
A different perspective on a scale for pairwise

comparisons

J. Fülöp
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Abstract

One of the major challenges for collective intelligence is inconsistency,
which is unavoidable whenever subjective assessments are involved. Pair-
wise comparisons allow one to represent such subjective assessments and
to process them by analyzing, quantifying and identifying the inconsis-
tencies.

We propose using smaller scales for pairwise comparisons and provide
mathematical and practical justifications for this change. Our postulate’s
aim is to initiate a paradigm shift in the search for a better scale construc-
tion for pairwise comparisons. Beyond pairwise comparisons, the results
presented may be relevant to other methods using subjective scales.

Keywords: pairwise comparisons, collective intelligence, scale, subjective as-
sessment, inaccuracy, inconsistency.
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1 Introduction

Collective intelligence (CI) practitioners face many challenges as collaboration,
especially involving highly trained intellectuals, is not easy to manage. One
of the important aspects of collaboration is inconsistency arising from differ-
ent points of view on the same issue. According to [33], “Inconsistent knowl-
edge management (IKM) is a subject which is the common point of knowledge
management and conflict resolution. IKM deals with methods for reconciling
inconsistent content of knowledge. Inconsistency in the sense of logic has been
known for a long time. Inconsistency of this kind refers to a set of logical formu-
lae which have no common model.” and “The need for knowledge inconsistency
resolution arises in many practical applications of computer systems. This kind
of inconsistency results from the use of various sources of knowledge in realiz-
ing practical tasks. These sources often are autonomous and they use different
mechanisms for processing knowledge about the same real world. This can lead
to inconsistency.”

Unfortunately, inconsistency is often taken for a synonym of inaccuracy but
it is a “higher level” concept. Inconsistency indicates that inaccuracy of some
sort is present in the system. Certainly, inaccuracy by itself would not take
place if we were aware of it. We will illustrate it in a humorous way. When
a wrong phone call is placed, the caller usually apologizes by “I am sorry, I
have the wrong number” and may hear in reply: “if it is a wrong number, why
have you dialed it?” Of course we would have not dialed the number if we had
known that it was wrong. In fact, the respondent is the one who detects the
incorrectness, not the caller.

However, a self correction may also take place in some other cases, for exam-
ple, via an analysis of our own assessments for inconsistency by comparing them
in pairs. Highly subjective stimuli often are present in the assessment of public
safety or public satisfaction. Similarly, decision making, as an outcome of men-
tal processes (cognitive process), is also based on mostly subjective assessments
for the selection of an action among several alternatives. We can compute the
inconsistency indicator of our assessments (subjective or not) rarely getting zero
which stands for fully consistent assessments.

As the membership function of a fuzzy set is a generalization of the indica-
tor function in classical sets, the inconsistency indicator is related to the degree
of contradictions existing in the assessments. In fuzzy logic, the membership
function represents the degree of truth. Similarly, the inconsistency indicator
is related to both the degree of inaccuracy and contradiction. Degrees of truth
are often confused with probabilities, although they are conceptually distinct.
Fuzzy truth represents membership in vaguely defined sets but not the likeli-
hood of some event or condition. Likewise, the inconsistency indicator is not a
probability of contradictions but the degree of contradiction.

In our opinion, pairwise comparisons method is one of the most feasible
representations of collective intelligence. It also allows one to measure it, for
example, by comparing CI with individual intelligence. (According to the online
Handbook of Collective Intelligence, hosted at the website of MIT Center of Col-
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lective Intelligence http://cci.mit.edu/research/index.html, measuring CI
is one of two main projects for developing theories of CI.) Pairwise comparisons
are easy to use, but may require complex computations to interpret them prop-
erly. This is why we address the fundamental issue of scales of measure, which –
in particular – may have an effect on feasibility of some computational schemes.

2 Pairwise comparisons preliminaries

Comparing objects and concepts in pairs can be traced to the origin of science or
even earlier – perhaps to the stone age. It is not hard to imagine that our ances-
tors must have compared “chicken and fish”, holding each of them in a separate
hand, for trading purposes. The use of pairwise comparisons is still considered
as one of the most puzzling, intriguing, and controversial scientific method al-
though the first published use of pairwise comparisons (PC) is attributed to
Condorcet in 1785 (see [12], four years before the French Revolution). Ramon
Llull, or Raimundus Lullus designed an election method around 1275 in [30].
His approach promoted the use of pairwise comparisons. However, neither Llull
nor Condorcet used a scale for pairwise comparisons.

