A Language for the Execution of
Graded BDI Agents

ANA CASALI, FCEIA and CIFASIS, Universidad Nacional de Rosario
(UNR), Av Pellegrini 250, 2000 Rosario, Argentine.

E-mail: acasali@fceia.unr.edu.ar

LLUIS GODO, IIIA - CSIC, Campus de la UAB s/n, 08193 Bellaterra,

Spain. E-mail: godo@iiia.csic.es

CARLES SIERRA, IIIA - CSIC, Campus de la UAB s/n, 08193

Bellaterra, Spain. E-mail: sierra@iiia.csic.es

Abstract

We are interested in the specification and deployment of multi-agent systems, and particularly we
focus on the execution of agents. Along this research line we have proposed a general model for
graded BDI agents, specifying an architecture based on multi-context systems (MCS) and able to
deal with the environment uncertainty (via graded beliefs) and with graded mental proactive attitudes
(via desires and intentions). These graded attitudes are represented using appropriate fuzzy modal
logics. In this paper we cope with the operational semantics of this agent model. We present a
Multi-context Calculus, based on Ambient Calculus, for the execution of multi-context systems with
its corresponding semantics. This calculus is general enough to support different kinds of MCSs and
particularly, we show how a graded BDI agent can be mapped into the language of the calculus.

Keywords: Operational semantics, Multi-context systems, BDI agents, Ambient calculus

1 Introduction

In order to achieve the full potential of agent approaches and technologies many dif-
ferent theories, architectures and infrastructures are required to specify, design and
implement agent-based systems. In this context we focus on the execution of in-
tentional agents. We consider that making the BDI architecture [28] more flexible
will allow us to design and develop agents potentially capable to have a better per-
formance in uncertain and dynamic environments. Along this research line we have
proposed a general model for graded BDI agents (g-BDI agents for short), specifying
an architecture able to deal with the environment uncertainty (via graded beliefs)
and with graded mental proactive attitudes (via desires and intentions). In the g-BDI
model, Belief degrees represent the extent to which the agent believes formulas hold
true. Degrees of positive or negative desires allow the agent to set different levels of
preference or rejection respectively. Intention degrees also give a preference measure
but, in this case, modelling the cost/benefit trade off of achieving an agent’s goal.
Then, agents having different kinds of behaviour can be modelled on the basis of the
representation and interaction of their graded beliefs, desires and intentions. The
formalization of the g-BDI agent model is based on multi-context systems (MCS)

2 A Language for the Execution of Graded BDI Agents

[18], and in order to represent and reason about the beliefs, desires and intentions,
we followed a many-valued modal approach. Also, a sound and complete axiomat-
ics for representing each graded attitude is proposed. The logical framework of this
model has been presented in [8, 12] and how this model can be used to specify an
architecture for a Travel Assistant Agent can be seen in [10]. This agent architecture
can be extended to include the social aspects of agency by adding a social context to
represent different kinds of trust in other agents [9, 10]. Further research in this di-
rection is ongoing and a relevant work to be applied to represent a social trust theory
is the intentional agent model proposed by Lorini et al. in [22]. Also, we consider
very promising the work of Pinyol and Sabater-Mir in [27] focusing on the integration
of a cognitive model of reputation within a BDI agent architecture. Moving to the
multi-agent systems framework, a very relevant formal approach to deal with teams
of agents with different types of group beliefs and collective Intentions is developed
in [14].

In this work we cope with the operational semantics aspects of the g-BDI agent
model. As this model is based on multi-context systems [26] and these systems are
basically deductive machines, we want to introduce an specification language that al-
lows us to define the computational meaning of an agent. The semantics for a g-BDI
model of agent will describe how a valid agent is interpreted as sequences of compu-
tational steps. These sequences are the meaning of the model. Operational semantics
define an abstract machine and give meaning to language expressions by describing
the transitions they induce on states of the machine. Alternatively, with different
process calculi, semantics are defined via syntactic transformations on expressions of
the language itself.

The process calculus approach has been used to cope with formal aspects of multi-
agent interactions. For example, we can mention some relevant approaches. The
m-calculus developed by Milner et al. [23] is able to describe concurrent computations
whose configuration may change during the computation. The Ambient Calculus due
to Cardelli et al. [6] describes the movement of processes (agents) and devices. The
Lightweight Coordination Calculus (LCC) [29] allows an asynchronous semantics to
coordinate processes that may individually be in different environments. Walton in
[36] presents a language based on CCS [24] to specify agent protocols in a flexible
manner during the interaction of agents. Ambient LCC [21] was specially designed
to support the execution of electronic institutions. To give semantics to our g-BDI
agent model we decided to follow this process algebra approach.

Since the g-BDI agent model is formalized using multi-context systems, we first
introduce a specific ambient calculus, which we call Multi-Context Calculus (MCC),
with its corresponding semantics. The calculus presented is general enough to support
the execution of different kinds of multi-context systems and particularly, we show
how a graded BDI agent can be mapped to it.

This paper is organized as follows. In Section 2 we overview the g-BDI model of
agent based in multi-context systems. Section 3 outlines some process calculus related
to multiagent systems. In Section 4 we present the Multi-context Calculus, and in
Section 5 we provide a semantics for this calculus. The mapping from g-BDI agents
to Multi-Context Calculus is presented in Section 6 and, finally, in Section 7 some
conclusions are outlined.

A Language for the Execution of Graded BDI Agents 3

2 Graded BDI agent model

The graded BDI model of agent (g-BDI) allows to specify agent architectures able
to deal with the environment uncertainty and with graded mental attitudes. In this
sense, belief degrees represent to what extent the agent believes a formula is true.
Degrees of positive or negative desire allow the agent to set different levels of preference
or rejection respectively. Intention degrees give also a preference measure but, in this
case, modeling the cost/benefit trade off of reaching an agent’s goal. Thus, a higher
intention degree towards a goal means that the benefit of reaching it is high, or the
cost is low. Then, Agents having different kinds of behaviour can be modeled on the
basis of the representation and interaction of these three attitudes.

The specification of the g-BDI agent model is based on multi-context systems
(MCS) since we consider that the modelling of different intentional notions by means
of several modalities (B, D, I) can be very complex if only one logical framework
is used. Multi-context systems were introduced by Giunchiglia and Serafini [18] to
allow different formal (logic) components to be defined and interrelated. MCS are
close to Gabbay’s Labelled Deduction Systems (LDS) [15] in the sense of providing
a framework for presenting and using different logics in a uniform and natural way
as LDS do. MCS have been used in different applications, as for example in the in-
tegration of heterogeneous knowledge and data bases, in default reasoning [4], in the
formalization of reasoning about beliefs (more generally, propositional attitudes) [16],
or for engineering agents in multiagent systems [26].

The MCS specification contains two basic components: units (or contexts) and
bridge rules, which channel the propagation of consequences among unit theories.
Thus, a MCS is defined as a group of interconnected units <{C¢}ie[,Abr>. Each
context C; is specified by a 3-tuple C; = (L;, A;, A;) where L;, A; and A; are its
language, axioms, and inference rules respectively. A, can be understood as rules
of inference with premises and conclusions in different contexts, for instance a bridge

rule like
Cy:9,Cy:
Cg : 9
specifies that if formula v is deduced in context Cy and formula ¢ is deduced in context
C5 then formula 6 is added to context C3. When a theory T; C L; is associated with
each unit, the specification of a particular MCS is complete.

The deduction mechanism of a multi-context system <{C’i}i€ I Abr> is therefore
based on two kinds of inference rules, internal rules A;, and bridge rules Ay,., which
allow to embed formulae into a context whenever the conditions of the bridge rule are
satisfied.

