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Abstract

We discuss the difference between optimality and universality. The
sequence of measures of a universal test is well studied. To analyze the
sequence of measures of an optimal Martin-Lof test, we introduce uni-
form Solovay reducibility. Solovay reducibility is a measure of relative
randomness between two reals. In contrast uniform Solovay reducibility
is a measure of relative randomness between two sequences of reals. Fi-
nally we prove that a sequence is uniform Solovay complete iff it is the
sequence of measures of an optimal Martin-Lof test.
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1 Introduction

Martin-Lof randomness [11] is regarded as the most natural randomness notion.
A universal Martin-Lof test can be a collection of open sets {U,, : n € w} with
U, D Upt1 and p(U,) < 27™. A sequence X is random if it passes the test,
meaning that X ¢ (1), Up. Thus a non-random sequence A will leave the test
at some point. It is natural to associate a measure of non-randomness to be
the least n where A & U,,. This was called the critical level by Martin-Lo6f and
the randomness deficiency by Levin [8]. From a statistical point of view we are
interested in the size of the set of sequences whose randomness deficiency are
larger than a constant. Note that it is the sequence of measures of the test.
There is a notion of universal ML-test meaning that if X passes the test then
it will be random, and a notion of optimal test, meaning that the randomness
deficiency of the test is within a constant of any other test. For example, the
standard universal is constructed by U, = U, U5, .41 where {US : n € w} is
an effective enumeration of all ML-tests. This will be universal. It is not clear
what the difference (if any) is between universality and optimality, and the main
idea of the present paper is to explore the difference between these two notions.
The sequence of measures of a universal ML-test is studied by Kucera and
Slaman [7] and Merkle, Mihailovié¢ and Slaman [12], which use Solovay reducibil-
ity. To give a version of an optimal ML-test, we introduce uniform Solovay
reducibility. Solovay reducibility is a measure of relative randomness between



two reals. In contrast uniform Solovay reducibility is a measure of relative ran-
domness between two sequences of reals. We shall show that there is a uniform
Solovay complete sequence. Finally we prove that the sequence of measures of an
optimal ML-test can be characterized by a uniform Solovay complete sequence,
which is the main result of this paper.

In Section 2 we give some definitions and results related with ML-randomness.
In Section 3 we prove some results on randomness deficiency and an optimal
ML-test. In Section 4 we characterize the sequence of measures of an optimal
ML-test by introducing uniform Solovay reducibility.

2 Preliminaries

2.1 Notations

We fix notations used in this paper and recall some basic definitions and results.
For a more complete introduction, see Downey and Hirschfeldt [4] or Nies [13].

A set of natural numbers is computable if its characteristic function is com-
putable. A set of natural numbers is c.e. if it is the domain of a partial com-
putable function. A sequence of sets A,, C N is uniformly c.e. if {{n,m) : m €
Ap}is cee.

Let 2<% be the set of all finite binary strings. A natural number n is identified
with a string o such that 1o is the binary representation of n 4+ 1. Let 2“ be
Cantor space of binary sequences of {0, 1}. We identify a set of natural numbers
with a binary sequence. We use A to denote the empty string. For o € 2<%,
|o| denotes the length of . We write op to mean the concatenation of o and p.
We write o < 7 to mean that o is a prefix of 7, that is (3p)op = 7. Here 7 can
be infinite. Let [o] = {Z € 2% : ¢ < Z} be the class of infinite binary sequences
extending 0. We assume that 2 is equipped with the topology generated by
the base {[o] : ¢ € 2<“}. For A C 2<% we let [A] = J,c4[c]. An open set A
is c.e. if the corresponding set of strings {c : [o] C A} is a c.e. set.

We also identify real numbers with their inifinite binary expansion. Then
elements of Cantor space 2 are sometimes called reals. We say that a real « is
left-c.e. or c.e. if {g€Q : g <a}isce. A function f:2<% = R is c.e. if the
sequence {{q,0) : ¢ < f(0)} is c.e. We denote the uniform or Lebesgue measure
by u, that is generated by u([o]) = 27171

2.2 ML-randomness

First we recall the definition of Martin-Lof randomness and related results.

Definition 2.1 (Martin-Lof [11]). A Martin-Lof test (or ML-test) is a sequence
of uniformly c.e. open sets {Up} such that u(U,) < 27™. A real o passes a ML-
test {Uyn} if o & (), Un. A real o is ML-random or 1-random if v passes all
ML-tests.

