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ABSTRACT

Existing approaches to managing genetic and genomic test results from external laboratories typically include

filing of text reports within the electronic health record, making them unavailable in many cases for clinical deci-

sion support. Even when structured computable results are available, the lack of adopted standards requires

considerations for processing the results into actionable knowledge, in addition to storage and management of

the data. Here, we describe the design and implementation of an ancillary genomics system used to receive

and process heterogeneous results from external laboratories, which returns a descriptive phenotype to the

electronic health record in support of pharmacogenetic clinical decision support.
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BACKGROUND AND SIGNIFICANCE

Many institutions have adopted genetic testing as part of clinical

care, with some exploring how computable representations of ge-

netic and genomic results in the electronic health record (EHR) can

facilitate clinical decision support (CDS).1–8 However, despite estab-

lished standards for the computable representation of these results,9

this level of integration has not seen wide adoption outside of the re-

search setting.10,11 Genetic test results are generally returned as a

plain-text representation of the interpretation report and transmit-

ted using the Health Level 7 (HL7) v2 standard, or more commonly

as PDFs that must be scanned from a fax or downloaded from an ex-

ternal laboratory portal.

Several national initiatives, including the electronic Medical

Records and Genomics (eMERGE) network,12,13 the Clinical Se-

quencing Exploratory Research consortium,14 the Implementing Ge-

nomics in Practice network,15 and the Displaying and Integrating

Genetic Information Through the EHR Action Collaborative16 have

proposed models, as well as demonstrated successful strategies, for

better integration of results. The eMERGE network proposed the

concept of an omics ancillary system, which receives structured,

computable results from a laboratory, stores the results in an opti-

mized manner for specialized processing (similar to a picture archiv-

ing and communications system for imaging), and returns

actionable information to the EHR.17

Additionally, individual institutions have developed tools to

manage genetic data5,18; however these are typically tied a single

laboratory source, and do not facilitate transmission of structured

genetic results to the EHR itself. As many healthcare institutions

work with several different third-party laboratories to provide ge-

netic testing services, the ability to manage structured results from

different external sources is important, yet not well addressed.
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In this article, we present the design and implementation of an

ancillary genomics system (AGS) to manage genetic test results from

2 external laboratories and return them to the EHR in a computable

manner to facilitate CDS.

MATERIALS AND METHODS

This work was done as part of the eMERGE Pharmacogenomics

(eMERGE-PGx) project,12 and was approved by the Northwest-

ern University Institutional Review Board. We consented patients

from Northwestern Medicine’s internal medicine practice who

provided blood samples that were genotyped at 1 of 2 CLIA

(Clinical Laboratory Improvement Amendments)-certified labo-

ratories (Mount Sinai Genetic Testing Laboratory and the Johns

Hopkins DNA Diagnostic Laboratory). Both patients and their

primary care providers received genotype results for 4 genes

(CYP2C19, SLCO1B1, CYP2C9, and VKORC1) and genotype-

guided prescribing information for 3 drugs (clopidogrel, simva-

statin, and warfarin).

The development of the AGS to manage the processing and re-

turn of results was conducted by a multidisciplinary team and in-

cluded physicians, genetic counselors, informaticians, health

information technology leadership, EHR analysts, and software

developers. During biweekly meetings, the team discussed design

objectives and provided feedback to the software development team

during the development process.

RESULTS

Design criteria
When approaching the design of the AGS, we sought to meet several

objectives identified in the literature19: (1) anticipate receipt and

processing of heterogeneous data (eg, pharmacogenetic star alleles,

single nucleotide polymorphisms [SNPs]), (2) support the reinterpre-

tation of results given new data or knowledge, (3) convert genetic

and genomic test results into a more clinically relevant and intuitive

form, and (4) design the system in a modular fashion to support fu-

ture expansion. The overall system architecture is shown in Figure 1.

Computed observations
To address design objective 3, we introduced the concept of the

“computed observation.” The computed observation is a synthesis

of the genetic test results and describes the predicted phenotype as

opposed to requiring a provider to mentally translate this from the

genotype. For example, instead of reporting the specific diplotypes

for a gene (eg, CYP2C19 *2/*2), the computed observation

describes the predicted metabolizer category for a medication (eg,

“Clopidogrel Poor Metabolizer”). This not only makes CDS easier

to implement, but also is intended to be more intuitively understand-

able by practicing clinicians.

Laboratory data format
As part of the eMERGE-PGx study, each laboratory agreed to pro-

vide results as Microsoft Excel documents containing structured

results and interpretive text. Each laboratory used unique formats

for returning results: one provided results as pharmacogenetic star

alleles for each of the 4 genes of interest (CYP2C19, CYP2C9,

SLCO1B1, VKORC1), while the other provided 19 SNPs across 6

genes (CYP2C19, CYP2C9, SLCO1B1, VKORC1, TPMT,

CYP3A5). A list of fields provided by each laboratory is provided in

Supplementary Appendix A.

