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Germany.
E-mail: mail@jan-peters.net

Jürgen Schmidhuber, IDSIA, Manno–Lugano, Switzerland; TU München,
Institut für Informatik, Garching bei München, Germany; University of
Lugano, Faculty of Informatics, Lugano, Switzerland.
E-mail: juergen@idsia.ch

Abstract
Reinforcement learning for partially observable Markov decision problems (POMDPs) is a challenge as it requires
policies with an internal state. Traditional approaches suffer significantly from this shortcoming and usually make
strong assumptions on the problem domain such as perfect system models, state-estimators and a Markovian hidden
system. Recurrent neural networks (RNNs) offer a natural framework for dealing with policy learning using hidden
state and require only few limiting assumptions. As they can be trained well using gradient descent, they are suited
for policy gradient approaches.
In this paper, we present a policy gradient method, the Recurrent Policy Gradient which constitutes a model-free

reinforcement learning method. It is aimed at training limited-memory stochastic policies on problems which require
long-term memories of past observations. The approach involves approximating a policy gradient for a recurrent
neural network by backpropagating return-weighted characteristic eligibilities through time. Using a ‘‘Long Short-
Term Memory’’ RNN architecture, we are able to outperform previous RL methods on three important benchmark
tasks. Furthermore, we show that using history-dependent baselines helps reducing estimation variance significantly,
thus enabling our approach to tackle more challenging, highly stochastic environments.

Keywords: Recurrent Neural Networks, Policy Gradient Methods, Reinforcement Learning, Partially Observable
Markov Decision Problems (POMDPs)

1 Introduction

Reinforcement learning (RL) is one of the most important problems in machine learning,
psychology, optimal control and robotics [1]. In this setting, it is generally assumed that we
have an agent that learns from trial and error, directly interacting with the environment to
discover incrementally better policies. Despite all the successes in reinforcement learning,
many common methods are limited to fully observable problems with no hidden states.
However, RL tasks in realistic environments typically need to deal with incomplete and
noisy state information resulting from partial observability such as encountered in partially
observable Markov decision problems (POMDPs). Furthermore, the goal of dealing
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with non-Markovian problems is most likely beyond the abilities of traditional value function
approaches. For such partially observable and non-Markovian problems, the optimal solution
will require a policy representation with an internal memory. Among all function approxi-
mators with internal state, recurrent neural networks (RNN) appear to be the method of
choice and can make a big difference in reinforcement learning problems. However, only few
reinforcement learning methods are theoretically sound when applied in conjunction with
such function approximation, and catastrophic divergence of traditional methods can be
shown in this context [2].
Policy gradient (PG) methods constitute an exception, as these allow for learning policies
even with noisy state information [3], work in combination with function approximation
[4, 5], are compatible with policies that have internal memory [6], can naturally deal with
continuous actions [7–9] and are guaranteed to converge at least to a local minimum. Fur-
thermore, most successful algorithms for solving real world reinforcement learning tasks are
applications of PG methods, see, e.g., [3, 7, 10–14] for an overview. Provided the choice of
policy representation is powerful enough, PGs can tackle quite complex RL problems.
At this point, policy gradient-based reinforcement learning exhibits two major drawbacks
from the perspective of recurrent neural networks, i.e., (i) the lack of scalability of policy
gradient methods in the number of parameters, and (ii) the small number of algorithms
that were developed specifically for recurrent neural network policies with large-scale mem-
ory. Most PG approaches have only been used to train policy representations with maxi-
mally a few dozen parameters, while RNNs can have thousands. Surprisingly, the obvious
combination with standard backpropagation techniques has not been extensively investi-
gated (a notable exception being the SRV algorithm [15, 16], which was, however, solely
applied to feedforward networks). In this paper, we address this shortcoming, and show
how PGs can be naturally combined with backpropagation, and BackPropagation Through
Time (BPTT) [17] in particular, to form a powerful RL algorithm capable of training com-
plex neural networks with large numbers of parameters.
Work on policy gradient methods with memory has been scarce so far, largely limited to
finite state controllers. Strikingly, memory models based on finite state controllers perform
less than satisfactorily, even on quite simple benchmarks (e.g. single pole balancing without
velocity information cannot be learned beyond 1000 time steps [6, 18], whereas evolutionary
methods and the algorithm presented in this paper manage to balance the pole 100,000+
steps). We conjecture that the reason is that for finite state controllers a stochastic memory
state model must be learned in conjunction with a policy, which is prohibitively expensive.
In this paper, we extend policy gradient methods to more sophisticated policy representa-
tions capable of representing memory using an RNN architecture called Long Short-Term
Memory (LSTM) for representing our policy [19]. We develop a new reinforcement learning
algorithm aimed specifically at RNNs that can effectively learn memory-based policies for
deep memory POMDPs. This algorithm, the Recurrent Policy Gradient (RPG) algorithm,
backpropagates the estimated return-weighted eligibilities backwards through time using
recurrent connections in the RNN. As a result, policy updates can become a function of any
event in the history. We show that the presented method outperforms other RL methods
on three important RL benchmark tasks with different properties: continuous control in a
non-Markovian double pole balancing environment, and discrete control on both the deep
memory T-maze [20] task (which was designed to test an RL algorithm’s ability to deal with
extremely long term dependencies) and the still-unsolved (up to human-level performance)
stochastic 89-state Maze task. Moreover, we show promising results in a complex car driving
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simulation which is challenging for humans. Here, we can show real-time improvement of the
policy which has been largely unachieved in reinforcement learning for such complex tasks.
The paper is organized as follows. The next section describes the reinforcement learning
framework and briefly reviews LSTM’s architecture. The subsequent sections introduce the
derivation of Recurrent Policy Gradient algorithm, and present our experimental results
using RPGs with memory. The paper finishes with a discussion.