Condorcet was the first who used a kind of binary version of pairwise com-
parisons to reflect the preference in the voting by the won-lost situation. In
[37], a psychological continuum was defined by Thurstone in 1927 with the scale
values as the medians of the distributions of judgments on the psychological
continuum.

In [34], Saaty proposed a finite (nine point) scale in 1977. In [26], Koczkodaj
proposed a smaller five point scale with the distance-based inconsistency indi-
cator. This smaller scale better fits the heuristic “off by one grade or less” for
the acceptable level of inconsistency proposed in [26]. We will show here that
a new convexity finding for the first time supports the use of an even smaller
scale.

Mathematically, an n×n real matrix A = [aij ] is a pairwise comparison (PC)
matrix if aij > 0 and aij = 1/aji for all i, j = 1, . . . , n. Elements aij represent
a result of (often subjectively) comparing the ith alternative (or stimuli) with
the jth alternative according to a given criterion. A PC matrix A is consistent
if aijajk = aik for all i, j, k = 1, . . . , n. It is easy to see that a PC matrix A
is consistent if and only if there exists a positive n-vector w such that aij =
wi/wj , i, j = 1, . . . , n. For a consistent PC matrix A, the values wi serve as
priorities or implicit weights of the importance of alternatives.

3 The pairwise comparisons scale problem

Thurstone’s approach was extensively analyzed and elaborated on in the liter-
ature, in particular by Luce and Edwards [28] in 1958. The bottom line is that
subjective quantitative assessments are not easy to provide. Not only is the
dependence between the stimuli and their assessments usually nonlinear, but
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the exact nature of the nonlinearity is in general unclear. In this context, a
smaller scale is expected to generate a smaller error, for example by mitigating
the deviation from nonlinearity.

On page 236 in [28], authors wrote: W.J. McGill is currently attempting
to find a better way of respecting individual differences while still obtaining a
“universal scale”. Authors of this study have not been able to trace any publi-
cation of the late W.J. McGill on the “universal scale” construction. However,
the proposed smaller scale may be at least some kind of temporary solution as a
reflection of “the small is beautiful” movement inspired by Leopold Kohr by his
opposition to the “cult of bigness” in social organization. The smaller five-point
scale better fits the heuristic “off by one grade or less” for the acceptable level
of the distance-based inconsistency (as proposed in [26]). We will show here
that the new convexity finding, for the first time, supports the use of an even
smaller scale.

There are strong opponents of the pairwise comparisons method going as far
as opposing the use of pairwise comparisons altogether. However, they forget
that every measurement, e.g., of length, is based on pairwise comparisons since
we compare the measured object with some assumed unit. For example, one
meter is the basic unit of length in the International System of Units (SI). It
was literally defined as a distance between two marks on a platinum-iridium
bar. Evidently, we are unable to eliminate pairwise comparisons from science
hence we need to improve them. As we will demonstrate, it is the issue of scale
(in other words the input data) and, as such, it cannot be ignored.

4 In search of the nearest consistent pairwise
comparisons matrix

Several mathematical methods have been proposed for finding the nearest con-
sistent pairwise comparisons matrix for a given inconsistent pairwise compar-
isons matrix. In [34], the eigenvector method was proposed in which w is the
principal eigenvector of A. Another class of approaches is based on optimization
methods and proposes different ways of minimizing (the size of) the difference
between A and a consistent PC matrix. If the difference to be minimized is
measured in the least-squares sense, i.e. by the Frobenius norm, then we get
the Least Squares Method presented by Chu et al. [10]. The problem can be
written in the mathematical form (we present the normalized version, see [20]):

min

n∑
i=1

n∑
j=1

(
aij −

wi

wj

)2

s.t.

n∑
i=1

wi = 1, (1)

wi > 0, i = 1, . . . , n.
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Since the n×n matrices in the form of columnwise ordering can also be consid-
ered as n2-dimensional vectors, (say, by stacking the columns over each other),
problem (1) determines a consistent PC matrix closest to A in the sense of the
Euclidean norm. Unfortunately, problem (1) may be a difficult nonconvex opti-
mization problem with several possible local optima and with possible multiple
isolated global optimal solutions [24, 25].

