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Epistemic extensions of combined classical

and intuitionistic propositional logic

Steffen Lewitzka ∗

Abstract

Logic L was introduced by Lewitzka [7] as a modal system that com-

bines intuitionistic and classical logic: L is a conservative extension of CPC

and it contains a copy of IPC via the embedding ϕ 7→ �ϕ. In this article, we

consider L3, i.e. L augmented with S3 modal axioms, define basic epistemic

extensions and prove completeness w.r.t. algebraic semantics. The result-

ing logics combine classical knowledge and belief with intuitionistic truth.

Some epistemic laws of Intuitionistic Epistemic Logic studied by Artemov

and Protopopescu [1] are reflected by classical modal principles. In partic-

ular, the implications “intuitionistic truth ⇒ knowledge ⇒ classical truth”

are represented by the theorems �ϕ→ Kϕ and Kϕ→ ϕ of our logic EL3,

where we are dealing with classical instead of intuitionistic knowledge. Fi-

nally, we show that a modification of our semantics yields algebraic models

for the systems of Intuitionistic Epistemic Logic introduced in [1].

1 Introduction

The approach presented in this paper relies on the assumptions of R. Suszko’s non-

Fregean logic (see, e.g., [2, 10]) and on results of our recent research [7, 5, 6]. It

is inspired by [4] and by ideas coming from Intuitionistic Epistemic Logic [1].

A non-Fregean logic contains an identity connective and formulas of the form

ϕ ≡ ψ expressing that ϕ and ψ have the same meaning, denotation. The basic

classical non-Fregean logic is the Sentential Calculus with Identity SCI [2] which

can be axiomatized by classical propositional logic CPC along with the following
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identity axioms:

(Id1) ϕ ≡ ϕ
(Id2) (ϕ ≡ ψ) → (ϕ↔ ψ)
(Id3) (ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ])
where ϕ[x := ψ] is the formula that results from substituting ψ for every occur-

rence of variable x in ϕ. We refer to (Id1)–(Id3) as the axioms of propositional

identity.1 According to G. Frege, the meaning of a formula is given by its truth

value. This can be formalized by a scheme called by Suszko the Fregean Axiom:

(ϕ ↔ ψ) → (ϕ ≡ ψ), i.e. two formulas denote the same proposition whenever

they have the same truth value. In non-Fregean logics, the Fregean Axiom is not

valid.

Recall that C.I. Lewis’ modal systems S1–S3 were originally designed as ax-

iomatizations of laws for strict implication �(ϕ → ψ) (see, e.g., [3] for a dis-

cussion). One immediately recognizes that all Lewis systems S1–S5 satisfy the

axioms (Id1) and (Id2) of propositional identity if ϕ ≡ ψ is defined as strict equiv-

alence �(ϕ→ ψ)∧�(ψ → ϕ).2 In [5, 6] we proved that S3 is the weakest Lewis

modal logic where strict equivalence satisfies all axioms of propositional identity

(Id1)–(Id3). Moreover, in [5] we showed that logic S1+SP, i.e. S1 augmented with

(Id3) as theorem scheme, which we also call the Substitution Principle SP, has a

simple algebraic semantics.3 With system S1+SP we proposed a formalization of

strict equivalence as propositional identity in the sense of Suszko’s intuitive ax-

ioms (Id1)–(Id3) above. We were able to show that S1+SP is distinct from S2 and

is strictly contained in S3.

S1+SP can be regarded as the weakest modal system that combines Lewis’ ap-

proach to strict implication with the principles of Suszko’s non-Fregean logic SCI.

Proceeding from these assumptions, we proposed in [7] the modal logic L, which

is axiomatized by intuitionistic logic IPC, the modal axioms of S1 together with a

modal axiom expressing the constructive character of instuitionistic truth, and SP

and tertium non datur as theorems. L is a classical logic in which the modal oper-

ator � plays the role of an intuitionistic truth predicate. Intuitionistically equiva-

lent formulas are identified and denote the same proposition (e.g. ¬ϕ ≡ ¬¬¬ϕ is

a theorem), while classically equivalent formulas have in general different mean-

1Instead of (Id3), Suszko presents a set of three axioms which together are equivalent to (Id3).