2 Preliminaries

In this section, we first briefly summarize the reinforcement learning terminology as used
in this paper with a focus on RL for RNNs. Subsequently, we describe the particular type
of recurrent neural network architecture used in this paper, i.e., Long Short-Term Memory
networks.

2.1 Reinforcement Learning for Recurrent Neural Networks
First, let us introduce the RL framework used in this paper and the corresponding notation.
The environment produces a state gt at every time step. Transitions from state to state
are governed by a function p(gt+1|a1:t,g1:t) unknown to the agent but dependent upon all
previous actions a1:t executed by the agent and all previous states g1:t of the system. Note
that most reinforcement learning papers need to assume Markovian environments – we will
later see that we do not need to for policy gradient methods with an internal memory.
Let rt be the reward assigned to the agent at time t, and let ot be the corresponding
observation produced by the environment. We assume that both quantities are governed by
fixed distributions p(o|g) and p(r |g), solely dependent on state g.
In the more general reinforcement setting, we require that the agent has a memory of
the generated experience consisting of finite episodes. Such episodes are generated by the
agent’s operations on the (stochastic) environment, executing action at at every time step t,
after observing observation ot and special ‘observation’ rt (the reward) which both depend
solely on gt . We define the observed history1 ht as the string or vector of observations and
actions up to moment t since the beginning of the episode: ht=〈o0,a0,o1,a1,...,ot−1,at−1,ot〉.
The complete history H includes the unobserved states and is given by HT =〈hT ,g0:T 〉. At
any time t, the actor optimizes Rt=∑∞

k=t rkγ
t−k which is the return at time t where 0<γ<1

denotes a discount factor.
The expectation of this return Rt at time t=0 is also the measure of quality of our policy

and, thus, the objective of reinforcement learning is to determine a policy which is opti-
mal with respect to the expected future discounted rewards or expected return J =E [R0]=
limT→∞E

[∑T−1
t=0 γ t rt

]
. For the average reward case where γ →1 this expression remains true

analytically but needs to be replaced by J = limT→∞E[∑T−1
t=0 rt/T ] in order to be numerically

feasible.
An optimal or near-optimal policy in a non-Markovian or partially observable Markovian
environment requires that the action at is taken depending on the entire preceding history.
However, in most cases, we will not need to store the whole string of events but only sufficient
statistics M (ht) of the events which we call the limited memory of the agents past. Thus,

1Note that such histories are also called path or trajectory in the literature.



