the labeled patients by their last visit date from recent to early and used the top 15% of patients 

for validation. A more detailed description of this model and of the top 5 models are provided in 

the supplementary material. Model code can be found at 

https://github.com/GGGGFan/A-LightGBM-Model-to-Predict-180-Days-Mortality-Using-EHR-Dat

a ​. 
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Demographic Evaluation 

To assess whether models generalized across patient subpopulations, we evaluated model 

accuracy across multiple demographic and clinical groups including race, gender, age, ethnicity, 

and last visit type. For each demographic or clinical strata, we generated bootstrapped 

distributions (​n​ = 10,000) for each demographic strata in each model and ran paired permutation 

tests, calculating Bayes factors to assess the level of evidence for performance differences 

between subpopulations.  

 

Models were consistently more accurate on Asian patients when compared to any other racial 

group (Figure 3, Supplemental Table 2), despite Asian patients only making up 8.4 percent of 

the validation data and 9.6 percent of the validation phase training data (Table 2). Methods 

varied in their accuracies for other races with some models (​e.g.​ UW-biostat, IvanBrugere, 

Proacta, AMbeRland, DMIS_EHR) scoring higher on White patients compared to Black patients, 

and others scoring higher on Black patients than White patients (PnP_India, HELM, 

Georgetown-ESAC, AI4Life) (Figure 3, Supplemental Table 2). 
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Figure 3. Bootstrapped distributions (​n ​= 10,000) of the top 10 model AUROCs broken down by race. 
Model predictions were randomly sampled with replacement and scored against the benchmark gold 
standard. Comparisons were made between each category of race and Bayes values calculated to 
assess the level of evidence for the model having a higher accuracy on racial category compared to 
another category. The heat maps represent the log of the calculated Bayes factors when comparing racial 
groups within each model. The darker the red, the stronger the evidence for the racial category being 
higher than the comparison category. Bayes factor values range from 10000 to 0.0001. The darker the 
blue, the stronger the evidence for the racial category being lower than the comparison category. The 
color scale is normalized across all comparisons. Raw Bayes factor values can be found in Supplemental 
Table 2. 
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Without exception, models were more accurate on female patients than on male patients with 

Bayes factors greater than ten (strong evidence) for nine of the top 15 models (Supplemental 

Figure 4). As the challenge asked participants to predict mortality status 180 days from the last 

visit, we examined whether there were differences in model performances based on whether the 

last visit was inpatient, outpatient, or an emergency room visit. Most models had lower accuracy 

when the last visit was an outpatient visit, with the exception of 3 models (ultramangod671, 

Georgetown - ESAC, AI4Life in Figure 4). On patients where the last visit was an emergency 

room visit, models showed a wide variety of accuracies. In a few cases, models that had an 

overall lower model accuracy had higher accuracies on patients in the emergency room 

(compare ProActa to PnP_India in Figure 4). 
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Figure 4. Bootstrapped distributions (n=10,000) of the top 10 model AUROCs broken down by the last 
visit type of the patients. The visit types evaluated were Inpatient Visits, Outpatient Visits, Emergency 
Room visits. 

Assessment of important features 

The top five highest scoring teams were asked to adjust their dockerized models to output their 

trained features as a list of codes/values with associated weights from their trained models. In 

order to compare features across models, these teams reported which terms (SNOMED, 

RxNorm, LOINC, etc.) were used during any feature engineering and submitted brief 
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descriptions of those features. The feature count and number of concepts used are reported in 

the supplemental materials (Supplemental Table 3).  

 

The top four teams were able to successfully extract the features and weights from their models 

and output them into a human readable file. Table 3 reports the top 10 features of each model, 

including engineered features (i.e. presence or absence of a category of diagnosis or drug) and 

raw concepts from the data (i.e. granular SNOMED or LOINC codes). Some of the highly 

weighted features included the age of the patient at their last visit, systolic and diastolic blood 

pressure, heart rate, and a code for Do Not Resuscitate. 

 

Table 3. The top 10 weighted features as reported from the top 4 performing teams. Features were 
ordered by their model weight and assigned a rank out of all available features. Feature names were 
either reported by the teams or were mapped using the OMOP concept table from the reported concept 
ids. 

