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Abstract

The study of logic usually focuses on either the proof theoretic or the model theoretic properties of
logic. Yet the pragmatics of logic is often ignored. In this paper we would like to demonstrate that
a logic can be practical in the sense that it can assist us in evaluating and measuring the amount
of information in an inconsistent set of data. The underlying notion of information is inspired by
Shannon’s communication theory. It defines the amount of information of a message in terms of the
probability of the message being true. The logic presented here is the paraconsistent logic QC. As
such QC logic can be seen as an analytical tool for evaluating data.
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1 Introduction

Logic has long been recognized as the study of reasoning – reasoning not in the psy-
chological sense of how people actually reason or what inferences people tend to draw
given some initial assumptions, but reasoning in the sense of providing some stan-
dards for evaluating reasoning patterns and distinguishing good ones from bad ones.
The development of logic in the past has concentrated on both the proof theoretic
and model theoretic aspects of logic. Yet the pragmatics aspect of logic seems not to
have received the same attention. In this paper we would like to demonstrate that a
logic can be practical in the sense that it can assist us in evaluating and measuring the
amount of information in an inconsistent set of data. Though we envision that any
intelligent practical reasoning system must have some mechanism for handling incon-
sistencies, our goal here is not to address the issue of what is reasonable to conclude
given some inconsistent data. Indeed there seems to be no a priori reason to favor
any one particular inconsistency tolerant system. Rather we would like to illustrate
how a particular paraconsistent logic can be used as a tool for analyzing inconsistent
information. In particular, we would like to be able to quantitatively compare the
relative information value of different sets of inconsistent data.

In the second section we’ll motive the project with an example and draw some
methodological points from the example. In the third section, we’ll introduce the
paraconsistent logic QC and present its proof theory. In the fourth section we’ll
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introduce some definitions of information based on Shannon’s communication theory.
In the fifth section we’ll show how QC logic can provide a foundation for a definition
of information for inconsistent sets. In the sixth section we’ll show how the definition
of information can be applied to analyze over-constrained problems.

2 The Role of Logic in Reasoning

Consider a simple situation in which an object O may be located in one out of nine
possible locations represented by a 3 × 3 grid. The location of O is encoded in a
simple propositional language with p’s representing the rows and q’s representing the
columns (see figure 1). Information is gathered from various sensors or sources about
the location of O:

q1 q2 q3

p1 × ×
p2

p3

figure 1.

Suppose we receive two messages:

A : p1 B : ¬q2

From the received messages we can conclude that

C : p1 ∧ (q1 ∨ q3)

Our example highlights three important methodological points. The first is the
obvious point that information can be encapsulated in a formal language. The prac-
tical corollary of this is that more expressive formal languages are required for more
demanding representational tasks. But more importantly, since a more expressive
language may involve a greater computational cost, the choice of language should be
gauged in terms of the representational task at issue. In our example it is clear that
a simple propositional language suffices for the representational task.

The second point is that contextual information is often crucial to a reasoning task.
In our example, the background information is that the object O is located in exactly
one and no more then one location, and that there are exactly nine possible locations
of O. It is only in the context of this background information that we can deduce C
from A and B. More importantly, background information is not always explicitly
stated in a given situation.

Finally, our example illustrates how the process of reasoning can be viewed as
exploration in the space of possibilities – eliminating some and further exploring
others. Each of A and B can be viewed as a restriction on the space of possibilities.
Furthermore, information is compositional in the sense that the aggregate of A and
B is simply the aggregate of their restrictions. The conclusion C is simply what is
possible relative to the restrictions imposed by A and B together with the background
information.

In the subsequent discussion we’ll assume the simplest logical language. We as-
sume that Φ is a set of propositional formulae generated from propositional atoms
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or variables {p1, q1, p2, q2, . . .}, with the usual connectives, ¬,∧,∨,→,↔. We use A,
B, C, . . . , to denote formulae, > for any tautology, ⊥ for any contradiction, Γ, Σ,
∆, . . . , to denote sets of formulae. We assume the equivalence between A → B and
¬A ∨ B. We use ` to denote the classical provability relation and Cn(Γ) to denote
{A ∈ Φ : Γ ` A}. A set of formulae Γ is inconsistent if Γ ` ⊥, otherwise Γ is
consistent.