[15:50 2/8/2010 jzp049.tex] Paper Size: a4 paper Job: JIGPAL Page: 623 620–634

Recurrent policy gradients 623

a stochastic policy π can be defined as π(a|ht)=p(a|M (ht);θ), implemented as an RNN
with weights θ and stochastically interpretable output neurons. This produces a probability
distribution over actions, from which actions at are drawn at∼π(a|ht).

2.2 LSTM Recurrent Neural Networks as Policy Representation
Recurrent neural networks are designed to deal with issues of time, such as approximating
time series. A crucial feature of this class of architectures is that they are capable of relating
events in a sequence, in principle even if placed arbitrarily far apart. A typical RNN π

maintains an internal state M (ht) (or memory) which it uses to pass on (compressed) history
information to the next moment by using recurrent connections. At every time step, the RNN
takes an input vector ot and produces an output vector π(M (ht)) from its internal state,
and since the internal state M (ht) of any step is a function f of the previous state and the
current input signal M (ht)= f (ot,M (ht−1);θ), it can take into account the entire history of
past observations by using its recurrent connections for recalling events. Not only can RNNs
represent memory, they can, in theory, be used to model any dynamic system [21]. Like
conventional neural networks, they can be trained using a special variant of backpropagation,
backpropagation through time (BPTT) [17, 22].
Usually BPTT is employed to find the gradient ∇θE in parameters θ (that define f and π)
for minimizing some error measure E , e.g. summed squared error. This is done by first
executing a forward pass through the RNN all to the end of the sequence, at every time step
unfolding the RNN, reusing parameters θ for the recurrent connections, producing outputs
and computing the error δt . Then a (reverse) backwards pass is performed, computing the
gradient backwards through time by backpropagating the errors. Usually, this is done in a
supervised fashion, but we will apply this technique to a reinforcement learning setting.
RNNs have attracted some attention in the past decade because of their simplicity and
potential power. However, though powerful in theory, they turn out to be quite limited in
practice due to their inability to capture long-term time dependencies – they suffer from
the problem of vanishing gradient [23, 24], the fact that the gradient signal vanishes as the
error signal is propagated back through time. Because of this, events more than 10 time
steps apart can typically not be related.
One method purposely designed to avoid this problem is Long Short-TermMemory (LSTM
[19, 25]), which constitutes a special RNN architecture capable of capturing long term time
dependencies. The defining feature of this architecture is that it consists of a number of
differentiable memory cells, which can be used to store activations arbitrarily long. Access
to the internal state of the memory cell (the Constant Error Carousel or CEC) is gated by
gating units that learn to open or close depending on the context. Three types of (sigmoidal)
gates are present: input gates that determine the input to the memory cell, forget gates that
control how much of the CEC’s value is transferred to the next time step, and output gates
which regulate the output of the memory cell by gating the cell’s output. See Figure 1 for a
depiction of LSTM’s structure.
LSTM networks have been shown to outperform other RNNs on numerous time series
requiring the use of deep memory [26]. Therefore, they seem well-suited for usage in PG
algorithms for complex, deep memory requiring tasks. Whereas RNNs are usually used to
predict, we use them to control an agent directly, to represent a controller’s policy receiving
observations and producing action probabilities at every time step.
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FIG. 1. The Long Short-Term Memory cell. The figure shows an LSTM cell with a net input,
a Constant Error Carousel (CEC), an input gate, a forget gate and an output gate. The cell
has an internal state CEC and a forget gate that determines how much the CEC is attenuated
at each time step. The input gate controls access to the state by the external inputs and the
outputs of other cells, and the output gate determines how much and when the cell fires.

3 Recurrent Policy Gradients

In this section, we first formally derive the Recurrent Policy Gradient framework. Subse-
quently, history-dependent baselines are introduced, and the section is concluded with a
description of the Recurrent Policy Gradient algorithm.

