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Abstract

It follows from the famous Fagin’s theorem that all problems in NP are expressible in existential
second-order logic (∃SO), and vice versa. Indeed, there are well-known ∃SO characterizations of NP-
complete problems such as 3-colorability, Hamiltonicity and clique. Furthermore, the ∃SO sentences
that characterize those problems are simple and elegant. However, there are also NP problems that
do not seem to possess equally simple and elegant ∃SO characterizations. In this work, we are mainly
interested in this latter class of problems. In particular, we characterize in second-order logic the
class of hypercube graphs and the classes SATQBFk of satisfiable quantified Boolean formulae with k

alternations of quantifiers. We also provide detailed descriptions of the strategies followed to obtain

the corresponding nontrivial second-order sentences. Finally, we sketch a third-order logic sentence
that defines the class SATQBF =

⋃
k≥1SATQBFk. The sub-formulae used in the construction of

these complex second- and third-order logic sentences, are good candidates to form part of a library
of formulae. Same as libraries of frequently used functions simplify the writing of complex computer
programs, a library of formulae could potentially simplify the writing of complex second- and third-
order queries, minimizing the probability of error.

Keywords: second-order logic, third-order logic, quantified Boolean formulae, queries, finite model

theory, hypercube graphs

1 Introduction

Examples of second-order formulae expressing different properties of graphs are fairly
common in the literature. Classical examples are 3-colorability, Hamiltonicity, and
clique (see [8, 10] among others). These properties can be expressed by simple and
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2 Expressing Properties in Second and Third Order Logic

elegant second-order formulae. Likewise, there are graph properties that can be ex-
pressed by simple and elegant third-order formulae. One of those properties is that
of being a hypercube graph (see [5]). An n-hypercube graph Qn, also called an n-cube,
is an undirected graph whose vertices are binary n-tuples. Two vertices of Qn are
adjacent iff they differ in exactly one bit.
The expressive power of third-order logic is not actually required to characterize

hypercube graphs, since they can be recognized in nondeterministic polynomial time.
Recall that by Fagin’s theorem [4], ∃SO captures NP. Thus there are formulae in
existential second-order logic (∃SO) which can express this property. Nevertheless, to
define the class of hypercube graphs in second-order logic is certainly more challenging
than to define it in third-order logic.
From an applied perspective, this indicates that it makes sense to investigate higher-

order quantifiers in the context of database query languages. Despite the fact that
most of the queries commonly used in the industry are in P, the use of higher-order
quantifiers can potentially simplify the way in which many of those queries are ex-
pressed.
Let SATQBFk denote the class of satisfiable quantified Boolean formulae with

k alternating blocks of quantifiers. From Fagin-Stockmeyer characterization of the
polynomial-time hierarchy [13] and the fact that SATQBFk is complete for the level
Σp

k of that hierarchy [14], it follows that for every k ≥ 1, SATQBFk can be defined by
a formula in the prenex fragment Σ1

k of second-order logic with k alternating blocks
of quantifiers. SATQBFk provides a prime example of a property (or query) whose
expression in the language of second-order logic is possible but challenging. Indeed,
it is not a trivial task to write a second-order logic sentence that evaluates to true
precisely on those word models that represent sentences in SATQBFk. As usual in
finite model theory [3], the term word model refers here to a finite relational structure
formed by a binary relation and a finite number of unary relations. By contrast, if
we restrict our attention to quantified Boolean formulae in which the quantified free
part is in conjunctive normal form and has exactly three Boolean variables in each
conjunct, then the problem is expressible in monadic second-order logic provided that
the formulae are encoded using a different kind of finite relational structures which
include ternary relations (see [10]).
Thus, on the one hand there are well-known NP-complete problems such as 3-

colorability, Hamiltonicity and clique, that have corresponding well-known charac-
terizations in ∃SO which are simple and elegant. Those characterizations have in
common that the existential second-order quantifiers can be identified with the guess-
ing stage of the NP algorithm, and that the remaining first-order formula corresponds
to the polynomial time deterministic verification stage. On the other hand, there are
well-known problems such as hypercube graph (which can also be characterized in
∃SO) and SATQBFk (which can be characterized in Σ1

k) that do not appear to have
a straightforward characterization in second-order logic, even if we consider the full
second-order language.
This observation prompted us to write second-order characterizations of hypercube

graph and SATQBFk. The resulting second-order sentence for hypercube graph can
be found in [11]. The corresponding sentence for SATQBFk was included in [12]. Both
sentences are complex and several pages long. In this article we present a detailed
description of the strategies followed to write these sentences. The sub-formulae used
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for the implementation of these strategies could be part of a future library of second-
order formulae. Same as libraries of frequently used functions simplify the writing
of complex computer programs, a library of formulae could potentially simplify the
writing of complex second-order queries, minimizing the probability of error.
The minimization of the probability of error constitutes an important objective in

the context of this work, since given a query q and a second-order formula ϕ, it is not
possible to formally prove whether ϕ expresses q. For this reason, we make use of full
second-order logic to present the characterizations of hypercube graph and SATQBFk,
even though its ∃SO and Σ1

k fragments, respectively, already have the expressive power
required for these tasks. This has permitted us to write relatively clear and intuitive
formulae as well as to follow a top-down strategy, similar to that commonly used in
the development of computer programs, to further reduce the chance of error.
If we consider the whole class SATQBF =

⋃

k≥1SATQBFk of satisfiable quantified
Boolean formulae, then the problem becomes PSPACE-complete. Since PSPACE can
be captured by second-order logic extended with a transitive closure operator, and
furthermore this logic is widely conjectured to be strictly more expressive than the
standard second-order logic, the existence of a second-order logic characterization of
this problem is unlikely. Thus, we decided to look for a characterization in third-order
logic. Note that it is a well-known fact that third-order logic is powerful enough as to
characterize every problem in PSPACE. We conclude the paper presenting a sketch
of a third-order logic sentence that defines the class SATQBF. That is, we present a
strategy to write a third-order sentence that evaluates to true precisely on those word
models that represent sentences in SATQBF.
We strongly believe that in many respects the descriptive approach to Complexity is

more convenient than the classical one. That is, using formulae of some logic to study
upper bounds in the time or space complexity of a given problem, instead of Turing
machines. There are many different measures which can be taken on the formulae
that express a given problem such as quantifier rank, quantifier blocks alternation,
number of variables, number of binary connectives, and arity of quantified relation
variables. It has been proved that bounds on those measures impact on the expressive
power of logics over finite models (see [10], [3], [8]). Furthermore, it is rather obvious
that all those measures are decidable, in contrast to the use of Turing machines, where
the usual measures relevant to computation power such as time, space, treesize, and
number of alternations, are clearly undecidable. Regarding lower bounds there are
also several well studied and powerful techniques in Descriptive Complexity which
proved to be extremely useful in the last decades, such as Ehrenfeucht-Fraisse games
and their variations (see [9] in particular) and 0-1 Laws (again see [10], [3], [8]).
Hence, it is important to learn how to build formulae which are large, but still

intuitive and clearly understandable in a top down approach, in the same way that this
is important in the construction of algorithms in the classical approach to Complexity,
which are also clear and intuitive no matter their size. The work reported in this
article is to the authors’ knowledge one of the first steps in that direction.
In the next section, we introduce the necessary notation and formally describe by

means of a third-order logic sentence, the class of hypercube graphs. In Section 3,
we define in second-order logic the basic arithmetic operations that we need for this
work. We describe the strategy used to characterize the class of hypercube graphs
in the language of second-order logic in Section 4. In Section 5 we formally describe
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the problems SATQBFk and SATQBF, and we consider their complexity. In Section
6, we explain in full detail how to build for each k ≥ 1, a second-order sentence
that expresses SATQBFk. In Section 7 we explain how to build a third-order logic
sentence which expresses SATQBF, and we give a sketch of such formula. Finally in
Section 8, we present some final considerations.

2 Background

We assume that the reader is acquainted with the basic concepts and the framework
of Finite Model Theory [3, 10]. We use the notation from [10].
We work on the vocabulary σ = {E} of graphs. An undirected graph G is a finite

relational structure of vocabulary σ satisfying ϕ1 ≡ ∀xy(E(x, y) → E(y, x)) and
ϕ2 ≡ ∀x(¬E(x, x)). If we do not require G to satisfy neither ϕ1 nor ϕ2, then we
speak of a directed graph (or digraph). We denote as V the domain of the structure
G, i.e., the set of vertices of the graph G. The edge relation of G is denoted as EG.
By second-order logic we refer to the logic that is obtained when first-order logic is

extended with second-order variables which range over subsets and relations defined
over the domain, and quantification over such variables. As usual, we use uppercase
letters X,Y, Z, . . . to denote second-order variables and lower case letters x, y, z, . . .
to denote first-order variables. The arity of the second-order variables that we use in
our formulae is always clear from the context. See [10] or [3] for a formal definition
of second-order logic in the context of finite model theory. We include an example of
a second-order formula that defines a simple graph property instead.

Example 2.1

An undirected graph G is regular if all its vertices have the same degree. It is well
known that the class of regular graphs is not definable in first-order logic [3, 8]. In
second-order logic, this class can be defined as follows:

∃A
(

∀x
(

∃B(A1 ∧ A2)
))

where

• A1 expresses “B is the set of vertices which are adjacent to x”.

A1 ≡ ∀z
(

B(z) ↔ E(x, z)
)

• A2 expresses “the sets A and B have the same cardinality” with a formula stating
that there is a bijection F from A to B.

A2 ≡ ∃F∀xyz
(

A2.1 ∧ A2.2 ∧ A2.3 ∧ A2.4 ∧A2.5
)

where
– A2.1 means “F is a subset of A×B”.
A2.1 ≡

(

F (x, y) → A(x) ∧B(y)
)

– A2.2 means “F is a function”.
A2.2 ≡

(

F (x, y) ∧ F (x, z) → y = z
)

– A2.3 means “F is total”.
A2.3 ≡

(

A(x) → ∃y(F (x, y))
)

– A2.4 means “F is injective”.
A2.4 ≡

(

F (x, z) ∧ F (y, z) → x = y
)

– A2.5 means “F is surjective”.
A2.5 ≡

(

B(y) → ∃x(F (x, y))
)

We say that a sentence ϕ expresses a Boolean query q (or property) over finite
relational structures of vocabulary σ, if for every finite relational structure G of
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(0,1,1)

(1,1,1)(1,1,0)

(0,1,0)

(1,0,0) (1,0,1)
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(1,0) (1,1)

(0,1)(0,0)

(0) (1)

Figure 2.1

vocabulary σ, q(G) = true iff G |= ϕ. For instance the sentence in Example 2.1
expresses the Boolean query: Is G a regular graph? We denote by Mod(ϕ) the class
of finite σ-structures G such that G |= ϕ. A class of finite σ-structures C is definable
in a logic L, if C = Mod(ϕ) for some L-sentence ϕ of vocabulary σ. For instance
the class of regular graphs is definable in second-order logic, as shown by the formula
given in Example 2.1.
Next, we define the class of hypercube graphs using a relatively simple and elegant

formula in third-order logic. This logic extends second-order logic with third-order
variables which range over subsets and relations defined over the powerset of the
domain, and quantification over such variables. We use uppercase calligraphic letters
X ,Y,Z, . . . to denote third-order variables. A formal definition of higher-order logics
in the context of finite model theory can be found in [7] among others.

Example 2.2

An n-hypercube (or n-cube for short) Qn can be defined as an undirected graph whose
vertices are all the binary n-tuples. Two vertices of Qn are adjacent iff they differ
in exactly one bit. A 1-cube Q1, a 2-cube Q2 and a 3-cube Q3 are displayed in
Figure 2.1.
We can build an (n + 1)-cube Qn+1 starting with two isomorphic copies of an n-

cube Qn and adding edges between corresponding vertices. Using this fact, we can
define in third-order logic the so called class of hypercube graphs, as follows:

∃C∃O
(

A1 ∧ A2 ∧ ∀G1∀G2

(

(C(G1) ∧ C(G2) ∧A3) → A4
)

∧ A5 ∧ A6
)

where

• A1 expresses “C is a class of undirected graphs”.

• A2 expresses “O is a total order on C”.

• A3 expresses “G1 is the immediate predecessor of G2 in the order O”.

• A4 expresses “G2 can be built from two isomorphic copies of G1 by adding edges
between the corresponding vertices”.

• A5 expresses “the first graph in the order O is a Q1”.

• A6 expresses “the last graph in the order O is the input graph”.