Rank UW-biostat IvanBrugere ProActa AMbeRand 
1 Age Not for resuscitation Age Age 
2 Average pulse Temperature Creatinine in Serum Not for resuscitation 

3 
Average Diastolic Blood 
Pressure Albumin in Plasma Heart rate Antineoplastic chemotherapy regimen 

4 
Average Systolic Blood 
Pressure History of clinical finding in subject Inpatient Visit Lactate dehydrogenase (LD), (LDH) 

5 
Latest Systolic Blood Pressure 
value 

Natriuretic peptide B [Mass/volume] 
in Serum or Plasma 

Blood typing, serologic; 
ABO Administration of antineoplastic agent 

6 Year of last visit Racial Variable (White) Palliative care Patient encounter procedure 

7 Latest pulse measurement 
Antineoplastic chemotherapy 
regimen Albumin in Plasma 

Secondary malignant neoplasm of 
lung 

8 
Latest Diastolic Blood Pressure 
Value Protein in Plasma 

Hematocrit of Blood by 
Automated count Disorder of lung 

9 Latest Glucose measurement Heart rate 

Neutrophils/100 
leukocytes in Blood by 
Automated count Dexamethasone 

10 Indicator: Unknown conditions Essential hypertension Cholecalciferol Bacterial culture 
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Discussion 

Machine learning models are increasingly regarded as foundational to any precision medicine 

strategy. The assessment of model accuracy and utility in a healthcare environment is 

challenged by limited data availability, concerns about breach of protected health information 

confidentiality, and lack of technical infrastructure, domain expertise and process to 

systematically manage model evaluations. We implemented an architecture for an unbiased and 

transparent assessment of methods that overcomes these limitations, and in doing so were able 

to improve existing methodology. We demonstrated how community challenges can provide an 

inclusive and rigorous environment for hosting a machine learning clinical trial. 

 

Using the Model-to-Data framework, 25 international teams submitted machine learning models 

to a private clinical dataset that otherwise would have remained inaccessible to these 

researchers. This was enabled by leveraging a common data model, in this case OMOP, a 

synthetic dataset for technical development and validation, a cloud environment hosting the 

synthetic data for pipeline and execution evaluation, standard containerization software, and a 

secure environment hosting the private clinical data.  

 

For the first EHR DREAM Challenge, we asked participants to predict 180-day mortality status 

of patients in the University of Washington clinical records. However, this prediction question is 

not immune to censoring, and is susceptible to an open world limitation as some patients may 

die out of state or outside UW clinical care without the ability to map their death to UW clinical 

records ​30​. Another limitation, as shown both in the selected features (Table 3) and in model 
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accuracy across last visit type (Figure 4), is that all-cause mortality is not a clinically actionable 

question, as models trained for all-cause mortality are not specific enough for clinical action. 

Given that some of the highlighted features used to predict death included age, palliative care, 

designation for do not resuscitate, and treatments or diagnoses of cancer (neoplasms), many of 

the models developed in this challenge were identifying the most obvious patients in the UW 

population. However, the highest performing model assigned the most weight on specific 

measurements and their values, not just the presence or absence of a measurement or 

condition, and was utilizing the hierarchical design of the available biomedical ontologies to “roll 

up” low level granular codes. This points to the fact that the Model-to-Data framework can be 

used in concert with intelligent feature engineering and selection.  

 

Assessing a wide variety of methods from teams allowed us to evaluate the best approaches 

and assess inter-method variability when holding the evaluation data constant. Interestingly, 

even though models were trained and evaluated on the same data, there was variance in model 

accuracy across different demographic groups. White, Black, and other racial groups showed 

differences across models, with some models scoring higher on Black patients than White 

patients and vice versa, while Asian patients were consistently more accurate across nearly all 

models. This may have to do with the cause of death, as prevalence of different causes of death 

may vary between different populations. Unfortunately, we did not have access to cause of 

death data at the time of this analysis. With the exception of the 0-17 age group, method 

accuracy was inversely correlated with age. One hypothesis for this trend is that younger 

patients who pass away in 180 days and are coming into the hospital are more likely to have 

extreme conditions and have a higher risk of death, while older patients are simply more likely to 

have diseases and health problems in general, making it more difficult to predict risk of death. 
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Models also had varied accuracies from the last visit type, highlighting the need to develop 

context-specific clinical prediction algorithms, although the two most accurate models were still 

more accurate on outpatient visits than all other less accurate models (Figure 4). In other cases, 

models were aligned in their bias, universally scoring higher on females than males 

(Supplemental Figure 4). We found no meaningful difference in model accuracy between 

Hispanic and Non-Hispanic ethnicity. (Supplemental Figure 4). 