Martin-Lof randomness is also characterized by complexity. A machine is a
partial computable function. There is a universal machine, i.e., a machine V'



such that for each M there is a string 7 € 2<% for which (Vo)V (7o) = M (o) or
both V(7o) and M(7) diverge. The plain Kolmogorov complexity C of a string
is defined as C'(0) = min{r : V(7) = o} where V is a universal machine. A
set X is prefiz-free if whenever 0,7 € X, then o is not a proper prefix of 7. A
machine M : 2<% — 2<¥ is called a prefiz-free machine if dom(M) is prefix-
free. There is a universal prefix-free machine U. Then prefiz-free Kolmogorov
complexity K of a string o is defined as K (o) = min{r : U(7) =0o}.

Proposition 2.2. A real « is ML-random iff (3d)(Vn)K(a|n) > n —d.

Another characterization is given by martingales. A function d : 2<% — R29
is a martingale if for all o, 2d(c) = d(00) + d(o1). It is a supermartingale if for
all o, 2d(0) > d(00) + d(cl). A (super)martingale d succeeds on a sequence o
if limsup,, d(a | n) = occ.

Proposition 2.3 (Schnorr [14]). A real o is ML-random iff no c.e. martingale
succeeds on alpha iff no c.e. supermartingale succeeds on .

By these equivalences Martin-Lof randomness is regarded as a natural notion
of randomness.

2.3 Universality and Optimality

In most recent papers in algorithmic randomness, we usually use the following
definition for universality.

Definition 2.4. A ML-test {U,} is universal if, for any Martin-Léf test {V,,},
N, Ve €N, Un-

In the original Martin-Lof’s paper, however, he defined a “universal” ML-
test in a different way. To distinguish them we change the terminology.

Definition 2.5 (Martin-Lof [11])). A ML-test {U,} is optimal if, for any ML-
test {V,,}, there exists ¢ such that Vi1 C Uy, for all n.

The terminology “optimal” comes from the tradition for martingales. Op-
timality is a stronger notion than universality. As is well-known, such a test
exists.

Proposition 2.6 (Martin-Lof [11]). There exists an optimal Martin-Ldf test.
Hence there exists an universal Martin-Lof test.

2.4 Randomness deficiency

Martin-Lof also introduced the critical level, the smallest level of significance on
which the hypothesis is rejected. Levin [8] called it randomness deficiency.

Definition 2.7 (Martin-Lof [11]). Let U = {U,} be a ML-test. We define

ty(o) =sup{n : [o] CU,}



for o € 2<% and
ty(a) =sup{n : a€U,}

for a € 2%.

Intuitively randomness deficiency indicates how much regularity it contains.
For simplicity let Uy = [A] = 2“. Then the following are immediate.

Proposition 2.8 (Martin-Lof [11]). (i) 0 <ty(o) <|o|.

(ii) ty(o) < ty(r) for all o < 1.

(i) tu(A) = sup,, ty (A [ n).

(iv) If A is ML-random, then ty(A) < co.

(v) If{Uyn} is an optimal ML-test then, for any ML-test V. = {V,}, there
exists ¢ such that ty (o) >ty (o) — ¢ for all 0 € 2<%,

As usual we let t = ty for an optimal ML-test U.

Ten years after [8], Levin [9] called another quantity randomness deficiency.
In most articles the terminology of randomness deficiency is used for this quan-
tity.

Definition 2.9 (Levin [9]; see [10]). Randomness deficiency 6 is defined as
8(0) = |o] = K(o).

2.5 From a statistical point of view

Randomness deficiency is closely related to probability theory. The strong law of
large numbers (SLLN) in probability theory says that the average of a sequence
of i.i.d. converges to the expectation [6, 5]. For a coin-tossing game, the relative
frequency of a random binary sequence converges to 1/2 almost surely. For
an effective version of SLLN, the relative frequency of a Martin-L6f random
sequence “always” converges to 1/2; not almost surely [16, 10]. For a more
precise version, Davie [2] proved the following result. Let S, (A) = 7", A(i).
Then there exists a computable function n(c, €) such that if sup,, (A [n) < ¢
then for all n > n(c,€), we have |S,,(A)/n — 1/2| < e. This result says that we
can discuss the rate of the convergence of SLLN from randomness deficiency §.
Davie [2] also showed a version of the law of the iterated logarithm.

