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Abstract
Soft computing models are capable of identifying patterns that can characterize a ‘typical day’ in terms of its
meteorological conditions. This multidisciplinary study examines data on six meteorological parameters gathered
in a Spanish city. Data on these and other variables were collected for over 6 months, in 2007, from a pollution
measurement station that forms part of a network of similar stations in the Spanish Autonomous Region of Castile–
Leon. A comparison of the meteorological data allows relationships to be established between the meteorological
variables and the days of the year. One of the main contributions of this study is the selection of appropriate data
processing techniques, in order to identify typical days by analysing meteorological variables and aerosol pollutants.
Two case studies are analysed in an attempt to identify a typical day in summer and in autumn.
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1 Introduction

In recent years, our knowledge of atmospheric pollution and our understanding of its effects
have advanced greatly. It has now been accepted for some years that air pollution not only
represents a health risk, but that it also reduces, e.g., food production and vegetative growth
due to its effects on photosynthesis. Other serious consequences may be mentioned, such as
acid rain, corrosion, climate change and global warming. Thus, all efforts that are directed
towards studying these phenomena may improve our understanding and help us to prevent
the serious problematic nature of atmospheric pollution.
Finding solutions to current environmental problems constitutes a fundamental step
towards life with a sense of sustainability. Ensuring that we have a clean atmosphere is clearly
an important factor, given its impact on the dynamics of the biosphere. An understanding
of the mechanisms by which pollutants are emitted into the air is therefore indispensable, as
is the knowledge of their atmospheric life cycles, combination reactions and removal paths,
among other points, bearing in mind that the approaches to the problem vary according to
their spatial and temporal contexts.
Systematic measurements in Spain, which are usually taken within large cities, are fun-
damental due to the health risks caused by high levels of atmospheric pollution. Recent
trends point to the benefits of continuing to extend the network of atmospheric pollution
measurement stations. European legislation, as well as setting certain target values with
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regard to ozone levels will, in the long term, establish how and where such pollutants should
be measured.
The basis of this study is the application of a series of statistical and soft computing models
to identify what may be called ‘Typical Days’ in terms of previously selected meteorological
variables.
The rest of this study is organized as follows. Section 2 presents the statistical and soft
computing methods applied throughout this research. Section 3 details the various case
studies and Section 4 describes the experiments and results. Finally, Section 5 sets out the
conclusions and future lines of work.

2 Soft computing and statistical models

Several statistical and soft computing models are used in this study to analyse data taken
from cases studies on meteorological parameters and aerosol pollutants, in order to assess
their performance.
First, a review of principal component analysis (PCA) [1] is presented, followed by an

outline of the theory behind exploratory projection pursuit (EPP) [2, 3]. A description is
then made of cooperative maximum likelihood Hebbian learning (CMLHL) [4, 5] and the
way it can be derived from a PCA neural version is outlined—i.e. the negative feedback
network [6]. Finally, local linear embedding (LLE) [7] is reviewed.

2.1 PCA
PCA [1] gives the best linear compression of the data in terms of least mean square error
and can be implemented by several artificial neural networks [8, 9]. The basic PCA net-
work [10] applied in this study is described by the following three equations ((1)–(3)): an
N -dimensional input vector at time t, x(t), and an M -dimensional output vector, y, with
Wij being the weight linking input j to output i and η being the learning rate. Its activation
and learning may be described as follows:
Feedforward step:

yi=
N∑
j=1
Wijxj ,∀i (1)

Feedback step:

ej=xj−
M∑
i=1
Wijyi (2)

Change weights:

�Wij=ηejyi (3)

This algorithm is equivalent to Oja’s Subspace Algorithm [9]:

�Wij=ηejyi=η(xj−
∑
k

Wkjyk)yi (4)
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EPP [2, 3] projects the data onto a low-dimensional subspace that allows its structure to
be examined by eye. This is done by means of an index that measures the ‘interestingness’ of
a given projection, the data for which is then represented by projections that maximize the
most ‘interesting’ vectors. ‘Interesting’ structure is usually defined with respect to the fact
that most projections of high-dimensional data onto arbitrary lines through most multidi-
mensional data give almost Gaussian distributions [2, 11]. Therefore, to identify ‘interesting’
features in data, we should look for those directions onto which the data projections are as
far from the Gaussian as possible.