Laboratory data import
Given the heterogeneity of results, we developed a separate importer

for each laboratory that extracted participants’ results from the Ex-

cel document. Results were stored in a relational database using the

Figure 1. The Northwestern Medicine ancillary genomics system. Overall flow of data from external laboratories, which are imported into the ancillary genomics

system, analyzed by the system to create computed observations (results), manually reviewed by a genetic counselor, and then released to the electronic health

record (EHR). Steps denoted with an asterisk involve human interaction or decision making; all other steps are automated. HL7: Health Level 7.
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entity-attribute-value format. Attributes were represented as a hier-

archy with parent-child relationships. An example of this is the top

of the tree representing a generic attribute for results in the

CYP2C19 gene, and more specific representations (eg, CYP2C19

SNP) are represented as descendant attributes (additional details in

the Supplementary Material). The hierarchical nature simplified

querying related concepts (eg, “return all CYP2C19 results”). The

attribute hierarchy used was developed manually for the project in

response to the types of results provided by each laboratory and is

not derived from any standard ontology.

Result analysis
Data analysis modules converted laboratory results into computed

observations. A separate analysis module was developed for each of

the 3 genotype-guided drugs, using the C# language. The processing

flow is illustrated in Figure 2 and generally follows the sequence out-

lined in Table 1. During these processing steps, the AGS tracked all

data transformation and lookup steps applied to the data. Processing

included several steps to normalize the results (described further in

Supplymentary Appendix C). A lookup table mapped the normal-

ized results to an actionable interpretation, based on guidelines de-

veloped by the Clinical Pharmacogenetics Implementation

Consortium.20 If no entry was found, the record was noted as hav-

ing an “Unknown” interpretation, which flagged it for further

review.

Results review
The AGS portal provided a web-based interface through which ge-

netic counselors involved with the study could review and release

results. The AGS portal contained a worklist for managing the review

process and was designed to provide a 2-step review where a genetic

counselor would first review the generated result and interpretive

text. Users had the ability to modify the generated report if additional

supporting text was needed, and the system would confirm that the

patient demographics in the AGS matched those in the EHR.

Once reviewed, the result was marked as “Approved.” Be-

cause of the large number of results returned in a single

batch from the laboratories, and based on feedback from the

physicians enrolled in the study, a second step was added to

manage releasing approved results to the EHR in smaller quanti-

ties (�10-25) at more consistent intervals (typically once or twice

per week).

Release of results
When a result was released, the AGS generated an HL7 v2 observa-

tion result, which contained the laboratory test, result and descrip-

tive interpretation report. These messages were sent to our EHR via

an HL7 interface and displayed in the laboratory results section of

the patient’s chart.

Real-world application
For this project, 746 participants had results processed by the AGS.

Each participant had 3 observations generated (1 each for clopidog-

rel, simvastatin, and warfarin), for 2238 observations total. Obser-

vations were reviewed and returned to the EHR between June 6,

2014, and September 14, 2015. As of October 2018, there have

been no changes in how results were interpreted that required results

to be reprocessed.

The AGS received results for 448 participants from Mount Sinai,

and 304 from Johns Hopkins DDL. There were 3 participants with

results from both laboratories, with 100% concordance in the AGS

interpretation of both sets.

DISCUSSION

In this study, we demonstrated an ancillary genomics system capable

of processing heterogeneous genomic results from external laborato-

ries and representing them as computed observations, in accordance

with our design objectives. Although not demonstrated in the course

of this study, our AGS was designed to reinterpret results as new

data or changes in interpretation are made available. The use of a

portal to review and release results to the EHR allowed us to man-

age the number of results a provider received at one time. The for-

mat of the computed observations allowed us to also simplify the

implementation of CDS rules in the EHR. A full description of our

CDS implementation is outside of the scope of this article, but

briefly a CDS rule for a particular drug metabolism status could be

written as a single condition (eg, “If observation ¼ ‘Clopidogrel

Poor Metabolizer’”) as opposed to all possible permutations of

laboratory values (eg, “If observation ¼ *2/*2 OR observation ¼
*2/*3. . .”).