3.1 Derivation of Recurrent Policy Gradients
The type of RL algorithm we employ in this paper falls in the class of policy gradient
algorithms, which, unlike many other (notably TD) methods, update the agent’s policy-
defining parameters θ directly by estimating a gradient in the direction of higher (average
or discounted) reward.
Now, let R(H ) be some measure of the total reward accrued during a history. R(H )
could be the average of the rewards for the average reward case, or the discounted sum for
the discounted case. Let p(H |θ) denote the probability of a history given policy-defining
weights θ. The quantity the algorithm should be optimizing is J =∫

H p(H |θ)R(H )dH . This,
in essence, indicates the expected reward over all possible histories, weighted by their prob-
abilities under policy π. In order to be able to apply gradient ascent to find a better pol-
icy, we have to find the gradient ∇θJ , which can then be used to incrementally update
parameters θ of policy π in small steps. Since we know that rewards R(H ) for a given
history H do not depend on the policy parameters θ (that is, ∇θR(H )=0), we can write
∇θJ =∇θ

∫
H p(H |θ)R(H )dH =∫

H∇θp(H |θ)R(H )dH . Now, using the ‘‘likelihood-ratio trick’’
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we find

∇θJ =
∫

∇θp(H)R(H)dH

=
∫
p(H )
p(H )

∇θp(H)R(H)dH

=
∫
p(H )∇θ logp(H )R(H )dH .

Taking the sample average as Monte Carlo (MC) approximation of this expectation by
taking N trial histories we get

∇θJ =EH
[
∇θ logp(H )R(H )

]
≈ 1
N

N∑
n=1

∇θ logp(Hn)R(Hn).

which is a fast approximation of the policy gradient for the current policy with the conver-
gence speed of O(N−1/2) to the true gradient independent of the number of parameters of
the policy (i.e., number of elements of the gradient).
Probabilities of histories p(H ) are dependent on an unknown initial state distribution,

on unknown observation probabilities per state, and on unknown state transition function
p(gt+1|a1:t,g1:t). But at least the agent knows its own action probabilities, so the log derivative
for agent parameters θ in ∇θ logp(h) can be acquired by first realizing that the probability
of a particular history is the product of all actions and observations given subhistories:

p(HT )=p(〈o0,g0〉)
T∏
t=1
p(〈ot,gt〉|ht−1,at−1,g0:t)π(at−1|ht−1)

Taking the log-derivative results into transforming this large product into a sum logp(HT )=
(const)+∑T

t=0 logπ(at |ht): where most parts are not affected by θ, i.e., are constant. Thus,
when taking the derivative of this term, we obtain

∇θ logp(HT )=
T∑
t=0

∇θ logπ(at |ht).

Substituting this term into our MC approximation results in a gradient estimator which
only requires observed variables. However, if we make use of the fact that future actions do
not depend on past rewards, we can show that these terms can be omitted from the gradient
estimate (see [7] for details). Thus, an unbiased gradient estimator is given by

∇θJ ≈ 1
N

N∑
n=1

T∑
t=0

∇θ logπ(at |hnt )Rnt

which yields the desired gradient estimator which only has observable variables.
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3.2 History-dependent Baselines
Nevertheless, an important problem with this Monte Carlo approach is the often high vari-
ance in the gradient estimate. For example, if R(h)=1 for all h, the variance can be given by
σ2T =E[∑T

t=0(∇θ logπ(at |hnt ))2] which grows linearly with T . One way to tackle such problems
and reduce this variance is to include a constant baseline b (first introduced by Williams
[27]) into the gradient estimate ∇θJ ≈ 1

N

∑N
n=1

∑T
t=0∇θ logπ(at |hnt )(Rnt −b). Baseline b is typ-

ically taken to be the expected average return and subtracted from the actual return, such
that the resulting quantity (Rt−b) intuitively yields information on whether the return was
better or worse than expected. Due to the likelihood-ratio trick