Some authors state that problem (1) has no special tractable form and is
difficult to solve [10, 21, 31, 11]. In order to elude the difficulties caused by
the nonconvexity of (1), several other, more easily solvable problem forms are
proposed to derive priority weights from an inconsistent pairwise comparison
matrix. The Weighted Least Squares Method [10, 3] in the form of

min

n∑
i=1

n∑
j=1

(aijwj − wi)
2

s.t.

n∑
i=1

wi = 1, (2)

wi > 0, i = 1, . . . , n

applies a convex quadratic optimization problem whose unique optimal solution
is obtainable by solving a set of linear equations. The Logarithmic Least Squares
Method [16, 13] in the form

min

n∑
i=1

∑
i<j

[
log aij − log

(
wi

wj

)]2

s.t.

n∏
i=1

wi = 1, (3)

wi > 0, i = 1, . . . , n

is (because of constraints being linearizable) a simple optimization problem
whose unique solution is the geometric mean of the rows of matrix A. For
further approaches, see [5, 17, 20] and the references therein. However, we
have to emphasize that the main purpose of many (if not most) optimization
approaches was to exclude the difficulties caused by the possible nonconvexity
of problem (1). It was usually done by sacrificing the natural approach of the
Euclidean distance minimization.

As with many other real-life situations, there is no possibility to decide which
solution is the best without a clear objective function. For example, a “Formula
One” car is not the best vehicle for a family with five children but it may be
hard to win a Grand Prix race with a family van. In fact, pairwise comparisons
could be used for solving the dilemma of which approximation solution is the
best for PC (and for the family transportation problem).

The distance minimization approach (1) is so natural that one may wonder
why it was only recently revived in [5]. The considerable computational com-
plexity (100 hours CPU time for n = 8) and the possibility of having multiple

5



solutions (and/or multiple local minima) may be the reasonable explanation for
not becoming popular in the past. Problem (1) has recently been solved in [1]
by reducing 100 hours of CPU (or more likely, 150 days of the CPU time) to
milliseconds. It was asserted in [4, 24, 25] that the multiple solutions are far
enough from the ones that appear in the real-life situations. However, it appears
that these assertions are mostly based on anecdotal evidence. More (numerical
and/or analytical) research to elucidate this point would be helpful.

As proved by Fülöp [20], the necessary condition for the multiple solutions
to appear is that the elements of the matrix A are large enough. In [20], using
the classic logarithmic transformation

ti = logwi, i = 1, . . . , n,

and the univariate function

fa(t) =
(
et − a

)2
+
(
e−t − 1/a

)2
(4)

depending on the real parameter a, problem (1) can be transformed into the
equivalent form

min
n−1∑
i=1

fain(ti) +
n−2∑
i=1

n−1∑
j=i+1

faij (tij)

s.t. ti − tj − tij = 0, i = 1, . . . , n− 2, j = i+ 1, . . . , n− 1.

(5)

It was also proved in [20], there exists an a0 > 1 such that for any a > 0 the
univariate function fa of (4) is strictly convex if and only if 1/a0 ≤ a ≤ a0.
Consequently, in the case when the condition 1/a0 ≤ aij ≤ a0 is fulfilled for
all i, j, then (1) can be transformed into the convex programming problem (5)
with a strictly convex objective function to be minimized (see [20], Proposition
2). In other words, problem (1) and the equivalent problem (5) have a unique
solution which can be found using standard local search methods. The above-

mentioned constant equals to a0 = ((123 + 55
√

(5))/2)1/4 =
√

1
2

(
11 + 5

√
5
)
≈

3.330191, which is a reasonable bound for many real-life problems. The above
a0 is not necessarily a strict threshold since its proof is based on the convexity of
univariate functions (see [20], Proposition 2, or see the Appendix of the present
paper for a compact low-tech argument) and it is conceivable that the exact
threshold for the sum of univariate functions is greater than a0. We know,
however, that this threshold must be less than a1 ≈ 3.6 since, as shown by
Bozóki [4], for any λ > a1 it is easy to construct a 3×3 PC matrix with λ as the
largest element and with multiple local minima. Finally, even if some elements
of a PC matrix are relatively large, it may still happen that (1) has a single
local minimum; a sample sufficient condition is given in Corollary 2 of [20].

