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CUSTOM-SEQ: a prototype for oncology
rapid learning in a comprehensive EHR
environment
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ABSTRACT
....................................................................................................................................................

Background: As targeted cancer therapies and molecular profiling become widespread, the era of “precision oncology” is at hand. However, can-
cer genomes are complex, making mutation-specific outcomes difficult to track. We created a proof-of-principle, CUSTOM-SEQ: Continuously
Updating System for Tracking Outcome by Mutation, to Support Evidence-based Querying, to automatically calculate and display mutation-specific
survival statistics from electronic health record data.
Methods: Patients with cancer genotyping were included, and clinical data was extracted through a variety of algorithms. Results were refreshed
regularly and injected into a standard reporting platform. Significant results were highlighted for visual cueing. A subset was additionally stratified
by stage, smoking status, and treatment exposure.
Results: By August 2015, 4310 patients with a median follow-up of 17 months had sufficient data for survival calculation. As expected, epidermal
growth factor receptor (EGFR) mutations in lung cancer were associated with superior overall survival, hazard ratio (HR)¼ 0.53 (P< .001), validat-
ing the approach. Guanine nucleotide binding protein (G protein), q polypeptide (GNAQ) mutations in melanoma were associated with inferior over-
all survival, a novel finding (HR¼ 3.42, P< .001). Smoking status was not prognostic for epidermal growth factor receptor–mutated lung cancer
patients, who also lived significantly longer than their counterparts, even with advanced disease (HR¼ 0.54, P¼ .001).
Interpretation: CUSTOM-SEQ represents a novel rapid learning system for a precision oncology environment. Retrospective studies are often lim-
ited by study of specific time periods and can lead to incomplete conclusions. Because data is continuously updated in CUSTOM-SEQ, the evidence
base is constantly growing. Future work will allow users to interactively explore populations by demographics and treatment exposure, in order to
further investigate significant mutation-specific signals.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Cancer is a heterogeneous set of more than 120 diseases with widely
varying prognoses and treatments. It represents the second most
common cause of death in the United States and has increasing im-
pact worldwide.1 Due to rapid changes in technology and treatment as
well as the growing complexity of the healthcare delivery ecosystem,
the National Academy of Medicine has described cancer care as a
“system in crisis.”2 The future of cost-effective and high-quality can-
cer care depends on rapid learning systems that optimize the utility of
routine observational data gathered from the clinic, including out-
comes.3 Adding significantly to the challenge of cancer care, the ex-
plosion in knowledge of somatic cancer genomic alterations has
continued apace.4–6 It has been recognized for some time that certain
“driver” mutations are central to the pathogenesis and virulence of
cancer, whereas “passenger” mutations may be nothing more than
red herrings.7–9 Large-scale efforts such as the Cancer Genome Atlas
have begun to reveal the “genomic landscape” of a variety of common
and deadly tumor types, e.g., melanoma,10 breast cancer,11 and lung
cancer.12 Targeted agents, such as vemurafenib, a v-raf murine sar-
coma viral oncogene homolog B (BRAF) inhibitor, and crizotinib, an an-
aplastic lymphoma receptor tyrosine kinase inhibitor,13,14 have
ushered in the era of precision oncology, as evidenced by the focus on
oncology in President Obama’s recently announced Precision Medicine
Initiative.15 The Cancer Genome Atlas Pan-Cancer analysis project16

has demonstrated that recurring driver mutations, such as BRAF

p.V600E, are found across diverse cancer types.17 Many of these re-
current mutations are predicted to lead to tumor cell susceptibility to
currently approved medications and/or therapies undergoing clinical
trial evaluations, such that many newer antineoplastics have been ap-
proved only in the context of a specific mutation or set of mutations.
However, recent results have clearly demonstrated that similarly mu-
tated cancers do not all respond to the same targeted agents.18

Currently, oncologists are expected either to subspecialize to the
point where they can manage a tractable number of genomic alter-
ations and their associated prognostic and treatment implications
within working memory, or to rely on external knowledge bases such
as those provided by third-party laboratories (e.g., Illumina Inc.,
Foundation Medicine Inc.) or other knowledge management systems
(e.g., the Syapse Precision Medicine Platform, My Cancer Genome).
While knowledge bases are highly valuable, they have rarely inte-
grated clinical information such as outcomes and treatment exposure.
To our knowledge, a system of prospectively monitoring mutation-spe-
cific outcomes has not been developed for routine clinical care and
secondary data analysis.