2.2 ε-Insensitive Hebbian learning
It has been shown [12] that the non-linear PCA rule:

�Wij=η

(
xj f (yi)−f (yi)

∑
k

Wkj f (yk)

)
(5)

can be derived as an approximation of the best non-linear compression of the data. Initially,
therefore, there is a cost function:

J (W )=1TE
{(
x−Wf (WTx

))2} (6)

which may be minimized to give, (5) [12] using the residual in the linear version of (6) to
define a cost function of the residual:

J =J1(e)=J (x−Wy) (7)

where f1=||.||2 is the (squared) Euclidean norm in the standard linear or non-linear PCA
rule. With this choice of f1(), the cost function is minimized with respect to any set of
samples from the data set on the assumption that the residuals are chosen independently
and identically distributed from a standard Gaussian distribution. The minimization of J is
equivalent to minimizing the negative log probability of the residual, if e is Gaussian.

Let p(e)= 1
Z
exp(−e2) (8)

then, p will denote a general cost function associated with this network:

J =−logp(e)=(e)2+K (9)

where K is a constant. A gradient descent is performed on J :

�W ∝− δJ
δW

= δJ
δe

δe
δW

≈y(2e)T (10)

in which a less important term has been discarded [2].
In general [10], the minimization of such a cost function may be understood to increase
the residual probability depending on the probability density function (pdf) of the residuals.
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Thus, if the pdf of the residuals is known, this knowledge could be used to determine the
optimal cost function; a possibility that was investigated by [14] using the (one-dimensional)
function:

p(e)= 1
2+ε

exp(−|e|ε) (11)

where:

|e|ε =
{
o ∀|e|<ε

|e|−ε otherwise
(12)

with ε being a small scalar ≥0.
With this model of the residual pdf, the optimal f1() function is the ε-insensitive cost

function:

f1(e)=|e|ε (13)

In the case of the negative feedback network, the learning rule is shown:

�W ∝− δJ
δW

=−δf1(e)
δe

δe
δW

(14)

which gives:

�Wij=
{
o if

∣∣ej ∣∣<ε

otherwise ηy(sign(e))
(15)

2.3 CMLHL
CMLHL [4, 5] is an extended version of maximum likelihood Hebbian learning (MLHL)
[4, 15], adding lateral connections that have been derived from the rectified Gaussian dis-
tribution [12].
Consider an N -dimensional input vector (x), an M -dimensional output vector (y) and a

weight matrix W , where the element Wij represents the relationship between input xj and
output yi , then as is shown in [5, 8], the CMLHL can be carried out as a four-step procedure:
Feedforward step, outputs are calculated:

yi=
N∑
j=1
Wijxj ,∀i (16)

Lateral activation passing step:

yi (t+1)= [yi(t)+τ(b−Ay)]+ (17)

Feedback step:

ej=xj−
M∑
i=1
Wijyi,∀j (18)
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Weights update step:

�Wij=η.yi .sign(ej)|ej |p−1 (19)

Where t is time, [ ]+ is necessary to ensure that the y-values remain in the positive
quadrant, η is the learning rate, τ is the ‘strength’ of the lateral connections, b the bias
parameter, p a parameter related to the energy function, and A is a symmetric matrix used
to modify the response to the data.

2.4 LLE
LLE [7, 13] is a recently proposed unsupervised procedure for non-linear mapping of high-
dimensional data onto a lower dimensional space. In contrast to ISOMAP [16, 17], it attempts
to preserve solely local properties of the data, making LLE less vulnerable to short circuiting
than ISOMAP. One virtue of LLE is that it avoids the need to solve large dynamic program-
ming problems. LLE also tends to accumulate very sparse matrices, whose structure can be
exploited to save time and storage space. The LLE [18] algorithm is based on simple geomet-
ric intuitions. Suppose the data consist of N real-valued vectors Xi , each of dimensionality
D, sampled from some smooth underlying manifold. Provided there is sufficient data (such
that the manifold is well sampled), it is expected that each data point and its respective
neighbours will lie on or close to a locally linear patch of the manifold. The method can be
defined as follows:

(1) Compute the neighbours of each vector, Xi .
(2) Compute the weights Wij that best reconstruct each vector Xi from its neighbours,
minimizing the cost in (20) by constrained linear fits.