 

 
Figure 5. Comparison of model performance between the leaderboard phase and the validation phase. All 
models decreased in AUROC except for HELM while many models increased in AUPRC. The top 5 team 
AUROCs decreased the least between the two phases. 
 
Evaluating models in a pseudo-prospective manner allowed us to assess how models would 

perform over time in the UW environment. We found that most models decreased in 

performance in the validation phase when compared to the leaderboard phase (Figure 5). This 

is in line with the literature, as previous studies have shown that the utility of clinical data can 

have a half-life of as little as three months ​4​. As an example from the UW data, 19.5% of 
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patients with a condition record in 2018 had the concept code for “malignant tumor of prostate” 

while in 2019, only 1.5% of patients with a condition record had that code. Comparing results 

from the post-challenge resplit data to the validation phase final results, the majority of models 

performed better when the training data was longitudinally closer to the test data (Table 2). 

UW-biostat explicitly down-weighted older data and relied more heavily on the most recent 

6-months of data in the training dataset resulting in their model having the lowest decrease in 

performance of any model. By combining this technique with their “roll up” feature engineering, 

UW-biostat’s model proved to be the most robust against longitudinal changes and covariate 

shift. In contrast, some models dropped by a significant margin. For instance, AI4Life’s model 

was among the most accurate during the leaderboard phase, but dropped to tenth in the 

validation phase (Table 2). While it is difficult to completely account for their drop, one possible 

explanation is their overall lower accuracy on first time visiting patients (Supplemental Figure 7) 

combined with the increase of first time visitors in the validation data (leaderboard phase data - 

13.8% compared to the validation phase data - 19.7%). AI4Life’s model had a high score on the 

resplit data, indicating that their model was susceptible to covariate drift as well. Evaluating 

models prospectively or pseudo-prospectively evaluates models in the manner in which they will 

be used and brings us closer to understanding how the models will perform in a live clinical 

setting. 

Limitations 

For this challenge, we set a submission limit of 10 hours for both the training and testing stages 

of model runtime. While this was implemented to limit the burden to the University of 

Washington secure servers, this also limited the types of models participants were able to build 

and excluded deep learning or more sophisticated, time consuming models. However, limiting 
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the time also forced participants to carefully consider the efficiency of their algorithms so 

extraneous calculations or operations were not run. 

 

Training and evaluating on data from a single site limited our ability to control for overfitting. 

While we did prospectively evaluate models on a future holdout set to try and control for 

overfitting, evaluation on data from one site does not properly assess model generalizability. For 

future assessments, we hope to partner with other hospitals to externally validate models. 

Conclusion 

Machine learning promises to enhance patient care and improve health outcomes; however, if 

not properly vetted and evaluated, risks and negative effects may be introduced. These risks 

include breach of privacy in the development and assessment of methods, inaccuracy or 

methodological bias when deployed, and the gradual loss of accuracy over time as data and 

business practices change. This study highlights these challenges by showing that while highly 

accurate methods are possible, even methods from world-class scientists have considerable 

variability, and that variability (such as differences in accuracy based on race or gender) may 

not be detectable from high-level measures such as population-level AUCs. Our framework 

enables this assessment and also brings the community challenge culture to private datasets, in 

this case data that is subject to the HIPAA privacy rule. Further, machine learning methods may 

be able to address some causes of treatment disparities but may cause others for patients 

without rich longitudinal data or patients of certain races, gender, or age. Based on these 

results, we believe that multisite standardized architecture and independent oversight is 

required to truly assess new methods.  
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