3 Paraconsistent Logics

A recalcitrant problem in the development of practical reasoning systems is the issue
of uncertainty. One sort of uncertainty is the result of underdetermination of data.
Another sort is the result of overdetermination of data. When information gathered
from different sources is either incomplete or inconsistent, it is difficult to draw reli-
able conclusions to guide further action. More importantly, when inconsistencies arise
a reasoner must take measures to guard against drawing trivial conclusions. Revising
one’s data to restore consistency may be an option available, but on occasions it is
more important to maintain the integrity of the original data – perhaps the incon-
sistent data is irrelevant to one’s overall project. On other occasions it may even be
‘desirable’ to have inconsistencies in one’s database; for instance, inconsistencies may
be deployed as directives to guide learning, and inconsistencies in a taxpayer’s records
can be used as a reason to prompt further investigation (see [9] for more discussion).
The important point is that many ordinary circumstances require us to reason in the
presence of inconsistencies. The main motivation for paraconsistent logics is precisely
to develop reasoning systems that can tolerate inconsistencies. In classical logic, the
rule ex falso quodlibet is admissible:

A ¬A

B
The practical implication of this is that classical logic is unsuitable as a practical
reasoning system – it provides no guidance on what can be concluded when inconsis-
tent information is presented, any formula can be derived from an inconsistent set of
assumptions. In paraconsistent logics however ex falso quodlibet is no longer admis-
sible. But as a result paraconsistent logics are also weaker then classical logic. In C.
I. Lewis’s original proof of ex falso quodlibet [18], various classical rules are deployed
and thus various strategies are open to weaken classical logic:

(1) A ∧ ¬A Assumption

(2) A 1, ∧-E

(3) ¬A 1, ∧-E

(4) A ∨B 2, ∨-I

(5) B 3,4 ∨-E

Ignoring for now the difference between {A∧ ¬A} and {A,¬A}, it is clear that we
can block the derivation by blocking any one of the rules in line (2), (3), (4) or (5).
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Relevant logicians, for instance, opt for a solution by blocking the use of ∨-E, also
known as disjunctive syllogism (see [2, 3]); logicians favoring analytic implication opt
for blocking the use of ∨-I, also known as the rule of addition (see [8, 23]); connexive
logicians opt for blocking the use of ∧-E instead. 1 Yet another novel approach is to
restrict the ordering in which the rules are applied. Clearly Lewis’s derivation requires
that ∨-I be used before the use of ∨-E. So we can impose restrictions on both ∨-I and
∨-E so that they cannot be used in that specific combination. The resulting logic is
called Quasi-classical logic (QC logic) by Besnard and Hunter in [5] and Hunter in
[14]. Indeed a very simple way to characterize QC logic is this: rules in classical logic
are divided into composition rules and decomposition rules; a derivation in QC logic
proceeds by first applying decomposition rules and then applying composition rules,
but not vice versa.2

One of the main advantages of QC logic is that all connectives are interpreted clas-
sically as boolean connectives. The composition and decomposition rules are divided
roughly along the line of introduction and elimination rules associated with these
connectives. Thus we have not changed any of the meanings of ¬, ∧ or ∨. To simplify
matters we take ¬, ∧ and ∨ to be the primitive connectives and assume that ∧ and
∨ are both commutative and associative and satisfy the contraction rules: A∨A

A
A∧A

A .
The following are the decomposition rules:

∧–Elimination A∧B
A

¬–Elimination ¬¬A∨B
A∨B

¬¬A
A

Resolution A∨B ¬A∨C
B∨C

A∨B ¬A
B

A ¬A∨B
B

D-Distribution A∨(B∧C)
(A∨B)∧(A∨C)

(A∧B)∨(A∧C)
A∧(B∨C)

D-de Morgan ¬(A∧B)∨C
¬A∨¬B∨C

¬(A∨B)∨C
(¬A∧¬B)∨C

¬(A∧B)
¬A∨¬B

¬(A∨B)
¬A∧¬B

The following are the composition rules:

∧–Introduction A B
A∧B

¬–Introduction A∨B
¬¬A∨B

A
¬¬A

∨–Introduction A
A∨B

C-Distribution (A∨B)∧(A∨C)
A∨(B∧C)

A∧(B∨C)
(A∧B)∨(A∧C)

C-de Morgan ¬A∨¬B∨C
¬(A∧B)∨C

(¬A∧¬B)∨C
¬(A∨B)∨C

¬A∨¬B
¬(A∧B)

¬A∧¬B
¬(A∨B)

1See [22] for a detailed discussion of these positions.

2The reader may notice that this is similar to normalization proofs of intuitionistic logic. The idea of a normal proof

is to weed out unnecessary detours in a proof by blocking the use of elimination rule for a connective c followed by

the introduction rule for c. The concern for QC, however, is to achieve paraconsistency.
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A few comments about the rules are in order. The composition rules are, for the
most part, the reversal of the decomposition rules. ¬–Introduction, C-Distribution
and C-de Morgan are the reversal of ¬–Elimination, D-Distribution and D-de Morgan
respectively. Obviously all our rules are classically valid. But more importantly, all the
rules except ∧–Elimination and ∨–Introduction preserve exactly the classical models
of their premises. By this we mean that any two-valued interpretation is a model of
the premises iff it is also a model of the conclusion. In the case of ∧–Elimination and
∨–Introduction however, the set of models for the premises is properly contained in
the set of models for the conclusion, i.e. the conclusions of these rules are strictly
weaker then their assumptions. Amongst all the decomposition and composition rules,
∨–Introduction is the only rule which allows the introduction of new propositional
variables not contained in the premise.

Also note that the set of decomposition rules is sufficient to reduce any formula
to its Conjunctive Normal Form (CNF) and thus to an equivalent set of clauses
(disjunctions of literals). We can further obtain the resolvents from these clauses via
the use of the resolution rule. Normally the use of the resolution rule in automated
theorem proving aims at deriving the empty clause. But in our case, the role of
resolution is to decompose clauses into literals so that we can identify and isolate all
the inconsistencies in the assumptions.

Officially a derivation in QC logic takes a set of formulae Γ as assumptions and
a formula A as a conclusion. We write Γ `QC A to denote that there is a QC
derivation of A from Γ. The derivation proceeds first by the construction of a series
of decomposition trees via the decomposition rules. The leaves of these decomposition
trees are simply members of Γ; nodes are formulae obtained via the application of the
decomposition rules, and finally their roots are either clauses or resolvents of clauses
obtained by application of the resolution rule. The roots of the decomposition trees
are then used, as leaves, to construct a composition tree via the composition rules.
The composition tree terminates if the root is a formula in CNF which is classically
equivalent to the conclusion A.

Example 3.1 For Γ = {p ∨ q, p ∨ ¬q, ¬p ∧ r}

Γ `QC p Γ `QC ¬p

Γ `QC q Γ `QC ¬q

Γ `QC r Γ 6`QC ¬r

In our example there is a clear sense in which the variable r is not involved in any
inconsistency though it is conjoined with ¬p which is a culprit. One of the key features
of QC logic is its ability to identify literals that are involved in an inconsistency. Other
paraconsistent logics such as Belnap’s First Degree Entailment [4] or da Costa’s Cω

[7] lack this feature since they lack the resolution rule.
It is also easy to see that QC logic has no theorems, i.e. no formula is derivable from

the empty set of assumptions. Moreover, the derivability relation `QC does not satisfy
transitivity (also known as the cut rule). Surprisingly though, `QC is monotonic (see
Hunter [14] for details). But like classical logic QC logic is decidable: there is a simple
decision procedure to determine whether a formula A is QC derivable from a finite
set of assumptions Γ.
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Definition 3.2 The decomposition closure of a set Γ, denoted by CD(Γ) is the least
superset of Γ that is closed under the decomposition rules (including the contraction
rules for ∧ and ∨).