OBJECTIVE
We sought to develop a tool that would automatically extract mutation-
specific outcome data, in near real-time, from various electronic health
record (EHR) data sources across our single large academic institution,
and synthesize the results for visual analysis. The intent of this
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system, named CUSTOM-SEQ: a Continuously Updating System for
Tracking Outcome by Mutation, to Support Evidence-based Querying,
is to (1) provide continuously updating feedback on outcomes ob-
served in the clinical domain and (2) enable the identification of poten-
tial covariates and confounders that have been difficult to extract from
medical records without manual abstraction.

As a proof-of-concept, we implemented the system to evaluate all
genotyped cancer patients seen at Vanderbilt University Medical
Center (VUMC) for mutation-specific survival. We also developed auto-
mated methods to stratify a subpopulation of lung cancer patients for
tobacco-specific survival, stage-specific survival, and treatment expo-
sure as a function of mutation status.

MATERIALS AND METHODS

Constructing the patient cohort. The data source used for this analy-
sis is the VUMC Research Derivative (RD), an identifiable database of
clinical and related data derived from VUMC’s clinical information sys-
tems and restructured for research and quality programs.19 As of
August 2015, the RD contained information on >3 million patients
dating back to 1992. The RD contains diagnosis, treatment, demo-
graphic, and outcome data recorded in structured, semi-structured, or
free text fields. While the dates and titles of documents scanned from
outside institutions, e.g., outside pathology reports, are retained, the
scanned images are not included in the RD.

The eligible patient cohort included any patient with SNaPshot
tumor genotyping data in the RD. SNaPshot is a fast, high-throughput,
multiplex mutational profiling method based on the Applied
Biosystems SNaPshot platform.20–23 Test results are reported as pre-
dicted protein alterations based on the observed genetic variant(s).
SNaPshot testing has been performed at VUMC since 2010, initially on
lung cancer and melanoma specimens, with disease-specific panels
currently available for acute myeloid leukemia, breast cancer, colorec-
tal cancer, glioma, lung cancer, and melanoma.

Automated algorithms for mutation-specific survival data
extraction. In order to be included in the baseline analysis, patients
had to have sufficient data in the EHR to automatically extract or

calculate the following data elements: (1) SNaPshot test results, (2)
tumor type, (3) date of diagnosis, and (4) date of death or last contact.
We also required that patients had at least one Current Procedural
Terminology (CPT), fourth edition (copyright 2013, American Medical
Association) code for a billable clinical encounter within 6 365 days of
SNaPshot testing, in order to exclude patients who were not seen at
VUMC for their cancer diagnosis (see Supplemental Table 1).
SNaPshot test results were structured laboratory values that did not
require any algorithm development beyond custom mapping of internal
laboratory codes to Human Gene Nomenclature Committee
names.24,25 Date of death or last contact was also available in struc-
tured format from multiple sources. The other data elements, how-
ever, required the development of heuristic algorithms for accurate
data extraction. The tumor type was classified using International
Classification of Diseases, ninth edition, Clinical Modification (ICD-9-
CM) administrative codes with a “winner take all” adjudication when
multiple eligible ICD-9-CM codes were present (see Supplemental
Table 2). Date of diagnosis, which can be challenging to determine for
patients who were originally diagnosed outside of VUMC, was deter-
mined through a combination of structured data analysis and natural
language processing, as previously described.26 Further details are
available in the Supplemental Methods; the data analysis workflow is
summarized in Figure 1.

Patients were stratified by their SNaPshot test results, with assign-
ment to the category “None” if no mutations were detected. For a
given tumor type classification, gene mutations with fewer than 10
occurrences were grouped into an “Other” category so as to minimize
the risk of re-identification, per common practice.27 If a specimen was
found to have more than one mutation in the same gene, the patient
was only counted once. If a specimen was found to have mutations in
more than one gene, the patient was counted once for each mutation
category. If a patient had more than one SNaPshot test, the earliest
test was used for the analysis.