A nonlinear programing solver (available in Excel and described in [1]) is
good enough if (1) has a single local minimum for a given a PC matrix A. Our
incentive for postulating a restricted ratio scale for pairwise comparisons comes
both from the guaranteed uniqueness in the interval determined in [20] and from
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demonstrably possible (by [4]) non-uniqueness outside of a just slightly larger
interval.

There have been several inconsistency indicators proposed. The distance-
based inconsistency (introduced in [26]) is the maximum over all triads {aik, akj , aij}
of elements of A (with all indices i, j, k distinct) of their inconsistency indicators
defined as:

min

(
|1− aij

aikakj
|, |1− aikakj

aij
|
)

Convergence of this inconsistency was finally provided in [27] (an erlier at-
tempt in [22] had a hole in the proof of Theorem 1). A modification of the
distance-based inconsistency was proposed in 2002 in [18]. Analysis of the
eigenvalue-based and distance-based inconsistencies was well presented in [6].
Paying no attention to what we really process to get the best approximation,
brings us what GIGO, the informal rule of “garbage in, garbage out”, so nicely
illustrates. This is why localizing the inconsistency and reducing it is so impor-
tant.

5 The scale size problem

As of today, the scale size problem for the PC method has not been properly
addressed. We postulate the use of a smaller rather than larger scale and more
research to validate it.

As mentioned earlier, an interesting property of PC matrices has been re-
cently found in [20]. Namely, (1) has a unique local (thus global) optimal solu-
tion and it can be easily obtained by local search techniques if 1/a0 ≤ aij ≤ a0
holds for all i, j = 1, . . . , n, where the value a0 is at least 3.330191 (but can
not be larger than a1 ≈ 3.6, see [4]). In our opinion, this finding has a funda-
mental importance for construction of any scale and we postulate the scale 1
to 3 (1/3 to 1 for inverses) should be carefully looked at before a larger scale
is considered. In the light of the property from [20], finding the solution of (1)
would be easier and faster. This fact should shift the research of pairwise com-
parisons back toward (1) for approximations of inconsistent PC matrices. This
is a starting point for the distance minimization approaches. It is worth to note
that PC method is for processing subjectivity expressed by quantitative data.
For purely quantitative data (reflecting objectively measurable even if possibly
uncertain quantities), there are usually more precise methods (e.g., equations,
systems of linear equations, PDEs just to name a few of them). In general, we
are better prepared for processing quantitative data (e.g., real numbers) than
for qualitative data.

A comparative scale is an ordinal or rank order scale that can also be referred
to as a non-metric scale. Respondents evaluate two or more objects at a time
and objects are directly compared with one to another as part of the measuring
process. In practice, using a moderate scale for expressing preferences makes
perfect sense. When we ask someone to express his/her preference on the 0 to
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100 scale, the natural tendency is to use numbers rounded to tens (e.g., 20, 40,
70,...) rather than by using finer numbers. In fact, there are situations, such as
being pregnant or not, with practically nothing between. The theory of scale
types was proposed by Stevens in [36]. He claimed that any measurement in sci-
ence was conducted using four different types of scales that he called “nominal”,
“ordinal”, “interval”, and “ratio”.

Measurement is defined as “the correlation of numbers with entities that are
not numbers” by the representational theory in [32]. In the additive conjoint
measurement (independently discovered by the economist Debreu in [15] and
by the mathematical psychologist Luce and statistician Tukey in [29]), numbers
are assigned based on correspondences or similarities between the structure
of number systems and the structure of qualitative systems. A property is
quantitative if such structural similarities can be established. It is a stronger
form of representational theory than of Stevens, where numbers need only be
assigned according to a rule. Information theory recognizes that all data are
inexact and statistical in nature. Hubbard in [23], characterizes measurement
as: “A set of observations that reduce uncertainty where the result is expressed
as a quantity.”

In practice, we begin a measurement with an initial guess as to the value
of a quantity, and then, by using various methods and instruments, try to
reduce the uncertainty in the value. The information theory view, unlike the
positivist representational theory, considers all measurements to be uncertain.
Instead of assigning one value, a range of values is assigned to a measurement.
This approach also implies that there is a continuum between estimation and
measurement.