We note two important facts about CD: for any Γ the set of propositional variables
occurring in Γ is exactly the set of propositional variables occurring in CD(Γ). More-
over, if Γ is finite, then CD(Γ) is also finite. We may say that CD is a variable and
finiteness preserving closure operator.

We say that a CNF of a formula A is reduced if it is a minimal CNF such that all of
its propositional variables are variables occurring in A. We say that a reduced CNF
of a formula A respects CD(Γ) if all of its clauses can be composed from members
of CD(Γ) via the composition rules. Now to determine whether A is QC derivable
from a finite Γ is simply a matter of finding a reduced CNF of A that respects CD(Γ).
Though there is no unique reduced CNF for a formula A, it is easy to see that one of
them would respect CD(Γ) iff all of them would. Since CD(Γ) is finiteness preserving,
}(CD(Γ)) must be finite given that Γ is finite. Hence there are only finitely many ways
to generate composition trees from CD(Γ). The checking must terminate eventually.

4 Information Measurement

An old idea about information is that there is an inverse relation between information
and possibility. In Shannon’s communication theory this relation is expressed by the
equation,3

I(A) = − logP (A) (4.1)

In (1), I(A) is the amount of information conveyed by A (or the information value
of A) and P (A) is the probability of A occurring. Not surprisingly, the thrust of the
idea is that information eliminates possibilities – the more unlikely that A occurs the
more informative it is to assert A. To illustrate, consider our example in section 2.
Recall that O is located in one out of nine possible locations represented by a 3 × 3
grid:

q1 q2 q3

p1

p2

p3

figure 2.

The set of all possible locations of O can be regarded as a probability space. Fur-
thermore, we may assume that all possible location are equiprobable. Using (1), we
can calculate the information of values A = p1 and A′ = p1 ∧ ¬q2:

I(p1) = − log
3
9

= 0.48 I(p1 ∧ ¬q2) = − log
2
9

= 0.65

Not surprisingly, we have I(A) < I(A′). Even at an intuitive level it is clear that A′

is more informative since A′ provides the additional information that ¬q2.
3See [17] chapter 2-3 for an overview. For a related approach to semantic information theory see Hintikka [11, 12, 13].
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4.1 Inconsistent Information

Data, encoded as formulae in a logical language, are representations of the state of
the world. For a consistent set of data each classical interpretation of the data can be
regarded as a possible state of the world. Since a consistent set of formulae in finitely
many propositional variables has only finitely many non-equivalent interpretations, we
can treat the collection of all possible non-equivalent interpretations as a probability
space and assign equal probability to each interpretation. Naturally this leads to a
definition of information analogous to equation (1).

Definition 4.1 (Lozinskii [19]) Let Γ be a consistent set of formulae in n variables
and let M(Γ) denotes the collection of (equivalence classes of) models for Γ. The
information value of Γ is defined by the following equation:

I(Γ) = log
2n

|M(Γ)| (4.2)

Rewriting equation (2) in base 2 we have:

I(Γ) = n− log2 |M(Γ)| (4.3)

The intuitive justification of our definition is that the amount of information in
a data set should be based on the logarithmic ratio between the number of non-
equivalent interpretations and the number of equivalent models of the data. This is
generally in agreement with the underlying idea of equation (1). If a data set allows us
to exclude all interpretations except one as its model, then the data set has maximum
information value. We also note that the definition applies only to data sets in finitely
many variables. For sets in infinitely many variables we need to modify our definition
since it is not meaningful to talk about the ratio between two infinite cardinals. For
simplicity, we’ll focus on sets in finitely many variables.

We should mention that Lozinskii’s definition of information value is similar to the κ
function defined by Gent, Prosser and Walsh [10] in their study of the constrainedness
of combinatorial search problems. While Lozinskii’s definition is defined for single
problems, the κ function is intended to provide a quantitative measurement, for an
ensemble of search problems (e.g. SAT or graph colouring problems), to determine
how hard or easy it is to find solutions for these problems. One of the main interests
in κ is to employ it to develop heuristics to guide search. Another interest in κ is
to use it to provide a unified account of the phase transition phenomena in search
problems (see [10] for more details). The κ function of Gent, Prosser and Walsh
amounts roughly, in Lozinskii’s term, to the average value of I(Γ)/n for an ensemble
of Γ’s:

κ = 1− log2〈sol〉
n

(4.4)

In equation (4.4), 〈sol〉 is the number of expected solutions to the problem in the
ensemble, and n is the logarithm (base 2) of the size of the state space.