Evaluation of data extraction algorithms. In order to evaluate the
accuracy of the automated classification and date extraction algo-
rithms, a stepwise quality assurance approach was undertaken, with
iterative improvements undertaken until a prespecified level of

Figure 1: Simplified schematic of identification of analyzable patients as of January 2014, followed by algorithm extraction of tumor type,
date of diagnosis, and date of death or last contact using a variety of structured and unstructured data sources. Binary digits icon repre-
sents metadata including date stamps of scanned documents; text icon represents searchable electronic text data; PDF icon represents
scanned images; Social Security icon represents the Social Security Death Index. CPT: Current Procedural Terminology, 4th edition code
(copyright 2013 American Medical Association); ICD-9-CM: International Classification of Diseases, 9th Edition, Clinical Modification; PDF:
Portable Document Format.
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performance was achieved. By the end of this process, �2% of identi-
fied charts had been randomly selected for quality assurance review.
All reviewed charts underwent manual abstraction by at least two
abstractors with clinical subject matter expertise, and interannotator
agreement (IAA) was calculated by Cohen’s kappa (j).28 Any disagree-
ments in manual abstraction were adjudicated by a third abstractor,
with persistent discrepancies resolved by discussion among the three
abstractors.

Exploration of covariates extracted from EHR data. The baseline
analysis of mutation-specific survival revealed a potential signal for
improved survival in EGFR-mutated lung cancer patients (see Results
section, below). We therefore explored the addition of several covari-
ates for lung cancer patients diagnosed prior to April 30, 2014: (1)
smoking status, (2) stage at diagnosis, and (3) treatment exposure,
including the oral EGFR tyrosine kinase inhibitor erlotinib (Tarceva,
Genentech Inc., South San Francisco, CA, USA). Smoking status and
intravenous treatment exposure status were available in structured
format. Stage was extracted from clinical notes, as previously
described.29 The methods to extract each of these covariates are fur-
ther detailed in the Supplemental Methods.

Survival analysis. Overall survival was plotted according to the
Kaplan–Meier method. We then employed a Cox proportional hazards
regression model to estimate the hazard ratio (HR) for overall survival
as a function of mutational status. For each mutation category, the
Wald statistic for that category versus all other categories combined
was calculated. If the P-value for this comparison was �0.05 divided
by the number of mutation categories (the Bonferroni correction for
multiple hypothesis testing),30 this category was labeled as significant,
as denoted by an asterisk in the figure legend. If any mutation cate-
gory was significant, the background of the figure was colored pale
green; otherwise the background was colored pale pink. Except for
the baseline analysis, we combined covariates so as to generate no
more than four survival curves at once, to preserve visualization qual-
ity. All statistical tests were two-sided.

General methods. Structured Query Language (SQL) queries to
Netezza and Oracle databases were built into Extract, Transform, and
Load (ETL) processes using Talend Studio (Talend Inc.). The dashboard
for visual analytics was constructed and displayed using

JasperReports Server version 4.5.1 (Jaspersoft Corporation, San
Francisco, CA, USA). Survival analyses were performed using R ver-
sion 3.0.2 and the R package Survival (http://www.r-project.org).
Mutation-specific survival curves were calculated, graphed, and
injected into the dashboard. The dashboard was updated on a weekly
basis as part of a scheduled ETL process. The development version of
the dashboard was made available to members of the Vanderbilt-
Ingram Cancer Center and was accessed securely using direct
Lightweight Directory Access Protocol (LDAP) authentication. All the
components of the general tool were seamlessly integrated; the
expanded stratification analysis was performed manually during the
pilot project period using Aginity Workbench (Aginity Inc.). The general
tool was determined to be non-human-subject research by the VUMC
Institutional Review Board (IRB), per 45 CFR §46.102(d) (VUMC IRB
#131613). The expanded stratification analysis was determined to be
exempt (VUMC IRB #140697); all authors with access to data had the
appropriate HIPAA training. This study was performed in accordance
with the STROBE Statement, Version Four.31

RESULTS
Population
A total of 4310 patients were identified as having undergone
SNaPshot testing and meeting the Current Procedural Terminology
inclusion criteria as of August 21, 2015; the first specimen was tested
in July 2010.21,22 The majority of specimens had zero or one cancer
mutation detected; a minority (N¼ 327) had two or more simultane-
ous mutations detected, as shown in Table 1. Median follow-up from
the date of diagnosis to the date of death or last contact was 17
months (interquartile range [IQR]¼ 6–40 months). Example screen-
shots from the live dashboard (as of November 25, 2015) are shown
in Supplemental Figures 1 and 2.