The Rasch model for measurement seems to be the relevant to PC with the
decreased scale. He uses a logistic function (or logistic curve, the most common
sigmoid curve): P (t) = 1

1+e−t . Coincidentally, the exponential function was
used in [20] for his estimations of the upper bound of aij .

We mentioned that the phenomenon of the scale reduction appears implicitly
in the Logarithmic Least Squares Method [16, 13] as well. It is easy to see that
in problem (3), it is not the original PC matrix A which is approximated but
logA which consists of the entries log aij .

6 An example of a problem related to using two
scales

Let us look at two scales: 1 to 5 and 1 to 3:

Bigger scale 1 2 3 4 5
Smaller scale 1 1.5 2 2.5 3

The inconsistent pairwise comparisons table for the 1 to 5 scale generated by
the triad [3, 5, 3] is:
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1 3 5
1
3 1 3
1
5

1
3 1

The inconsistency of this table is computed by (min(|1− 5
3∗3 |, |1−

3∗3
5 |) as 4/9.

The triad [3, 5, 3] consists of the top scale value in the middle and the middle
scale value as the first and last values of the triad. Similarly, the inconsistent
pairwise comparisons table for the 1 to 3 scale generated by the triad [2, 3, 2] is:

1 2 3
1
2 1 2
1
3

1
2 1

The inconsistency of this table is computed by (min(|1− 3
2∗2 |, |1−

2∗2
3 |)) as 0.25.

The middle value in the triad [2, 3, 2] is the upper bound of the scale 1 to 3.
The other two values (2) are equal to the middle point value of the scale 1 to
3. The same goes for all values of the triad [3, 5, 3] on the scale 1 to 5 hence we
can see that they somehow correspond to each other yet the inconsistencies are
drastically different from each other and clearly unacceptable for the heuristic
assumed in [26] of 1

3 for the first table and acceptable for the second table.
Needless to say, there is no canonical mapping from the scale 1 to 5 to the scale
1 to 3. The table proposed above is admittedly ad hoc and we present it for
demonstration purposes only.

Evidently, more research is needed for this not so recent problem. In all
likelihood, it was mentioned for the first time in [28] in 1958. Most real-life
projects using the pairwise comparisons method are impossible to replicate or
compute for the new scale as the costs of such exercise would be substantial.
It may take some time before a project with a double scale is launched and
completed.

7 The power of the number three

The “use of three” for a comparison scale has a reflection in real life. Probably
the greatest support for the use of three as the upper limit for a scale comes
from the grammar. Our spoken and written language has evolved for thousands
of years and grammar is at the core of each modern language. In his 1946
textbook [8] (which also nicely describes the degree of comparisons as they may
be used in PC), Bullions defines comparisons of adjectives in as:

Adjectives denoting qualities or properties capable of increase,
and so of existing in different degrees, assume different forms to
express a greater or less degree of such quality or property in one
object compared with another, or with several others. These forms
are three, and are appropriately denominated the positive, compar-
ative, and superlative. Some object to the positive being called a
degree of comparison, because in its ordinary use it does not, like
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the comparative and superlative forms, necessarily involve compar-
ison. And they think it more philosophical to say, that the degrees
of comparison are only two, the comparative and superlative. This,
however, with the appearance of greater exactness is little else than
a change of words, and a change perhaps not for the better. If we
define a degree of comparison as a form of the adjective which nec-
essarily implies comparison, this change would be just, but this is
not what grammarians mean, when they say there are three degrees
of comparison. Their meaning is that there are three forms of the
adjective, each of which, when comparison is intended, expresses a
different degree of the quality or attribute in the things compared:
Thus, if we compare wood, stone, and iron, with regard to their
weight, we would say “wood is heavy, stone heavier, and iron is the
heaviest.”

Each of these forms of the adjective in this comparison expresses
a different degree of weight in the things compared, the positive
heavy expresses one degree, the comparative heavier, another, and
the superlative heaviest, a third, and of these the first is as essential
an element in the comparison as the second, or the third. Indeed
there never can be comparison without the statement of at least two
degrees, and of these the positive form of the adjective either ex-
pressed or implied, always expresses one. When we say “wisdom is
more precious than rubies,” two degrees of value are compared, the
one expressed by the comparative, “more precious,” the other neces-
sarily implied. The meaning is “rubies are precious, wisdom is more
precious.” Though, therefore, it is true, that the simple form of the
adjective does not always, nor even commonly denote comparison,
yet as it always does indicate one of the degrees compared whenever
comparison exists, it seems proper to rank it with the other forms, as
a degree of comparison. This involves no impropriety, it produces no
confusion, it leads to no error, it has a positive foundation in the na-
ture of comparison, and it furnishes an appropriate and convenient
appellation for this form of the adjective, by which to distinguish it
in speech from the other forms.