In turn, we can express A4 as follows:

∃F1∃F2

(

A4.1 ∧ A4.2 ∧A4.3 ∧ ∀x(x ∈ dom(G1) → A4.4)∧

¬∃xy(x, y ∈ dom(G1) ∧ x 6= y ∧ A4.5)
)

where

• A4.1 expresses “F1 and F2 are injective and total functions from dom(G1) to
dom(G2)”.
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• A4.2 expresses “the ranges of F1 and F2 form a partition of dom(G2)”.

• A4.3 expresses “F1 and F2 are isomorphisms from G1 to the sub-graphs of G2

induced by the ranges of F1 and F2, respectively”.

• A4.4 expresses “there is an edge in G2 which connects F1(x) and F2(x)”.

• A4.5 expresses “there is an edge in G2 which connects F1(x) and F2(y)”.

Note that, if there is an edge (a, b) in G2 such that a belongs to the range of F1

and b belongs to the range of F2, or vice versa, then either F−1
1 (a) = F−1

2 (b) or
F−1
1 (b) = F−1

2 (a).
The missing logic formulae in this example are left as an exercise for the reader.

The property of a graph being an n-cube for some n, is known to be in NP. A
nondeterministic Turing machine can decide in polynomial time whether an input
structure G of the vocabulary σ of graphs is an hypercube, by simply computing the
following steps:

i. Compute the logarithm in base 2 of the size n of the domain of the input structure
G which must be a positive integer;

ii. Guess a sequence s1, . . . , sn of n binary strings, each of length log2 n;

iii. Check in polynomial time that all binary strings are unique, that the sequence
contains all binary strings of length log2 n and that, for some ordering as1 , . . . , asn
of the nodes in V , a string si differs from a string sj in exactly 1 bit iff there is
an edge (asi , asj ) ∈ EG.

Thus, as we mentioned in the introduction, the full expressive power of third-order
logic is not actually needed to characterize the class of hypercube graphs. In fact,
there is a formula in ∃SO which can express this property. Recall that by Fagin’s
theorem [4], ∃SO captures NP . However, it is very unlikely that there is a formula
in second-order logic, not to mention in ∃SO, that expresses the property in a way
which is as intuitive and simple as in the example above.

3 Arithmetic in Second-Order Logic

We define in this section the basic arithmetic operations of addition, multiplication
and exponentiation in second-order logic over finite structures. We encode initial
segments of natural number as finite relational structures by using linear digraphs.
Let G be a linear digraph. The first (root) element of the domain in the order
determined by the edge relation EG represents the 0, the second element in this
order represents the 1, the third element represents the 2 and so on. Since in a linear
digraph, EG is the successor relation, for clarity we use succ(x, y) to denote E(x, y).
We also use x = n where n > 0 to denote the formula of the form

∃y(succ(y, x) ∧ ∃x(succ(x, y) ∧ ∃y(succ(y, x) ∧ · · · ∧ ϕ) · · · ))

with n nested quantifiers and ϕ ≡ ¬∃x(succ(x, y)) if n is odd or ϕ ≡ ¬∃y(succ(y, x))
if n is even. Likewise, x = 0 denotes ¬∃y(succ(y, x)). We assume a total order ≤ of
the nodes in V such that x ≤ y iff there is a path from x to y in G or x = y. This
total order is easily definable in second-order logic.
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Let us start by defining the operation of addition. The strategy is depicted in
Figure 3.1 in which we show the result z of adding x and y along a linear graph.
The predicate sum(x, y, z), which is true iff z = x + y, can be defined in second-

order logic as follows.
(

x = 0 ∧ z = y
)

∨
(

y = 0 ∧ z = x
)

∨
(

x 6= 0 ∧ y 6= 0 ∧ ∃F
(

A1 ∧ F (z, y) ∧ ∃x′y′( succ(x, x′) ∧ F (x′, y′) ∧ y′ = 1)∧

∀x′y′x′′y′′(( succ(x′, y′)∧F (x′, x′′)∧F (y′, y′′)) → succ(x′′, y′′))
))

where A1 expresses “F is an injective function with domain {n ∈ V | succ(x) ≤ n ≤
z}”. It is an easy and supplementary task to write the actual formula corresponding
to A1. For the sake of clarity, we avoid this kind of supplementary details from now
on.
The next arithmetic operation that we define is multiplication. The strategy is

depicted in Figure 3.2 in which we show the result z of x times y. Each of the nodes
in the subset S = {2, . . . , x} can be considered as a root of a different ordered tree in
a forest. Each root node in the forest has y children and the result z is the last child
of node x.
The predicate times(x, y, z), which is true if z = x × y, can be defined in second-

order logic as follows.

(x = 1 ∧ y 6= 0 ∧ z = y) ∨ (y = 1 ∧ x 6= 0 ∧ z = x) ∨ ((x = 0 ∨ y = 0) ∧ z = 0)∨
(

x 6= 0 ∧ y 6= 0 ∧ x 6= 1 ∧ y 6= 1∧

∃S
(

∀u
((

(2 ≤ u ∧ u ≤ x) → [∃y′(S(u, y′))∧

∀x′y′((x′ ≤ y′ ∧ x′ 6= y′ ∧ S(u, x′) ∧ S(u, y′)) →

¬∃z′(x′ ≤ z′ ∧ z′ ≤ y′ ∧ ¬S(u, z′)))∧

∃F (A1) ∧ A2 ∧ A3 ∧A4]
)

∧

A5 ∧ ∀uv(S(u, v) → (2 ≤ u ∧ u ≤ x))
))

where

• A1 expresses “F is a bijection from {n ∈ V | S(u, n)} to {n ∈ V | 1 ≤ n ≤ y}, which
means that the output degree of u is y”.

• A2 expresses “if u = 2 then the first child of u is succ(y)”.
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PSfrag replacements

x x × x x × x2 z = x × xy−1

Figure 3.3: Exponentiation

• A3 expresses “if u = x then the last child of u is z”.

• A4 expresses “if u 6= 2 then succ(cu−1, cu) for cu−1 the last child of u − 1 and cu
the first child of u”.

• A5 expresses “the input degree of every node in S is ≤ 1”.

Finally, we need to define the arithmetic operation of exponentiation in second-
order logic. In this case, the strategy is depicted in Figure 3.3. Note that, the first
node in the linear digraph is x1, the second node is x2, and so on till node y-th (the
final node) which is xy.
The predicate exp(x, y, z), which is true if z = xy, can be defined in second-order

logic as follows.

(x 6= 0 ∧ y = 0 ∧ z = 1) ∨ (y = 1 ∧ z = x) ∨ (x = 1 ∧ z = 1)∨
(

x ≥ 2 ∧ y ≥ 2 ∧ ∃V ′E′
(

A1 ∧ ∃F (A2)∧

∀u(¬V ′(u) ∨ (u = x ∨ ∃x′(E′(x′, u) ∧ times(x, x′, u))))
))

where

• A1 expresses “(V ′, E′) is a linear digraph whose first (root) node is x and whose
last (leaf) node is z”.

• A2 expresses “F is a bijection from V ′ to {1, . . . , y}, i.e., |V ′| = y”.

4 Hypercube Graph in Second-Order Logic

We describe in this section two different strategies to define in second-order logic
the class of hypercube graphs. The first strategy is based in the usual definition of
Hypercube graph which identifies the nodes of the graph with binary strings. This
definition was explained and expressed by means of a third-order logic formula in
Example 2.2. The second strategy is based in the following definition: An n-hypercube
graph is a graph with 2n nodes, which correspond to the subsets of a set with n
elements. Two nodes labelled by subsets Si and Sj are joined by an edge if and only
if Si can be obtained from Sj by adding or removing a single element. The first
strategy resulted in a more cumbersome formula than the formula produced by the
second strategy. However, the descriptive complexity of the formula produced by this
latter strategy is higher.

4.1 First Strategy

The idea is to use binary encodings to represent each node in the graph, and then
to compare the binary encodings of two connected nodes to identify whether they
differ exactly in 1 bit. Following a top down approach to the problem, we start with
a very general schema of the formula and then we explore the main sub-formulae
involved in the solution. We aim for a good balance between level of detail and
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clarity of presentation. Consequently, we leave out of the presentation some trivial
sub-formulae which are not central to the general strategy.
Let G be an undirected graph with |V | = n. The following second-order formula

is satisfied by G iff G is an m-hypercube graph for some m.

ϕ1 ≡ ∃ ≤
(

A1 ∧ ∃F ∃m
(

A2 ∧ ∀xy(E(x, y) ↔ A3) ∧A4
))

where

• A1 expresses “≤ is a total order of the domain V of G”.

• A2 expresses “F is a bijection on V ”.

• A3 expresses “The binary encodings of F (x) and F (y) have both length m and
differ exactly in one bit”.

• A4 expresses “There is a node whose binary encoding contains no zeros”.

The total order ≤ is used to identify each individual node of V . Thus, we can
assume that V = {0, . . . , n − 1}. This is needed for the binary encoding of the
nodes in V , as it will become clear latter on. It should be clear how to express A1
and A2 in the language of second-order logic. Thus we concentrate our effort in
explaining the strategy to express A3. Finally, note that A4 means that all binary
encodings (of lengthm) correspond to some node in V , which implies that the number
of nodes of G is a power of 2, and also that m = log2 n. A sub-formula that expresses
A4 can be easily built by using the same ideas that we use for A3 below. That
is, we can existentially quantify for some node z, a linear digraph (Vz , Ez) and a
Boolean assignment Bz which assigns 1 to each node, and such that the binary string
represented by (Vz , Ez , Bz) is the binary encoding of F (z).
The following formula expresses A3.

∃VxExVyEyBxBy

(

A3.1 ∧A3.2 ∧ A3.3 ∧ A3.4 ∧ A3.5∧

∃G
(

A3.6∧

∀uv((Ex(u, v) → ∃u′v′(G(u, u′) ∧G(v, v′) ∧ Ey(u
′, v′)))∧

(Ey(u, v) → ∃u′v′(G(u′, u) ∧G(v′, v) ∧ Ex(u
′, v′))))∧

∃v∀v′((A3.7 → v′ 6= v)∧

(A3.8 → v′ = v))
))

where

• A3.1 expresses “(Vx, Ex) and (Vy , Ey) are linear digraphs”.

• A3.2 expresses “Bx is a function from Vx to {0, 1}”.

• A3.3 expresses “By is a function from Vy to {0, 1}”.

• A3.4 expresses “(Vx, Ex, Bx) is the binary encoding of F (x)”.

• A3.5 expresses “(Vy, Ey, By) is the binary encoding of F (y)”.

• A3.6 expresses “G is a bijection from Vx to Vy”.

• A3.7 expresses “Bx(v
′) = By(G(v

′))”.

• A3.8 expresses “Bx(v
′) 6= By(G(v

′))”.

To complete the picture, we need to explain how to write A3.4 and A3.5 in the
language of second-order logic. Since both can be expressed in second-order logic in
a similar way, we only show the formula for A3.4. Let xi be the i-th node in the
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linear graph (Vx, Ex) defined in the previous formula. We say that (Vx, Ex, Bx) is the
binary encoding of F (x) if

F (x) = b1 × 2m−1 + b2 × 2m−2 + · · ·+ bm × 20, where bi = Bx(xi).

In second-order logic, we use a function Wx which assigns to each node xi in Vx its
corresponding value bi×2m−i in the encoding. This function is depicted in Figure 4.1.
The following formula defines the encoding.

∃Wx Ix nx v w ∀x′
(

A3.4.1∧

∀s s′ q q′((Ex(s, q) ∧ Ix(s, s′) ∧ Ix(q, q′)) → succ(s′, q′))∧

A3.4.2 ∧ A3.4.3 ∧ Ix(w,m)∧

∃V ′E′ v1 v2 w[A3.4.4 ∧ A3.4.5∧

∀u
(

¬V ′(u) ∨ ((u = v1 → u = 0) ∧ (u = v2 → u = 1) ∧ (u = w → A3.4.6)∧

((u 6= v1 ∧ u 6= v2) → ∃y′(E′(y′, u) ∧A3.4.7)))
)

∧

Vx(x
′) → [(A3.4.8) ∨ (A3.4.9 ∧ ∃t(Wx(x

′, t) ∧ A3.4.10))]∧

A3.4.11 ∧ A3.4.12]
)

where

• A3.4.1 expresses “Ix is a bijection from Vx to {1, . . . ,m}”.

• A3.4.2 expresses “v and w are the first and last nodes of (Vx, Ex), respectively”.

• A3.4.3 expresses “Ix(v, 1)”.

• A3.4.4 expresses “(V ′, E′) is a linear graph”.

• A3.4.5 expresses “v1, v2 and w are the 1-st, 2-nd and last nodes in (V ′, E′), respec-
tively”.

• A3.4.6 expresses “exp(2,m− 1, u)”.