We reconsider an optimal ML-test from a statistical point of view. Let H
be the hypothesis that A € 2“ is a result of a fair coin-tossing game. Suppose
that all we know is Sa0(A) = 15. Then can we accept H or should we reject H?
Since the probability of Sog > 15 is 0.0207 - - - and is small, probably we should
reject it.

Next suppose that we know A itself. Then the probability of A is clearly
0 for each A. So we can not use the same approach. Recall that an optimal
ML-test {U,} is one of the best effective statistical tests. Intuitively the larger
t(A) is, the more unnatural A is. Then we can reject H if ¢t(A) is too large.



Then the following question arises. Can we regard the ordering of naturalness
as probability? We wish the probability of ¢(4) > n were equal to 27". We say
that a ML-test V' = {V,,} is decreasing if V,, D V,,41 for all n. Note that the
measure of ty(A) > n for a decreasing optimal ML-test V = {V,,} is

At (4) > n}) = p({A: A€ Vi) = u(Va).

We are very interested in the sequence p(V,,) for an optimal ML-test. Then the
question is where there is an optimal ML-test such that u(U,) =27".

Such a test is called Schnorr test [14]. Formally a Schnorr test is a ML-test
{Upn} with pu(Uy,) = 27". A Schnorr test {U,} is universal if, for any Schnorr
test {Vi}, N,, Vo €, Un- It is known that no Schnorr test is universal. Hence
there is no universal ML-test such that p(U,,) is computable uniformly in n. So
w(Uy,) # 27" for infinitely many n.

Furthermore the following characterization is known. The sequence u(U,)
for a universal ML-test {U,} is characterized by the following two theorems.

Theorem 2.10 (Kucera and Slaman [7]). The measure of each component of
a universal ML-test is ML-random.

Theorem 2.11 (Merkle, Mihailovi¢ and Slaman [12]). For any uniformly c.e.
ML-random reals r,, < 27" there is a universal ML-test {U,} such that u(U,) =
Tn.

Since optimality implies universality, u(V},) is ML-random for an optimal
ML-test V' and each n.

Then we ask whether there is a universal or optimal ML-test {U,, } such that
w(Uy,) = 27"« for a c.e. ML-random real . Finally we show that for each c.e.
ML-random real there exists a universal ML-test satisfying the equation but
no optimal ML-test satisfies the equation. To prove this we introduce uniform
Solovay reducibility.

3 Randomness deficiency by an optimal test

In this section we give basic results related to ¢ in Definition 2.7 and an optimal
ML-test. We will use some of them later.

3.1 Difference between universality and optimality

We prove the difference between optimality and universality. The following
results say that the measures p(U,) of an optimal ML-test is approximately
equal to 27" but the measures (U, ) of a universal ML-test may be far from it.

Proposition 3.1. Let {U,} be an optimal ML-test. Then u(U,) >27"~00),

Proof. Let V,, = [0"]. Then V = {V,,} is a ML-test. Note that ¢y (0™) = n. By
optimality of U there exists ¢ such that ¢ty (0™) > ty(0") — ¢ = n — ¢. By the
definition of ¢ we have [0"] C U,,_. for n > ¢. It follows that 27" = p([0"]) <
#(Un—c). 0



Proposition 3.2. There exists a ML-test such that it is universal but not op-
timal.

Proof. Let {U,} be a universal Martin-Lof test. Then V = {V,} = {Us,} is
also a universal Martin-Lof test and we have u(Vy,) = u(Uz,) < 272", By
proposition 3.1, V' is not optimal. o
3.2 Decreasing optimal test

Another possible randomness deficiency is

ty(o) = min{n : [¢] C U,, does not hold. } — 1.

The degree is infinity if such an n does not exist. We will prove t and ¢ are
essentially the same. The following is a well-known result but we restate it in
our terminology.

Proposition 3.3. For a ML-test U = {U,}, let V;, = Uy Un+k forn > 1 and
Vo =[A]. Then V ={V,} is a decreasing ML-test such that ty (o) < ty(o)+1.

Proof. We have (V) < 300, pp(Ungr) < > pey2777F <277 Since {U,} is
uniformly c.e., so is {V,,}. Hence V = {V,,} is a ML-test. Note that for all
n, we have U,11 C V,,. For each o0 € 2<% [o] C U, = [o] C V,—1. Hence
ty(o) < ty(o)+ 1. Finally V,, = Uzozl Upir 2 Uzozz Upyi = UZOZI Upnti4k =
Viat+1. Hence V is decreasing. O

Proposition 3.4. There exists a decreasing optimal Martin-Lof test.