In the basic specification of a g-BDI agent model as a MCS we have two kinds of
contexts: three mental contexts, to represent beliefs (BC), desires (DC) and intentions
(IC), as well as two functional contexts, for planning (PC) and communication (CC).
The overall behavior of the system will depend of the logical representation of each
intentional notion in their corresponding contexts and the particular set of bridge
rules Ay, used. Thus, a g-BDI agent model will be defined as a MCS of the form

A, = ({BC,DC,IC, PC,CC}, Ay,)

Figure 1 illustrates such a g-BDI agent model with the different five contexts and six
bridge rules relating them.

4 A Language for the Execution of Graded BDI Agents

Fi1G. 1. Multi-context model of a graded BDI agent

Next, we synthesize the purpose of each component (i.e. contexts and bridge rules)
in the agent model.

Belief Context (BC): the aim of this context is to model the agent’s uncertain be-
liefs about the environment. Since the agent needs to reason about her possible
actions and the environment transformations they cause and their associated cost,
this knowledge must be part of any situated agent’s belief set.

Desire Context (DC): in this context, we represent the agent’s desires. Desires
represent the agent’s ideal preferences regardless of the agent’s current perception
of the environment and regardless of the cost involved in actually achieving them.
Following a bipolar representation of preferences [3], we formalize agent’s positive
and negative desires. Positive desires represent what the agent would like to be
the case. Negative desires correspond to what the agent rejects or does not want
to occur. Both, positive and negative desires can be graded.

Intention Context (IC): this unit is used to represent the agent’s intentions. To-
gether with the desires, they represent the agent’s preferences. However, we con-
sider that intentions cannot depend just on the benefit of reaching a goal ¢, but
also on the world’s state and the cost of transforming it into one where the for-
mula ¢ is true. By allowing degrees in intentions we represent a measure of the
cost /benefit relation involved in the agent’s actions towards the goal. A suitable
bridge rule (described bellow as Bridge rule (3)) infers these degrees of intention
towards a goal ¢ for each plan « that allows to achieve the goal.

Planner and Communication Contexts (CC and PC): the Planner Context has
to look for feasible plans, these plans are generated from actions that are believed
to fulfill a given positive desire and avoiding negative desires as post-conditions.
These feasible plans are computed within this unit using an appropriate planner

A Language for the Execution of Graded BDI Agents 5

that takes into account beliefs and desires injected by bridge rules from the BC
and DC units respectively.

The Communication unit (CC) makes it possible to encapsulate the agent’s inter-
nal structure by having a unique and well-defined interface with the environment.
The theory inside this context will take care of the sending and receiving of mes-
sages to and from other agents in the multiagent society where our graded BDI
agent lives.

Bridge rules (BRs): we define a collection of basic bridge rules to establish the nec-
essary interrelations between context theories. As for example we describe one of
them (see Bridge rule (3) in Figure 1):

e Regarding intentions, there is a bridge rule that infers the degree of I,y for
each feasible plan « that allows to achieve . The intention degree is thought
as a trade-off among the benefit of satisfying the (positive) desire ¢, the cost of
the plan and the belief degree in the full achievement of ¢ after performing a.
The bridge rule (3) in Fig. 2 computes this value from the degree d of DT ¢, the
degree r of the belief formula Bla]e and the cost C of the plan a:

DC : (D*%y,d), BC : (Bla]g,r), PC : fplan(p,a, P, A, c)
1C: (1o, f(d,r,c))

Different functions f allow to model different agent behaviours.

In order to represent and reason about graded notions of belief, desire and intention,
we use a modal many-valued approach developed by Hédjek and colleagues [19, 17]
where uncertainty reasoning is dealt with by defining suitable modal theories over
suitable many-valued logics’.

For instance, let us consider a Belief context where belief degrees are to be modeled
as probabilities. Then, for each classical formula ¢, we consider a modal formula By
which is interpreted as “p is probable”. This modal formula B is then a fuzzy formula
which may be more or less true, depending on the probability of ¢. In particular,
we can take as truth-value of By precisely the probability of ¢. Moreover, using a
suitable [0, 1]-valued logic, we can express the governing axioms of probability theory
as logical axioms involving modal formulae. For instance, the following axiom over
Lukasiewicz logic

B(pVy)=Bp® (BY© B(p AY))

properly captures the finite additivity property of the belief operator B (see the defin-
tion of the Lukasiewicz logic connectives =, @ and ©, and their semantics in Annex
I). Then, the many-valued logic machinery can be used to reason about the modal
formulae By, which faithfully respects the uncertainty model (e.g. probabilistic, pos-
sibilistic) chosen to represent the degrees of belief.

In this proposal, for the belief context we choose the Rational Pavelka Logic (RPL)
an extension of the infinitely-valued Lukasiewicz logic (see Annex I for RPL defini-
tion) as the base many-valued logic [8]. This selection is done because we adopt a

1Other approaches could have also been used, e.g. those based on graded (classical) probabilistic modalities
[31, 25] or plausibility modalities [32], or the uncertainty logics & la Halpern [20], but the fuzzy modal approach
seems to offer a uniform, flexible enough and rather elegant framework for our purposes.

6 A Language for the Execution of Graded BDI Agents

probabilistic semantics of graded beliefs, but another choice could be made according
to the kind of measure chosen in a particular case (see e.g. [5, 7] for more details).
Indeed, to set up an adequate axiomatization for our belief context logic we need
to combine axioms for the classical (crisp) formulae, axioms of Lukasiewicz logic for
modal formulae, and additional axioms for B-modal formulae according to the prob-
abilistic semantics of the B operator. The same many-valued modal logic approach
is used to represent and reason under graded attitudes in the other mental contexts.
The formalization of the adequate logics —language, semantics, axiomatization and
rules — for the different contexts is described in [8, 12] and a synthesized description
of the Desire context can be seen in next subsection 6.1.

Below we present a simple example as to show how the proposed agent model works.

ExaMpPLE 2.1

Peter, who lives in Rosario, wants to plan his activities for the next week. He activates
a personal assistant agent based on our ¢g-BDI model to find an adequate travel
plan (transportation + accommodation). He would be very happy attending to a
conference on his speciality scheduled to take place in Buenos Aires (p;) and he
would be rather happy visiting a friend living near this city (ps2). But he would
indeed prefer much more to be able to do both things. Besides, he doesn’t like to
travel during the night (). This assistant has Peter’s positive and negative desires
represented by the following formulae in the theory Th¢ of the agent’s Desire context:

Tpe = {(D*¢1,0.8), (D% 2,0.6), (DT (91 A 92),0.9), (D~ 1,0.7)}

This means that the agent has rather high positive desires on achieving ¢; and ¢q
but he even has a higher desire to achieve both (0.9). At the same time, the agent he
rather rejects v, represents by a rather negative desire on ¢ (0.7).

The agent also has knowledge about the conference schedule, his friend’s agenda and
transportation information, that is represented in the theory Ts¢ of the Belief context
BC. Moreover, from this information and the set of positive and negative desires in
Tpe, the planner context (PC) looks for feasible travel plans that are believed to
satisfy ¢1 and/or 2 by their execution, but avoiding ¢ as post-condition. Assume
both « and 8 are found as feasible plans, whose normalized costs are ¢, = 0.6 and
cg = 0.5 respectively.