∫
p(H )∇θ logp(H )R(H )dH =

∇θ

∫
p(H )bdH =∇θ1=0, we can guarantee that E[∑N

n=1∇θ logp(Hnt )b]=0 and, thus, the base-
line can only reduce the variance but not bias the gradient in any way [27].
Whereas previously a constant baseline was used, we can in fact extend the baseline con-
cept to include subhistory-dependent function approximators B(ht) parameterized by w. The
correctness of this approach can be realized by applying the same trick

∫
a∇θπ(a|ht)B(ht)da=

0 for every possible subhistory ht . Now the baseline B(ht) can be represented as an LSTM
RNN receiving observations and actions as inputs, trained to predict future return given the
current policy π. This construct closely resembles the concept of value functions in temporal
difference methods. However, note that we do not use temporal difference methods for train-
ing the history-dependent baseline network (since such updates can be arbitrarily bad in par-
tially observable environments [2]), but apply supervised training using simply the actually
experienced returns as targets for every time step. Using non-constant, history-dependent
baselines, our algorithm now uses two separate RNNs: one policy π parameterized by θ,
and one baseline network B parameterized by w. Using the extended baseline network, the
gradient update for the policy now becomes ∇θJ ≈ 1

N

∑N
n=1

∑T
t=0∇θ logπ(at |hnt )(Rnt −B(hnt )).

3.3 The Recurrent Policy Gradients Algorithm
Typically, PG algorithms learn to map observations to action probabilities, i.e. they learn
stochastic reactive policies. As noted before, this is clearly suboptimal for all but the sim-
plest partial observability problems. We would like to equip our algorithm with adaptable
memory, using LSTM to map histories or memory states to action probabilities. Unlike
earlier methods, our method makes full use of the backpropagation technique while doing
this: whereas most if not all published and experimentally tested PG methods (as far as
the authors are aware) estimate parameters θ individually, we use eligibility-backpropagation
through time (as opposed to standard error-backpropagation or BPTT [17]) to update all
parameters conjunctively, yielding solutions that better generalize over complex histories.
Using this method, we can map histories to actions instead of observations to actions.
In order to estimate the gradient for a history-based approach, we map histories ht to
action probabilities by using LSTM’s internal state representation. Backpropagating return-
weighted eligibilities [27] affects the policy such that it makes histories that were better
than other histories (in terms of reward) more likely by reinforcing the probabilities of
taking similar actions for similar histories.
Recurrent Policy Gradients are architecturally equal to supervised RNNs, however, the
output neurons are interpreted as a probability distribution. It takes, at every time step
during the forward pass of BPTT, as input observation ot and reward rt . Together with the
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recurrent connections, these produce outputs π(ht), representing the probability distribution
on actions.
Only the output part of the neural network is interpreted stochastically. This allows us,
during the backward pass, to only estimate the eligibilities of the output units at every
time step. The gradient on the other parameters θ can be derived efficiently via eligibility
backpropagation through time, treating output eligibilities like we would treat normal errors
(‘deltas’) in an RNN trained with gradient descent. Also, by having only stochastic output
units, we do not have to compute complicated gradients on stochastic internal (belief) states
such as done in [6, 18] – eligibility backpropagation through time disambiguates relevant
hidden state automatically, when possible.

4 Experiments

We carried out experiments on four fundamentally different problem domains. The first task,
double pole balancing with incomplete state information, is a continuous control task that
has been a benchmark in the RL community for many years. RPGs outperform all other
single-agent methods on this task, as far as we are aware. The second task, the T-maze, is
a difficult discrete control task that requires remembering its initial observation until the
end of the episode. On this task, RPGs outperformed the second-best method by more than
an order of magnitude for longer corridors. The third task, the 89-state Maze, is a highly
stochastic POMDP maze task which has yet to be solved up to human level performance.
On this task, RPGs outperform all other (model-free) algorithms.
Last, we show promising results on a complex car driving simulation (TORCS) which is
challenging for humans. Here, we can show real-time improvement of the policy, something
which has been largely unachieved in reinforcement learning for such complex tasks.
All experiments were carried out with 10-cell LSTMs. The baseline estimator used was
simply a moving average of the return received at any time step, except for the 89-state
Maze task, where an additional LSTM network was used to estimate a history-dependent
baseline.