By a proposition we mean the denotation of a formula. Instead of proposition, Suszko uses the

term situation.
2Certain connections between non-Fregean logic and the modal systems S4 and S5 were al-

ready investigated by Suszko and Bloom (see [2, 9]).
3Recall that there is no known intuitive semantics for S1.
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ings (ϕ ≡ ¬¬ϕ is not a theorem, but ϕ↔ ¬¬ϕ is a theorem). L is a conservative

modal extension of CPC and contains a copy of IPC via the embedding ϕ 7→ �ϕ.

In this sense, L combines CPC and IPC. In the present paper, we consider L3,

the S3-version of L, and investigate basic epistemic extensions. In this setting of

combined classical and intuitionistic logic, the question arises in which way clas-

sical epistemic laws of knowledge and belief relate to the modal laws of L3. We

are inspired by the approach developed in [4] where a non-Fregean semantics for

the modeling of epistemic properties is presented. Knowledge or belief of an agent

is modeled in a natural way as a set of propositions, i.e. as a subset BEL ⊆ M
of the universe M of an algebraic (non-Fregean) model. In the cases of our log-

ics L and L3, a non-Fregean model is a Heyting algebra where classical truth is

represented by an ultrafilter TRUE , and intuitionistic truth is given by the top

element of the underlying lattice. Recall that all intuitionistic tautologies denote

the top element of any given Heyting algebra, under all assignments. We assume

that also our modal axioms are intuitionistically acceptable and therefore should

denote the top element, too. Furthermore, we also assume that at least all axioms

should be known by the agent. Hence, the top element is a known proposition,

i.e. an element of BEL. This can be expressed by �ϕ → Kϕ. The semantical

condition BEL ⊆ TRUE corresponds to the facticity of knowledge, i.e. to the

theorem Kϕ → ϕ. Many further properties of knowledge and belief, such as the

distribution law K(ϕ → ψ) → (Kϕ → Kψ), can be modeled semantically by

imposing suitable closure conditions on the set BEL of each model.4

Special attention deserves the bridge theorem �ϕ → Kϕ which establishes

the connection between the modal and the epistemic part of the logic. Actually, we

will need a slightly stronger bridge axiom, namely �ϕ → �Kϕ, in order to war-

rant that the axioms of propositional identity, in particular (Id3), also hold in the

extended epistemic language (see Lemma 2.1). That bridge axiom, together with

the rule of Axiom Necessitation, yields �(�ϕ → �Kϕ), which can be regarded

as a representation of the Brouwer-Heyting-Kolmogorov (BHK) reading of intu-

itionistic co-reflection ϕ → Kϕ, an axiom of the systems IEL− and IEL of In-

tuitionistic Epistemic Logic introduced by Artemov and Protopopescu [1]. IEL−

and IEL are intuitionistic logics where truth is understood as proof, and epis-

temic laws are in accordance with the constructive BHK semantics of intuitionistic

logic. The intuitionistically unacceptable principle of reflection Kϕ → ϕ is re-

placed with intuitionistic reflection Kϕ→ ¬¬ϕ, i.e. “known propositions cannot

4In [4] are modeled also more complex epistemic concepts such as common knowledge in a

group of agents.
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be false”. We adopt the latter as an axiom and derive classical reflection. Then the

implications “intuitionistic truth ⇒ (intuitionistic) knowledge ⇒ classical truth”,

underlying the approach of [1], can be represented by theorems �ϕ → Kϕ and

Kϕ → ϕ of our modal logics, where, of course, we are dealing with classical

instead of intuitionistic knowledge. By introducing additional modal axioms, we

are able to establish further laws for the reasoning about classical knowledge and

intuitionistic truth.