On the other hand, assume the Belief context (BC) is able to estimate the following
beliefs (modelled as probabilities) about the achievement of the different goals by the
feasible plans a and (3, represented by the following formulae in the theory Tpc:

Tpo 2 {(B[a]@170'7)7 (B[a}¢270'6)7 (B[Oé](sﬁl A 502)7().42),
B[Bl¢1,0.5), (B[Blp2,0.6), (B[B](p1 A p2),0.3)}

Then, using Bridge rule (3) and choosing the function f as
f(d,’f',C) =T (1 _C+d)/2v

which computes an expected utility (taking the value (1 — ¢ + d)/2 as the global
utility of reaching a goal with desire degree d and cost ¢, and 0 otherwise), the agent
computes the different intention degrees towards the goals by considering the different
feasible plans (i.e. « or §8). In this example, the intention degrees for the goal with
the highest desire degree, i.e. @1 A g, are:

A Language for the Execution of Graded BDI Agents 7

(In(1 A 92),0.273) and (Ig(e1 A p2),0.210)

From these results, the assistant agent choses to recommend Peter the plan « that
would allow him to attend the conference and to visit his friend (¢1 A ¢2).

3 Process Calculus

Process calculi have been used to cope with formal aspects of multi-agent interactions.
We recall some of these calculi below.

The m-calculus is a process calculus developed by Milner et al. [23] as a continu-
ation of the body of work on the process calculus CCS (Calculus of Communicating
Systems) [24]. The aim of the m-calculus is to be able to describe concurrent com-
putations whose configuration may change during the computation. The Ambient
Calculus due to Cardelli et al. [6] was developed as a way to describe the movement
of processes (agents) and devices, including movement through boundaries (admin-
istrative domains). It can also be considered as an extension of the w-calculus and
it is presented in more detail in next Subsection 3.1. The Lightweight Coordination
Calculus (LCC) [29] can also be considered as a variant of the m-calculus with an
asynchronous semantics to coordinate processes that may individually be in different
environments. LCC was designed specifically to formalize agent protocols for coordi-
nation and it is suitable to express interactions within multi-agent systems without
any central control. LCC borrows the notion of role from agent systems but reinterpret
this in a process calculus. Social norms in LCC are expressed as the message passing
behaviours associated with roles. The most basic behaviours are to send or to receive
messages, where sending a message may be conditional on satisfying a constraint and
receiving a message may imply constraints on the agent accepting it. The constraints
are expressed by structured terms (i.e. Prolog syntax). More complex behaviours are
specified using connectives for sequence, choice and parallelism, respectively. A set of
such behavioural clauses specifies the message passing behaviour expected of a social
norm. It is also possible for LCC to verify the protocols using automated means,
e.g. model checking [34]. Walton in [36] presents a language based on CCS [24] to
specify agent protocols in a flexible manner during the interaction of agents. Then,
in [33, 35] he proposes a Multi-agent Protocol (MAP) based in LCC and oriented to
agent dialogues. These protocols allow to separate agent dialogues from their specific
agent reasoning technology. Ambient LCC [21] is a language based on process algebra
concepts that combines the notions of LCC and ambient calculus. It was specially
designed to support the execution of electronic institutions, an organization model
for Multi-Agent Systems.

In order to give semantics to a g-BDI agent, we take advantage of Ambient Calculus.
Although process calculi have been mainly used to model multiagent systems, we have
considered that the modular structure that Multi-context system (MCS) provides to
the architecture of an agent would permit a similar treatment to single agents as well.
Particularly we find that the notion of ambient is also suitable to represent the MCS
main components: contexts and bridge rules.

As in Ambient LCC we combine Ambient Calculus with some LCC elements, but
in this case with the aim of dealing with the internal structure of intentional agents.
We focus on the work about Ambient Calculus [6] to capture the notion of bounded
ambient and we take into account some elements of LCC syntax [29] to represent the

8 A Language for the Execution of Graded BDI Agents

state components (e.g. terms, variables).

3.1 Mobile Ambient Calculus

This section is intended to be a refresher of those main notions and concepts of
ambient calculus that will be relevant for our purposes, for more details the reader is
referred e.g. to [6, 23].

Ambient calculus was developed as a way to express mobile computation [6]. Tt
can also be viewed as an extension of the basic operators of the m-calculus [23]. The
inspiration behind Ambient calculus is the observation that many aspects of mobility
involve administrative considerations. For example, the authorization to enter or
exit a domain, and the permission to execute code in a particular domain. These
issues were principally motivated by the needs of mobile devices. However, they are
very similar to the issues faced by agents in an open environment. Ambient calculus
(informally) addresses this problem by defining an ambient as a “bounded space where
computation happens”. The existence of a boundary determines what is inside and
outside the ambient. Process mobility is represented as crossing of boundaries and
security is represented as the ability or inability to cross them. In turn, interaction
between processes is by shared locations within a common boundary. Ambients can
also be nested, leading to a determined hierarchy. An ambient is also something that
can be moved. For example, to represent a computer or agent moving from one place
to another.

More precisely, each ambient has a name, a collection of local processes that run
directly within the ambient, and a collection of sub-ambients. The syntactic categories
are processes and capabilities. A process is (analogous to an individual agent. A
process may be placed inside an ambient, may be replicated, and may be composed
in parallel with another process, which means that the processes execute together.

The syntax of Ambient calculus is shown in Table 1.

PQ,R == 0 Inactivity
(vn).P Restriction
P|Q Parallel Composition
M [P] Ambient
P Replication

M.P Capability Action

M n=n Name
in M can enter into M
out M can exit out of M
open M can open M
€ null
M.M' composite

TABLE 1. Syntax of Ambient calculus

The syntactic categories are processes (P, @, and R) that includes both ambient

A Language for the Execution of Graded BDI Agents 9

and agents that execute actions, and capabilities (M). Informally the semantics of
ambients is as follows. A process is analogous to an individual agent. A process
may be one that does nothing (0), may be placed inside an ambient (M [P]), may be
replicated (!P), and may be composed in parallel with another process (P|@), which
means that the processes execute together. The restriction operator ((vn).P) creates
a new (unique) name n within a scope P.

In Ambient calculus, n[P] denotes an ambient named n containing the process P. In
n[P] is understood that P is actively running, and P can be the parallel composition
of of several processes.

In general, an ambient exhibits a tree structure induced by the nesting of ambient
brackets. Each node of this tree structure may contain a collection of (non-ambient)
processes running in parallel, in addition to sub-ambients. We say that these processes
are running in the ambient, in contrast to the ones running in sub-ambients. The
general shape of an ambient is, therefore:

n[Py || P fmi [|- e

To illustrate this structure we may display ambient brackets as boxes as it is shown
in Figure 2.

F1G. 2. General structure of an ambient

One of the relevant characteristics of the Ambient Calculus is the definition of
capabilities M for processes, which are described by actions. These capabilities permit
things to happen within ambients. Especially, this calculus presents some actions
related to crossing or opening ambient boundaries. Thus, different capabilities are
defined as for example:

e Entering an ambient (in m capability): this action is used by a process to enter
an ambient, i.e. to cross its boundary. The result is that the process (and its
enclosing ambient) move from the current ambient to the ambient pointed in the
action.

nlinm- P|Q] [m[R] = m[n[P|Q] | R]

e Exiting an ambient (out m capability): this action is used by a process to exit an
ambient. The result is that the process (and its enclosing ambient) move outside
the current ambient to a parent ambient according to the ambient hierarchy.