• A3.4.7 expresses “times(2, y′, u)”.

• A3.4.8 expresses “Bx(x
′) = 0” ∧ “Wx(x

′) = 0”.

• A3.4.9 expresses “Bx(x
′) = 1” ∧ “sum(nx, Ix(x

′),m)”.

• A3.4.10 expresses “exp(2, nx, t)”

• A3.4.11 expresses “F (x) = Wx(x1) +Wx(x2) + · · · +Wx(xm) for xi the i-th node
in (Vx, Ex)”.
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• A3.4.12 expresses “Wx is a function from Vx to V ′”.

Finally, we note that A3.4.11 can be expressed as follows.

∃Ux

(

A3.4.11.1 ∧ ∀x′
(

¬Vx(x
′) ∨ (A3.4.11.2∧ A3.4.11.3∧

(A3.4.11.4 → ∃x′′(Ex(x
′′, x′) ∧ A3.4.11.5)))

))

where

• A3.4.11.1 expresses “Ux is a function from Vx to V ”.

• A3.4.11.2 expresses “if x′ is the first node in (Vx, Ex) then Ux(x
′) =Wx(x

′)”.

• A3.4.11.3 expresses “if x′ is the last node in (Vx, Ex) then Ux(x
′) = F (x)”.

• A3.4.11.4 expresses “x′ is not the first node in (Vx, Ex)”.

• A3.4.11.5 expresses “sum(Ux(x
′′),Wx(x

′), Ux(x
′))”.

4.2 Second Strategy

The second strategy to define the class of hypercube graphs can be described in two
steps.

i. To identify every node x in the input graph G with a different subset Sx of a set
V ′ ⊂ V of cardinality log2 |V |, making sure that every subset of V ′ is assigned to
some node of G.

ii. To check that for every pair of nodes x and y in G, there is an edge between x
and y iff Sx can be obtained from Sy by adding or removing a single element.

In second-order logic we can express this strategy as follows.

ϕ2 ≡ ∃R
(

∃V ′
(

A1 ∧ ∀S(A2 → (∃x(A3 ∧A4))) ∧ ∃z(A5)
)

∧

∀xy((E(x, y) ∧ E(y, x)) ↔ A6)
)

where

• A1 expresses “V ′ ⊂ V ∧ V ′ 6= ∅”.

• A2 expresses “S ⊆ V ′ ∧ S 6= ∅”.

• A3 expresses “x is identified with S via R”.

A3 ≡ ∀v(R(x, v) ↔ S(v))

• A4 expresses “no other node y 6= x can be identified with S via R”.

A4 ≡ ¬∃y(x 6= y ∧ ∀v(R(y, v) ↔ S(v)))

• A5 expresses “all nodes, with the only exception of node z, are identified with
some nonempty subset of V ′ via R”.

A5 ≡ ¬∃v
(

R(z, v)
)

∧ ∀z′
(

z 6= z′ → ∃S(A5.1 ∧ ∀v(R(z′, v) ↔ S(v)))
)

where

– A5.1 expresses “S 6= ∅ ∧ S ⊆ V ′”.

• A6 expresses “the set Sx identified with x can be obtained from the set Sy identified
with y by adding or removing a single element”.

A6 ≡ ∃v
((

(R(x, v) ∧ ¬R(y, v)) ∨ (R(y, v) ∧ ¬R(x, v))
)

∧

∀v′
(

v′ 6= v → (R(x, v′) ↔ R(y, v′))
)
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Remark 4.1

The formula ϕ2 that expresses the second strategy has a prefix of second-order quan-
tifiers of the form ∃R∃V ′∀S. Thus, it is in the class Σ1

2. The existence of a formula
in Σ1

1 that expresses this second strategy is unlikely, since we must express that every
subset S is identified with some node in the graph. On the other hand, the formula ϕ1

that expresses the first strategy, while considerably more cumbersome than ϕ2, only
uses existential second-order quantifiers and can be translated in a rather straight-
forward way into an equivalent Σ1

1 formula. That is, we could transform the current
quantification schema of the form

∀xy
(

∃V 1
x E

2
xB

2
xV

1
y E

2
yB

2
y . . . ∃W

2
xU

2
xW

2
yU

2
y . . .

)

,

where the superindices added to the relation variables denote their arity, into an
schema of the form

(

∃V 2
x E

3
xB

3
xV

2
y E

3
yB

3
y . . .∃W

3
xU

3
xW

3
yU

3
y . . .

)

,

where the prefix “∀xy” is eliminated and the arity of every relation variable is in-
creased in 1, so that we can incorporate all nodes. Thus, for instance, every set V 1

x

corresponding to some node x in a graph G is now encoded in the binary relation
V 2
x in such a way that V 1

x = {y|(x, y) ∈ V 2
x }. Then, we can simply express that the

set {x|(x, y) ∈ V 2
x } contains every node in the graph G. Moreover, we can now omit

Vy, Ey, By,Wy and Uy, since for every pair of nodes x and y, their corresponding sets
V 1
x and V 1

y will be both encoded into the binary relation V 2
x , and something similar

will happen for the relations E, B, W and U .
This is an important consideration since by Fagin-Stockmeyer characterization of

the polynomial-time hierarchy [13] Σ1
1 captures NP while Σ1

2 captures NPNP.

5 Quantified Boolean Formulae

A Boolean variable is any symbol to which we can associate the truth values 0 and 1.
Let V be a countable set of Boolean variables. The class of Boolean formulae over V
is the smallest class which is defined by:

• The Boolean constants 0 and 1 are Boolean formulae.

• Every Boolean variable x in V is a Boolean formula.

• If ϕ and ψ are Boolean formulae then (ϕ ∧ ψ), (ϕ ∨ ψ) and ¬(ϕ) are Boolean
formulae.

The semantics of the Boolean formulae is given by the well-known semantics of the
propositional logic.
A quantified Boolean formula over V , as defined by the influential Garey and John-

son book on the theory of NP-Completeness [6], is a formula of the form

Q1x1Q2x2 . . . Qnxn(ϕ),

where ϕ is a Boolean formula over V , n ≥ 0, x1, . . . , xn ∈ V and, for 1 ≤ i ≤ n,
Qi is either “∃” or “∀”. A variable that occurs in the Boolean formula but does
not occur in the prefix of quantifiers is called a free variable. We call QBF the set
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of quantified Boolean formulae without free variables. As usual, for k ≥ 1, QBFk

denotes the fragment of QBF which consists of those formulae which start with an
existential block and have k alternating blocks of quantifiers. Let X ⊂ V be a finite
set of Boolean variables, we assume w.l.o.g. that a formula in QBFk over X is of the
form

∃x̄1∀x̄2 . . . Qx̄k(ϕ),

where for 1 ≤ i ≤ k, x̄i = (xi1, . . . , xili) is a vector of li different variables from X ,
∃x̄i denotes a block of li quantifiers of the form ∃xi1, . . . , ∃xili , ∀x̄i denotes a block of
li quantifiers of the form ∀xi1, . . . , ∀xili , ϕ is a (quantifier free) Boolean formula over
X , Q is “∃” if k is odd and “∀” if k is even, and the sets X1, . . . , Xk of variables in
x̄1, . . . , x̄k, respectively, form a partition of X .
We define next the notion of satisfiability of quantified Boolean formulae. But first

we introduce the concept of alternating valuations which uses rooted binary trees
to represent all possible valuations for a given formula, and paths from the root
to the leaves of such trees to represent individual valuations. This unusual way of
representing valuations is motivated by the way in which we express in second-order
logic the satisfiability problem for the classes QBFk.
Let Tv be a rooted binary tree of vocabulary σTv

= {E,B, 0, 1}. That is, Tv is
a maximally connected acyclic digraph in which every vertex has at most two child
vertices and, except for the root, has a unique parent. Here, 0 and 1 are constant
symbols which are interpreted as truth values and BTv is a total function which
assigns a truth value 0Tv or 1Tv to each vertex in V . We say that Tv is an alternating

valuation if the following holds:

• Every leaf of Tv is at the same depth d.

• All vertices at a given depth, i.e., in the same level, have the same out-degree.

• If two vertices a, b ∈ V are siblings, then BTv (a) 6= BTv (b).

Let ϕ ≡ ∃x̄1∀x̄2 . . . Qx̄k(ψ) be a formula in QBFk, where Q is “∃” if k is odd and
“∀” if k is even, and let lj for 1 ≤ j ≤ k be the length of the j-th alternating block of
quantifiers. We say that an alternating valuation Tv is applicable to ϕ, if the depth
of Tv is l1 + · · ·+ lk − 1 and for every 1 ≤ i ≤ l1 + · · ·+ lk, it holds that:

• All vertices at depth i−1 have no siblings if 1 ≤ i ≤ l1 or l1+l2+1 ≤ i ≤ l1+l2+l3
or · · · or l1 + l2 + · · ·+ lk′−1 + 1 ≤ i ≤ l1 + l2 + · · ·+ lk′ , where k′ = k if the k-th
block of quantifiers is existential and k′ = k − 1 otherwise.

• All vertices at depth i − 1 have exactly one sibling if l1 + 1 ≤ i ≤ l1 + l2 or
l1 + l2 + l3 + 1 ≤ i ≤ l1 + l2 + l3 + l4 or · · · or l1 + l2 + · · · + lk′′−1 + 1 ≤ i ≤
l1 + l2 + · · · + lk′′ , where k′′ = k if the k-th block of quantifiers is universal and
k′′ = k − 1 otherwise.

Let γ = ∃x̄1∀x̄2 . . . Qx̄k(ϕ) be a formula in QBFk over X , and let Tv be an alter-
nating valuation applicable to γ. A leaf valuation Lv is a linear subgraph of Tv of
vocabulary σTv

which corresponds to a path from the root to a leaf in Tv. Let v be
a mapping from the set of variables X to {0, 1}, i.e., a Boolean assignment, such that
for xi ∈ X the i-th variable in the prefix of quantifiers of γ, it holds that v(xi) = 1 iff
BLv(ni) = 1Lv for ni the i-th node in the linear order induced by ELv . We say that
Lv satisfies γ, written Lv |= γ, if the Boolean assignment v satisfies ϕ. That is, if ϕ
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is a Boolean variable xi in X , then Lv |= ϕ if v(xi) = 1; if ϕ = ¬(ψ), then Lv |= ϕ if
Lv 6|= ψ (i.e., if it is not the case that Lv |= ψ); if ϕ = (ψ ∨ α), then Lv |= ϕ if either
Lv |= ψ or Lv |= α; and if ϕ = (ψ ∧ α), then Lv |= ϕ if both Lv |= ψ and Lv |= α.
Finally, we say that the alternating valuation Tv satisfies γ if every leaf valuation Lv

of Tv satisfies γ.
A Boolean formulae ϕ in QBFk is satisfiable if and only if there is an alternating

valuation Tv which satisfies ϕ; otherwise ϕ is unsatisfiable. SATQBFk is the set of
QBFk formulae that are satisfiable. SATQBF =

⋃

k≥1 SATQBFk.

It is well known that SATQBFk is complete for the level Σp
k of the polynomial-

time hierarchy (see [6, 1] among others sources). It is also well known that second-
order logic captures the polynomial-time hierarchy. In fact, there is an exact cor-
respondence between the prenex fragments of second-order logic with up to k al-
ternations of quantifiers Σ1

k and the levels Σp
k of the polynomial time hierarchy

[13]. Thus, for every k, SATQBFk can be defined in second-order logic, in fact,
it can even be defined in Σ1

k. Regarding SATQBF, we note that it is PSPACE-

complete [13]. Since existential third-order logic captures NTIME(2n
O(1)

) (see [7])

and PSPACE ⊆ DTIME(2n
O(1)

) ⊆ NTIME(2n
O(1)

), we know that SATQBF can be
defined in existential third-order logic. In the following sections we present a second-
order formula that defines SATQBFk and a third-order formula that defines SATQBF,
respectively.

6 SATQBFk in Second-Order Logic

Following a top-down approach, we present a detailed construction of a second-order
formula that defines SATQBFk. But first, we need to fix an encoding of quantified
Boolean formulae as relational structures.
There is a well-known correspondence between words and finite structures. Let A

be a finite alphabet and let π(A) be the vocabulary {≤}∪{Ra : a ∈ A}, where ≤ is a
binary relation symbol and the Ra are unary relation symbols. We can identify any
word v = a1 . . . an in A∗ with a π(A)-structure B, where the cardinality of B equals
the length of v, ≤B is a total order on B, and, for each Ra ∈ π(A), RB

a contains the
positions in v carrying an a,

RB
a = {b ∈ B : for some j (1 ≤ j ≤ n),

b is the j-th element in the order ≤B and aj = a}

Such structures are usually known as word models for v ([3]). As any two word models
for v are isomorphic, we can speak of the word model for v.
Note that we can represent Boolean variables of the form xn by using a symbol

“X” followed by a sequence of n symbols “|”. For instance, we can write X ||| for x3.
Thus using word models, every quantified Boolean formula ϕ can be viewed as a finite
relational structure Gϕ of the following vocabulary.