If V is decreasing, then ty = ty. Even if it is not, W,, = UZOZI Vot is a
decreasing ML-test. Hence a decreasing optimal ML-test U is also optimal for
t. By letting t = ¢ty we have t = ¢t + O(1). Thus these are essentially the same.

3.3 Relation with another randomness deficiency

We give easy relations between ¢ and J to use it the next section.
It is easy to see that there exists ¢ such that

0(o) <t(o)+c

for all o.
Let §(a) = sup,, 6(a [n).

Theorem 3.5. There exists ¢ such that
t(a) < d(a) 4+ 2log(d(ar)) + ¢
for all v € 2¢

Before the proof, recall KC Theorem.



Theorem 3.6 (KC Theorem, see [4]). Let (d;,7;) be a computable sequence of
pairs (which we call requests), with d; € N and 7; € 2<%, such that ., 27% < 1.
Then there is a prefiz-free machine M and strings o; of length d; such that
M(o;) =7 for all i and domM = {o;}

The weight of a request (d, ) is 2~¢. The weight of a computable sequence
of requests (d;, 7;) is the sum of the weights of the requests, i.e., >, 27%. If this
weight is less than or equal to 1, then we say that this sequence is a KC' set.

Proof of Theorem 3.5. Let U = {U,} be a decreasing optimal ML-test. Then
there exists a uniformly c.e. prefix-free set R, such that [R,] = Un4210gn. Let
L.={{|z7] —n+c,2!') : 2} € R,}. Then the weight of L. is

Z Z 27\z?|+nfc S Z 27n72log ntn—c _ 9—c Z 7’Li2.
n A n n

Hence L = L. is a KC-set for some ¢. By KC Theorem we obtain K (zI") <
|| —n+ ¢ and 6(z') > n — ¢ for some ¢

Suppose that t(a) > m + 2logm. Then o € Upmi210gm = [Rm]. It follows
that there exists ¢ such that 2" € R,, and zI* < o. Then m < §(«) 4 ¢’. Hence
we have t(a) < §(a) + ¢ 4+ 2log(d(a) + ¢') < 6(a) + 21og(6(a)) + . O

Corollary 3.7. Let {ax} be a sequence of reals. Then

supt(ag) < 0o <= supd(ax) < oco.
k k

4 Uniform Solovay reducibility

In this section we generalize Solovay reducibility to analyze the sequence p(Up,)
where {U,} is an optimal ML-test. Solovay reducibility is a measure of rela-
tive randomness between two reals. We introduce uniform Solovay reducibility,
which is a measure of relative randomness between two sequences of reals. Most
proofs in the next subsection are just a generalization of the proof of corre-
sponding results of Solovay reducibility. But in some points we need a little
modification. So we concentrate on the difference and give a proof sketch in
other points (see [4] for the detail).

A real « is Solovay reducible to a real 8 (written a <; () if there are a

constant ¢ and a partial computable function f : Q — Q such that if ¢ € Q and

q < B, then f(q) }<aand a — f(q) <c(B —q).
Let Qu = ZU(UN 2-191. This is called halting probability. A left-c.e. real o
is Solovay complete or Q-like if f < « for all left-c.e. reals 3.

Theorem 4.1 (Solovay [15], Calude, Hertling, Khoussainov, and Wang [1],
Kucera and Slaman [7], see 9.1 and 9.2 in [4]). For left-c.e. reals ., the following
are equivalent.

(i) « is I-random.



(ii) « is Solovay complete.

(iii) 2 <, a.

iv) a = w(U,) for a universal ML-test {U,} and some n.
I

Lemma 4.2 (Solovay [15]). For each k there is a constant c such that for
all n and all o,7 € 27, if [0.0 — 0.7 < 287" then C(o) = C(7) £ ¢ and
K(o) = K(7) £ ck.

4.1 Definition and some properties
In the following we consider a sequence of reals in [0, 1].

Definition 4.3. A sequence {ay} of reals is uniformly Solovay reducible, or
US-reducible, to a sequence {Bi} of reals (written {ar} <us {Br}) if there are
a constant ¢ and uniformly partial computable functions fi, : Q — Q such that

fx(0) =0 andifq € Q and q < B, then fr(q) 1< ar and ar— fr(q) < c(Bx—q)-

Note that the condition fx(0) = 0 is equivalent to aj < cf) for some c.
Hence {a;} <us {Br} requires ay/f) is bounded. Solovay reducibility which
considers only two reals does not need such a condition.