2 Deductive systems

The language is inductively defined in the usual way over an infinite set of vari-

ables x0, x1, ..., logical connectives ∧, ∨, →, ⊥, the modal operator � and the

epistemic operator K. Fm denotes the set of all formulas and Fm0 ⊆ Fm is the

set of propositional formulas, i.e. formulas that neither contain the modal opera-

tor � nor the epistemic operator K. We shall use the following abbreviations:

¬ϕ := ϕ→ ⊥
⊤ := ¬⊥
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
ϕ ≡ ψ := �(ϕ→ ψ)∧�(ψ → ϕ) (“propositional identity = strict equivalence”)

�Φ := {�ψ | ψ ∈ Φ}, for Φ ⊆ Fm

We consider the following Axiom Schemes (INT) and (A1)–(A8)

(INT) all theorems of IPC and their substitution-instances5

(A1) �(ϕ ∨ ψ) → (�ϕ ∨�ψ)
(A2) �ϕ→ ϕ
(A3) �(ϕ→ ψ) → �(�ϕ→ �ψ)
(A4) �ϕ→ ��ϕ
(A5) ¬�ϕ→ �¬�ϕ
(A6) K(ϕ→ ψ) → (Kϕ→ Kψ) (distribution of belief)

(A7) �ϕ→ �Kϕ (co-reflection)

(A8) Kϕ→ ¬¬ϕ (intuitionistic reflection)

5A substitution-instance of ϕ is the result of uniformly replacing variables in ϕ by formulas of

Fm.
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and the following Theorem Scheme (T) of tertium non datur

(T) ϕ ∨ ¬ϕ

The inference rules are Modus Ponens MP “From ϕ and ϕ→ ψ infer ψ”, and

Axiom Necessitation AN “If ϕ is an axiom, then infer �ϕ”.

The intended meaning of a formula �ϕ is: “there is a proof of ϕ” (i.e. ϕ is

proved), where proof is understood as intuitionistic truth in the sense of the BHK

semantics of intuitionistic logic. Accordingly, ¬�ϕ means “ϕ is not proved” (al-

though a proof might be possible), and �¬ϕ reads as “a proof of ϕ is impossible”.

The above modal axioms then can be read as principles for the reasoning about

intuitionistic truth and (classical) knowledge. The basic modal axioms are (A1)–

(A3) together with the usual distribution axiom for knowledge (A6) and the bridge

axiom (A7). (A2) and (A3) are axioms of Lewis’ system S3 of strict implication,

given in the style of Lemmon (see, e.g., [3]). Axiom (A1) says that to prove ϕ∨ψ
it is necessary to prove ϕ or to prove ψ, which is in line with the BHK semantics.6

Of course, we also expect that proved propositions are classically true. This is

expressed by (A2). Recall that, according to the BHK intepretation, a proof of

an implicative formula ϕ → ψ is given by a (not further specified) construction

that transforms any given proof of ϕ into a proof of ψ. So if we state �(ϕ → ψ),
then we assume the existence of such a construction. Of course, if a construction

with those properties exists, then we have in particular evidence (i.e. a proof) of

the fact that whenever ϕ is proved, there is also a proof of ψ. This is the situation

described by (A3). In this sense, (A3) can be seen as an attempt to translate the

constructive content of the BHK interpretation of ϕ → ψ into a classical reading.

The axioms (A4) and (A5) describe further laws for the reasoning about proofs

and correspond to axioms of Lewis’ systems S4 and S5, respectively. Finally,

(A7) and (A8) are related to axioms of Intuitionistic Epistemic Logic [1] and will

be discussed below.

The distinction between axioms and theorems in the definition of our deduc-

tive systems is important. While all axioms are regarded as intuitionistically ac-

ceptable principles, the classical principle of tertium non datur is introduced as a

theorem scheme. Note that the inference rule AN applies only to axioms.