ε(W )=
∑
i

∣∣∣∣∣∣xi−
∑
j

Wijxj

∣∣∣∣∣∣
2

(20)

(3) Finally, find a point yi in a lower dimensional space to minimize (21)

�(Y )=
∑
i

∣∣∣∣∣∣yi−
∑
j

Wijyj

∣∣∣∣∣∣
2

(21)

This cost function in (21)—like the previous one in (20)—is based on locally linear recon-
struction errors, but here the weights Wij are fixed while optimizing the coordinate yi . The
embedding cost in (20) defines a quadratic form in the vectors yi . Subject to constraints
that make the problem well posed, it can be minimized by solving a sparse NxN eigenvec-
tor problem, whose bottom d non-zero eigenvectors provide an ordered set of orthogonal
coordinates centered on the origin.
Low-dimensional embedding in the dimensional embedding space is computed to best
preserve the local geometry represented by the reconstruction weights.
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3 Case studies: identification of a ‘Typical Day’ in summer and
in autumn seasons

This interdisciplinary study analyses the evolution of different meteorological parameters
using the records of a meteorological measurement station (made available by the Depart-
ment of the Environment – Directorate of Environmental Quality of the Regional Govern-
ment of the Spanish Autonomous Region of Castile–Leon) [19]. The methods applied in the
experimental process are based on data collected at the aforementioned station that is sit-
uated in an urban area of the city of Burgos. The study was conducted over approximately
half a year in 2007.
Meteorological parameters influence atmospheric pollution levels in various ways. For
example, two parameters are very representative of that influence on levels of ozone pollu-
tion [20]: solar radiation that directly affects photochemical reactions taking place in the
atmosphere; and temperature, because all chemical reactions depend to some extent on tem-
perature and need favourable levels for the reaction to take place. In this study, the following
variables have been analysed: wind direction (degrees), wind speed (m/s), dry temperature
(◦C), relative humidity (%HR), atmospheric pressure (mbar) and solar radiation (W/m2).
The general characteristics of the geographical zone where the measurement station is
placed for this study are as follows: Burgos, a city in north-western Spain with a population of
approximately 170,000 inhabitants and a total municipal area of ∼107 km2. The geographic
coordinates of the city of Burgos are 854 masl (meters above sea level), latitude (N) 42◦20’
and longitude (W) 3◦42’. The measurement station is an urban station within the city.
The main purpose of this study is to examine the performance of several statistical and soft
computing methods when analysing the above-mentioned meteorological variables, in order
to identify the existence of ‘typical’ meteorological days or at least some kind of associated
pattern.

4 Experiments and results

This study, which forms part of a more ambitious project, analysed a data set containing
meteorological and aerosol pollutant parameters recorded at 15-min intervals: a daily total
of 96 records for all data in 2007, referring solely to six variables. All data were previously
normalized for the study. The process of selecting a ‘typical day’ was as follows: initially 1
day in each week was selected randomly for the study, for which the three soft computing
models described in Section 2 were applied. The graphical results obtained for every day
were analysed and compared with the rest of the days in the data set. For each model, the
Typical Day is determined as one which fits a similar pattern in a high percentage of the
cases, at all times >70%.

4.1 Analysis of the behaviour of variables
In the first place, the behaviour of all the meteorological variables in relation to the 15-min
intervals data acquisition was studied. Figure 1a shows the temporal evolution of the nor-
malized variables for a Typical Day in summer and Figure 1b for a Typical Day in autumn.
Figure 1a shows the great variability of meteorological conditions in Burgos, such as solar
radiation and wind speed. On a Typical Day in summer, it can be seen how solar radiation
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FIG. 1. Temporal evolution of the input variable values for a Typical Day in summer (a) and
for a Typical Day in autumn (b). Each day is described by 96 records.

repeatedly registers high levels throughout long periods of the day. Wind fluctuates around
an average value in direction and intensity.
Figure 1b shows that the values of all variables, except for solar radiation, do not fluctuate

so much throughout a Typical Day in autumn. Solar radiation is a very significant variable,
although it is not as present as on a Typical Day in summer (Figure 1a). It starts increasing
earlier in the morning in summer than it does in autumn and it decreases earlier in the
afternoon in autumn.