The definition of uniformly Solovay reducibility is not restricted to a sequence
of uniformly left-c.e. reals. But here we consider only the uniformly left-c.e.
reals.

Note also that us-reducibility is reflexive and transitive.

Proposition 4.4. Let {ar} and {Br} be sequences of uniformly left-c.e. reals,
and let 0 = g < qFf < -+ = ag and 0 = 7§ < ¥ < - — By be uniformly
computable sequences of rationals. Then {ay} <us {8} iff there are a constant
c and uniformly computable functions gy such that oy — q];k ) < c(Br — k) for
all k and n.

Note that we require ¢& = r§f = 0, which does not appear in a version of
Solovay reducibility.

Proof. For the only if direction, given n, we have fi.(r¥) | < ax and let gx(n) =
m such that fi(g¥) < ¢¥,. For the if direction, given s € Q, search for an n such
that s < 78 and let fi(s) = q’;k(n). O

Theorem 4.5. If {ag} <us {Br} then (3d)(VEk)(¥n)C(ak [ n) < C(Br [ n) +d
and (3d)(Vk)(Yn)K (ay [n) < K(Br [ n) +d.

Proof. Here we see By | m as rationals. Since By — Br | n < 27", we have
ak — fx(Bk | n) < 27" Let 7' € 2™ be such that |7" — f(8x | n)| < 27™. Then
for all &,

|O¢k [n — 7';?| < |O¢k — [n| + ap — fk(ﬁk [n) + |T;? — fk(ﬁk [n)| < (C+ 2)2771.

By Lemma 4.2, K (o | n) < K(777)+0(1). Here 7' can be obtained computably
from By I n, so K(77) < K(Bk [ n) + O(1). The proof for plain complexity is
the same. O



Lemma 4.6. Let {ay} and {Br} be sequences of uniformly left-c.e. reals, and

let 0 = rf < ¥ < --- = By be uniformly computable sequences of rationals.
Then {ak} <us {8} iff there are uniformly computable sequences of rationals
0 =pk <pl <. = an such that for some constant ¢ we have p* — pk_| <

c(r® —rk_)) for all k and s.

Again note that we require p§ = r§ = 0 for all k.

Proof. If there is a sequence p¥ as in the lemma, then oy, — pf = Zs>n(p§ —
pr) <dY o (rF—rF_ ) =d(Bk —rF), so by Proposition 4.4, {a} <us {Bi}-
We now prove the converse.

Let 0 = g% < ¢F < --- — oy, be uniformly computable sequences of rationals,
let ¢ and gx be as in Proposition 4.4. We may assume without loss of generality
that ¢ is increasing. Note that qgk(o) =rk=0.

There must be an s > 0 such that g  —qf o) < c(ri, — r§), since
otherwise we would have oy, — qgk(o) = 1im5(q§k(80) — qgk (0)) > limg c(r? —rk) =
c(ry — 7%), contradicting our choice of ¢ and g. We can now define p¥, ... ,p’sc0
so that p§ < -+ < p¥ = g, (s) and p& —ph_; < c(rk —rk_ ) for all s < sp.
See [4] for the detail.

We can repeat the procedure in the previous paragraph with sg in place of 0
to obtain a computable sequence of rationals 0 = p§ < p¥ < ... with the desired
properties. o

Theorem 4.7. Let {ay} and {B;} be sequences of uniformly left-c.e. reals, The
following are equivalent.

() {ar} <us {Br}-

(ii) For any uniformly computable sequences by b5 --- of non-negative ra-
tionals such that B, = >, bk, there are a constant ¢ and uniformly
computable sequences of rationals €, € [0,¢] for all n such that ay =
> Elenbi,n for all k.

(iii) There are a constant ¢ and uniformly left-c.e. reals vy, such that cBy =
ag + vk for all k.

Note that the sequence b¥ starts from n = 1. We may think that b% = 0 for
all k.