In the context of inconsistent data it is natural to ask for a measurement of informa-
tion analogous to definition 4.1. However, unlike the approach of Aisbett and Gibbon
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in [1], we do not agree that inconsistent data provides no information at all. What is
and what isn’t informative seems to depend, at least partly, on the goal of the agent
in possession of the data. For a tax auditor, inconsistencies in a taxpayer’s records
are useful information for detecting possible fraud. Inconsistencies may also be useful
in cases where they are deployed as directives to guide learning or as indicators for
faulty components in a complex system. Worse still, by assigning null information
value to all inconsistent data we may incur information loss. As we mentioned earlier,
an important aspect of handling inconsistencies is the ability to compare and evaluate
the relative merit of different inconsistent data sets. We need to have some quanti-
tative criteria to determine whether one data set is more inconsistent or informative
then another. Thus it is desirable to have a general theoretical framework for mea-
suring both consistent and inconsistent information. In [20] Lozinskii provides such a
framework.

Definition 4.2 A subset ∆ of a set Γ is maximally consistent if:(1) ∆ 6` ⊥ and (2)
for any A ∈ Γ−∆, ∆ ∪ {A} ` ⊥.

Definition 4.3 (Lozinskii [20]) Let Γ be a set of formulae in n variables and M(Γ)
be the set of maximal consistent subsets of Γ. For each ∆ ∈ M(Γ), if M(∆) is the
collection of (equivalence classes of) models of ∆ then the collection of quasi-models
is defined by:

U(Γ) =
⋃
{M(∆) : ∆ ∈ M(Γ)} (4.5)

The information value of Γ is defined by the following equation:

I(Γ) = n− log2 |U(Γ)| (4.6)

Intuitively, a quasi-model represents a possible state of the world or outcome ac-
cording to some maximal consistent subset of Γ. The main idea behind definition
4.3 is that the information value of a set of formulae is determined by the logarith-
mic ratio between the number of non-equivalent interpretations and the number of
quasi-models. Clearly definition 4.3 agrees with definition 4.1 when Γ is consistent
and yields a defined value for I(Γ) when M(Γ) is non-empty. We note that according
to the new definition the information value of a data set is monotonically increasing
with respect to consistent supersets, i.e. for any consistent Γ′ ⊇ Γ, I(Γ) ≤ I(Γ′). For
inconsistent sets however, the information value is nonmonotonic when there is an
increase in inconsistencies. For instance,

Example 4.4 For ∆ = {p ∨ q, p ∨ ¬q, ¬p ∧ r} Γ = ∆ ∪ {¬r} and Γ′ = ∆ ∪ {s}
I(Γ) < I(∆) I(Γ′) > I(∆)

5 QC Logic and Information Measure

Lozinskii’s new definition is problematic in two respects. The first is that the presence
of tautologies will affect the value of I(Γ). Since we are primarily interested in the
amount of empirical information about the world, it seems reasonable to disregard
tautological statements in a data set. In a more general setting, of course, we may rel-
ativize the information value of a data set by nominating a particular set of formulae
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to be disregarded. This is a useful generalization since, as we have already pointed
out, the information value of a data set is at least partly dependent on the agent in
possession of the data. Perhaps an agent has already independently confirmed A and
thus it is not informative to be told A again. The second problem is that I(Γ) is too
sensitive to the syntax of the formulae in Γ and thus may produce counter-intuitive
consequences. Indeed this is a general problem with any inconsistency tolerant mech-
anism based on maximal consistent subsets. The syntactic features of the formulae
in the set determine how the set can be fragmented into consistent subsets. In [24],
Wong gives the following example:

Example 5.1

Γ1 = {p ∧ q, ¬p ∧ r} Γ2 = {p ∧ q ∧ r, ¬p ∧ q ∧ r, p ∧ ¬q ∧ r}
|M(Γ)| 2 3
|U(Γ)| 4 3

I(Γ) 1.00 1.42

figure 3.