For further information on the formal definition of Ambient Calculus the reader
is referred to [6]. Synthesizing, we can say that the emphasis of this calculus is on
boundaries and their effect on computation, having the following key features:

10 A Language for the Execution of Graded BDI Agents

e Ambients are used to separate locations and allow a hierarchical structure (defining
a topology of boundaries).

e Process mobility is represented as crossing of boundaries, by the movement of
processes between ambients.

e Security is represented as the ability or inability of a process to cross boundaries.

e Interaction between processes is by shared location within a common boundary
(i.e. process can communicate only within the same ambient).

After these considerations, we find that the notion of ambient is also appropriate to
represent contexts in Multi-context systems. Contexts encapsulate the local aspects
of particular logical deductions in a global system and bridge rules enable to represent
the interaction or compatibility between them. Then, each unit can be mapped to
an adequate ambient having a state and a process running in it. Moreover, bridge
rules may be also represented by special ambients whose mobile processes may be in
charge of the inter-context deduction.

4 Multi-context Calculus

Multi-context systems (MCS) are specifications of deductive machines that modify
the internal states of the different contexts through the context inner deductions and
bridge rules [16]. In order to translate these MCS specifications into computable
languages, we propose a Multi-context Calculus (MCC) based on Ambient Calculus.
The notion of ambient allows us to encapsulate the states and processes of the dif-
ferent contexts and bridge rules in the MCS. The possibility of structuring ambients
hierarchically enables us to represent complex contexts where different components
may be represented by different ambients.

We also take advantage of the process mobility addressed in Ambient Calculus to
represent the process attached to a bridge rule. This process is meant to supervise a
number of context ambients and check whether particular formulae are satisfied and
if that is the case, to add a formula in another context ambient. Thus, this process
will be getting into and getting out from the different ambients. Our definition of the
actions for entering and exiting an ambient (i.e. in C' and out C) is slightly different
from the one used in Ambient Calculus. In this calculus a process gets into or out of
an ambient C' with the ambient enclosing it. In MCC we want the process to move
alone, then we redefine these capabilities by the following reduction rules that give
semantics to in C' and out C' actions:

mlinn.P | n[Q]] — m[n[P | Q]

m[nfout n.P || R]] — m[P | n[R]]

Furthermore, for defining the MCC calculus we use some elements of the LCC
calculus [29] such as the concept of structured terms as constitutive elements of an

ambient state. In LCC, terms are used to specify constraints that restrict the inter-
change of messages and to represent some postconditions after the message sending.

2In MCC we use || to represent parallel composition instead of the symbol |, normally used in Ambient Calculus,
as to differentiate parallelism from the choice symbol in BNF grammars.

A Language for the Execution of Graded BDI Agents 11

Br, Br,

F1G. 3. The general ambient structure for a MCS

In our calculus, the ambient state formulae determine the results of the execution
of the context ambient process (inner-context deduction) and also can trigger some
bridge rule processes (inter-context deduction).

The conceptual background of MCC is the global multi-context ambient structure
MCS, having an identifier and a Clause inside it. This clause may generate a set
of clauses (ambients) for representing contexts and bridge rules. A context ambient
has an identifier, a state and the context process being executed in it. Moreover,
a context ambient may have other context ambients inside it composing a nested
structure. Besides, a bridge rule ambient has an internal state to record substitutions
and a special process representing the inter-context deduction, attached to it. The
ambient structure for such a MCS is illustrated in Figure 3.

The definition of the MCC syntax is shown in Table 2. In the following items we
describe the principal syntax categories in the definition.

Multicontext System (MCS): is defined by an ambient structure where the global
ambient identifier is Idy;¢ and Clause will result in the ambients and processes
inside it (see (1) in Table 2). Clause leads us to a set of two types of clauses:
Clause. and Clausey, (2). Clause. generates a context ambient structure (possi-
bly nested) with a context process P, running in each ambient C' (3). Respectively,
Clauseyp, becomes a bridge rule ambient Br (4) where a Py, process is being exe-
cuted. In this way, we define a global ambient where different processes (P, and
Py, types) are running in parallel. As the processes are being executed in differ-
ent ambients there is no possible interaction (e.g. concurrency problems) between
them.

Context ambient: this ambient has a context process running in it. The context
ambient C' is defined as ¢(Id., S.) where Id, is its identifier and S, its state (5).
In turn the state S. is a set of Terms of an adequate language £¢ (e.g. Prolog
formulae) that represents the valid formulae in the context (7). In many cases
it may be useful to use a nested structure of context ambients. As for example,
to represent a complex context where its language or deduction system are built
using different layers. In a nested structure of ambients we can deal with this
complexity defining different ambients for each layer. In the MCC syntax it is

12 A Language for the Execution of Graded BDI Agents

MCS w= Idyce [Clause]
Clause (Clause. || Clause) | (Clausey, || Clause) €

Clause, = C [P. | Clause.] || Clause. | €
Clausep, = Br [Py]
C = c(Id., S.)
Br L= br(ldbm Sbr)
Se w= {Term}
Spr u= L
L = (U)
U = (V= Term)
% w= wvariable
P, = Clause. | .| P.-P.| P. or P, |
if Term then P, else P. | Action
Action w= in C | out C | get*(Term,L) |
getS(Ly, ..., Ly, L) |
add* (L, Term) | remove(C,Term) | €
Py, n= Clausey, | (spy(Br,C1,¢1,L1) ||
Spy(B’I’7 027 P2, L2) || s
|| Spy(BTa C’ru Pny Ln)) : pUt*(BT, Ck:a Pk Ll7 () Ln)
spy(Br,C,Term, L) w= out Br-inC - get*(Term,L) - out C -in Br
put*(Br,C,Term, L1,...,L,) == out Br-in C-getS(Ly,....,L,,L) -

add*(L,Term) - revise(C) - out C -in Br

U W N~

—~
Pl e S~~~

— O © 00~
—_ DN D

—~

(12)

TABLE 2. Syntax of Multi-context Calculus (MCC)

possible to represent a context ambient structure. From Clause. we can generate
parallel context ambients (at the same level of hierarchy) or embedded context
ambients, by using the rewriting rule (3).

Context process: consists of a deductive operator . corresponding to the context
logical deduction. The P. may be composed using the basic operators: sequential
processing (.); deterministic choice (or), meaning that if at all possible the first
process is to be executed, otherwise, the second one is chosen; and the classical
conditional if - then - else. Furthermore, rewriting P, as Clause. the recursion of
processes is allowed. Then, different kinds of programs may be represented by P,
(12).

Bridge rule ambient: this ambient has a special process Py, running in it (4). These
ambients are defined as br(Idp;, Sp), having an identifier Idy, and a state Sy, (6).

A Language for the Execution of Graded BDI Agents 13

The state for a Br ambient is a kind of substitution memory L composed by the
substitution lists returned by the Py, process (8).