6(�ϕ ∨�ψ) → �(ϕ ∨ ψ) is derivable in our systems.
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If instead of the axioms (INT) we consider (CL) (i.e., all theorems of CPC and

their substitution-instances), (A2) and the following (A3’)

�(ϕ→ ψ) → (�(ψ → χ) → �(ϕ→ χ)),

as axiom schemes, along with the rules of MP and the Substitution of Proved

Strict Equivalents SPSE “If (ϕ ≡ ψ) is a theorem, then (χ[x := ϕ] ≡ χ[x := ψ])
is a theorem”, then we obtain Lewis’ modal system S1 (see, e.g., [3] for a similar

presentation). Stronger than rule SPSE is the following axiom scheme (Id3) of

propositional identity, which we also call the Substitution Property SP:

(ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]).

The system S1+SP, introduced and studied in [5], results from S1 by adding all

formulas of the form SP as theorems. Recall that (A3) is the essential axiom

scheme of S3, i.e. S3 results from S2 (or even from S1) by adding (A3) as an

axiom. By �SP we refer to the collection of all instances of scheme SP prefixed

by operator �. System S1+�SP then results from S1 by adding all instances of

�SP as theorems. We saw in [5] that S1+SP ( S1+ �SP ⊆ S3. In particular, all

instances of �SP are derivable in S3, and S3 is the weakest among Lewis’ modal

logics with that property. The question whether S1+�SP equals S3, however, is

left open – we believe it can be answered positively. Modal system L, introduced

in [7], results from S1+SP by replacing (CL) with (INT), adding (A1) as an axiom

scheme and adding (T) as a theorem scheme. L is the weakest modal logic that

contains the basic laws of Lewis’ strict implication and Suszko’s non-Fregean

logic, and combines IPC and CPC in the sense of [7]. Note that L contains the

instances of SP as theorems instead of axioms. However, since � is intended

as a predicate for intuitionistic truth, it seems to be reasonable to extend logic

L in the sense that rule AN applies to all intuitionistically acceptable formulas,

including the instances of SP. We know that �SP is contained in S3. Moreover,

it is technically easier to work with S3-axioms instead of scheme �SP. For these

reasons, we consider in this paper the logic L3 which results from L by adding the

S3-axiom (A3). That is, L3 is given by the axiom schemes (INT) and (A1)–(A3),

the theorem scheme (T) and the inference rules of MP and AN. We define the

following epistemic extensions of L3:

• EL3− = L3 + (A7)

• EL3 = EL3− + (A8)
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• EL4 = EL3 + (A4)

• EL5 = EL4 + (A5)

The notion of derivation is defined as usual. For Φ ∪ {ϕ} ⊆ Fm, we write

Φ ⊢L ϕ if there is a derivation of ϕ from Φ in logic L.

Note that by (A2) and (A3), the distribution law of normal modal logis, also

called axiom K, �(ϕ → ψ) → (�ϕ → �ψ), is a theorem of all our epistemic

logics. We showed in [5, 6] that SP (and even �SP) derives in S3. Roughly

speaking, SP ensures that propositional identity ≡ defines a congruence relation

on the set of modal formulas – i.e. an equivalence relation that respects the con-

nectives and operators of the underlying modal language. This is a useful, if not

necessary, condition for the construction of a natural algebraic semantics. Now

we are working with an extended propositional language which besides the modal

operator contains an epistemic operator. We have to show that SP still holds in the

extended language of our epistemic logics. For the proof we will need S3-axiom

(A3) as well as the axioms of co-reflection and distribution of knowledge.

Lemma 2.1. Scheme SP holds: ⊢EL3− (ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]).