4.2 Analysis of results in the case of study

4.2.1 First case study: a Typical Day in summer
The graphical results obtained in this study for a Typical Day in summer are presented
(Figure 2) and analysed as follows.
A Typical Day in Burgos, summer 2007, according to the results obtained by PCA once
applied to the meteorological variables is shown in Figure 2a. Two data clusters are iden-
tified. Cluster C2 is related to samples with the highest values, which correspond to the
records taken around midday and the early afternoon. Those moments correspond to high
levels of solar radiation and temperature. Cluster C1 is related to samples with the lowest
values, which correspond to the earliest as well as to the latest records in the day. Cluster
C2 contains fewer samples than C1. These are the general characteristics of a Typical Day
in summer: variations between the different Typical Days are explained by the lowest values
of the most representative variables—temperature and solar radiation—for the day, which
are found among the earliest or the latest records of the day. In general, fewer samples reg-
ister high levels of solar radiation in comparison to samples that register low levels of solar
radiation.
Figure 2b shows the results obtained by applying LLE. In this case, the results are really

similar to those in Figure 2a, although they improved the results obtained by PCA method,
simply because it is easier to analyse the samples contained into the clusters.
Figure 2c shows the results obtained by applying CMLHL. This model is able to improve

the response of PCA, (Figure 2a) and LLE, (Figure 2b) as CMLHL is able to identify three
clusters instead of two, achieving a sparser representation. Cluster C1 obtained by PCA and
LLE methods contains the same samples as cluster C1 in CMLHL, but this time the cluster
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FIG. 2. Results of the three models applied to the problem of identifying a Typical Day in
summer. (a) PCA—a Typical Day in summer, (b) LLE—a Typical Day in summer and (c)
CMLHL—a Typical Day in summer.

is more spread out, helping to analyse the internal structure in an easier way. The samples
in cluster C2, (Figure 2a and b), in the case of the CMLH model (Figure 2c), are located
in Clusters C2a and C2b. Samples in cluster C2a correspond to the periods of the day with
the highest levels of solar radiation. Samples in C2b correspond to moments with high solar
radiation, but in the late afternoon.
After applying the three methods, it can be concluded that they all are able to identify a
certain degree of internal structure. They are all able to identify at least two clear clusters:
cluster C1, which is related to records of day with low levels of solar radiation and low
temperatures; and C2, with a lower number of samples, which groups the moments of the
day with high solar radiation and temperature. Those records correspond to midday and
afternoon. Nevertheless, CMLHL is able to provide more information as it provides a new
cluster of samples and a finer response.

4.2.2 Second case study: a Typical Day in autumn
The graphical results obtained in this study (Figure 3) for the Typical Day in autumn are
presented and analysed as follows.
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FIG. 3. Results of the four statistical and soft computing models applied to the problem
of identifying a Typical Day in autumn. (a) PCA—a Typical Day in autumn, (b) LLE—a
Typical Day in autumn and (c) CMLHL—a Typical Day in autumn.

Figure 3a shows the results of applying PCA to identify a Typical Day in autumn, which
highlight three clusters (C1, C2 and C3). In this case, C1 has much more samples than C2 and
C3. Cluster C2 once again corresponds to daily records with high levels of temperature and
solar radiation, in the early afternoon, but in this case there are few samples with high solar
radiation values. Cluster C3 groups together the highest records related to solar radiation
throughout the day, around midday. This is a time of the day when solar radiation is at its
highest values in comparison with the rest of the day.
Figure 3b shows the results of applying LLE. Three clusters (C1, C2 and C3) are identified
once again. Clusters C1 and C2 do not contain the same samples as those found when
applying PCA (Figure 3a). This is due to the fact that C1 contains samples that registered
high levels of solar radiation throughout the day.
Finally, Figure 3c shows the results obtained by CMLHL, which are somehow quite
similar to the results obtained by the other two previous models, PCA (Figure 3a) or LLE
(Figure 3b). Again the same three clusters have been identified. Unlike the other models,
in this case it is easier to analyse the samples contained in C2.
After applying the three models, it may be concluded that the methods provide very
similar results allowing a Typical Day in autumn in the city of Burgos to be easily identified.
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Nevertheless, the best results are obtained by applying CMLHL, as this model once again
provides a sparser representation.