π = {≤, P¬, P∨, P∧, P∃, P∀, P(, P), PX , P|}

Example 6.1

If ϕ is the quantified Boolean formula ∃x1∀x2((¬x1) ∨ x2), which using our notation
for the variables corresponds to ∃X |∀X ||((¬X |)∨X ||), then the following π-structure
Gϕ (note that Gϕ is a linear graph) where Gϕ = {1, . . . , 18}, ≤Gϕ is a total order
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on Gϕ, P
Gϕ
¬ = {10}, P

Gϕ

∨ = {14}, P
Gϕ

∧ = ∅, P
Gϕ

∃ = {1}, P
Gϕ

∀ = {4}, P
Gϕ

( = {8, 9},

P
Gϕ

) = {13, 18}, P
Gϕ

X = {2, 5, 11, 15}, P
Gϕ

| = {3, 6, 7, 12, 16, 17}, encodes ϕ.

We show next how to build a second-order logic formula ϕSATQBFk
such that, given

a relational structure Gϕ of vocabulary π, it holds that Gϕ |= ϕSATQBFk
iff the

quantified Boolean formula ϕ represented by Gϕ, is satisfiable. That is, we show
next how to build a second-order formula ϕSATQBFk

of vocabulary π that defines
SATQBFk. As mentioned earlier, we follow a top-down approach for the construction
of this formula. At the highest level of abstraction, we can think of ϕSATQBFk

as a
second-order formula that expresses the following:

“There is an alternating valuation Tv applicable to ϕ that satisfies ϕ”. (A)

Recall that an alternating valuation Tv satisfies ϕ iff every leaf valuation Lv of Tv

satisfies the quantifier-free part ϕ′ of ϕ. Also recall that every leaf valuation Tv

corresponds to a Boolean assignment v. Thus, if ϕ = ∃x̄1∀x̄2 . . .Qx̄k(ϕ′), where for
1 ≤ i ≤ k, x̄i = (xi1, . . . , xili), Q is “∃” if k is odd and “∀” if k is even, X1, . . . , Xk

are the set of variables in x̄1, . . . , x̄k, respectively, and ϕ
′ is a (quantifier free) Boolean

formulae over X = X1 ∪ · · · ∪Xk, then the expression in (A) can be divided in two
parts:

AVS1 (Alternating Valuation that Satisfies ϕ, Part 1) which expresses

“There is a partial Boolean assignment v1 on X1,

such that for all partial Boolean assignments v2 on X2,

. . . ,

there is (or “for all” if k is even) a partial Boolean assignment vk on Xk”.

AVS2 (Alternating Valuation that Satisfies ϕ, Part 2) which expresses

“The Boolean assignment v = v1 ∪ v2 ∪ · · · ∪ vk satisfies the (quantifier free)
Boolean formula ϕ′”.

For each partial Boolean assignment vi (1 ≤ i ≤ k), we use a second-order variable
Vi of arity one and two second-order variables Ei and Bi of arity two, to store the
encoding of each vi as a linear graph Gi = (Vi, Ei) with an associated function Bi :
Vi → {0, 1} (see Figure 6.1). Correspondingly, we use a second-order variable Vt of

...

PSfrag replacements

∃ linear graph G1 ∀ linear graph G2 ∃ linear graph G3 . . . Q linear graph Gk

G1 G2 G3 Gk

G1 = (V1, E1) G2 = (V2, E2) Gk = (Vk, Ek)

Figure 6.1

arity one and two second-order variables Et and Bt of arity two, to store the encoding
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of each Boolean assignment v (leaf valuation Tv) as a linear graph Gt = (Vt, Et) with
an associated function Bt : Vt → {0, 1}. Figure 6.2 illustrates an alternating valuation
applicable to ϕ and its corresponding encoding.

PSfrag replacements

∃x11∃x12∃x13 · · · ∃x1l1
∀x21∀x22∀x23 · · · ∀x2l2

∃x31∃x32∃x33 · · · ∃x3l3
· · ·Qxk1Qxk2Qxk3 · · ·Qxklk

(

ϕ′
)

G1 = (V1, E1, B1) G2 = (V2, E2, B2) G3 = (V3, E3, B3) . . . Gk = (Vk, Ek, Bk)

U1 U2 U3 . . . Uk

Graph Gk

0/1

Figure 6.2

In the next subsection we describe the process followed to build a second-order
formula to express Statement AVS1. Then we describe in Subsection 6.2, the corre-
sponding process for Statement AVS2.

6.1 Expressing Statement AVS1

Let k∃ and k∀ be the index of the last existential quantifier block and the last universal
quantifier block, respectively, in the prefix of k blocks of quantifiers of ϕ. We can
express Statement AVS1 as follows:

∃V1E1B1∀V2E2B2 · · ·QkVkEkBk∃VtEtBtU1, U2, . . . , Uk

(

A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5∧

((

A6 ∧ A7 ∧ A8 ∧ A9 ∧ A10 ∧A11
)

→ AVS2
)

)

where

• A1 expresses “Gt = (Vt, Et) is a linear graph”.

• A2 expresses “The length of Gt equals the number of variables that appear in the
prefix of quantifiers of ϕ”.

• A3 expresses “G1 = (V1, E1), G3 = (V2, E2), . . . , Gk∃
= (Vk∃

, Lk∃
) are linear graphs”.

• A4 expresses “B1 : V1 → {0, 1}, B3 : V3 → {0, 1}, . . . , Bk∃
: Vk∃

→ {0, 1} are total
functions”.

• A5 expresses “The lengths of the linear graphs G1, G3, . . . , Gk∃
equal the lengths of

their corresponding blocks of quantifiers in ϕ”.

• A6 expresses “V1, V2, . . . , Vk are pairwise disjoint sets”.

• A7 expresses “G2 = (V2, E2), G4 = (V4, E4), . . . , Gk∀
= (Vk∀

, Lk∀
) are linear graphs”
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• A8 expresses “B2 : V2 → {0, 1}, B4 : V4 → {0, 1}, . . . , Bk∀
: Vk∀

→ {0, 1} are total
functions”

• A9 expresses “The lengths of the linear graphs G2, G4, . . . , Gk∀
equal the lengths of

their corresponding blocks of quantifiers in ϕ”.

• A10 expresses “U1 is a total injection from G1 to the first part of Gt and U2 is a
total injection from G2 to the second part of Gt . . . and Uk is a total injection from
Gk to the k-th part of Gt”.

• A11 expresses “Bt : Vt → {0, 1} is a total function that coincides with B1, B2, . . .,
Bk”.

• AVS2 expresses Statement AVS2 as described in Subsection 6.2.

Next, we discuss how to write the sub-formulae A1–A11 in second-order logic.

A1. This is expressed by the auxiliary formula LINEAR(Vt, Et), which is defined in
Subsection 6.3 below.

A2. This is implied by the following statement which is expressed in further detail in
Subsection 6.2.1 (A).
“There is a partial surjective injection Vp from the quantifier prefix of ϕ to Gt,
which maps every X in the prefix to its corresponding node in Gt, and which
preserves ≤Gϕ and Et”.

A3. LINEAR(V1, E1) ∧ LINEAR(V3, E3) ∧ · · · ∧ LINEAR(Vk∃
, Ek∃

), where the sub-
formulae LINEAR(Vi, Ei) are as defined in Subsection 6.3.

A4. ∀t, p, p′
(

∧

i=1,3,...,k∃

(

A4.1 ∧ A4.2 ∧ A4.3
)

)

• A4.1 expresses “Bi is a function”.
A4.1 ≡ ((Bi(t, p) ∧Bi(t, p

′)) → p = p′)

• A4.2 expresses “Bi is total”.
A4.2 ≡ (Vi(t) → ∃p(Bi(t, p)))

• A4.3 expresses “the range of Bi is {0, 1}”.
A4.3 ≡ (Bi(t, p) → (p = 1 ∨ p = 0))
where p = 0 and p = 1 have the obvious meaning and are defined in Subsec-
tion 6.3.

A5. If k∃ 6= k, then
∧

1,3,...,k∃

(

∃L′v1v2 . . . vk∃
vk∃+1(αk∃

∧ ζi)
)

where αk∃
is the formula template αi instantiated with i = k∃.

If k∃ = k, then
(
∧

1,3,...,k∃−2

(

∃L′v1v2 . . . vk∃−1(αk∃−2
∧ ζi)

))

∧ ∃L′v1v2 . . . vkve(β1 ∧ β2 ∧ β3)

where αk∃−2 is the formula template αi instantiated with i = k∃ − 2 (Note that
k∃−2 is the previous to the last existential block, and the subformulae β1, β2 and
β3 take care of the last block of quantifiers).

Next, we define the subformulae αi, β1 ζi, β2 and β3 in the listed order. For their
definitions we use an auxiliary formula PATH≤(x, y) which is in turn defined in
Subsection 6.3 below, and which expresses “the pair (x, y) is in the transitive
closure of the relation ≤”.
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The subformula αi is satisfied if, for 1 ≤ j ≤ i, vj is the position of the first
quantifier of the j-th block (when i is not the last block of quantifiers).

αi ≡
(

P∃(v1) ∧ P∀(v2) ∧ . . . ∧ PQ(vi+1) ∧ ¬∃x(x 6= v1 ∧ x ≤ v1)∧

PATH≤(v1, v2) ∧ PATH≤(v2, v3) ∧ · · · ∧ PATH≤(vi, vi+1)∧

¬∃x(PATH≤(v1, x) ∧ PATH≤(x, v2) ∧ x 6= v1 ∧ x 6= v2 ∧ P∀(x))∧

¬∃x(PATH≤(v2, x) ∧ PATH≤(x, v3) ∧ x 6= v2 ∧ x 6= v3 ∧ P∃(x))∧

. . .∧

¬∃x(PATH≤(vi, x) ∧ PATH≤(x, vi+1) ∧ x 6= vi ∧ x 6= vi+1 ∧ PQ(x))
)

where PQ is P∀ if i is odd or P∃ if i is even.

The subformula β1 is satisfied if, for 1 ≤ j ≤ i, vj is the position of the first
quantifier of the j-th block.

β1 ≡
(

P∃(v1) ∧ P∀(v2) ∧ . . . ∧ P1(vk) ∧ P|(ve) ∧ ¬∃x(x ≤ v1)∧

PATH≤(v1, v2) ∧ PATH≤(v2, v3) ∧ · · · ∧ PATH≤(vk, ve)∧

¬∃x(PATH≤(v1, x) ∧ PATH≤(x, v2) ∧ x 6= v1 ∧ x 6= v2 ∧ P∀(x))∧

¬∃x(PATH≤(v2, x) ∧ PATH≤(x, v3) ∧ x 6= v2 ∧ x 6= v3 ∧ P∃(x))∧

. . .∧

¬∃x(PATH≤(vk, x) ∧ PATH≤(x, ve) ∧ x 6= vk ∧ x 6= ve ∧ P2(x))
)

where P1 is P∃ if k is odd or P∀ if k is even, and P2 is P∀ if k is odd or P∃ if k is
even.

When i is not the index of the last block of quantifiers, the subformula ζi is
satisfied if L′ is a bijection from the indices of the symbols X in the i-th alter-
nating block of quantifiers to Vi, which preserves Ei and NextX = {(a, b) ∈≤Gϕ

| a and b are indices of symbols in the i-th block∧PX(a)∧PX(b)∧∀c((a ≤ c∧c ≤
b) → ¬PX(c))} (i.e., the order of appearance of the X ’s in the i-th block of quan-
tifiers in the prefix of ϕ). This is illustrated in Figure 6.3. Recall that we encode
in Gi = (Vi, Ei, Bi) a partial truth assignment for the variables in the i-th alter-
nating block of quantifiers.

ζi ≡
(

A5.1 ∧ A5.2 ∧ A5.3 ∧ A5.4 ∧A5.5
)

where

• A5.1 defines the “domain of L′”.
A5.1 ≡ ∀x

(

(PATH≤(vi, x)∧PATH≤(x, vi+1)∧x 6= vi+1∧PX(x)) ↔ ∃y(L′(x, y))
)

• A5.2 expresses “L′ is surjective”.
A5.2 ≡ ∀y

(

Vi(y) → ∃z(L′(z, y))
)

• A5.3 expresses “L′ preserves NextX and Ei” which implies injectivity.