8 Conclusions and final remarks

Expressing subjective assessments with a high accuracy is really impossible,
therefore a small comparison scale is appropriate. For example, expressing our
pain on the scale of 1 to 100, or even 1 to 10, seems more difficult – and arguably
less meaningful – than on the scale of 1 to 3. In the past, the scale 1 to 9 was
proposed in [34] and 1 to 5 in [26]. In this study, we have demonstrated that the
use of the smaller 1 to 3 scale, rather than larger ones, has good mathematical
foundations.

More research needs to be conducted along the measurement theory lines of
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[36], but with emphasis on PC. In our opinion, playing endlessly with numbers
and symbols to find a precise solutions for inherently ill-defined problems should
be replaced by more research towards utilization of the choice theory in pairwise
comparisons. The presented strong mathematical evidence supports the use of a
more restricted scale. We would like to encourage other researchers to conduct
Monte Carlo simulations with the proposed scale and to compare the results
with those yielded by other approaches. In particular, it would be useful to
investigate more closely the relationship between the degree of inconsistency of
a PC matrix, the size of the scale and the possible existence of multiple local or
global optima for the Least Squares Method (cf. [4, 24, 25]).

The use of large scales (e.g., 1 to 10 in medicine for the pain level specification
routinely asked in all Canadian hospitals upon admitting an emergency patient
if he/she is still capable of talking) is a crown example of how important this
problem may be for the improvement of daily life. Making inferences on the basis
of meaningless numbers might have pushed other patients further in usually long
emergency lineups.

Although the theoretical basis for suggesting the scale 1 to 3 hinges on the

value of the constant a0 =
√

1
2

(
11 + 5

√
5
)
≈ 3.330191, the importance of which

was established in [20] in the context of pairwise comparisons, its applicability
to the universal subjective scale is a vital possibility worth further scientific
examination.
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[13] Crawford, G., Williams, C., A note on the analysis of subjective judgment
matrices. Journal of Mathematical Psychology. 29, 387–405, 1985.

[14] D’Apuzzo., L., Marcarelli G., Squillante., M., Generalized consistency and
intensity vectors for comparison matrices, International Journal of Intelli-
gent Systems 22(12), 1287–1300, 2007.

[15] Debreu, G., Topological methods in cardinal utility theory, in “Mathemat-
ical Methods in the Social Sciences,” Arrow, K.J., Karlin, S. and Suppes,
P. (eds.), Stanford University Press, 16–26, 1960.

[16] De Jong, P., A statistical approach to Saaty’s scaling method for priorities.
Journal of Mathematical Psychology, 28, 467–478, 1984.
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Appendix

After a change of variables to tj = logwj , j = 1, . . . , n, and a change in normal-
ization to

∏n
j=1 wj = 1, the problem (1) can be rewritten as

min{
∑
i<j

(
eti−tj − aij

)2
+
(
e−ti+tj − 1/aij

)2
: t1, . . . , tn ∈ R,

n∑
i=1

ti = 0} (6)

Our goal is to provide a streamlined version of the argument from [20] for
showing that if aij ’s are not “too large”, then this minimization problem has a
unique solution.

The existence part is easy: if the norm of t = (t1, . . . , tn) tends to ∞, then
– because of the constraint

∑n
i=1 ti = 0 – we must have both maxi ti → +∞

and minj tj → −∞, hence ti− tj →∞ for some i, j, which forces the objective
function to go to ∞. This allows to reduce the problem to a compact subset
of Rn, where existence of a minimum follows from continuity of the objective
function.

The uniqueness will follow if we show that the objective function in (6) –
denote it by Φ = Φ(t1, . . . , tn) – is globally convex, and strictly convex when
restricted to the hyperplane given by the constraint.