4.1 Continuous Control: Partially Observable Single & Double Pole
Balancing
This task involves trying to balance a pole hinged on a cart that moves on a finite track (see
Figure 2). The single control consists of the force F applied to the cart (in Newtons), and
observations usually include the cart’s position x , the pole’s angle β and velocities ẋ and β̇.
It provides a perfect testbed for algorithms focussing on learning fine control in continuous
state and action spaces. However, recent successes in the RL field have made the standard
pole balancing setup too easy and therefore obsolete. To make the task more challenging,
we (1) remove velocity information ẋ and β̇ such that the problem becomes non-Markov,
and (2) add a second pole to the same cart, of length 1/10th of the original one. This yields
non-Markovian double pole balancing [28], a truly challenging task that has not been solved
by any other single-agent RL method but RPGs.
We applied RPGs to the pole balancing task, using a Gaussian output structure for our
LSTM RNN, consisting of two output neurons: a mean µ (which was interpreted linearly)
and a standard deviation σ (which was scaled with the logistic function between 0 and 1 in
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F

β

β

1

x

Markov non-Markov

1 pole 863 ± 213 1893 ± 527

2 poles 4981 ± 1386 5649 ± 1548

FIG. 2. The non-Markov double pole balancing task. The task consists of a moving cart on
a track, with two poles of different lengths (1m and 0.1m) hinged on top. The controller
applies a (continuous) force F to the cart at every time step, after observing pole angles β1
and β2. The objective is to indefinitely keep the poles from falling. The table shows the
results for RPGs on the pole balancing task, for the four possible cases investigated in this
paper: 1 pole Markov, 2 poles Markov, 1 pole non-Markov, and 2 poles non-Markov. The
results show the mean and standard deviation of the number of evaluations until the success
criterion was reached, that is, when a run lasts more than 10,000 time steps. Results are
computed over 20 runs.

order to prevent variances from being negative) where eligibilities were calculated according
to [27]. We use a learning rate ασ2 (as suggested by Williams [27]) to prevent numerical
instabilities when variances tend to 0, and use learning rate α = 0.001, momentum=0.9 and
discount factor γ =0.99. Initial parameters θ were initialized randomly between −0.01 and
0.01. Reward was always 0.0, except for the last time step when one of the poles falls over,
where it is −1.0.
A run was considered a success when the pole(s) did not fall over for 10,000 time steps.

Figure 2 shows results averaged over 20 runs. RPGs clearly outperform earlier PG methods
(for a comparison, see [18]’s finite state controller, which cannot balance a single pole in
a partially observable setting for more than 1000 time steps, even after 500,000 trials). As
far as we are aware, RPGs constitute the only published single-agent approach that can
satisfactorily solve this problem.

4.2 Reinforcement Learning in Discrete POMDPs
In this section, we show the high performance of our algorithm for traditional discrete
POMDP problems. The Long Term Dependency T-maze from Section 4.2.1 is a standard
benchmark for learning deep-memory POMDPs while the 89-state Maze in Section 4.2.2 is a
problem where humans are still able to beat the best known algorithmically learned policy
(e.g. see [20]).

4.2.1 Long Term Dependency T-maze
The second experiment was carried out on the T-maze [20] (see Figure 3). Designed to test
an RL algorithm’s ability to correlate events far apart in history, it involves having to learn
to remember the observation from the first time step until the episode ends. At the first
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FIG. 3. The T-maze task. The agent observes its immediate surroundings and is capable of
the actions goNorth, goEast, goSouth, and goWest. It starts in the position labeled ‘S’, there
and only there observing either the signal ‘up’ or ‘down’, indicating whether it should go up
or down at the end of the alley. It receives a reward if it goes in the correct direction, and a
punishment if not. In this example, the direction is ‘up’ and N , the length of the alley, is 35.
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FIG. 4. T-maze results. Elman-based Value Iteration (Elman VI) starts to degrade after cor-
ridor length N =10, LSTM Value Iteration (LSTM VI) falters after N =50, while Recurrent
Policy Gradients’ performance starts to degrade at length N =100. The plot shows the num-
ber of average iterations required to solve the task, averaged over the successful runs. RPGs
clearly outperform other RL methods on this task, to the best of the authors’ knowledge.
(The results for the Value Iteration based algorithms are taken from [20]).