Evaluation of algorithm accuracy. The algorithms for determining
cancer type, date of diagnosis, and date of death were manually eval-
uated on 75 charts each. IAA for date of diagnosis was j¼ 0.79; all
but one discrepancy were resolved by adjudication. The median abso-
lute discrepancy between the manually and algorithmically determined
dates of diagnosis was 2 days (IQR, 0–260 days). IAA was j¼ 1.0 for
date of death and tumor type classification. The median absolute dis-
crepancy between the manually and algorithmically determined dates
of death was 0 days (IQR, 0–10 days).

Table 1: Cancer patients and specimens by primary anatomic site or histology

Cancer type Number of
patients (%)b

Specimens with no
mutation detected

Specimens with one
mutation detected

Specimens with
two or more
mutations detected

Acute myeloid leukemia 504 (12) 316 121 67

Breast cancera 466 (11) 343 118 5

Colorectal cancera 469 (11) 252 180 37

Glioma 158 (4) 97 54 7

Lung cancera 1364 (32) 767 530 67

Melanoma 1200 (28) 422 711 67

Other diagnoses 166 (4) 128 35 3

Total 4310 (100) 2325 1749 253

aFor these cancers, classification is by anatomic site of origin.
bNumber of individual patients adds up to >100%, because some patients had more than one cancer diagnosis.

RESEARCH
AND

APPLICATIONS

Warner JL, et al. J Am Med Inform Assoc 2016;23:692–700. doi:10.1093/jamia/ocw008, Research and Applications

694

http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw008/-/DC1
http://www.r-project.org
http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw008/-/DC1
http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw008/-/DC1


Baseline survival analysis. As of August 21, 2015, EGFR mutation
was associated with improved overall survival in lung cancer patients,
with an estimated median overall survival of 10.1 years for a patient
with any EGFR mutation, versus 4.1 years in patients with no detected
EGFR mutations (HR 0.53, 95% CI (Confidence Interval), 0.38-0.73,
P< .001 ; Figure 2). In melanoma, guanine nucleotide binding protein
(G protein), q polypeptide (GNAQ) mutation was associated with
decreased overall survival, with an estimated median overall survival
of 1.3 years for a patient with any GNAQ mutation, versus 9.4 years in
patients with no detected GNAQ mutations (HR 3.42, 95% CI, 2.10-
5.58, P< .001; Figure 3). BRAF mutation in melanoma did not appear
to confer a survival advantage (P¼ .11).

Survival by smoking status. Lung cancer survival was clearly influ-
enced by smoking status (Table 2). On average, patients who had
never smoked lived more than 3 years longer than their counterparts
who had ever smoked (HR 1.96, 95% CI, 1.39-2.75, P< .001;
Figure 4A). When the population was stratified by smoking and EGFR
status, EGFR-mutated patients lived longer than their counterparts

who had no EGFR mutation detected, regardless of their personal
smoking status, and tobacco use was no longer a significant driver of
mortality in the EGFR-mutated patients (HR 1.43, 95% CI, 0.69-2.98,
P¼ .339; Figure 4B).

Survival by stage at diagnosis. As shown in Figure 5A and Table 2,
survival generally worsens as a function of advancing stage, with
stage IV patients (metastatic disease present at the time of diagnosis)
having the worst overall survival. However, when stratifying by stage
and EGFR mutation status (Figure 5B), EGFR-mutated patients with
advanced-stage disease (stages III and IV) appeared to have a better
prognosis than similar patients without a detected EGFR mutation (HR
0.54, 95% CI, 0.37-0.78, P¼ .001).

Survival by stage and treatment exposure. For the N¼ 77
advanced-stage (stages III and IV) lung cancer patients with an EGFR
mutation, 91% (N¼ 70) received erlotinib, whereas only 35%
(N¼ 27) were administered a platinum drug, as shown in Table 3. As
compared to the EGFR wild type group, EGFR-mutated patients were