In this example, Γ2 is in some sense more inconsistent than Γ1; yet we have I(Γ2) >
I(Γ1). We should be able find a more principled way to describe the relationship
between the information value and the amount of inconsistencies of a set. For an agent
whose aim is to avoid inconsistencies, the information value of a highly inconsistent
data set should be lower than that of a set with fewer inconsistencies. Dually, for an
inconsistency seekers, e.g. an auditor, the information value of a highly inconsistent
data set should be higher than that of a set with fewer inconsistencies. This suggests
that we should treat the information value of a set as varying inversely to the amount
of inconsistency in the set. A natural solution is to relativize the information value
of a set using the decomposition closure defined in previous section; that is, we let

I∗(Γ) = n− log2 |U(CD(Γ))| (5.1)

Since CD is a variable and finiteness preserving closure operator, replacing Γ with
CD(Γ) in equation (4.6) has no effect on the value n. Indeed the advantage of equation
(5.1) over equation (4.6) is that it provides a more discriminating way of evaluating
the information value of a data set. This gives us a more realistic appraisal of the
usefulness of our data. The information value of a set no longer depends on how the
formulae are syntactically presented.

Example 5.2 Γ = {p ∨ q, p ∨ ¬q, ¬p ∧ r} and Γ′ = {p ∨ q, p ∨ ¬q, ¬p, r}

Using equation (4.6) we have I(Γ) 6= I(Γ′). According to equation (5.1) however we
have I∗(Γ) = I∗(Γ′). In the extreme case when pi ∈ CD(Γ) and ¬pi ∈ CD(Γ) for
every variable pi occurring in Γ, we have I∗(Γ) = 0 since the number of quasi-models
for Γ is exactly 2n where n is the number of distinct variables in Γ. In one sense
CD gives us a syntactic normal form for a set of formulae. Looking at our previous
example, it is easy to see that I∗ provides a more appropriate information value for
Γ1 and Γ2.



226 Paraconsistent Reasoning as an Analytic Tool

CD(Γ1) CD(Γ2)
|M(CD(Γ))| 2 4
|U(CD(Γ))| 2 4

I∗(Γ) 2.00 1.00

figure 4.

We note that we have not make full use of QC logic here. Indeed this is unnecessary
and undesirable since the composition rule ∨–I allows the introduction of arbitrary
new propositional variables. Clearly the introduction of new variables would interfere
with the information value of a data set. In addition, we have also considered using
CD in conjunction with inference mechanisms based on maximal consistent subsets
[25]. The idea there is similar in that we can first apply CD to obtain a normal
form for an inconsistent set and then use further inference mechanisms to extract
conclusions from the set.

6 Application

In previous works Hunter and Nuseibeh [15, 16] have illustrated the usefulness of
QC logic in the analysis of inconsistent specifications in software engineering. Hunter
and Nuseibeh have pointed out that inconsistent specifications are often unavoidable
during software development. They argued persuasively that during the software
development cycle it is often more important to manage inconsistencies intelligently,
i.e., we need to analyze and to keep track of inconsistencies rather then resolving them
immediately. In the same spirit we advocate using QC logic and the definition given
by equation (5.1) as a basis to analyze over-constrained problems.

6.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) involves,

1. a set of variables, X1, . . . , Xn

2. associated with each variable, Xi, is a domain, Di of values
3. a set of constraints, C1, . . . , Cm, each defined on subset of variables a subset of

the Cartesian product of the associated domains, i.e.

Ci(Xi1 , . . . , Xik
) ⊆ (Di1 × . . .×Dik

)

A solution to a CSP is simply an assignment of values to variables such that all
constraints are satisfied. A CSP is a Finite Constraint Satisfaction Problem (FCSP)
if its constraint domains are finite. Many real world problems such as optimization
problems or job scheduling problems can be viewed as CSPs.