Proof. (i)=(ii) Let b¥,b%, - -- be computable sequences of non-negative rationals
such that B, = >, bF and let r% = >°._ bF. Note that r§ = 0. Apply Lemma
- k_ .k
4.6 to obtain ¢ and pf,p¥ --- as in that lemma. Let ¢ = %. Then
S etk =3 (pF—pF_)=a,and ¢, = Po—Po—t € [0,c] for all n > 1.
(ii)=-(iii) Let b¥ b5 --- be computable sequences of non-negative rationals

such that B = > bE. Let €® be as in (ii), and let v, = >, (c — €®)bE.
(ii)=() Let 0 = 7§ < 7¥ < -+ - ap and 0 = sk < s < -+ = 7, be

k k
T, +s,

computable sequences. Let pF = —=. Then 0 = pk < ph < ... — B and



ap —rF = ap + sk —ept < ap + 9% — cpf = c(Br — pk), so by Proposition 4.4,

{O‘k} <us {Bk} O

4.2 Existence of a us-complete sequence

We say ay, is uniform Solovay complete (us-complete) if {8;} <.s {ax} for all
uniformly left-c.e. sequences {f;} of reals. We prove existence of a us-complete
sequence.

Let M; be an effective enumeration of all prefix-free machines.

Definition 4.8. Let

Q) = i Z 2—1’—1—19—\(7\'

i=0 M;(0%10))

Although the definition is very artificial, this sequence of Omegas has very
natural properties as follows. The notation Q4 comes from (ii) in the proposition
below.

Proposition 4.9. (i) The sequence {Qx} consists of uniformly left-c.e. reals.
(i) Qp <27F.
(iil) D pe U = Qu for a universal prefiz-free machine U.

Proof. Note that Q) <>, 27717% =27k Furthermore

k=0

i Mi(o)L.oA0m

where U(0°10) = M;(o) for all o such that o # 0. Note that there is an i such
that M;(0™) 1 for all n and M; is universal. Then U is also universal. O

Theorem 4.10. sup, t(28Q;) < co.

Remark4.11. Since Qj, < 27F, the first n-bits of Qy, € 2 are 0. Then 2kQ), € 2%
1s the result of n-times left-shifts for Q.

Proof. For each k there is an i such that V(o) = M;(0*1¢) is universal. Then
Qy = ZMi(OklcrN 2-k=lol is 1-random and so is Q. It follows that Qj is not
dyadic rational. Hence we can assume that there is an s with Qs [n = Q [n
for each k. Let U be a universal prefix-free machine defined in the proof of
Proposition 4.9. We define Qi s = > .0 U0 10%10) ) 9—i—1—k—|o|_

We build a prefix-free machine M = M,.. By the recursion theorem, we
can assume we know its coding constant ¢ in U. At a stage s the construction
proceeds as follows. Search 7 such that U(7)[s] = 2¥Qy s [n and |7| < n — ¢ for
some k and n. Note that this means that K(28Q s [n) < n —c. If such 7 is
found, we choose a string ; ¢ rngU|[s] and declare M (0*17) = p. If such 7 is
not found, go to the next stage.

10



We see that this construction is valid. Let v = 0°10*17. By the definition
of U, we have U(v) = M(0*17) = u. Since u & rngU]|s], it follows that v ¢
domU[s]. Thus Qj — Q¢ > 27¢717F=ITl > 27n=k and 2kQ; — 2kQy o > 277,
Hence 2%y, [ n # 25Qy ¢ [ n. This procedure ensures that if |[7| < n — ¢ then
U(1) # 2FQy, [n, whence K (2%, [n) > n — c for all k and n. By Corollary 3.7,
supy, t(28Q) < oo. O

Theorem 4.12. The sequence {2FQ} is us-complete.

Proof. Let ajy be uniformly left-c.e. reals. Then there exists an j such that
Ok = D, (k10 2-19l. Then

D D D D A
i#j M;(0F10)]

so {ar} <us 28{Qi} by Theorem 4.7. O

4.3 Measures of an optimal ML-test

We will show here a version of an optimal ML-test of Theorem 2.11 and 2.10.
Note that our proof is much simpler than those of versions of universality. This
means that optimality is a more natural concept than universality.

Theorem 4.13. Let r, be uniformly left-c.e. reals such that r, < 2~™. Then
the followings are equivalent.

(i) {2"r,} is us-complete.
(ii) There exists an optimal ML-test U, such that p(U,) = ry,.