Bridge rule process: this process is a key characteristic in the MCC and represents
the inter-context deduction process of a certain bridge rule (14). Each P, is
composed by a finite set of parallel spy(br,C,Term, L) processes followed by a
put*(Br,C,Term, L1, ..., L,,) process. In the following items we describe in some
detail these important components:

e spy(Br,C,Term, L) process (15) gets out of the Br ambient and gets into the
C ambient. In this ambient it retrieves in L all the substitution lists that result
of unifying Term with formulae in the context state. This task is done by the
process get*(T'erm, L), which is the heart of the spy process. Then, it returns
to the Br ambient.

e put*(Br,C,Term, Ly, ..., L,,) process (16) is executed after all the lists of sub-
stitutions L,...,L, have been extracted by the different processes
spy(Br, C;,Term;, L;), i = 1,...,n. This process gets out of the Br ambient,
comes into the C' ambient and using the getS(L, ..., L,, L) process, retrieves
in L all the substitutions compatible with the lists of substitutions Lq,...,L,,.
Then, using the add*(L,Term) process, adds all the instances of T'erm apply-
ing the resulting substitutions in L. In order to maintain the consistency in the
ambient state, as the add*(L, Term) process may introduce new formulae in it,
a revise(C) process is needed.

o revise(C) process is defined according to a suitable revision method chosen to
keep the ambient state consistent. If we want to revise using time considerations
as for example, allowing in the state to retain the more recent formulae respect
to the conflicting ones, the insertion time ¢ of a formulae in an ambient state,
must be included in the calculus. In our case that means that the context
ambient state S, may be redefined as S. =:: {(T'erm,t)}, where the parameter
t will be only used by the revise process. Since in some revision processes we
may need to remove formulae from the state, we include the remove(C, Term)
as a possible action.

5 Operational Semantics

One of the purposes of defining the MCC is to provide the Multi-context computa-
tional model with a clean and unambiguous semantics, allowing to be interpreted in a
consistent way. There are different methods for giving semantics to a process calculus
as for example, defining structural congruence between processes and reduction rela-
tions [6], or using rewriting rules for the clause expansion [29]. We have chosen the
natural semantics to provide operational semantics for the MCC. This formalism is so
called because the evaluation rules are in some way similar to natural deduction and
it has been used to specify the semantics of Multi-Agent Protocols (MAP) [33, 35]. In
natural semantics we define relations between the initial and final states of program
fragments. Thus, we found it suitable for our case since the different processes may

14 A Language for the Execution of Graded BDI Agents

change the ambient states. A program fragment in our model is either a context
process P, or a bridge rule process P,..

We define the evaluation rules for the different processes. The general form of these
rules is: M,a ¢ P = M’, where M is the MCS at the start of the evaluation, a is
the ambient (C or Br type) where the procedure P is executed and M’ is the final
global system.

I - Evaluation rules for context processes: M,C ¢ P, = M,C’

Since each context process P, runs in a particular context C of M and its execution
only changes its state, in the following evaluation rules we can omit the reference to
M. As the context ambient C is defined as ¢(Id,, S.), we represent as C’ the modifi-
cation of its ambient state i.e. C' = ¢(Id,, S.).

COPcl = '
CIOPCQ =
COPcl - P.o = cn

(5.1)

CoPq=> o4
CoP,qor Py= (C

(5.2)

CoPy= C
COPCQ = O

CoP.qor Po= C”

CFTerm
CoP,q=> o4
Co if Term then P. else Py = C'

Notice that C' + Term represents that Term is a valid formula in the ambient state
S, i.e. Term € S..

C¥F Term
Co P.o = c"

Co if Term then P else Py = C"

(5.5)

IT - Fvaluation rule for bridge rule process: M, Br ¢ Py, = M’

As the fundamental processes for the Py, definition are the processes get*(Term, L),
getS(Ly, ..., Ly, L) and add*(L,Term), to define their semantics it is enough to have
the P, semantics well defined. In some rules we use @) to denote that the result of
the process execution is independent of the ambient where it is running.

A Language for the Execution of Graded BDI Agents 15

C+Term; o
Y Term, {{ wni fy(Term, Terms) — Up } < member(U;, L)}

0 o get*(Term,L)= L=1L'

(5.6)

Intuitively, get*(Term, L) gathers in the list L all the substitutions U; that result
from unifying Term with Term;, formulae in C' ambient state.

Y (Ui € Ly,...,Up € Ly,)
{(unify*(Uy,...,U,) = L*) <+ member(L*,L")}

5.7
0 o getS(Li,...,Lp,L)= L=1 (5:7)
where unify*(U,...,U,) is a variant of the classical unify function, where lists of
substitutions (Us,...,U,) instead of formulae are unified. If unify* succeeds, its re-
sult is a list L* of the unified substitutions.
C = c(Id., S;)
VL; { member(L;,L) <> (Term[L;] € TermSet)} (5.8)

Co add*(L,Term)= c(Id.,S.UTermSet)

Intuitively, add*(L,Term) adds to the ambient state S, all the instances of the
Term formula by applying the substitutions in L.

6 Mapping a g-BDI Agent to the MCC
Given a g-BDI agent defined by its multi-context specification (see Section 2)

A!] = ({BC, DCa IC7 PC) CO}aAbT)a

we want to map it into the MCC language. Thus, we need to define a mapping F :
{Ay} = MCC, which maps each g-BDI agent A, with its multi-context components
(contexts and bridge rules) to the MCC language. The general insights of the mapping
F between these two formalisms are the following:

Global ambient: the multi-context agent A, is mapped to a global ambient A, in
MCC:
F: Ay=({BC,DC,IC,PC,CC}, Ay) = Ay[Clause]

Context ambient: each context C; € {BC, DC, IC, PC,CC} in the agent A, either
mental or functional, is mapped to a suitable ambient structure (possibly nested)
in MCC. Ambient Calculus enables us to represent nested ambient structures as
Ci [Pe, || Cio [Poyo || [Cin || ---]]], which is very useful in order to represent complex

16 A Language for the Execution of Graded BDI Agents

contexts. For example, different ambients may help to individualize different layers
used in the context language definition and also in the deduction process.

F: Cy= (L, A, N, Ty) — ¢(Cy,Sc,) [Pe, || Cio [Pey, || [Cir || -]]

e Language: before setting the ambient state for a context C;, we have to define
the ambient language ALY Since the languages of different mental contexts in
the g-BDI agent model are built using different language layers, we create the
corresponding ambient hierarchical structure where the inner an ambient is, a
more basic language it has. The ambient state will be composed by formulae
of the top level language (i.e., ambient). This structure allows us to differen-
tiate the language layers in different ambient states, but using the mobility of
processes we can access the different formulae in them.

FiL; — {ALS AL, . AL}

Context ambient state: the initial ambient state S¢, is composed by the
translation of the theory T; formulae into the ambient language.

F:T; — Sc, C ALY

e Context ambient process: the process Pc, attached to a context ambient
is derived from its logical deduction system. Thus, it is built from the context
theory, axioms and inference rules.

./_‘.<A1,A“Tl> — PCl.

Essentially the Pg, process is composed by the following sequential schema:
Pe, == P} - PX., where the P} process represents the generation of finitely-
many instances of the different context axioms i.e. Pji u= P; -..-Pji ,
where the A;;’s are axioms in A;. Respectively, PX. is composed by pro-
cesses in charge of generating the instances of the different inference rules. i.e.
PX, = P}, -.. PX,, where the A;;’s are rules in A;. These processes are
described in more detail for DC context in next Subsection 6.1.

Bridge rule ambient: each bridge rule Br; is mapped to a suitable ambient Br;
having as internal state a list of possible substitutions L; and a special process
Pg,,. The definition of both elements related to the Br; ambient (i.e. L; and
Ppg,,) depends on the premise and conclusion of the bridge rule that it represents:

01:@1,---7077,:9071

]:Z BT};:
Ck : ok

— br(Bn-, Ll) [PB”]

e Internal state: is the list L; of n substitution lists, i.e.:
L; = ({La),..., (L)) where each sublist (L;;) will contain the resulting sub-
stitutions of unifying the formulae ¢; with formulae in the context C;.

e Bridge rule process: the special process Pp, is created in MCC (see (12)
in Table 2) to represent the bridge rule inference. For the bridge rule Br; this

A Language for the Execution of Graded BDI Agents 17

Ag

BC DC [PC cC
BC, DC, IC,

Pbc I:)dc P|c PDC PCC

Br, Br,

FiG. 4. The ambient structure for a g-BDI agent

process will add determined instances of the formula ¢, in an ambient C}, when
the preconditions are satisfied.