As is well known, there is a close relationship between FCSPs and logic (see [6, 21]).
Any FCSP can be stated as an equivalent logic problem in a variety of settings. In
the model checking approach for instance, a FCSP is taken to have a solution iff a
certain propositional theory Γ is satisfiable. In fact, the solutions are just the set of
models of Γ. In this scheme, the theory Γ is constructed as a set of propositional
formulae in CNF such that
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1. Each possible combination of values for variables is represented by a set of propo-
sitional variables, px1

d1
, . . . , pxm

dn
, . . ., where intuitively, pxi

dj
is the proposition which

says that the variable xi is instantiated by the value dj . For instance, the sentence
(pxi

dj
∨pxi

dk
) says that the variable xi is instantiated by at least one of values dj and

dk.
2. A constraint is stated negatively in terms of values that are forbidden, e.g. the

sentence ¬pxi

dj
says that xi are never instantiated to value di, the sentence ¬pxi

dk
∨

¬p
xj

dk
says that xi and xj are never instantiated to the same value dk. The set of

all constraints is represented by a set of propositional formulae in the variables,
px1

d1
, . . . , pxm

dn
, . . ..

6.2 Over-constrained Problems

As it is with many real world problems, a CSP can be without a solution. A solu-
tionless CSP is an over-constrained problem (OCP) – every assignment of values to
variables fails to satisfy at least one constraint. Consider for instance,

Example 6.1 Let X , Y , Z be variables whose domain is {1, 2, 3}. Let the constraints
be: X < Y , Y < Z and Z < X .

Clearly, this is an OCP since no natural numbers can satisfy all three constraints.
This example illustrates that there are two main factors which contribute to a prob-
lem being over-constrained – and thus provides two different approaches to resolving
OCPs. The first is the domain of possible values and the second is the constraints
themselves. In our example if we were to add a value w to the domain such that for
some m and n, m < n, n < w, and w < m, then all constraints would be satisfied (w
need not be a natural number), in which case we no longer have an over-constrained
problem. Alternatively, we may accept a certain partial assignment that satisfies some
but not all of the constraints as a solution. Typically, we may accept those assign-
ments that satisfy a maximal number of constraints or variables. Given that any
FCSP is equivalent to a model checking problem in propositional logic, the second
approach to solving a finite OCP is equivalent to finding models for a certain subset
of an inconsistent set of propositions.

Regardless of how we may resolve an OCP, it is sometime desirable to analyze the
problem first before any further action is taken. In this respect, it is clear that QC
logic is well suited to the task. According to our previous scheme, we can encode a
finite OCP as a propositional theory Γ; Γ must be unsatisfiable and thus inconsistent.
We can then apply QC logic to analyze the information value of Γ. In particular in
an OCP not all variables may be involved in an inconsistency (i.e. being overly
constrained). Thus it is desirable to identify those variables that are involved in an
inconsistency. The strategy, as before, is to take the decomposition closure of Γ and
then measure the value I∗(Γ). In a highly over-constrained problem we should expect
to see a lower value for I∗(Γ) and vice versa. This gives us a relative measurement of
the constrainedness or information value of OCPs.

We should point out that I∗ is based essentially on the number, i, of inconsistent
pair of literals in CD(Γ), since |U(CD(Γ))| ≥ 2i. Clearly there are other alternatives.
For instance, we may consider an information measurement based on the average
size of proofs of an inconsistent pair of literals using the decomposition rules of QC.
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Presumably this sort of measurement will give us an indication of the degree of diffi-
culty in detecting inconsistencies in a data set. The higher the average size of these
proofs, the more computation is required to identify the inconsistencies. In addition,
we should also expect other parameters, e.g. the size of Γ and the length of formulae
in Γ, to play a role in determining the size of these proofs.

7 Conclusion

In this paper we have argued that there are general advantages in developing practical
reasoning systems that can tolerate inconsistencies. In this respect we have considered
a paraconsistent logic that can avoid drawing trivial conclusions in the presence of
inconsistencies. But more importantly we advocate the use of paraconsistent logic in
assisting us in analyzing inconsistent data. In this light, the role of logic goes beyond
capturing valid form of inferences. Logic can be seen as a tool for analysis.
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