Proof. (1)=-(ii). Let {2, } be the one defined above. Suppose that {2"Q,} <.
{2"r,}. Let u, = u(U,) where {U,} is an optimal ML-test. Then there exists
another optimal ML-test {V,,} such that u(V,) = vp = > 0o, M  Upyom by
adding extra strings. Note that v, <273 *_ m 272" < 27" By Theorem
4.12 we have {2"v,} <us {2"Qn} <us {2"rn}. Hence {2"v,} <us {2"r,} and
{vn} <us {rn}. Then by Theorem 4.7 we have dr, = v, + 7, for some d and
uniformly left-c.e. reals ~,.

It follows that dr, = >~ ;M - Unjom + Yo and 7, = Upqaq + Em#d .
Un+2m + Yn- Hence we can construct a ML-test {W,,} such that W,, D U, 424
and p(W,) = r, by adding extra strings. Furthermore {W,} is optimal by
Wn 2 Un+2d'

(ii)=(1). Let {U,} be an optimal ML-test and 7, = wu(U,). Let o, be a
uniformly left-c.e. sequence of reals with «,, < 27". We will show {a,} <us
{rn}.

For each m < n, we shall construct a c.e. open set A7" in stages s. At stage
s act as follows. If A™'[s] € U,,[s] then do nothing. Otherwise let ¢ be the last
stage at which we put anything into A7 (or ¢ = 0 if there is no such stage).
Enumerate into A7 a set of strings {o;} such that the set is prefix-incomparable
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(so that [o;] are pairwise disjoint), >, 27171l = 220m"=")(q,,, . — @, ) and o; &
domU,,[s] U A™[s]. We have (A7) < 22(m="qy,,,.

Let A, = Uy,o, A7 then pu(A,) < 3, 22m M, < 3 om=2n —
27". Hence {4,} is a ML-test. By optimality of U, there exists d such that
Apyq C U, for some d independent on n. It follows that U, D A,iq =
Upen Anrg 2 Any g Hence we enumerate something into A7, infinitely

many times and M(AZer) = ay. Let so = 0 and let sq1,s9,--- be the stages
at which we put something into Aerd. Then for ¢ > 0 we have r, 5, , —Tn,s; >
272d(an75i — Qns; ) 80 {an} <us {Tn}- U

4.4 The difference between optimality and universality

Theorem 4.13 gives us another difference between optimality and universality.

Theorem 4.14. For a c.e. ML-random real o < 1, there exists a universal ML-
test {Up} such that p(U,) = 27 "«. However no optimal ML-test {V,,} satisfies
w(Uy,) = 27"« for a real a.

The former statement is immediate from Theorem 2.11. The latter one
follows from Theorem 4.13 and the following theorem.

Theorem 4.15. The sequence {ay} such that ap = « for all k is not us-
complete.

Proof. Suppose that {a} is us-complete. Let K be the halting set and 5 =
K (k) € {0,1}. Note that S5 are uniformly left-c.e. Since {8} <us {a}, we can
approximate Sy within 1/2 by using the first finite bits of . It follows that the
finite bits solve the halting problem, which is a contradiction. O

A similar difference can be seen for c.e. martingales. The collection of all
sequences on which d succeeds is called the success set of d, and is denoted by
S[d]. A c.e. (super)martingale d is universal if for any c.e. (super)martingale
f, we have S[f] C S[d]. A c.e. (super)martingale d is optimal if, for each
(super)martingale f, there is a constant ¢ such that ¢ - d(o) > f(o) for all o.

Proposition 4.16 (Schnorr [14]). There is a universal c.e. martingale.

Proposition 4.17 (Downey, Griffiths, and LaForte [3]). There is no optimal
c.e. martingale.

The author believes that there is some relation and we need further study.

Discussion

As is seen in Theorem 4.1, « is Solovay complete iff « is 1-random. Then does
us-reducibility have a similar characterization? One may conjecture that {ay}
is us-complete iff {ay} is 1-random. The natural definition of 1-randomness of
a sequence would be @, ar = {(k,n) : n € oy} is 1-random. Unfortunately
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this is false because a us-complete sequence satisfy aj > € for some ¢ > 0 by
Theorem 4.13 and by Proposition 3.1 but, for such a sequence, €, «j can not
be 1-random.

The main theorem of this paper is Theorem 4.13. Notice that the proof is
much simpler and more direct than a version of universality. This means that
optimality is a more natural notion.

The characterization of u(V;,) for an optimal ML-test {V;,} implied another
difference between universality and optimality. A difference between universality
and optimality is known for martingales. We need to study further relation
between tests and martingales.
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