A5.3 ≡ ∀sts′t′
(

(

L′(s, t) ∧ L′(s′, t′) ∧ s 6= s′ ∧ PATH≤(vi, s) ∧ PATH≤(s
′, vi+1)

∧PATH≤(s, s
′) ∧ ¬∃z(PATH≤(s, z) ∧ PATH≤(z, s

′)∧

z 6= s ∧ z 6= s′ ∧ PX(z))
)

→ Ei(t, t
′)
)

• A5.4 defines the “range of L′”.
A5.4 ≡ ∀xy(L′(x, y) → Vi(y))
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• A5.5 expresses “L′ is a function”.
A5.5 ≡ ∀xyz

(

(L′(x, y) ∧ L′(x, z)) → y = z
)

The subformula β2 is satisfied if L′ is a bijection from the indices of the symbolsX
in the k-th alternating block of quantifiers to Vk, which preserves Ek and NextX
(i.e., the order of appearance of the X ’s in the k-th block of quantifiers in the
prefix of ϕ).

β2 ≡
(

A5.1′ ∧ A5.2′ ∧ A5.3′ ∧ A5.4′ ∧ A5.5′
)

where

• A5.1′ defines the “domain of L′”.
A5.1′ ≡ ∀x

(

(PATH≤(vk, x) ∧ PATH≤(x, ve) ∧ PX(x)) ↔ ∃y(L′(x, y))
)

• A5.2′ expresses “L′ is surjective”.
A5.2′ ≡ ∀y

(

Vk(y) → ∃z(L′(z, y))
)

• A5.3′ expresses “L′ preserves NextX and Ek” which implies injectivity.

A5.3′ ≡ ∀sts′t′
(

(

L′(s, t) ∧ L′(s′, t′) ∧ s 6= s′ ∧ PATH≤(vk, s) ∧ PATH≤(s
′, ve)

∧PATH≤(s, s
′) ∧ ¬∃z(PATH≤(s, z) ∧ PATH≤(z, s

′)∧

z 6= s ∧ z 6= s′ ∧ PX(z))
)

→ Ek(t, t
′)
)

• A5.4′ defines the “range of L′”.
A5.4′ ≡ ∀xy(L′(x, y) → Vk(y))

• A5.5′ expresses “L′ is a function”.
A5.5′ ≡ ∀xyz

(

(L′(x, y) ∧ L′(x, z)) → y = z
)

The last subformula β3 is satisfied if ve is the last symbol “|” in the prefix of
quantifiers of ϕ. We use SUC≤(x, y) to denote that x is the immediate successor
of y in the total order ≤Gϕ . The formula that expresses SUC≤(x, y) is defined in
Subsection 6.3.

β3 ≡
(

∀v′
(

SUC≤(ve, v
′) → ¬P|(v

′)
)

∧ P|(ve)∧

∀v′
(

PATH≤(ve, v
′) → (¬P∃(v

′) ∧ ¬P∀(v
′))

)

∧

∃xyw∀v′
(

PX(x) ∧ PQ(w) ∧ SUC≤(x, y) ∧ SUC≤(w, x) ∧ PATH≤(y, ve)∧

((PATH≤(v
′, ve) ∧ PATH≤(y, v

′)) → P|(v
′))

)

)

where PQ is P∃ if k is odd, or P∀ if k is even.

A6. Let Vi∩Vj = ∅ denote ∀x
(

(Vi(x) → ¬Vj(x))∧ (Vj (x) → ¬Vi(x))
)

, we can express
that V1, V2, . . . , Vk are pairwise disjoint sets as follows.

(V1 ∩ V2 = ∅) ∧ (V1 ∩ V3 = ∅) ∧ (V1 ∩ V4 = ∅) ∧ · · · ∧ (V1 ∩ Vk = ∅)∧

(V2 ∩ V3 = ∅) ∧ (V2 ∩ V4 = ∅) ∧ · · · ∧ (V2 ∩ Vk = ∅)∧

. . . ∧ (Vk−1 ∩ Vk = ∅)

A7. LINEAR(V2, E2) ∧ LINEAR(V4, E4) ∧ · · · ∧ LINEAR(Vk∀
, Ek∀

),
where LINEAR(Vi, Ei) is as defined in Subsection 6.3.

A8. ∀t, p, p′
(

∧

i=2,4,...,k∀

(

A8.1 ∧ A8.2 ∧ A8.3
)

)

where
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• A8.1 expresses “Bi is a function”.
A8.1 ≡ ((Bi(t, p) ∧Bi(t, p

′)) → p = p′)
• A8.2 expresses “Bi is total”.
A8.2 ≡ (Vi(t) → ∃p(Bi(t, p)))

• A8.3 expresses “the range of Bi is {0, 1}”.
A8.3 ≡ (Bi(t, p) → (p = 1 ∨ p = 0))
where p = 0 and p = 1 have the obvious meaning and are defined in Subsec-
tion 6.3.

A9. If k∀ 6= k, then
∧

2,4,...,k∀

(

∃L′v1v2 . . . vk∀
vk∀+1(αk∀

∧ ζi)
)

where αk∀
is the formula template αi instantiated with i = k∀.

If k∀ = k, then
(
∧

2,4,...,k∀−2

(

∃L′v1v2 . . . vk∀−1(αk∀−2
∧ ζi)

))

∧ ∃L′v1v2 . . . vkve(β1 ∧ β2 ∧ β3)

where αk∀−2 is the formula template αi instantiated with i = k∀ − 2 (Note that
k∀ − 2 is the previous to the last universal block, and the subformulae β1, β2 and
β3 take care of the last block of quantifiers).

The subformulae αi, ζi, β1, β2 and β3 are the same as in (A5).

A10.
(

A10.1 ∧
∧

2≤i≤k−1

(

A10.2.i
)

∧ A10.3
)

where

• A10.1 expresses “U1 is a total injection from V1 to Vt such that: (a) preserves
E1 and Et and (b) U1(“first node in the order E1”) =“first node in the order
Et””.

• A10.2.i expresses “Ui is a total injection from Vi to Vt such that: (a) preserves
Ei and Et and (b) Ui(“first node in the order Ei”) = SUCEt

(Ui−1(“last node
in the order Ei−1”))”.

• A10.3 expresses “Uk is a total injection from Vk to Vt such that: (a) preserves
Ek and Et and (b) Uk(“first node in order Ek”) = SUCEt

(Uk−1(“last node in
order Ek−1”))”.

We describe next the second-order formula for A10.3 which is in turn illustrated
in Figure 6.4. Note that the node labeled x in Figure 6.4 corresponds to the last
node in the linear graph Gk−1 and that x is mapped by the function Uk−1 to the
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node labelled y in the linear graph Gt. Accordingly, Uk maps the first node in
the linear graph Gk (i.e. the node labeled u), to the successor of node y in Gt

(i.e. to the node labelled t).

A10.3 ≡ ∀xytu
(

A10.3.1 ∧A10.3.2 ∧ A10.3.3 ∧ A10.3.4
)

where
• A10.3.1 expresses “Uk is a total injection from Vk to Vt”.
A10.3.1 ≡ ((Uk(x, y) ∧ Uk(x, t)) → y = t)∧

((Uk(x, y) ∧ Uk(u, y)) → x = u)∧
(Vk(x) → ∃y(Uk(x, y)))∧
(Uk(x, y) → (Vk(x) ∧ Vt(y)))

• A10.3.2 expresses “preserves Et”.
A10.3.2 ≡ ((Uk(x, y) ∧ Uk(u, t) ∧ Et(y, t)) → Ek(x, u))

• A10.3.3 expresses “preserves Ek”.
A10.3.3 ≡ ((Uk(x, y) ∧ Uk(u, t) ∧ Ek(x, u)) → Et(y, t))

• A10.3.4 expresses “Uk(“first node in order Ek”) = SUCEt
(Uk−1(“last node in

order Ek−1”))”.
A10.3.4 ≡

((

Uk−1(x, y) ∧ ¬∃v(Ek−1(x, v)) ∧Et(y, t) ∧ ¬∃v(Ek(v, u) ∧ Vk(u))
)

→ Uk(u, t)
)

PSfrag replacements
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A11. ∀xytpp′
(

(B1(t, p) ∧ U1(t, y) ∧Bt(y, p
′)) → p = p′

)

∧

∀xytpp′
(

(B2(t, p) ∧ U2(t, y) ∧Bt(y, p
′)) → p = p′

)

∧

. . .∧

∀xytpp′
(

(Bk(t, p) ∧ Uk(t, y) ∧Bt(y, p
′)) → p = p′

)

6.2 Expressing Statement AVS2

Statement AVS2 can be rephrased as follows:

∃Vp C EC ST EST M C∧ C∨ C¬ C( C) C1 C0Hφ

(

AVS2.1 ∧ AVS2.2
)

where

• AVS2.1 expresses “There is a Boolean expression φ which is obtained from the
quantifier-free part of ϕ by replacing each occurrence of a variable by the cor-
responding truth value in {0, 1} assigned by the leaf valuation represented by
(Gt, Bt)”.
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• AVS2.2 expresses “The Boolean expression φ evaluates to true”.

We describe next how to express AVS2.1 and AVS2.2 in second-order logic.

6.2.1 Expressing AVS2.1

The idea is to define mappings to represent the relationships among the input graph
Gϕ, the graphGt and the quantifier-free part of the input formulae. This is illustrated
in Figure 6.5. We can express AVS2.1 as follows:

AVS2.1 ≡ A ∧B ∧ C where

• A expresses “Vp is a partial bijection from the prefix of quantifiers of ϕ (restricted
to the X ’s that appear in the prefix) to Vt, which maps every X to its correspond-
ing node in Gt, and which preserves ≤Gϕ and Et”.
A ≡ ∀xyz

(

A1 ∧ A2 ∧ A3
)

∧ ∀sts′t′
(

A4
)

where
– A1 expresses “Vp is a function”.
A1 ≡ ((Vp(x, y) ∧ Vp(x, z)) → y = z)

– A2 expresses “Vp is injective”
A2 ≡ ((Vp(x, y) ∧ Vp(z, y)) → x = z)

– A3 defines the “domain and range of Vp”
A3 ≡

(

(PX(x) ∧PRED≤(x, z)∧ (P∃(z)∨ P∀(z))) ↔ ∃y(Vt(y)∧ Vp(x, y))
)

where
PRED≤(x, z) denotes the subformula that expresses that z is the strict prede-
cessor of x in the order ≤Gϕ (see Subsection 6.3).

– A4 expresses “Vp preserves ≤Gϕ and Et”.
(Vp(s, s

′) ∧ Vp(t, t′) ∧ Et(s
′, t′)) →

(

PATH≤(s, t) ∧ ∀z′
(

(z′ 6= s ∧ z′ 6= t ∧ PATH≤(s, z
′) ∧ PATH≤(z

′, t)) →

¬PX(z′)
))

• B expresses “Hφ is a partial surjective injection from the quantifier free part of ϕ
to the formula φ, encoded as the first formula in (C,EC) (see Figures 6.7 and 6.8),
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which maps every X in the quantifier-free part of ϕ to the corresponding position
in the first formula in (C,EC) (i.e. φ), which preserves ∧, ∨, ¬, (, ), ≤Gϕ and EC ,
and which ignores |”.