Proof. It is enough to show that the following formulas are theorems:

(a) ((ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2)) → (ϕ1 ∗ ϕ2) ≡ (ψ1 ∗ ψ2), for ∗ ∈ {∨,∧,→}
(b) (ϕ ≡ ψ) → (�ϕ ≡ �ψ)
(c) (ϕ ≡ ψ) → (Kϕ ≡ Kψ)
The assertion then follows by induction on the complexity of formula χ. We

proved in [6, 7] that in modal system S3 the relation of strict equivalence ≡ satis-

fies Suszko’s axioms of propositional identity (i.e. essentially (a)) and additionally

(b). In the following we argue similarly. We will use the fact that �(ϕ ∧ ψ) ↔
(�ϕ ∧�ψ) is a theorem of S3 and it derives in the same way in L3 and our epis-

temic logics. Assume ∗ is the connective → and note that ((ϕ1 ↔ ψ1) ∧ (ϕ2 ↔
ψ2)) → (ϕ1 → ϕ2) ↔ (ψ1 → ψ2) is a theorem of IPC. Then rule AN and

distribution yield ((ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2)) → (ϕ1 → ϕ2) ≡ (ψ1 → ψ2). The

cases of the remaining logical connectives are shown analogously. The formulas

of (b) derive with the help of the S3-axiom (A3). Finally, we consider (c) which

involves the new operator K. We start with ϕ ≡ ψ, i.e. �(ϕ → ψ) ∧�(ψ → ϕ).
By co-reflection, this implies �K(ϕ → ψ) ∧�K(ψ → ϕ) which in turn implies

�(Kϕ → Kψ) ∧ �(Kψ → Kϕ) (apply rule AN to axiom (A6) and then apply

distribution), i.e. Kϕ ≡ Kψ. Thus, (ϕ ≡ ψ) → (Kϕ ≡ Kψ) is a theorem of all

our epistemic logics.
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The following result expresses the fact that (in every given model) there is

exactly one necessary proposition – the proposition denoted by ⊤. For a proof

that relies on SP, we refer the reader to [[5]], Lemma 2.3]. In our modal logics,

the proposition denoted by ⊤ stands for intuitionistic truth. Then the following

scheme of biconditionals says in particular that �ϕ is classically true iff ϕ holds

intuitionistically.

Lemma 2.2. ⊢EL3− �ϕ↔ (ϕ ≡ ⊤).

The systems IEL− and IEL of Intuitionistic Epistemic Logic studied in [1]

are axiomatized by (INT), (A6), intuitionistic co-reflection ϕ → Kϕ instead of

(A7), and, only in case of IEL, additionally (A8). The only inference rule is MP.

In IEL− and IEL, the formalized epistemic principles harmonize with the

constructive BHK reading. The axiom of intutionistic co-reflection ϕ → Kϕ
is evident under the assumptions that intuitionistic truth is proof, proof yields (a

strict kind of) verification, and verification yields (intuitionistic) knowledge/belief.

While the facticity axiom Kϕ→ ϕ of classical knowledge cannot be justified un-

der the BHK reading, intuitionistic reflection, Kϕ → ¬¬ϕ is acceptable. In this

sense, IEL− and IEL are intuitionistic logics of intuitionistic knowledge and be-

lief.

The logics presented in this paper are logics of classical knowledge and belief:

for example, Kϕ ∨ ¬Kϕ and Kϕ→ ϕ are theorems of EL3. The systems result

from the addition of classical epistemic principles to L3 as a classical modal logic

for the reasoning about intuitionistic truth. The bridge axiom (A7)

(1) �ϕ→ �Kϕ,

plays a key role in this setting of combined classical epistemic and intuitionistic

logic. Since it is an axiom, we may apply rule AN and obtain

(2) �(�ϕ→ �Kϕ),

which, in a sense, mirrors the axiom of intuitionistic co-reflection

(3) ϕ→ Kϕ

of Intuitionistic Epistemic Logic. In fact, if “there is a construction that converts

any given proof of ϕ into a proof of Kϕ” (the BHK reading of (3)), then that con-

struction represents a kind of proof, and thus we may state that “there is evidence

8



that ifϕ is proved, thenKϕ is proved” (the classical reading of (2)). The described

translation of (3) into (1) and (2) is similar to the above discussed meaning of ax-

iom (A3) and illustrates the way we are reasoning about intuitionistic truth in our

modal systems. In this sense, (2) can be seen as a classical representation of intu-

itionistic co-reflection. We refer to (1) as the axiom of classical co-reflection.