time step, it starts at position S and perceives the X either north or south – meaning that
the goal state G is in the north or south part of the T-junction, respectively. Additionally,
the agent perceives its immediate surroundings. The agent has four possible actions: North,
East, South and West. These discrete actions are represented in the network as a softmax
layer. When the agent makes the correct decision at the T-junction, i.e. go south if the X
was south and north otherwise, it receives a reward of 4.0, otherwise a reward of -0.1. In
both cases, this ends the episode. Note that the corridor length N can be increased to make
the problem more difficult, since the agent has to learn to remember the initial ‘road sign’
for N+1 time steps. In Figure 3 we see an example T-maze with corridor length 35.
Corridor length N was systematically varied from 10 to 100, and for each length 10 runs

were performed. Training was performed in batches of 20 normalizing the gradient to length
0.3. Discount factor γ =0.98 was used. In Figure 4 the results are displayed, in addition to
other algorithms’ results (RL-Elman and RL-LSTM) taken from [20], of which the results on
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G

FIG. 5. The 89-state maze. In this extremely stochastic maze, the agent has a position, an
orientation, and can execute five different actions: forward, turnleft, turnright, turnabout,
and doNothing. The agent starts every trial in a random position. Its goal is to move to
the square labeled ‘G’. Observations comprise the local walls but are noisy (there is a high
probability of observing walls where there are none and vice versa). Action outcomes are
noisy and cannot be relied on. See [29] for a complete description of this problem domain.

RL-LSTM were the best results reported so far. We can see that RPGs clearly outperform
the value-based methods, even by more than an order of magnitude in terms of iterations for
corridor lengths longer than 40. Additionally, RPGs are able to solve this task up to N=90,
while the second best algorithm, RL-LSTM, solves it up to N=50. The large performance
gain on this task for Recurrent Policy Gradients might be due to the difference in complexity
of learning a simple (memory-based) policy versus learning unnecessarily complex value
functions. Nevertheless, the impressive performance advantage of RPGs over value-based
methods on this domains indicates a possibly significant potential for the application of
Recurrent Policy Gradients to other deep-memory domains.

4.2.2 The 89-state Maze
In this extremely stochastic benchmark task (see Figure 5; see [29] for a complete description)
the aim for the agent is to get to the goal as fast as possible (where the reward is 1, other
locations have reward 0) from a random starting position and orientation, but within 251
time steps. For reward attribution, discount factor γ =0.98 is used. The agent has not only
a position, but also an orientation, and its actions consist of moving forward, turning left,
turning right, turning about, and doing nothing. State transactions are extremely noisy.
Observations, which consist of 4 bits representing adjacent wall information (wall or no
wall), are noisy and are inverted with probability 10%, which sets the chance of getting the
correct observation somewhere between 0.65 and 0.81, depending on the agent’s location.
It is interesting to note that, to the authors’ knowledge, this domain has as of yet not
been satisfactorily solved, that is, solved up to human-comparable performance. Humans
still greatly outperform all algorithms we are aware of. That is what makes this a very
interesting and challenging task.
Because of the random starting position, this task is extremely difficult without the use of
any history-dependent baseline, since the agent might start close to the target or not, which
influences the expected rewards accordingly. That is why we apply a history-dependent
baseline for this task, trained with α=0.001 and momentum=0.9 after every episode. 20
runs were performed to test the performance of the algorithm, using a history-dependent
baseline which was trained on actually received returns using a separate LSTM network
with 10 memory cells with the same inputs as the policy network including a bias. Each
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FIG. 6. The TORCS racing car simulator.

run was executed for 30,000,000 iterations. After that, the resulting policy was evaluated.
The median number of steps to achieve the goal (in case the goal is achieved) was 58,
and the goal was reached in 95% of the trials. This compares favorably with the second best
other (model-free) method the authors are aware of, Bakker’s RL-LSTM algorithm [30] with
61 steps and 93.9%, respectively. In [29] the human performance of 29 steps and 100% is
highlighted, which again underlines the difficulty of the task. However, the fact that RPGs
outperform all other algorithms on this task might indicate that the application of Recurrent
Policy Gradients to RNNs, especially in combination with history-dependent baselines, might
indeed be fruitful.