Figure 2: Lung cancer gene mutation-specific survival analysis at different time points; SNaPshot mutation panel testing began in July
2010. (A) survival curves as of March 2011, 3 months prior to the first significant finding; (B) in June 2012, EGFR mutation was statisti-
cally associated with superior survival, whereas KRAS mutation was statistically associated with inferior survival; (C) in December 2013,
KRAS mutation is no longer significant; (D) at the most recent analysis (August 2015), EGFR mutation remains a significant predictor for
survival. BRAF: v-raf murine sarcoma viral oncogene homolog B; EGFR: epidermal growth factor receptor; ERBB2: v-erb-b2 avian erythro-
blastic leukemia viral oncogene homolog 2; KRAS: Kirsten rat sarcoma viral oncogene homolog; PIK3CA: phosphatidylinositol-4,5-
bisphosphate 3-kinase, catalytic subunit alpha.
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much more likely to receive erlotinib, (Odds Ratio) OR 23.3 (95% CI,
10.4-61.3, P< .0001). Conversely, EGFR-mutated patients were less
likely to receive conventional platinum chemotherapy, OR 0.57 (95%
CI, 0.33-0.96, P¼ .0275). For the EGFR-mutated patients, survival
was not statistically significantly different based on treatment expo-
sure, but the sample size was small.

DISCUSSION
We have demonstrated a tool that can generate tumor mutation–
specific survival curves in near-real time at the institutional level. The
tool also enables an exploratory analysis into characteristics that may
drive lung cancer–specific survival, based on underlying automated
extraction algorithms. While these algorithms introduce some inaccura-
cies, this should be acceptable given that the primary purpose of this
tool is hypothesis generation; further scientific investigations would
likely require some degree of manual chart review under separate IRB
approval. One particular use case that has generated initial enthusiasm
by institutional users is the identification of “exceptional responders,”
i.e., patients or patient populations who appear to do particularly better

or worse than other similar groups.32 Other possible uses of CUSTOM-
SEQ are descriptive statistics for operational and reporting needs and
identification of potential signals to target for quality improvement.

Our exploratory analysis built off a possible exceptional response
signal detected in EGFR-mutated lung cancer. EGFR is a transmem-
brane glycoprotein that is a receptor for proteins from the epidermal
growth factor family. When mutated in lung cancer, the kinase activity
of EGFR is increased, which leads to upregulation of pro-survival sig-
naling pathways in the tumor cell.33 EGFR mutations in lung cancer
have been shown in the clinical trial population to confer a survival
advantage34,35; our results appear to confirm this finding in an unse-
lected clinical population. From these same initial studies on patients
with EGFR mutations, it is known that they are more likely to be
female, of Asian ethnicity, and nonsmokers. They are also much more
likely to be treated with EGFR tyrosine kinase inhibitors, given the
strong evidence that this class of agents provides an apparent overall
survival advantage when used as first-line treatment.36 Thus, we
introduced the ability to stratify by various clinical factors in CUSTOM-
SEQ, which enhances the utility considerably. For example, ever hav-
ing smoked was a clear negative prognostic factor for lung cancer

Figure 3: Melanoma gene mutation-specific survival analysis at different time points; SNaPshot mutation panel testing began in July
2010. (A) survival curves as of June 2012, 6 months prior to first significant finding; (B) first significant finding, in December 2012, of
inferior survival associated with GNAQ mutation; (C) similar results are seen in December 2013; and (D) the most recent analysis, August
2015. BRAF: v-raf murine sarcoma viral oncogene homolog B; CTNNB1: catenin (cadherin-associated protein), beta 1, 88 kDa; GNA11:
guanine nucleotide binding protein (G protein), alpha 11 (Gq class); GNAQ: guanine nucleotide binding protein (G protein), q polypeptide;
KIT: v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; NRAS: neuroblastoma RAS viral (v-ras) oncogene homolog.
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survival, although this finding did not appear to extend to the EGFR-
mutated subgroup. Stage also modified survival as expected, but
stage-for-stage the EGFR-mutated subgroup had better overall survival
than their counterparts. Finally, as expected, EGFR-mutated lung can-
cer patients were much more likely to receive tyrosine kinase inhibitor

therapy. Interestingly, they were also less likely to receive conventional
chemotherapy, and this finding could be the basis for a pragmatic clin-
ical trial of therapeutic approaches using targeted agents.37 For exam-
ple, emerging data suggests that use of both the Bruton’s tyrosine
kinase inhibitor ibrutinib in chronic lymphocytic leukemia and the
PI(3)Ka inhibitor alpelisib in breast cancer is accompanied by very
rapid progression once resistance develops, in contrast to the gradual
relapses historically seen in these diseases.38,39