In the following, we give some examples of derivations in our modal logics.

The derived theorems represent laws for the reasoning about classical knowledge

and intuitionistic truth. Some of those laws correspond to related intuitionistic

principles valid in IEL. However, since knowledge is classical in our modal

logics, we cannot expect to find appropriate classical representations for all intu-

itionistic principles of IEL.

It is argued in [1] that reflection, Kϕ→ ϕ, as a law of classical knowledge, is

not acceptable intuitionistically. This corresponds to the fact that in our classical

modal logics, the formula �Kϕ → �ϕ is not derivable, as we shall see in Theo-

rem 4.4 below. Instead of reflection, we adopt intuitionistic reflectionKϕ→ ¬¬ϕ
as an axiom which is “acceptable both classically and intuitionistically” (see [1]

for a discussion). By tertium non datur, reflection then derives as a theorem.

Theorem 2.3. EL3 has classical reflection: ⊢EL3 Kϕ→ ϕ.

Theorem 7 of [1] states that ¬Kϕ ↔ K¬ϕ is a theorem of IEL. Of course,

the right-to-left implication is also a law of classical knowledge. The left-to-

right implication, however, would represent a very strong epistemic property in a

classical setting: “for any given proposition p, if p is not known, then its negation

is known”. That is, knowledge would collapse into classical truth (recall that

Kϕ ∨ ¬Kϕ is a theorem of classical knowledge). We show that the related yet

weaker statement “if a given proposition p is not known, then it is known that p is

not proved” holds in EL5.

Theorem 2.4. ⊢EL5 ¬Kϕ→ K¬�ϕ.

Proof. By contrapositions of (A7) and (A2), we get ¬Kϕ → ¬�ϕ. Formula

¬�ϕ → �¬�ϕ is an instance of (A5), and �¬�ϕ → K¬�ϕ is obtained from

co-reflection combined with (A2). Transitivity of implication yields ¬Kϕ →
K¬�ϕ.7

7Using the fact that �(ϕ → ψ) → (�(ψ → χ) → �(ϕ → χ)) and �(ϕ → ψ) → �(¬ψ →
¬ϕ) are theorems, one actually can show the stronger result ⊢EL5 �(¬Kϕ→ K¬�ϕ).
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In IEL, ¬Kϕ ↔ ¬ϕ is valid [[1], Theorem 8]. The right-to-left implication

is also a law of classical knowledge. By the BHK reading of the left-to-right

implication, we may state that “the impossibility of a proof of Kϕ yields the

impossibility of a proof of ϕ”. Actually, this is the contraposition of intuitionistic

co-reflection ϕ → Kϕ which relies on the intuition that proof yields knowledge.

As argued above, intuitionistic co-reflection is, in a sense, mirrored by the EL3−-

theorem �(�ϕ → �Kϕ). We present some further derivable modal laws:

Theorem 2.5.

(i) ⊢E3− �¬�Kϕ → �¬�ϕ. “The impossibility of a proof of �Kϕ implies

the impossibility of a proof of �ϕ.”

(ii) ⊢EL4 �ϕ→ K�ϕ. “If ϕ is proved, then it is known that ϕ is proved.”

(iii) ⊢EL5 ¬�ϕ → K¬�ϕ. “If ϕ is not proved, then it is known that ϕ is not

proved.”

(iv) ⊢EL5 ¬K�ϕ ↔ �¬�ϕ. “The fact that �ϕ is not known is equivalent to

the impossibility of a proof of �ϕ.”

(v) ⊢EL5 ¬�Kϕ → �¬�ϕ. “If there is no proof of Kϕ, then a proof of �ϕ is

impossible.”8

(vi) ⊢EL3 �Kϕ→ ¬�¬ϕ. “If Kϕ is proved, then a proof of ϕ is possible.”

Proof. First, we observe that

(a) �(ϕ→ ψ) → (�(ψ → χ) → �(ϕ→ χ)) and

(b) �(ϕ→ ψ) → �(¬ψ → ¬ϕ)
are theorems (apply AN to suitable theorems of IPC and consider distribution).