PB'I”i L= (Spy(B’l", 0179017'[’1) || s || Spy(BT’ Cn,QD27Ln)) '
. put*(Br,Ck7§0kaL1;"'7Ln)

The ambient structure in MCC for representing a g-BDI agent A, is illustrated
in Figure 4. Therefore, for each mental or functional context in the g-BDI agent
specification, we can define the corresponding ambient structure in MCC. Since the
planning and communication context are based in first order logic, the mapping is
straightforward and both contexts can be easily passed to a corresponding ambient.
Namely, both ambient languages has only one layer, the theories may be translated
to the initial context states and the inference rule resolution may be translated to the
corresponding ambient processes.

In the case of the mental contexts, since the logical framework is more complex,
some details must be analyzed. As a matter of example, in the next subsection we
describe the mapping F for the Desire Context. In a similar way, the ambients for
the other mental contexts may be developed.

6.1 Mapping the Desire context (DC) into a Desire ambient

We next define a mapping F from a desire context DC' to a suitable ambient structure
in MCC

F:DC = (Lpc,Apc,Apc,Tpc) — ¢(DC,Spc) [Ppc || -]

To do this, we start with a synthesized description of the components of the Desire
Context (DC): the language Lp¢, the axioms Apc, the inference rules Ape and a
theory Thc. A more complete description of these logical elements can be found in
[12].

Language (Lpc): it is defined over a (classical) propositional language £ (generated
from a finite set of propositional variables and connectives — and —) by introduc-
ing two (fuzzy) modal operators Dt and D~. As in other mental contexts, we
use a (modal) many-valued logic to formalize reasoning about graded desires by

18 A Language for the Execution of Graded BDI Agents

means of the trick of interpreting the (positive and negative) degrees of desires
over a (classical) proposition ¢ as the truth-degrees of the modal formulas Dt
and D~ respectively. We choose RPL logic (Lukasiewicz logic, extended with
rational truth-constants, see Annex I), as the underlying many-valued logic deal-
ing with the many-valued modal formulas. The Lpc language is built therefore
as follows:

elf p € Lthen D™, DTy € Lpc
elf reQni0,1] then 7 € Lpc

oIf & U € DC then & —f ¥V € Lpc and ~® € Lpc (where —f and —p,
correspond to the negation and implication of Lukasiewicz logic, other logic
connectives, like A, Vg, =g are definable from —f and —p, see Annex I)

Since in Lukasiewicz logic a formula ® —p ¥ is 1-true iff the truth value of ¥ is
greater or equal to that of ®, modal formulae of the type 7 —5 D¢ (respectively
T —1, D™) express that the positive (respectively negative) desire of ¢ is at least
T

Axioms and inference rules (Apc and Ape): to axiomatize the logical system
DC we need to combine axioms of classical propositional calculus (CPC) for for-
mulas of £ with Lukasiewicz logic axioms for modal formulae (described in Annex
I), plus additional axioms characterizing the behavior of the modal operators DT
and D~. The intuitions behind these axioms and rules are that a conjunctive
combination of desires of one kind (either positive or negative) may result in a
strictly higher desire value (captured by the introduction rules), while the desire
value of a disjunctive combination of either positive or negative desires is taken as
the minimum of the desire degrees (represented by Az; and Axs respectively):

- Axioms of CPC for formulae of £
- Axioms of Rational Pavelka logic for modal formulae (see Annex I).
- Axioms® for Dt and D~ over Lukasiewciz logic:
Az : DY (V)= DY AL DT
Azxs: D (V)= D oA D79
- Rules are: modus ponens for — and —;, and introduction of Dt and D~ for
implications:
Aq: from ¢ — 1 derive DT —1 DT and
As: from ¢ — 1) derive D™¢ —f D™ .

Theory (Tpc): it consists of a set of formulas from Lpe

3These are the basic ones, one could consider additional axioms introducing some constraints between both
modalities.

A Language for the Execution of Graded BDI Agents 19

DC
_/(IL DC DCO
PDC | ok i

F1G. 5. The DC ambient structure

Now we are ready to define the corresponding Desire Ambient F(DC) by de-
scribing its state language ALPC | its initial state Spe and its process Ppe.

1. State Language ALP¢

Since the modal language Lpc for the desire context is built in two layers (one
base propositional language £ and the modal Lp¢), we define two ambients to
represent these language layers. We define the ambient DCj (to represent language
L) inside the ambient DC' (to represent language Lp¢), having the following
ambient structure: DC' [Ppe || DCy]. This structure and the languages involved
are illustrated in Figure 5.

This nested ambient structure enables us to deal in a proper way with the differ-
ent fomulae in the two language layers. The language for the DCjy ambient is the
basic language used in the DC context for building the language Lpc. As it is
convenient for the definition of the deductive process Ppc, we consider that the

formulas of this language are in Disjunctive Normal Form (DNF). So we have for
DCl the mapping F : £ — ALPNE defined by:

o« F() = ¢PNF

The mapping from the language £pc to the language ALP for the desire ambi-
ent, F: Lpc — ALPC is then defined as follows:

2. Initial state Spc
The DC ambient state Spc is composed by the translated formulae of the context
theory: Spc = {F(®) | ® € Tpc}

3. DC Process Ppc
We need to map the logical deduction of the desire context DC, composed by two
different layers of axioms and inference rules, into the Ppc process. Actually, it can

20 A Language for the Execution of Graded BDI Agents

be shown that reasoning in the DC axiomatic system can be reduced to reasoning
in plain Lukasiewicz logic from a big, but finite, theory which gathers suitable
translations of instances of all the axioms and inference rules, and of the formulas
of the context theory Tpc. We will consider deduction in Lukasiewicz logic as
an encapsulated process Pp without entering in its internals. This is possible
since there exist theorem provers for this many-valued logic [2]. We describe next
how to build such a theory in the context ambient which incorporates a finite
set of instances of the axioms and inference rules that model the behavior of DT
and D~. The idea is that, since we have a language £ built over a finite set of
propositional variables, there are only a finitely-many different DNF formulas, so
there are finitely-many instances of axioms and rules over these DNF formulas.
Therefore the Ppc process will consist of two parts. The first one, involving four
processes Py, Popnr, Pax, Pa, will add to the initial ambient state Spe (context
theory) the set of instances of the axioms and inference rules, changing the initial
state into St

C(.DC’7 Spc) < (PV(VSet) . PDNF(VSGt) . PAX . PA) = C(DC, S/DC')

Then, over the state ST, the deduction over Lukasiewicz logic, represented by the
process Pp, can be be applied. Thus, the Ppc process is defined as the following
schema of sequential processes:

PDC n= Pv(VSGt) . PDNF(VSCt) ‘PAX ‘PA ‘PL

In the following items we describe the four first processes:

(P1) The Py (V Set) process extracts from Spe the finite set of variables appearing
in the formulas of Tp¢ and puts them in V Set.