There are several important limitations to our approach. Our find-
ings are limited by the single-institution nature of the study; the cus-
tomized extraction algorithms developed here may require further
customization to work with other EHR systems and in other localities.
Due to this limitation, multi-level stratification, e.g., examining the
impact of race on the population of EGFR-mutated nonsmoking lung
cancer patients, will often be underpowered. Large national efforts
such as the American Society of Clinical Oncology’s CancerLinQ may
address this by aggregating and normalizing large amounts of infor-
mation across many practices.40,41 Certain genotyping tests, e.g.,
anaplastic lymphoma receptor tyrosine kinase rearrangement testing,
were not included in our analysis because the results of this fluores-
cence in situ hybridization test were not available in a computable for-
mat at the time. Accurate assignment of the date of death requires an
ongoing feed from third-party data sources, e.g., the National Death
Index, due to the fact that many cancer patients pass away at home or
in hospice settings. Using our algorithms, we identified �30% of the
patients as having been deceased; this number may substantially
underestimate the actual value, and efforts to capture evidence of
death using natural language processing are ongoing. In general, we
chose not to rely heavily on cancer registry data, since typically only
the first course of treatment is recorded, and many cases seen at a
tertiary care center such as VUMC have progressed beyond initial
treatment and would be considered nonanalytic.

We have made the assumption that a mutation found by SNaPshot
testing was present at diagnosis, even if the date of diagnosis preceded

Table 2: Stratification by various clinical variables combined
with mutation information provides further insights into the
outcomes of patients

Clinical variable Genomic variable Number of
cases

Median OS,
years

Tobacco Use¼ Ever – 806 2.83

Tobacco Use¼Never – 133 6.21

Tobacco Use¼ Ever EGFR mutated 47 14.19

Tobacco Use¼ Ever EGFR wild type 759 2.73

Tobacco Use¼Never EGFR mutated 57 8.73

Tobacco Use¼Never EGFR wild type 76 3.44

Stage¼ I – 182 5.57

Stage¼ II – 73 2.47

Stage¼ III – 179 2.83

Stage¼ IV – 343 1.07

Stage¼ I or II EGFR mutated 30 Not reached

Stage¼ I or II EGFR wild type 260 6.01

Stage¼ III or IV EGFR mutated 73 2.20

Stage¼ III or IV EGFR wild type 452 1.24

Note that the numbers do not always add up to the total number of lung
cancer cases, because some clinical variables were missing or unknown.

Figure 4: (A) Smoking is a strong overall predictor for inferior
outcome but (B) the apparent effect is no longer significant
when stratifying by EGFR mutation status.

Figure 5: (A) Prognosis generally worsens with advancing
stage; (B) EGFR mutation status allows for further stratifica-
tion into distinct prognostic subgroups.
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the date of SNaPshot testing by years or decades. This assumption is
likely to be valid, as the majority of patients would not have been expected
to have received targeted therapies prior to mutation testing. However, a
subset is likely to have experienced tumor genomic evolution42; this may
be especially true for patients with an exceptionally long disease-free
interval, e.g., certain breast cancer and melanoma patients. Acquired
resistance will also become more common as patients undergo treatment
with targeted therapies in the community.43,44 For the minority of patients
with 2 or more mutations, we counted them twice, once for each mutated
gene. As the complexity of the clinically relevant mutation landscape
expands, this approach will need to be readdressed. For example, somatic
cancer mutation analysis platforms such as FoundationOneTM (Foundation
Medicine Inc., Cambridge, MA, USA) have reported a median clinically rel-
evant mutation count of approximately 3 per sample analyzed.45 We also
considered mutation only at the gene level and did not take into consider-
ation that some mutations are known to confer resistance (e.g., EGFR
p.T790M in lung adenocarcinoma) and some to confer sensitivity (e.g.,
EGFR p.L858R in lung adenocarcinoma), based on preclinical and clinical
trial data.46 Future work will incorporate this information, especially as
findings of in vitro resistance are confirmed in clinical settings or in large
collaborative efforts such as ClinGen.47,48

The median survival estimate based on the Kaplan–Meier survival
curve is less reliable in this analysis given the high percentage of cen-
soring; however, the hazard ratio remains a reliable estimator of differ-
ential survival.49 We intentionally used an unadjusted Cox proportional
hazards model, with the understanding that significance may be
reduced substantially after adjusting for confounders. There is also a
risk that unobserved Type II errors are occurring. Future iterations of
the tool will allow users to interactively adjust for demographics and
treatment exposure; these steps were carried out manually during this
pilot evaluation.50