B ≡ ∀xy1y2z1z2
(

B1 ∧ B2 ∧ B3 ∧ B4
)

∧ ∀xx′zy1y2z1z2
(

B5
)

where

– B1 expresses “Hφ is a function”.
B1 ≡

(

(Hφ(x, y1, y2) ∧Hφ(x, z1, z2)) →

(y1 = z1 ∧ y2 = z2 ∧ ∃x′(P((x
′) ∧ PATH≤(x

′, x)) ∧ C(y1, y2))
)

– B2 expresses “Hφ is injective”.
B2 ≡

(

Hφ(x, y1, y2) ∧Hφ(z, y1, y2) → x = z
)

– B3 expresses “the range of Hφ is the first formula in (C,EC)”.
B3 ≡ ∀y′1y

′
2z

′
1z

′
2t

′
1t

′
2v

′v2
((

ST (v′) ∧ ¬∃y(EST (y, v′))∧
EST (v′, v2) ∧M(v′, y′1, y

′
2) ∧M(v2, z

′
1, z

′
2)∧

EC(t
′
1, t

′
2, z

′
1, z

′
2) ∧ PATHEC

(y′1, y
′
2, y1, y2)∧

PATHEC
(y1, y2, t

′
1, t

′
2)
)

→ ∃x′(Hφ(x
′, y1, y2))

)

∧

– B4 expresses “the domain of Hφ corresponds to the quantifier free part of ϕ”.
B4 ≡

(

∃x′(P((x
′) ∧ PATH≤(x

′, x)) → ∃y′1y
′
2(Hφ(x, y

′
1, y

′
2))

)

– B5 expresses “Hφ preserves ≤Gϕ (ignoring “|”), EC , ∧,∨, (, ) and ¬, and maps
X to 0/1”.
B5 ≡

(

(Hφ(x, y1, y2) ∧Hφ(z, z1, z2) ∧ EC(y1, y2, z1, z2))
→ (SUC≤(x, z) ∨ (PATH≤(x, z) ∧ ∀x′(PATH≤(x, x

′)∧
PATH≤(x

′, z) ∧ x′ 6= x ∧ x′ 6= z) → P|(x
′)))

)

∧
(

Hφ(x, y1, y2) → ((P((x) ∧ C((y1, y2))∨
(P)(x) ∧ C)(y1, y2))∨
(P∧(x) ∧ C∧(y1, y2))∨
(P∨(x) ∧ C∨(y1, y2))∨
(P¬(x) ∧ C¬(y1, y2))∨
(PX(x) ∧ (C0(y1, y2) ∨C1(y1, y2))))

)

• C expresses “for every bijection V0 from “| · · · |” in “QX | · · · |” (where Q is “∃” or
“∀”) to “| · · · |” in “(. . . X | · · · | . . .)” that links a variable in the quantifier prefix
of ϕ with an occurrence of that variable in the quantifier-free part of it, the
variable in the quantifier free part of ϕ which corresponds to the function V0 is
replaced in φ by the value assigned to that variable by the leaf valuation (Gt, Bt)
(see Figures 6.5)”. Note that in the formula below, z0 represents the root in
dom(V0), zf represents the leaf in dom(V0), y0 represents the root in ran(V0), and
yf represents the leaf in ran(V0) (see Figure 6.6). Also note that φ is encoded in
(C,EC) starting in the nodeM(“first node in (ST , EST )”) and ending in the node
E−1

C (M(“second node in (ST , EST )”)), and that it is equivalent to the quantifier-
free part of ϕ with the variables replaced by 0 or 1 according to the leaf valuation
(Gt, Bt) (this is further clarified in Subsection 6.2.2, also note Figures 6.7 and 6.8).

C ≡ ∀V0 ∃ z0 y0 zf yf z′0 y
′
0 z

′
f y

′
f

(

(C1 ∧C2 ∧ C3 ∧ C4 ∧C5 ∧ C6) → C7
)

where

– C1 expresses “z0 is the root in dom(V0), zf is the leaf in dom(V0), y0 is the root
in ran(V0) and yf is the leaf in ran(V0)”.
C1 ≡ V0(z0, y0) ∧ ¬∃z′y′(PRED≤(z0, z

′) ∧ V0(z′, y′))∧
V0(zf , yf ) ∧ ¬∃z′y′(SUC≤(zf , z

′) ∧ V0(z′, y′))∧
∀z′

(

(PATH≤(z0, z
′) ∧ PATH≤(z

′, zf )) → ∃y′(V0(z′, y′))
)

∧

∀y′
(

(PATH≤(y0, y
′) ∧ PATH≤(y

′, yf)) → ∃z′(V0(z′, y′))
)
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– C2 expresses “V0 is a bijection from “| · · · |” in “QX | · · · |” to “| · · · |” in
“(. . .X | · · · | . . .)” which preserves ≤Gϕ”.
C2 ≡ ∀xyvw

(

(V0(x, y) → (P|(x) ∧ P|(y)))∧
((V0(x, y) ∧ V0(x, v)) → y = v)∧
((V0(x, y) ∧ V0(w, y)) → x = w)∧
((V0(x, y) ∧ V0(v, w) ∧ SUC≤(x, v)) → SUC≤(y, w))

)

– C3 expresses “z′0 is the predecessor of the root in dom(V0), i.e., it is the X in
the prefix of quantifiers”.
C3 ≡ PRED≤(z0, z

′
0) ∧ PX(z′0)

– C4 expresses “y′0 is the predecessor of the root in ran(V0), i.e., it is the X in the
quantifier-free part”.
C4 ≡ PRED≤(y0, y

′
0) ∧ PX(y′0)

– C5 expresses “z′f is the successor of the leaf in dom(V0)”.
C5 ≡ SUC≤(zf , z

′
f ) ∧ ¬P|(z

′
f )

– C6 expresses “y′f is the successor of the leaf in ran(V0)”.
C6 ≡ SUC≤(yf , y

′
f ) ∧ ¬P|(y

′
f )

– C7 expresses “Bt(Vp(z
′
0)) = Hφ(y

′
0)”.

C7 ≡ ∀xx′
(

(Vp(z
′
0, x) ∧Bt(x, x

′)) →
∃z1z2(Hφ(y

′
0, z1, z2)∧

((“x′ = 0” ∧C0(z1, z2)) ∨ (“x′ = 1” ∧ C1(z1, z2))))
)

6.2.2 Expressing AVS2.2

Now we need to check whether the formula φ built in the previous step, evaluates
to true. The idea is to evaluate one connective at a time, and one pair of matching
parenthesis at a time, until the final result becomes 1. Let us look at the example
in Figure 6.7. Note that there are ten evaluation steps, which correspond to ten
“operators” (i.e., either connectives or pairs of parenthesis). If there are at most n
symbols in φ, that means that the whole evaluation process needs at most n evaluation
steps. This is the reason for using pairs of elements to represent the nodes of the graph
(C,EC), and quadruples to represent the edges. This allows the whole evaluation
process to take up to n steps (where n is the length of the input formula). In each
step, we have a Boolean sentence on {0, 1} with up to n symbols. Each node in the
graph (ST , EST ) represents one such formula, and the function M (for Marker) is a
pointer which tells us in which node in (C,EC) that formula begins. Note that in
each evaluation step, either one or two symbols are removed from the formula at the
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previous step. Figure 6.8 further illustrates the graphs (A) and (B) of Figure 6.7 with
a horizontal orientation. Each evaluation step is called a stage. And the first symbol
in each stage is given by the marker function M .

PSfrag replacements

1. (((0 ∨ 1) ∧ (¬0)) ∧ (1 ∨ 0))

2. (((0 ∨ 1) ∧ (1)) ∧ (1 ∨ 0))

3. (((0 ∨ 1) ∧ 1) ∧ (1 ∨ 0))

4. (((1) ∧ 1) ∧ (1 ∨ 0))

5. (((1) ∧ 1) ∧ (1))

6. ((1 ∧ 1) ∧ (1))

7. ((1 ∧ 1) ∧ 1)

8. ((1) ∧ 1)

9. (1 ∧ 1)

10. (1)

11. 1 (TRUE)

≤ nSymbols
(A)

≤ nSteps

Markers (in Bold)

(ST , EST )

Includes

Includes

Includes

An evaluation step

(B) (C,Ec)

(1, 1)

(1, 2)

(1, 3)

(1, n1)

(2, 1)

(2, 2)

(2, 3)

(2, n2)

(s, 1)

(s, 2)

(s, 3)

(s, ns) s ≤ n

≤ n2

Figure 6.7

PSfrag replacements

φ Ev

Computation
(f1, f2) (l1, l2)(f

′

1, f
′

2) (l′1, l
′

2)

(C,EC)

(≤ n2)

Stages

(ST , EST )

MarkerMarker

(≤ n) M

Figure 6.8

Based on this description, we can express AVS2.2 in Section 6.2 as follows:

A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5 where

• A1 expresses “(C,EC) is a linear graph”.

• A2 expresses “(ST , EST ) is a linear graph”.

• A3 expresses “M : ST → C is an injective and total function that preserves PATH
in EST and EC”.
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• A4 expresses “C∧, C∨, C¬, C(, C), C0, C1 are pairwise disjoint, and C∧ ∪ C∨ ∪ C¬ ∪
C( ∪ C) ∪C0 ∪ C1 = C”.

• A5 expresses “For every stage x, from stage x to stage x+ 1, we need to follow the
rules of evaluation (see Figure 6.7 part A). The formula in (C,EC) at stage x+1 is
the same as the formula at stage x, except for one of three possible sorts of changes,
which correspond to the cases (a), (b) and (c) of Figure 6.9”.
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We describe next how to express A1–A5 above in second-order logic. See Section 6.3
for the auxiliary formulae used below.

A1 ≡ LINEAR(C,EC)

A2 ≡ LINEAR2(ST , EST )

A3 ≡ ∀s s′ t1 t2 k1 k2
(

A3.1 ∧ A3.3 ∧ A3.3 ∧ A3.4
)

where

• A3.1 expresses “M is a function, M : ST → C”.
A3.1 ≡ ((M(s, t1, t2) ∧M(s, k1, k2)) → ((t1 = k1 ∧ t2 = k2) ∧ ST (s) ∧ C(t1, t2)))

• A3.2 expresses “M is injective”.
A3.2 ≡ ((M(s, k1, k2) ∧M(t1, k1, k2)) → s = t1)

• A3.3 expresses “M is total”.
A3.3 ≡ (ST (s) → ∃t′1t

′
2(M(s, t′1, t

′
2)))

• A3.4 expresses “M preserves PATH in EST and EC”.
A3.4 ≡ ((M(s, t1, t2) ∧M(s′, k1, k2) ∧ PATHST (s, s′)) → PATHEC

(t1, t2, k1, k2))

A4 ≡ ∀s1s2
(

(C∧(s1, s2) → ¬C∨(s1, s2)) ∧ (C∧(s1, s2) → ¬C¬(s1, s2))∧
(C∧(s1, s2) → ¬C((s1, s2)) ∧ (C∧(s1, s2) → ¬C)(s1, s2))∧

(C∧(s1, s2) → ¬C0(s1, s2)) ∧ (C∧(s1, s2) → ¬C1(s1, s2)) ∧ · · ·
)

∧

∀s1s2
(

C(s1, s2) → (C∧(s1, s2)∨C∨(s1, s2)∨C¬(s1, s2)∨C((s1, s2)∨C)(s1, s2)∨

C0(s1, s2) ∨C1(s1, s2))
)

∧

∀s1s2
(

(C∧(s1, s2) → C(s1, s2)) ∧ (C∨(s1, s2) → C(s1, s2))∧
(C¬(s1, s2) → C(s1, s2)) ∧ (C((s1, s2) → C(s1, s2))∧
(C)(s1, s2) → C(s1, s2)) ∧ (C0(s1, s2) → C(s1, s2))∧

(C1(s1, s2) → C(s1, s2))
)
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A5 ≡ ∀x
(

ST (x) → ∃Ev f1 f2 l1 l2 f
′
1 f

′
2 l

′
1 l

′
2

(

αd ∨ αe ∨ (α0 ∧ (αa ∨ αb ∨ αc))
))

where

The function Ev maps the formula at stage x to the formula at stage x + 1. The
subformula αd corresponds to the last transition, i.e., the transition to the last formula
in (C,EC) (“0” or “1”). The subformula αe corresponds to the last formula in (C,EC).
The subformulae αa, αb and αc correspond to the three possible cases (a), (b) and
(c) as in Figure 6.9, according to which sort of operation is the one involved in the
transition from the formula in stage x to the next formula in (C,EC). Note that the
transition to the last formula αd is necessarily an instance of case (c) in Figure 6.9. For
case (c) in Figure 6.9, Ev is not total in its domain, since (v1, v2)

(

(
)

and (w1, w2)
(

)
)

are not mapped. For the last formula, Ev is not injective, since (f ′
1, f

′
2) = (l′1, l

′
2) (i.e.,

f ′
1 = l′1 and f ′

2 = l′2) (see Figure 6.11).

α0 ≡ A5.1 ∧ A5.2 ∧ A5.3 ∧A5.4 where

• A5.1 expresses “x is not the leaf in EST , and it is not the predecessor of the leaf”.
A5.1 ≡ ∃yy1(EST (x, y) ∧ EST (y, y1))

• A5.2 expresses “Ev : C → C is a partial injection mapping the formula in (C,EC)
in stage x to the formula in (C,EC) in stage EST (x)”
A5.2 ≡ ∀s1s2t1t2k1k2

(

((Ev(s1, s2, t1, t2) ∧ Ev(s1, s2, k1, k2)) →
((t1 = k1 ∧ t2 = k2) ∧ C(s1, s2) ∧ C(t1, t2)))∧

((Ev(s1, s2, k1, k2) ∧Ev(t1, t2, k1, k2)) →
(s1 = t1 ∧ s2 = t2))

)

• A5.3 expresses “((f1, f2), (l1, l2)) and ((f ′
1, f

′
2), (l

′
1, l

′
2)) are the delimiters of the

two formulae as in Figure 6.10”.
A5.3 ≡M(x, f1, f2) ∧ A5.3.1 ∧ A5.3.2 ∧ 5.3.3 where
– A5.3.1 expresses “M(EST (x), EC(l1, l2))”.
– A5.3.2 expresses “EC(l1, l2) = (f ′

1, f
′
2)”.