(P2) The Ppyr(V Set) process enters in the DCy ambient and through the process
add}, y (V Set) creates and adds to Spc, the finite set of DNF formulae built
upon the variables in Vset, i.e.:

Ppnrp(VSet) :=in DCy - addpyp(V Set) - out DCy

(P3) The Pax process is composed by all the processes derived from each context
axiom. For this particular case of the DC ambient we have:

Ppg = PAml 'PALEQ

These processes represent respectively the axioms Az and Axs (see below), for
instance P4y, is defined as:

Psy, == in DCy - get*(dpair(z,y),L) - out DCy -
~add*(F(D"(x) ADY(y) = DT (z Vy)), L)

where the special component processes have the following meaning;:

— get*(dpair(z,y), L) stores in L all the pairs (z,y) satisfying the condition
dpair(z,y): x,y € Spc, and x # y;

A Language for the Execution of Graded BDI Agents 21

—add*(F(D*(z) A DT (y) = D™ (x V y)),L), using the pairs (z,y) € L for
substitution, instantiates and adds to the ambient state Spc the formulae
F(DT(z) ADT(y) = DT (x Vy)).

In a similar way the Pa,o process represents the corresponding axiom for D.

(P4) The Pa process is composed of the processes representing the instances of the
different inference rules. For the DC ambient there are two processes represent-
ing the rules A; and As, hence

Pa = PAl . PAz R with

Pp, n=1in DCy - get*(F(z — y),L) - out DCy - add*(F(D*(y) = DT (z)),L)

and similarly for Pa,, where

—get*(F(x — y), L) gets the pairs (z,y) resulting from the unification of F(x —
y) in DCy ambient;

—add*(F(D*(y) — D*(z)), L) adds all the instances of the formula F(D*(y) —
D*(z)) with pairs (z,y) € L.

(P5) The final process Pf, applies Lukasiewicz logic deduction Fj, to the state Sp
resulting from the previous processes, i.e. P, ::= Fy,

The complexity of processes P1 and P4 is O(n), considering n as the size of the theory
Tpc. Process P2 can be O(2") in the worst case and process P3 is quadratic on n,
O(n?). The difficult process is the last one, P5, that is a co-NP complete problem
[1] and thus can lead to exponential computations in the worst case. The belief
contexts have a similar complexity and the intention context acts as a kind of data
base recording the results of bridge rules and thus its complexity is basically lineal on
the size of the theory, O(n). Planning is, even in simple representations like STRIPS,
NP-Complete. Thus, the planner context will be in general exponential on the size of
its theory (based on goals and beliefs).

7 Discussions

In this work we cope with the operational semantics aspects of the g-BDI agent model.
The g-BDI architecture includes an explicit representation of agent uncertain beliefs,
and graded desires and intentions. These graded attitudes are represented by well-
founded fuzzy modal logics. Then, diverse uncertainty models can be represented to
reason about the different attitudes, by defining suitable modal theories over suitable
many-valued logics. The g-BDI agent model takes advantage of the agent graded
beliefs and desires (both positive and negative) in the agent deliberation process to
derive graded intentions. Different agent behaviours can be modelled by combining in
different ways these factors. This agent model has been used to specify and implement
concrete recommender agents in the tourism domain [10]. The agent performance may
be improved by using these graded attitudes as it was shown in the experimentation
of this case study (see [11]). Further work is necessary to experiment with the g-BDI

22 A Language for the Execution of Graded BDI Agents

architecture to model agents in other domains. We have preliminary good results on
the use of the g-BDI model in the design of an educational recommender system [13].

For giving computational meaning to our agent model, we have first defined a MCC
Calculus for Multi-context systems (MCS) execution. The MCC proposed is based
on Ambient calculus [6] and includes some elements of LCC [36]. The operational se-
mantics for this language was given using Natural Semantics. MCSs have been used
in diverse applications as for example in the integration of heterogeneous knowledge
and data bases, in the formalization of reasoning about propositional attitudes [16]
and to engineer agents in multiagent systems [26]. Thus, we expect that MCC will
be able to specify different kinds of MCSs. Particularly, we have shown how graded
BDI agents can be mapped to this calculus. Through MCC we have given to this
agent model computational semantics and in this way, we are getting closer to the
development of an interpreter of the g-BDI agents. Although process calculi have
been mainly used in the past to model multiagent systems, we have considered that
the modular structure that MCS provide to the architecture of an agent would permit
a similar treatment to single agents as well (or to any system with a self-similarity
structure like Holons). We think that the implementation of agent architectures using
process calculi, in particular ambient calculus, would give a uniform framework for
agent architectures, multiagent systems and also electronic institutions.

Acknowledgments The authors are thankful to the anonymous reviewers for their
helpful comments for improving the paper. Ana Casali acknowledge partial support
by the PID-UNR, ING308 project. Lluis Godo and Carles Sierra acknowledge partial
support by the Spanish project Agreement Technologies (CONSOLIDER CSD2007-
0022, INGENIO 2010).

References

[1] Aguzzoli S., Gerla B. and Hanikovd Z. Complexity Issues in Basic Logic, Soft Computing, 9, pp.
919-934, 2005.

[2] Beavers G. Automated theorem proving for Lukasiewicz logics. Studia Logica, Volume 52, Num-
ber 2 pp. 183-195, 1993.

[3] Benferhat S., Dubois D., Kaci S. and Prade H. Bipolar possibility theory in preference modeling:
Representation, fusion and optimal solutions. Information Fusion, Elsevier, 7, 135-150, 2006.

[4] Brewka G., Roelofsen F., and Serafini L. Contextual Default Reasoning. In Proc. of IJCAI 2007,
pp. 268273.

[5] Dellunde P. and Godo L. Introducing Grades in Deontic Logics. In Proc. of DEON’08. Lecture
Notes in Computer Science vol. 5076, Ron van der Meyden and Leon van der Torre (eds.),
Springer-Verlag, pp. 248-262, 2008.

[6] Cardelli L. and Gordon A.D. Mobile Ambients. In Maurice Nivat, editor, Foundations of Soft-
ware Science and Computational Structures, number 1378 in Lecture Notes in Computer Science,
pp. 140-155. Springer-Verlag, 1998.

[7] Casali A. On intentional and social agents with graded attitudes, Monografies de I’Institut
d’Investigacié en Intel.ligéncia Artificial, CSIC, 2009.

[8] Casali A., Godo L. and Sierra C. Graded BDI Models for Agent Architectures. Leite J. and
Torroni P. (Eds.) CLIMA V, Lecture Notes in Artificial Intelligence LNAI 3487, pp. 126-143,
Springer-Verlag, Berling Heidelberg, 2005.

[9] Casali A., Godo L. and Sierra C. Multi-Context Specification for Graded BDI Agents. Pro-
ceedings of the Doctoral Consortium - Fifth International Conference on Modeling and Using
Context (CONTEXT-05), Research Report LIP 6, Paris, Francia, 2005.

A Language for the Execution of Graded BDI Agents 23

[10] Casali A., Godo L. and Sierra C. Modeling Travel Assistant Agents: a graded BDI Approach.
IFIP, Volume 217, Artificial Intelligence in Theory and Practice, Ed. Max Bramer (ISBN 0-387-
34654-6) (Boston: Springer), 415-424, 2006.

[11] Casali A., Godo L. and Sierra C. Validation and Experimentation of a Tourism Recommender
Agent based on a Graded BDI Model. In: Artificial Intelligence Research and Developement, T
Alsinet et al (Eds.), Series: Frontiers in Artificial Inteligence and Applications 184, IOS Press,
pp. 41-50, 2008.

[12] Casali A., Godo L. and Sierra C. A Logical Framework to Represent and Reason about Graded
Preferences and Intentions. In Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2008, G. Brewka and J. Lang (Eds.), The
AAAI Press, pp.27-37, 2008.

[13] Deco C., Bender C., Casali A., Motz R. Design of a Recommender Educational System. Proceed-
ings of 3ra. Conferencia Latinoamericana de Objetos de Aprendizaje (LACLO 2008), Aguas-
calientes, Mexico, 2008.