4.3 Car Racing with Recurrent Policy Gradients
In order to show that our algorithm performs well in a complicated real task which is diffi-
cult for humans, we have carried out experiments on the TORCS [31] car racing simulator.
TORCS is an advanced open source racing game with a graphical user interface and simu-
lated simplified physics which provide a challenging experience for game play. Additionally
to being open source, the game was specifically designed for programming competitions
between steering agents, and the code framework allows for easy plug-ins of code snippets
for competitions between preprogrammed drivers. As such, it provides a perfect testbed for
reinforcement learning algorithms that aim to go beyond the current benchmark standards.
We trained our RPG agent on one single track (see Figure 6), on which it has to learn to
drive a Porsche GT1 and stay on the road while achieving high speed. Whenever the car gets
stuck off the road, a learning episode ends, the car is put back on track and a new episode
begins. The steering outputs of the RNN, which were executed at a rate of 30 frames per
second, are interpreted as a Gaussian with one output neuron interpreted linearly (µ, the
mean) and one output neuron interpreted logistically between 0 and 1 (σ, the standard
deviation) to ensure it is nonnegative. The four observations which were normalized around 0
with std 1, include a bias, the speed, the steering angle, position on the road and look-ahead-
distance (which was linearly varied with speed). Its rewards consist of speed measurements
at every time step, and the agent receives negative rewards for spending time off track.
A large penalty is inflicted upon the car getting stuck off track, which ends an episode. The
car’s speed starts off at 10 km/h, which is gradually increased over time to reach 70 km/h
after 30 minutes.
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We performed 10 runs on this lap using the same learning settings and 10-cell network as
applied to the non-Markovian double pole balancing task. The baseline was updated after
every 100 time steps. We found that the agent learns, for all runs, to consistently steer and
stay on the road after just under 2 minutes of real-time behavior. In all runs, the car first
drives off the track immediately four or five times, then learns to stay on track until it
hits the first curve, where it slides off again. Within two minutes, however, it drives nearly
perfectly in the middle off the road, and learns to ‘cut curves’ slightly when the speed is
increased gradually to 70 km/h after 30 minutes. The agent can learn to drive safely – not
getting off track – up to 70 km/h, after which its behavior destabilized in all runs. Future
work will investigate how to make the behavior more robust and how to cope with higher
speeds. This will have to include speed control and braking by the network as well, which
could be actualized using additional (softmax) output neurons for gears, brakes and gas.
The fastest lap time achieved after 30 minutes of training was just under 3 minutes, which
is, unfortunately, still twice as slow as a trained human player or our preprogrammed agent.
To conclude, our car driving agent learns fast, in real-time (2 minutes), to steer correctly
and keep the vehicle on the road. This is about as fast as a novice human player learns
to stay on the road. Moreover, it reaches high speeds of up to 70 km/h within 30 minutes
of online training time. Although rigid preprogrammed speed control destabilizes the agent
with higher speeds, the fast learning suggests this approach might be worth investigating
when dealing with real-time learning problems in continuous robot control.

5 Conclusion

In this paper, we have introduced Recurrent Policy Gradients, an elegant and powerful
method for dealing with reinforcing learning in partially observable environments. The algo-
rithm, an RNN-based policy gradient method equipped with memory capable of memorizing
events from arbitrarily far in the past, involves computing and backpropagating action eligi-
bilities through time with ‘Long Short-Term Memory’ memory cells, thus updating a policy
which maps event histories to action probabilities. The approach outperformed other RL
methods on three important benchmarks with different characteristics. We think Recurrent
Policy Gradients might constitute both one of the simplest, and one of the most efficient
RL algorithms to date for difficult non-Markovian tasks.
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