– A5.3.3 expresses “E−1
C (M(EST (EST (x))), l′1, l

′
2)”.

• A5.4 expresses “Ev maps nodes from the subgraph induced by ((f1, f2), (l1, l2)) to
the subgraph induced by ((f ′

1, f
′
2), (l

′
1, l

′
2))”.

A5.4 ≡ ∀y1y2z1z2
(

Ev(y1, y2, z1, z2) →
(

PATHEC
(f1, f2, y1, y2) ∧ PATHEC

(y1, y2, l1, l2)∧

PATHEC
(f ′

1, f
′
2, z1, z2) ∧ PATHEC

(z1, z2, l
′
1, l

′
2)
))

∧
Ev(f1, f2, f

′
1, f

′
2) ∧ Ev(l1, l2, l

′
1, l

′
2)

αa ≡ ∃v1v2w1w2v
′
1v

′
2w

′
1w

′
2p11p12p21p22p31p32p

′
11p

′
12

(

A5.5 ∧ A5.6 ∧ A5.7 ∧A5.8 ∧ A5.9
)

where

• A5.5 expresses “((v1, v2), (w1, w2)) and ((v′1, v
′
2), (w

′
1, w

′
2)) define the window of

change, that is the segment of the formula that is affected (changed) in the tran-
sition from stage x to stage x + 1 of the evaluation (see Cases (a) and (b) in
Figure 6.10)”.
A5.5 ≡ PATHEC

(f1, f2, v1, v2) ∧ PATHEC
(w1, w2, l1, l2) ∧ EC(p11, p12, p21, p22)∧

EC(p21, p22, p31, p32) ∧ EC(v1, v2, p11, p12) ∧ EC(p31, p32, w1, w2)
C((v1, v2)∧C)(w1, w2)∧PATHEC

(f ′
1, f

′
2, v

′
1, v

′
2)∧PATHEC

(w′
1, w

′
2, l

′
1, l

′
2)∧

EC(v
′
1, v

′
2, p

′
11, p

′
12) ∧EC(p

′
11, p

′
12, w

′
1, w

′
2) ∧ Ev(p11, p12, p

′
11, p

′
12)∧

Ev(v1, v2, v
′
1, v

′
2) ∧ Ev(w1, w2, w

′
1, w

′
2) ∧ C((v

′
1, v

′
2) ∧ C)(w

′
1, w

′
2)
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Figure 6.10

• A5.6 expresses “Ev preserves EC outside of the window of change, and preserves
left and right side of the window of change (see Figure 6.10)”.
A5.6 ≡ ∀z11z12z21z22z′11z

′
12z

′
21z

′
22

(

(

(PATHEC
(f1, f2, z11, z12) ∧ PATHEC

(z21, z22, v1, v2)∧
EC(z11, z12, z21, z22) ∧ Ev(z11, z12, z

′
11, z

′
12) ∧ Ev(z21, z22, z

′
21, z

′
22)) →

(PATHEC
(f ′

1, f
′
2, z

′
11, z

′
12) ∧ PATHEC

(z′21, z
′
22, v

′
1, v

′
2)∧

EC(z
′
11, z

′
12, z

′
21, z

′
22))

)

∧
(

(PATHEC
(w1, w2, z11, z12) ∧ PATHEC

(z21, z22, l1, l2)∧
EC(z11, z12, z21, z22) ∧ Ev(z11, z12, z

′
11, z

′
12) ∧ Ev(z21, z22, z

′
21, z

′
22)) →

(PATHEC
(w′

1, w
′
2, z

′
11, z

′
12) ∧ PATHEC

(z′21, z
′
22, l

′
1, l

′
2)∧

EC(z
′
11, z

′
12, z

′
21, z

′
22))

))

• A5.7 expresses “Ev preserves symbols in left side of the window of change”.
A5.7 ≡ ∀z11z12z′11z

′
12

(

(

PATHEC
(f1, f2, z11, z12)∧PATHEC

(z11, z12, v1, v2)∧Ev(z11, z12, z
′
11, z

′
12)

)

→
(

PATHEC
(f ′

1, f
′
2, z

′
11, z

′
12) ∧ PATHEC

(z′11, z
′
12, v

′
1, v

′
2)∧

(

(C((z11, z12) ∧ C((z
′
11, z

′
12)) ∨ (C)(z11, z12) ∧ C)(z

′
11, z

′
12))∨

(C∧(z11, z12) ∧ C∧(z
′
11, z

′
12)) ∨ (C∨(z11, z12) ∧ C∨(z

′
11, z

′
12))∨

(C0(z11, z12) ∧C0(z
′
11, z

′
12)) ∨ (C1(z11, z12) ∧ C1(z

′
11, z

′
12))∨

(C¬(z11, z12) ∧ C¬(z
′
11, z

′
12))

)))

• A5.8 expresses “Ev preserves symbols in right side of the window of change”.
A5.8 ≡ ∀z11z12z′11z

′
12

(

(

PATHEC
(w1, w2, z11, z12)∧PATHEC

(z11, z12, l1, l2)∧Ev(z11, z12, z
′
11, z

′
12)

)

→
(

PATHEC
(w′

1, w
′
2, z

′
11, z

′
12) ∧ PATHEC

(z′11, z
′
12, l

′
1, l

′
2)∧

(

(C((z11, z12) ∧ C((z
′
11, z

′
12)) ∨ (C)(z11, z12) ∧ C)(z

′
11, z

′
12))∨

(C∧(z11, z12) ∧ C∧(z
′
11, z

′
12)) ∨ (C∨(z11, z12) ∧ C∨(z

′
11, z

′
12))∨

(C0(z11, z12) ∧C0(z
′
11, z

′
12)) ∨ (C1(z11, z12) ∧ C1(z

′
11, z

′
12))∨
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(C¬(z11, z12) ∧ C¬(z
′
11, z

′
12))

)))

• A5.9 expresses “In (p′11, p
′
12) we get the result of applying the operator θ in

(p21, p22) to the Boolean values b1, in (p11, p12), and b2 in (p31, p32) (see (a) in
Figure 6.9)”.
A5.9 ≡

(

(C0(p11, p12) ∧ C0(p31, p32) ∧ C∧(p21, p22) ∧ C0(p
′
11, p

′
12))∨

(C0(p11, p12) ∧ C0(p31, p32) ∧ C∨(p21, p22) ∧ C0(p
′
11, p

′
12))∨

(C0(p11, p12) ∧ C1(p31, p32) ∧ C∧(p21, p22) ∧ C0(p
′
11, p

′
12))∨

(C0(p11, p12) ∧ C1(p31, p32) ∧ C∨(p21, p22) ∧ C1(p
′
11, p

′
12))∨

(C1(p11, p12) ∧ C0(p31, p32) ∧ C∧(p21, p22) ∧ C0(p
′
11, p

′
12))∨

(C1(p11, p12) ∧ C0(p31, p32) ∧ C∨(p21, p22) ∧ C1(p
′
11, p

′
12))∨

(C1(p11, p12) ∧ C1(p31, p32) ∧ C∧(p21, p22) ∧ C1(p
′
11, p

′
12))∨

(C1(p11, p12) ∧ C1(p31, p32) ∧ C∨(p21, p22) ∧ C1(p
′
11, p

′
12))

)

The subformulae αb and αc that correspond to the cases (b) and (c) in Figure 6.9, are
similar to αa. For the clarity of presentation, we omit those formulae. Furthermore,
it should be clear how to build them using αa as template. Moreover, the complete
formulae can be found in [12]. We present next the remaining two subformulae,
namely αd and αe.

αd ≡ ∃y
(

EST (x, y) ∧ ¬∃z(EST (y, z))∧

∃p11p12p′11p
′
12

(

M(x, f1, f2) ∧M(y, p′11, p
′
12)∧

EC(f1, f2, p11, p12) ∧ EC(p11, p12, l1, l2) ∧ EC(l1, l2, p
′
11, p

′
12)∧

¬∃p′21p
′
22(EC(p

′
11, p

′
12, p

′
21, p

′
22))∧

C((f1, f2) ∧C)(l1, l2)∧

((C1(p11, p12) ∧ C1(p
′
11, p

′
12)) ∨ (C0(p11, p12) ∧ C0(p

′
11, p

′
12)))

))

Note that the first line in αd expresses “x is the predecessor of the leaf in EST”, so
that this case corresponds to the last transition (see Figure 6.11). Also note that the
last transition is necessarily an instance of case (c) in Figure 6.9”
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αe ≡ A5.10 ∧ ∃p′1p
′
2

(

M(x, p′1, p
′
2) ∧ A5.11 ∧ A5.12

)

where
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• A5.10 expresses “x is the leaf in EST”.
A5.10 ≡ ¬∃y(EST (x, y))

• A5.11 expresses “(p′1, p
′
2) is the leaf in EC”.

A5.11 ≡ ¬∃y′1y
′
2(EC(p

′
1, p

′
2, y

′
1, y

′
2))

• A5.12 expresses “the last formula in (C,EC) is 1”.
A5.12 ≡ C1(p

′
1, p

′
2)

6.3 Auxiliary Formulae

For the sake of completeness, we define next the remaining auxiliary formulae used
through the previous subsections. We assume an edge relation E and a total order ≤.

“x = 0” ≡ ¬∃y(y 6= x ∧ y ≤ x)

“x = 1” ≡ ∃y(y 6= x∧y ≤ x∧¬∃z(z 6= x∧z 6= y∧y ≤ z∧z ≤ x)∧¬∃z(z 6= y∧z ≤ y))

SUC≤(x, y) ≡ x ≤ y ∧ y 6= x ∧ ¬∃z(z 6= x ∧ z 6= y ∧ x ≤ z ∧ z ≤ y)

PRED≤(y, x) ≡ SUC≤(x, y)

PATHE(v, w) is used to denote the following formula which is satisfied by a given
graph G iff (v, w) is in the transitive closure of the relation EG.

PATHE(v, w) ≡ v = w ∨ ∃V ′E′
(

V ′(v) ∧ V ′(w) ∧ A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5
)

• A1 expresses “(V ′, E′) is a subgraph of (V,E) with no loops”.
A1 ≡ ∀xy(E′(x, y) → (V ′(x)∧V ′(y)∧E(x, y)))∧∀x(V ′(x) → V (x))∧∀x(¬E′(x, x))

• A2 expresses “v is the only minimal node”.
A2 ≡ ¬∃x(E′(x, v)) ∧ ∀y((V ′(y) ∧ y 6= v) → ∃x(E′(x, y)))

• A3 expresses “w is the only maximal node”.
A3 ≡ ¬∃x(E′(w, x)) ∧ ∀y((V ′(y) ∧ y 6= w) → ∃x(E′(y, x)))

• A4 expresses “all nodes except v have input degree 1”.
A4 ≡ ∀z((V ′(z) ∧ z 6= v) → ∃x(E′(x, z) ∧ ∀y((V ′(y) ∧ E′(y, z)) → y = x)))

• A5 expresses “all nodes except w have output degree 1”.
A5 ≡ ∀z((V ′(z) ∧ z 6= w) → ∃x(E′(z, x) ∧ ∀y((V ′(y) ∧ E′(z, y)) → y = x)))

That is, PATHE(v, w) expresses “(V
′, E′) is a linear subgraph of (V,E), with min-

imal node v and maximal node w”. We use a similar strategy to define the next
auxiliary formula LINEAR(V,E) which expresses “(V,E) is a linear graph”.

LINEAR(V,E) ≡ ∀xy(PATHE(x, y) ∨ PATHE(y, x))∧
(∃xy(x 6= y) → ∀x(¬E(x, x)))∧
∃vw

(

V (v) ∧ V (w)∧
¬∃x(E(x, v)) ∧ ∀y((V (y) ∧ y 6= v) → ∃x(E(x, y)))∧
¬∃x(E(w, x)) ∧ ∀y((V (y) ∧ y 6= w) → ∃x(E(y, x)))∧
∀z((V (z) ∧ z 6= v) →

∃x(E(x, z) ∧ ∀y((V (y) ∧ E(y, z)) → y = x)))
∀z((V (z) ∧ z 6= w) →

∃x(E(z, x) ∧ ∀y((V (y) ∧ E(z, y)) → y = x)))
)

Note that we only allow loops in a linear graph when it has only one node.