[14] Dunin-Keplicz B. and Verbrugge R. Teamwork in Multi-Agent Systems: a formal approach.
Wiley, 2010.

[15] Gabbay D.M. Labelled Deduction Systems, Volume 1, Oxford Logic Guides, Volume 33, Claren-
don Press / Oxford Science Publications, 1996.

[16] Ghidini C. and Giunchiglia F. Local Model Semantics, or Contextual Reasoning = Locality +
Compatibility Artificial Intelligence,127(2):221-259, 2001.

[17] Godo L., Esteva F. and Héjek P. Reasoning about probabilities using fuzzy logic. Neural Network
World, 10:811-824, 2000.

[18] Giunchiglia F. and Serafini L. Multilanguage Hierarchical Logics (or: How we can do without
modal logics) Journal of Artificial Intelligence, vol.65, pp. 29-70, 1994.

[19] Hajek P., Metamathematics of Fuzzy Logic, Trends in Logic, 4, Kluwer Academic Publishers
(1998).

[20] Halpern, J.Y. Reasoning About Uncertainty, MIT Press, Cambridge, MA, 2003.

[21] Joseph S., Perreau de Pinninck Bas A., Robertson D., Sierra C. and Walton C. Interaction
Model Language Definition. IJCAI 2007 Workshop AOMS Agent Organizations Models and
Simulations. Dignum V., Dignum F., Matson E. and Edmonds B. eds., pp. 49-61, 2007.

[22] Lorini E., Herzig A., Broersen J. and Troquard N. Grounding Power on Actions and Mental
Attitudes, Formal Aspects of Multiagent Systems, Logic Journal of the IGPL, Verbrugge R.
and Keplicz B. guest eds. This volume.

[23] Milner R., Parrow J. and Walker D. A calculus of mobile processes, Parts 1-2. Information and
Computation, 100(1), 1-77. 1992.

[24] Milner R. Communication and Comcurrency. Prentice-Hall International, 1989.

[25] Ognjanovic Z. and Raskovic M. Some Probability Logics with New Types of Probability Oper-
ators. Journal of Logic and Computation 9(2): 181-195, 1999.

[26] Parsons S., Jennings N.J., Sabater J. and Sierra C. Agent Specification Using Multi-context
Systems. Foundations and Applications of Multi-Agent Systems 2002: 205-226, 2002.

[27] Pinyol I. and Sabater-Mir J. Integrating Image and Reputation Information in BDI Agents In
Proc. of EUMAS 08, Bath,UK, 2008.

[28] Rao A. and Georgeff M. BDI agents: From theory to practice. In Proceedings of the 1st Inter-
national Conference on Multi-Agents Systems, pp 312-319, 1995.

[29] Robertson D. Multi-Agent Coordination as Distributed Logic Programming. In Bart Demoen,
Vladimir Lifschitz (Eds.): Logic Programming, 20th International Conference, ICLP 2004,
Saint-Malo, France, September 6-10, 2004, Proceedings. Lecture Notes in Computer Science,
Springer, pp. 3132, pp. 416-430.

[30] Sabater J., Sierra C., Parsons S. and Jennings N. R. Engineering executable agents using multi-
context systems. Journal of Logic and Computation 12(3), pp. 413-442, 2002.

[31] van der Hoek, W. On the Semantics of Graded Modalities. Journal of Applied Non-Classical
Logics 2(1), pp. 81-123, 1992.

[32] van Ditmarsch, H. Prolegomena to Dynamic Logic for Belief Revision, Synthese 147, pp. 229-275,
2005.

24 A Language for the Execution of Graded BDI Agents

[33] Walton C. Multi-Agent Dialogue Protocols. In Proceedings of the FEighth International Sympo-
sium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, January 2004.

[34] Walton C. Model Checking Multi-Agent Web Services. In Proceedings AAAI Spring Symposium
on Semantic Web Services, Stanford, California, 2004.

[35] Walton C. Verifiable agent dialogues. Journal of Applied Logic 5, pp. 197-213, 2007.

[36] Walton C. and Robertson D. Flexible multi-agent protocols. Presented at UKMAS 2002, Liv-
erpool, UK, December 2002. Published as Informatics Technical Report EDI-INF-RR-0164,
University of Edinburgh, December 2002.

Annex I: Rational Pavelka Logic

Rational Pavelka logic RPL is an extension of Lukasiewicz’s infinitely-valued logic
admitting to explicitly reason about partial degrees of truth. Introduced by Pavelka
in the late seventies, it is described in a simple formalization in [19]. Since the
approach described in this paper strongly relies on this logic, here we follow the latter
and present its main notions and properties.

Formulae are built from propositional variables p1, po, ... and truth constants 7 for
each rational r € [0, 1] using connectives —, and —y. Other connectives can defined
from these ones. In particular, among others, one can define two conjunctions and
two disjunctions exactly as in Lukasiewicz’s logic, i.e.

@ ® 1 stands for —p(p —p —p)

@ @ ¢ stands for —pp =g Y

¢ © ¢ stands for —p(@ = ¥)

eVp stands for (¢ —=p¢) 5L

@ Ap stands for —p(—pe Vi oY)

=g ¢ stands for (¢ = ¥) AL (¥ =L @)

Lukasiewicz’s truth functions for the connectives —y, and -y, are (we use the same
symbol as for the connectives):
T =Ly min(l,1 —z +y)
—xr = 1—=x

Taking into account these definitions, it is easy to check that the truth functions for
the above definable connectives are the following ones:

r®y = max(0,x+y—1)
x @y = min(l,z+y)

r 6y = max(0,z—y)
xVypy = max(x,y)

xArpy = min(z,y)

t=y = 1-|z—y

An evaluation e is a mapping of propositional variables into [0,1]. Such a mapping
uniquely extends to an evaluation of all formulae respecting the above truth functions
and further assuming that e(7) = r for each rational r € [0,1]. An evaluation is a
model of a set of formulae T whenever e(p) =1 for all ¢ € T. We write T E=grpr ¢
to denote that e(p) = 1 for every evaluation e model of 7.

Logical axioms of RPL are:
(i) axioms of Lukasiewicz’s logic

A Language for the Execution of Graded BDI Agents 25

o =5 (Y=L e)

(¢ =) =L (¥ =L Xx) =L (9 =L X))
(e = L) =i (Y = 9)

((p =) =) =1 (¥ =L @) =1)

(ii) bookkeeping axioms: (for arbitrary rationals r,s € [0,1]):

—iT=p1l—r

7 —p5=pmin(l,1 —r+s)

The only deduction rule is modus ponens for — ;.. The notion of proof in RPL, denoted
FrpL, is defined as usual from the above axioms and rule.

RPL enjoys two kinds of completeness. The so-called Pavelka completeness reads
as follows. Let 7 be an arbitrary set of formulae (theory) and ¢ a formula. The
provability degree of ¢ in T is defined as | ¢ |, =sup{r | T Frpr T =1 ¢}. The truth
degree of ¢ in T is defined as [|¢||; = inf{e(y) | e evaluation, e model of T}. Notice
that both [|¢||; and |¢|, may be irrational. Then, for each 7 and ¢, it holds that

[elp = el

i.e. the provability degree equals to the truth degree.

Besides, RPL enjoys a classical completeness property but only for deductions from
finite theories, which will be used in the proof in Annex II, and reads as follows: for
each ﬁmte T and @, T l_RPL %2 it T ':RPL @Y.