For a > 0 and x ∈ R, we set fa(x) := (ex − a)
2

+ (e−x − 1/a)
2
, then Φ =∑

i<j faij
(ti − tj). Our next goal is to show that if a0 :=

√
1
2

(
11 + 5

√
5
)
≈

3.33019 and a ∈ [1/a0, a0], then fa is convex. Since a composition of a linear
function with a convex function (in that order) is convex, it follows that if
maxij aij ≤ a0, then each term faij

(ti − tj) is convex, and so is Φ, the entire
sum.

To that end, we calculate the second derivative of fa and obtain

f ′′a (x) = −2
(
a2ex − 2a(e−2x + e2x) + e−x

)
/a.

Roughly, fa will be convex whenever the expression in the outer parentheses
is negative (note that a > 0 by hypothesis). Given that the expression is a
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quadratic function in a, this will happen when a is between the roots of this
function, which are easily calculated to be ϕ(w) = (1+w4−

√
1 + w4 + w8 )/w3

and ψ(w) = (1 + w4 +
√

1 + w4 + w8 )/w3, where w = ex > 0. The graphs of
the functions a = ϕ(w) and a = ψ(w) can be easily rendered (see Fig. 1). In

1 2 3
w

1

2

3

4

5

a

Figure 1: The graphs of a = ϕ(w), a = ψ(w) and a = 3. The shaded region
ϕ(w) ≤ a ≤ ψ(w) corresponds to “regions of convexity” of the functions fa.

particular, it is apparent that there is a nontrivial range of values of a, for which
ϕ(w) < a < ψ(w) for all w > 0, which implies that the corresponding fa’s are
strictly convex on their entire domain −∞ < x < ∞. In view of symmetries
of the problem, that range must be of the form 1/a0 < a < a0, and it is clear
from the picture that a0 > 3. For the extreme values a = a0 and a = 1/a0, the
second derivative of fa will be strictly positive except at one point, which still
implies strict convexity of fa.

It is not-too-difficult to obtain more precise results, both numerically and
analytically. For the latter, we check directly (or deduce from symmetries of fa
or f ′′a ) that ϕ(1/w) = 1/ψ(w); this confirms that a0 := inf ψ(w) = 1/ supϕ(w),
and so it is enough to determine a0. To apply the first derivative test to ψ, we
calculate

w4 ψ′(w) =
−3− w4 + w8

√
1 + w4 + w8

+ w4 − 3.

While this looks slightly intimidating, it is not hard to check that the only

positive zero of ψ′ is w0 =

√
1
2 +

√
5
2 ≈ 1.27202, which also shows rigorously

that ψ decreases on (0, w0) and increases on (w0,∞) (both strictly). Conse-

quently, a0 = ψ(w0) =
√

1
2

(
11 + 5

√
5
)
, as asserted. All these calculations can

be done by hand, or – much faster – using a computer algebra system such as
Mathematica, Maple, or Maxima.

The above argument proves global convexity of Φ, it remains to show strict
convexity on the hyperplane H = {t = (ti)

n
i=1 :

∑n
i=1 ti = 0}, which is
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equivalent to strict convexity of the restriction to any line contained in H.
Given such line λ → t + λu (with t, u ∈ H, u 6= 0 and λ ∈ R), consider any
pair of coordinates i, j such that ui− uj 6= 0 and the corresponding term in the
sum defining Φ, namely faij

(
(ti − tj) + λ(ui − uj)

)
=: φ(λ). Clearly φ′′(λ) =

(ui − uj)2f ′′aij

(
(ti − tj) + λ(ui − uj)

)
≥ 0, and it can vanish for at most one

value of λ (and only if aij = a0 or aij = 1/a0). Thus φ is strictly convex,
and since all the other terms appearing in Φ are convex, it follows that the
restriction of Φ to the line, and hence to H, are strictly convex. It is also clear
that if maxi,j aij < a0, the above argument yields a non-trivial lower bound on
the positive-definiteness of the Hessian of the restriction of Φ to H (this issue
has been elaborated upon in [20]), which in particular has consequences for the
speed of convergence of algorithms solving (6).

16


	1 Introduction
	2 Pairwise comparisons preliminaries
	3 The pairwise comparisons scale problem
	4 In search of the nearest consistent pairwise comparisons matrix
	5 The scale size problem
	6 An example of a problem related to using two scales
	7 The power of the number three
	8 Conclusions and final remarks