Expressing Properties in Second and Third Order Logic 31

In a similar way we can define the second-order formula LINEAR2(V ,E) where the
free second-order variables have arity 2 and 4 respectively.
We also use the formula PATHEC(x1, x2, y1, y2) with free first-order variables x1,

x2, y1, y2, where the set of vertices is a binary relation, and the set of edges is a 4-ary
relation (see Figures 6.7 and 6.8).

7 SATQBF in Third-Order Logic

In this section we show how to build a formula in third-order logic that expresses
SATQBF. We omit the tedious details of the subformulae which can be built following
the same patterns than in the detailed exposition of the second-order formula for
SATQBFk.
Roughly, we first express the existence of a third-order alternating valuation Tv

applicable to a given QBF formula ϕ. Then we proceed to evaluate the quantifier-free
part ϕ′ of ϕ on each leaf valuation Lv of Tv. For this part we use the same second-
order subformulae than for SATQBFk. That is, from ϕ′ and Lv, we build a Boolean
sentence φ on {0, 1} by replacing each occurrence of a Boolean variable x in ϕ′ by
a constant 0 or 1 according to the Boolean value assigned by Lv to x, and then we
evaluate φ.
Unlike the case with SATQBFk in which the input formulae all have a same fixed

number k of alternating blocks of quantifiers, in the case of SATQBF the number of
alternating blocks k ≥ 1 of quantifiers in the input formulae is not fixed. That is,
we need to take into account that the input formula can have any arbitrary number
k ≥ 1 of alternating blocks of quantifiers. We assume w.l.o.g. that the quantification
in the input formula ϕ has the form

∃x11 · · · ∃x1l1∀x21 · · · ∀x2l2∃x31 · · · ∃x3l3 · · ·Qxk1 · · ·Qxklk(

ϕ′(x11, . . . , x1l1 , x21 . . . , x2l2 , x31, . . . , x3l3 , . . . , xk1, . . . , xklk))

where k ≥ 1, the formula ϕ′ is a quantifier-free Boolean formula and Q is ∃ if k is
odd, or ∀ if k is even. To represent the formulae as relational structures, we use the
same encoding based in word models as in Section 6.
We present a sketch of the third-order formula ϕSATQBF that expresses SATQBF.

We follow a top-down approach, leaving most of the fine details of the formulae in
the lowest level of abstraction as an exercise for the reader. At the highest level of
abstraction, we can think of ϕSATQBF as a third-order formula that expresses.

“There is a third-order alternating valuation Tv applicable to ϕ, which satisfies ϕ”.

At the next level of abstraction we can express ϕSATQBF in third-order logic as
follows.

∃Vt Et Bt Vt Et

(

A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5
)

where

• A1 expresses “Bt : Vt → {0, 1}”.

• A2 expresses “Gt = (Vt, Et) is a linear graph which represents the sequence of
quantified variables in ϕ”.

• A3 expresses “(Vt, Et) is a third-order binary tree with all its leaves at the same
depth, which is in turn equal to the length of (Et, Vt)”.



32 Expressing Properties in Second and Third Order Logic

• A4 expresses “(Vt, Et,Bt) is a third-order alternating valuation Tv applicable to ϕ,
i.e., all the nodes in (Vt, Et) whose depth correspond to a universally quantified
variable in the prefix of quantifiers of ϕ, have exactly one sibling, and its value
under Bt is different than that of the given node, and all the nodes whose depth
correspond to an existentially quantified variable in the prefix of quantifiers of ϕ,
are either the root or have no siblings”.

• A5 expresses “Every leaf valuation in (Vt, Et,Bt) satisfies ϕ
′”.

Recall that we use uppercase calligraphic letters for third-order variables and plain
uppercase letters for second-order variables. In particular, Vt, Et and Bt are third-
order variables while Vt and Et are second-order variables.
Finally, we describe the strategies to express A2–A5 in third-order logic.

A2. LINEAR(Vt, Et) ∧ A2.1 where

– A2.1 expresses “The length of Gt is equal to the number of variables in the prefix
of quantifiers of ϕ. That is, there is a relation Vp which is a partial bijection
from the quantifier prefix of ϕ (restricted to the X ’s in the quantifier prefix)
to Vt, which maps every X in the quantifier prefix to its corresponding node in
Gt, and which preserves Et and ≤Gϕ in Gt and ϕ (restricted to the X ’s in the
quantifier prefix), respectively”.
See (A) in Subsection 6.2.1 for more details.

A3. Let Et ↾Sd
denote the restriction of the third-order relation Et to the nodes in the

third-order set Sd. We can express A3 as follows:
A3.1 ∧ A3.2 ∧A3.3 ∧ A3.4 where

– A3.1 expresses “(Vt, Et) is a third-order connected graph that has one root and
one or more leaves”.

– A3.2 expresses “Except for the root node, all nodes in (Vt, Et) have input de-
gree 1”.

– A3.3 expresses “Except for the leaf nodes, all nodes in (Vt, Et) have output
degree 1 or 2”.

– A3.4 expresses “All leaf nodes in (Vt, Et) have the same depth, which is in turn
equal to the length of (Vt, Et)”

A3.1, A3.2 and A3.3 can be expressed in third-order logic as follows:
∃R

(

∀Z(Vt(Z) → PATHEt
(R,Z))∧

¬∃S1(Et(S1, R))∧
∃S1(¬∃S2(Et(S1, S2)))∧
∀Z((Vt(Z) ∧ Z 6= R) → ∃S1(Et(S1, Z) ∧ ∀S2(Et(S2, Z) → S1 = S2)))

)

∧

∀Z
(

Vt(Z) → ¬∃S1S2S3(S1 6= S2 ∧ S2 6= S3 ∧ S1 6= S3 ∧ Et(Z, S1) ∧ Et(Z, S2)∧

Et(Z, S3))
)

Regarding A3.4, we can express it as follows:
∀X

(

A3.4.1 →
(

∃Sd D(A3.4.2 ∧A3.4.3 ∧ Sd(X) ∧ A3.4.4 ∧ A3.4.5)
))

where

– A3.4.1 expresses “X is a leaf node in (Vt, Et)”.

– A3.4.2 expresses “Sd ⊆ Vt”.

– A3.4.3 expresses “D : Vt → Sd is a bijection that preserves Et and Et ↾Sd
”.

– A3.4.4 expresses “D−1(X) is the leaf node in Gt = (Vt, Et)”.

– A3.4.5 expresses “Sd includes the root of (Vt, Et)”.
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A4. We can express A4 as follows (refer to Figures 6.2 and 6.5):
A4.1 ∧ ∀x∀Sd

(

(Vt(x) ∧ A4.2 ∧ A4.3) →

∀D((A4.4 ∧ A4.5) → ((A4.6 → A4.7) ∧ (A4.8 → A4.9)))
)

where

– A4.1 expresses “Bt is a total function from Vt to {0, 1}”.
– A4.2 expresses “Sd ⊆ Vt”.

– A4.3 expresses “(Sd, Et ↾Sd
) is a linear graph which includes the root of (Vt, Et)”.

– A4.4 expresses “D is a bijection from the initial subgraph of Gt up to x, to Sd”.

– A4.5 expresses “D preserves Et and Et ↾Sd
”.

– A4.6 expresses “the predecessor of V −1
p (x) in ≤Gϕ is ∀”.

– A4.7 expresses “D(x) has exactly one sibling in (Vt, Et) and Bt of that sibling is
not equal to Bt(D(x))”.

– A4.8 expresses “the predecessor of V −1
p (x) in ≤Gϕ is ∃”.

– A4.9 expresses “D(x) has no siblings in (Vt, Et), or D(x) is the root in (Vt, Et)”.

A5. ∀Sv

(

(A5.1 ∧ A5.2) → ∃DBt

(

A5.3 ∧ A5.4 ∧A5.5
))

where

– A5.1 expresses “Sv ⊆ Vt”.

– A5.2 expresses “(Sv, Et ↾Sv
) is a linear graph which includes the root and a leaf

of (Vt, Et)”.
– A5.3 expresses “D is a bijection from Vt to Sv which preserves Et and Et ↾Sv

”.

– A5.4 expresses “Bt is a total function from Vt to {0, 1} which coincides with
Bt(Sv) w.r.t. D”.

– A5.5 expresses “the leaf valuation represented by (Vt, Et, Bt) satisfies the quantifier-
free subformula ϕ′ of ϕ”.

Note that, A5.5 can be expressed as in Subsection 6.2.2.

Remark 7.1

Note that while in the third-order formulae in A4 and A5 we have used universal
third-order quantification (for Sd and D in A4, and for Sv in A5), it is not actually
needed, and existential third-order quantification is enough. These are the only sub-
formulae where we have used universal third-order quantification. Hence, we strongly
believe that our third-order formula can be translated in a rather technical way into
an existential third-order formula.
Let us consider the sketch for an existential third-order formula equivalent to the

formula in A4 (the existential formula for A5 is easier). We can say that for every
node x in the graph (Vt, Et), and for every set Z that is a node in the third-order
graph (Vt, Et), and such that there is a third-order set Sd of nodes in the third-order
graph (Vt, Et), such that the restriction of the edge relation Et to the third-order set
Sd, together with Sd, form a (third-order) subgraph that is a linear graph whose root
is the root of the third-order graph (Vt, Et), and whose leaf is the set Z, and such that
its length is the length of the initial subgraph of the graph (Vt, Et), up to the node x,
if the variable represented by x in the input formula ϕ is universally quantified, then
the node Z in the third-order graph (Vt, Et) has exactly one sibling in that graph,
and that sibling has a different value assigned by Bt than the value assigned by Bt

to Z. On the other hand, if the variable represented by x in the input formula ϕ
is existentially quantified, then the node Z in the third-order graph (Vt, Et) has no
sibling in that graph. To say that “the third order graph induced by the set Sd in
the graph (Vt, Et), whose leaf is the set Z, has the same length as the initial subgraph
of the graph (Vt, Et), up to the node x”, we say that there is a binary third-order
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relation D which is a bijection between the set of nodes in the initial subgraph of the
graph (Vt, Et), up to the node x, and the third-order set Sd, and which preserves Et

and the restriction of the edge relation Et to the third-order set Sd.

8 Final Considerations

Let ∃SO≤2 denote the restriction of ∃SO to formulae with second-order variables of
arity ≤ 2. As pointed out in [2], it is open whether on graphs full ∃SO is strictly
more expressive than ∃SO≤2. Also as pointed out in [2], no concrete example of a
graph property in PSPACE that is not in binary NP has been found yet, even though
it is known that such properties exist. Hence, it would be worthwhile to find an
example of a PSPACE query on graphs that cannot be expressed in ∃SO≤2. The
gained experience on writing non-trivial queries in second-order logic, can prove to be
a valuable platform to make progress on these kind of open problems. In particular,
we used a second-order variable of arity 4 in Section 6. We used it to represent
(together with other variables) a linear digraph which, for each of the leaf valuations,
encodes a sequence of word models corresponding to the different stages of evaluation
of the quantifier free part of the input QBFk formula. Since the size of the Boolean
formula in each stage is linear in the size of the input QBFk formula, and the number
of connectives in the formula is also linear, the length of the complete sequence of
Boolean formulae is quadratic. Therefore, we conjecture that arity 4 is actually a lower
bound, though we have not attempted to prove it yet. In general, the exploration of
properties which force us to work with intermediate structures of size greater than
linear w.r.t. the input, seems a reasonable way of approaching these kind of open
problems.
As noted earlier, there are second-order queries that are difficult to express in the

language of second-order logic, but which have an elegant and simple characterization
in third-order logic. Therefore it would be interesting to explore possible characteri-
zations of fragments of third-order logic that admit translations of their formulae to
equivalent formulae in second-order logic. This way, those fragments of third-order
logic could be assimilated to high-level programming languages, while second-order
logic would be the corresponding low-level programming language. In turn, this would
allow us to express complex second-order queries with greater abstraction of the low-
level details, thus minimizing the probability of error.
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[7] Lauri Hella and José Maŕıa Turull Torres. Computing queries with higher-order logics. Theor.

Comput. Sci., 355(2):197–214, 2006.

[8] Neil Immerman. Descriptive Complexity. Graduate Texts in Computer Science. Springer, Berlin
Heidelberg New York, 1999.

[9] Michal Krynicki and Jose Maria Turull Torres. Games on trees and syntactical complexity of
formulas. Logic Journal of the IGPL, 15(5-6):653–687, 2007.

[10] Leonid Libkin. Elements Of Finite Model Theory. Texts in Theoretical Computer Science,
EATCS. Springer, Berlin Heidelberg New York, 2004.

[11] Wei Ren. Logic languages: Cubic graphs in second-order logic, 2008. Research Report, Massey
University, Directed by José Maŕıa Turull Torres.
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