Patients presenting at a tertiary-care oncology clinic represent a
unique population. Aside from being generally more frail and having
more co-morbidities, they have often received part of their cancer
care elsewhere. The true population prevalence of clinically relevant
mutations in such patients is unknown, although an overall 46% muta-
tion rate found through SNaPshot testing is similar to that found
through similar “hotspot” tests. More expansive panels such as
FoundationOne have detection rates as high as 76%.45 For lung can-
cer, the estimated prevalence of the 2 most common (and mutually
exclusive51) mutated genes, EGFR and KRAS, is 10–35% and
15–25%, respectively.52 During the development of the tool described
here, we came across many challenging scenarios, e.g., patients with
2 or more synchronous or metachronous cancer diagnoses, some-
times occurring in the same organ, and patients with very long dis-
ease-free intervals, on the order of years to decades. With the caveat
that we were unable to account for all outlier conditions, we found
that our informatics extraction algorithms performed well for the pur-
poses of this exploratory tool. It is likely that, with some local tweaks,
these algorithms could be adapted to other clinical sites with rich EHR
data, making this method potentially generalizable.

We had several significant findings in lung cancer and melanoma,
some of which persisted through stratification, as discussed above.
While the effect of EGFR mutation on lung cancer prognosis is known,
GNAQ mutations have not previously been shown to be an independ-
ent predictor for melanoma survival. However, somatic mutations in
GNAQ have been found in �50% of primary uveal melanomas and up
to 28% of uveal melanoma metastases, whereas they are rare in other
melanomas.53 Therefore, the observation of inferior survival could be
a function of anatomic site rather than mutation-specific; others have
suggested that GNAQ mutations do not alter disease-free survival for
uveal melanomas.54 This again illustrates that the purpose of an
exploratory tool such as CUSTOM-SEQ is for hypothesis generation;
ICD-9-CM codes may not accurately distinguish site of disease, and
additional research would be required to determine if this finding per-
sists after stratifying by primary site of melanoma. An interesting find-
ing with quality and cost-control implications is that 30% of EGFR
wild-type lung cancer patients received erlotinib at some point. While
this seems to contradict the lack of sensitivity expected in this situa-
tion,55 it must be noted that erlotinib was approved in 2004 “for the
treatment of locally advanced or metastatic NSCLC after failure of at
least one prior chemotherapy regimen,” and did not have a mutation-
specific label until 2013.56 Thus, it would be expected that wild-type
patients who had progressed on conventional chemotherapy may have
been treated with erlotinib, although the response rate may have been
very low. When changes in labeling such as this do occur, CUSTOM-
SEQ could be used to look for changes in patterns of care.

One observation is particularly noteworthy, and this is the circum-
stance where KRAS mutation was statistically significantly associated
with inferior survival in lung cancer for a period of almost 12 months
(Figure 2B) before losing statistical significance (Figure 2C). There are
many possible explanations for such a finding. The likelihood of a
Type I error is small; at one point the P-value for the association was
.0003. In general, this finding and a similar finding for BRAF mutation
in melanoma for one 2-week interval demonstrates the importance of
cautiously interpreting findings of statistical significance.57 Unlike in a
randomized clinical trial, where the survival analyses are often con-
ducted only at predetermined interim analysis time points,58 the
method described herein allows for continuously updated survival
analyses. As systems are developed that have the ability to display
data at any time point, investigators are going to have to create rules
to prevent over-sampling and possibly over-interpreting their results.

CONCLUSION
In conclusion, we have developed a tool that generates cancer
mutation–specific survival statistics in near real-time, while also ena-
bling a historic look-back to identify transition points of statistical sig-
nificance. Signals can be investigated further using stratification,
which will be interactive in future iterations. CUSTOM-SEQ can be
used for a variety of purposes, including quality assessment, opera-
tional needs, and hypothesis generation. CUSTOM-SEQ is a promising
new addition to a precision oncology environment.

Table 3: EGFR-mutated lung cancer patients were more likely to have ever received erlotinib and less likely to have ever received a
platinum-based chemotherapy.

Lung cancer genotype þerlotinib exposure No erlotinib exposure þplatinum exposure No platinum exposure

EGFR-mutated (N¼ 77) 70 7 27 50

EGFR wild type (N¼ 511) 153 358 249 262
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