Organizations have different needs for managing genetic and ge-

nomic results, as is evident when reviewing existing implementa-

tions.1–6,18,21,22 With respect to the granularity of results, St. Jude’s

Children Hospital successfully integrated diplotypes from an exter-

nal laboratory in their EHR,1,6 and demonstrated that this level of

granularity is acceptable to providers. The NEXT program at the

University of Washington represented results at the gene level—

flagging if the gene had any known variants—which was found to

be too coarse of a level of granularity for CDS.7 The Mayo Clinic

has successfully implemented PGx CDS at their institution,3,4 work-

ing with their internal laboratory to return data to their EHR, in-

cluding populating problem and alert lists with phenotype results

per gene, as opposed to a specific medication (eg, “Metabolizer

CYP2C19 Poor”). Given the myriad approaches, additional research

is needed to better understand physicians’ perspectives on the opti-

Figure 2. Translation and normalization steps from heterogeneous laboratory

results to computed observations in the ancillary genomics system. For Lab

A, the star variant results are converted to a normalized string representation

and then translated to a computed observation. For Lab B, the single nucleo-

tide polymorphism (SNP) results are normalized, translated to a star variant

representation, and then translated to a computed observation.
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mal level of granularity. The architecture of our AGS allows us to

modify the granularity of results for future studies.

Mount Sinai developed and implemented a system as part of

their CLIPMERGE PGx program,5 which receives results from their

internal laboratory and acts as their CDS rules engine. The GeneIn-

sight platform developed at Partner’s HealthCare18 supports a labo-

ratory workflow to annotate results, generate interpretive reports

that are transmitted to the EHR, and manages re-interpretation of

results when the underlying knowledge base is updated.23 GeneIn-

sight offers a clinical portal for the review of results,24–26 and is ca-

pable of returning structured results in addition to PDF reports.

Each of these implementations follows an ancillary omics model,17

with variations based on institutional preference (eg, the CLIP-

MERGE decision to use the system to fire CDS rules), and workflow

(eg, GeneInsight’s management of laboratory processes). Institutions

integrating genomic results into their EHR will have similar consid-

erations to make when implementing a solution.

We note that the lack of an adopted standardized format for

results increased the overall programmatic work, requiring us to im-

port and translate results from each laboratory. Ongoing work

within HL727,28 and the Global Alliance for Genomics and Health29

are evaluating the use of standards for sequencing results, but broad

implementation within laboratory systems will be critical to scale

this approach. For the computed observations created by the AGS,

while the work presented here used HL7 v2, the computed observa-

tions could be represented using the Fast Healthcare Interoperability

Resources standard.30 This is a planned area of development, as

more EHRs provide inbound Fast Healthcare Interoperability

Resources interfaces. Likewise, no computable knowledge bases ex-

ist to translate laboratory results into phenotypic representations. A

shareable source of knowledge to perform this translation would aid

future adoption by other institutions and system developers, and

could be based upon translation tables provided by the Clinical

Pharmacogenetics Implementation Consortium (eg, simvastatin/

SLCO1B131).

Within our study, we note some limitations. The AGS was opti-

mized for genetic counselors to review and release computed obser-

vations, as opposed to aiding in the interpretation of rare variants,

and may not meet the needs of all institutions. In addition, although

the AGS is capable of reprocessing results given new knowledge, the

absence of changes during our PGx study precluded us from demon-

strating this. This capability was tested during development. Further-

more, while it has been architected to be modular and transportable,

to date it has only been implemented at our institution.

Future work currently underway includes better integration with

sites such as ClinGen,32 which offer supporting, context-aware in-

formation resources to aid in decision making; the inclusion of se-

quencing results, which include more than PGx findings; and the use

of a structured XML format to represent individual sequencing

results.

CONCLUSIONS

Given the number of workflows by which genomic and genetic data

may enter the healthcare system, we have developed and imple-

mented an AGS to manage results from external laboratories in sup-

port of PGx. The AGS furthers the idea that complex and

heterogeneous genetic and genomic results may be kept outside of

the core EHR but still linked in a way that provides sufficient infor-

mation to clinicians caring for patients.
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Table 1. Typical processing steps performed when analyzing laboratory results

Step Description

1. Retrieve all relevant results Given the relevant high-level attribute identifiers in the system (eg, CYP2C19 Results), retrieve all descen-

dant attribute identifiers, and then pull all result values of those attribute types.

2. Normalize SNP genotypes Ensure 2 SNP genotypes are present with no additional characters separating them (eg, A/A -> AA or

T -> TT).

3. Convert SNP genotypes to

pharmacogenetic star alleles

Using a lookup table, translate the SNP genotype(s) to the appropriate star alleles as necessary.

4. Normalize star alleles Ensure 2 star alleles are present with no additional characters separating them (eg, *1/*1 -> *1*1).

5. Convert genotype to observation Using a lookup table, translate the star variant or alleles into the appropriate computed observation repre-

sentation.

6. Generate report from template Given the computed observation and original genotype results, generate an interpretive report.

Depending on the type of data present, certain steps did not apply.

SNP: single nucleotide polymorphism.
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