5 Conclusions and future works

The validity of different statistical and soft computing models used to identify a ‘Typical
Day’ in summer and in autumn on the basis of the meteorological data that has been
examined in this study.
After applying three different methods to these two case studies, a clear internal structure
has been identified. PCA provides an approximation to the internal structure of the data,
but the other two soft computing methods are able to provide an improved response. Both
methods, LLE and CMLHL, yielded reasonable results for the identification of a Typical
Day. CMLHL is the most sensitive method, capable of maximizing the variation in the
information to obtain a major and clearer grouping of the samples forming the different
clusters, which helps to achieve a better analysis of the results.
The ‘Typical Day’ in both summer and autumn, in the city of Burgos, resemble each other
with regard to the importance of solar radiation in the graph that determines them. What
differs between these two typical days is the major variation in environmental conditions in
autumn and the difficulty of identifying a ‘Typical Day’ in that season.
Future work will be based on the analysis of more complex data sets that combine pollution
and meteorological data, using soft computing methods, in order to identify the relationship
between pollution and meteorological conditions throughout the week and over different
time periods. Different soft computing models will also be applied such as Self-Organizing
Maps or Spectral Clustering.

Funding

This research has received partial support from the JCyL (projects BU006A08 and
BU035A08), and from the Spanish Ministry of Education and Innovation (projects CIT-
020000-2008-2 and CIT-020000-2009-12). The authors would also like to thank Grupo
Antolin Ingenieria, S.A., which supported this research through the MAGNO2008 - 1028.-
CENIT Project funded by the Spanish Ministry.

References
[1] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Education Psychology, 24, 417–444, 1933.

[2] A. Hyvärinen. Complexity pursuit: separating interesting components from time series.
Neural Computation, 13, 898–883, 2001.

[3] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2002.
[4] E. Corchado and C. Fyfe. Connectionist techniques for the identification and suppres-
sion of interfering underlying factors. International Journal of Pattern Recognition and
Artificial Intelligence, 17, 1447–1466, 2003.

[5] E. Corchado, Y. Han, and C. Fyfe. Structuring global responses of local filters using
lateral connections. Journal of Experimental & Theoretical Artificial Intelligence, 15,
473–487, 2003.



[12:23 1/4/2011 jzq035.tex] Paper Size: a4 paper Job: JIGPAL Page: 383 373–383

Soft computing models to identify typical meteorological days 383

[6] C. Fyfe. PCA properties of interneurons. In From Neurobiology to Real World Comput-
ing, Proceedings of International Conference on Artificial Neural Networks, ICAAN 93,
pp. 183–188. Springer.

[7] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290, 2323–2326, 2000.

[8] E. Oja, H. Ogawa, and J. Wangviwattana. Principal components analysis by homoge-
neous neural networks, part 1, the weighted Subspace Criterion. IEICE Transaction on
Information and Systems, E75D, 375–366, 1992.

[9] E. Oja. Neural networks, principal components and subspaces. International Journal of
Neural Systems, 1, 68–61, 1989.

[10] C. Fyfe and R. Baddeley. Non-linear data structure extraction using simple Hebbian
networks. Biological Cybernetics, 72, 541–533, 1995.

[11] S. Seung, N. D. Socci, and D. Lee. The rectified Gaussian distribution. Advances in
Neural Information Processing Systems, 10, 350–356, 1998.

[12] P. L. Lai, D. Charles and C. Fyfe. Seeking independence using biologically inspired
artificial neural networks. In Developments in Artificial Neural Network Theory: Inde-
pendent Component Analysis and Blind Source Separation, M. A. Girolami, ed. Springer,
2000.

[13] H. Chang and D.Y. Yeung. Robust locally linear embedding. Pattern Recognition, 39,
1053–1065, 2006.

[14] C. Fyfe and D. MacDonald. ε-Insensitive Hebbian learning. Neurocomputing, 47, 35–57,
2002.

[15] E. Corchado, D. MacDonald, and C. Fyfe. Maximum and minimum likelihood Hebbian
learning for exploratory projection pursuit. Data Mining and Knowledge Discovery, 8,
203–225, 2004.

[16] J. A. Lee, A. Lendasse, and M. Verleysen. Nonlinear projection with curvilinear dis-
tances: ISOMAP versus curvilinear distance analysis. Neurocomputing, 57, 49–76, 2004.

[17] O. Samko, A. D. Marshall, and P. L. Rosin. Selection of the optimal parameter value
for the Isomap algorithm. Pattern Recognition Letters, 27, 968–979, 2006.

[18] P. Perona and M. Polito. Grouping and dimensionality reduction by locally linear
embedding. In Advances in Neural Information Processing Systems 14, T. G. Dietterich,
S. Becker, and Z. Ghahramani, eds, pp. 1255–1262. MIT Press, 2002.

[19] V. Tricio, R. Viloria, and A. Minguito. Evolución del ozono en Burgos y provincia
a partir de los datos de la red de medida de contaminación atmosférica. Los retos del
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