(i): By AN and (A7), �(�ϕ → �Kϕ). By (b), �(¬�Kϕ → ¬�ϕ). Now apply

distribution.

(ii): �ϕ → ��ϕ, ��ϕ → �K�ϕ and �K�ϕ → K�ϕ are axioms of EL4
and yield (ii).

(iii): ¬�Kϕ → �¬�Kϕ is an axiom of EL5, and �¬�ϕ → K¬�ϕ is a theo-

rem of EL3 (by co-reflection and (A2)). Apply transitivity of implication.

(iv): By contraposition of (ii), we get ¬K�ϕ → ¬�ϕ. ¬�ϕ → �¬�ϕ is an

axiom of EL5. By transitivity of implication, we get the left-to-right implication.

8Note that in EL5, ¬�Kϕ “there is no proof of Kϕ” is actually equivalent to �¬�Kϕ “a

proof of �Kϕ is impossible”.
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The right-to-left implication follows from (A2) along with the contraposition of

the theorem K�ϕ→ �ϕ.

(v): This follows from the contrapostion of (A7) along with the EL5-axiom

¬�ϕ→ �¬�ϕ.

(vi): First, note that ⊥ → �⊥ and �⊥ → ⊥ are axioms of our modal logics:

the former is a substitution-instance of the IPC theorem ⊥ → x, and the latter is

an instance of (A2). By AN, ⊥ ≡ �⊥. SP then ensures that ⊥ and �⊥ can be

replaced by each other, in every context. Since Kϕ → ¬¬ϕ is an axiom of EL3,

we may apply AN and obtain �(Kϕ → ¬¬ϕ). By distribution and MP, we derive

�Kϕ → �((ϕ → ⊥) → ⊥). Again by distribution, together with transitivity of

implication, we derive �Kϕ → (�(ϕ→ ⊥) → ⊥), i.e., �Kϕ → ¬�¬ϕ.

In logic IEL, “no truth is unverifiable”, i.e. ¬(¬Kϕ ∧ ¬K¬ϕ) is a theorem

[[1], Theorem 9]. The classical reading would yield: “for any proposition p, either

p is known or its negation is known”, a condition which again would imply the

equivalence of truth and knowledge. We are able to derive the following weaker

condition in logic EL5:

Theorem 2.6. ⊢EL5 K�ϕ ∨K¬�ϕ.

Proof. By tertium non datur, �ϕ ∨ ¬�ϕ. By Theorem 2.5 (ii) and (iii), (�ϕ →
K�ϕ)∧ (¬�ϕ→ K¬�ϕ) is a theorem of EL5. The formula ((�ϕ→ K�ϕ)∧
(¬�ϕ → K¬�ϕ)) → ((�ϕ ∨ ¬�ϕ) → (K�ϕ ∨ K¬�ϕ)) is a substitution-

instance of the intuitionistic theorem ((x1 → y1) ∧ (x2 → y2)) → ((x1 ∨ x2) →
(y1 ∨ y2)) and is therefore an axiom of EL5. Now we may apply Modus Ponens

two times and obtain K�ϕ ∨K¬�ϕ.

3 Algebraic semantics

We expect the reader to be familiar with some basic lattice-theoretical notions

such as (prime, ultra-) filters on lattices. We adopt the notation from [5, 7] and

write a bounded lattice as an algebraic structure H = (H, f⊥, f⊤, f∨, f∧), where

f⊥, f⊤ are the least and the greatest elements w.r.t. the induced lattice order, and

f∨, f∧ are the binary operations for join and meet, respectively. Recall that a

Heyting algebra can be defined as a bounded lattice together with an additional

binary operation for implication f→ which maps any two elements m,m′ to the

supremum of {m′′ | f∧(m,m
′′) ≤ m′}, where ≤ is the lattice order. That

supremum f→(m,m′) is also called the relative pseudo-complement of m with
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respect to m′. The pseudo-complement f¬(m) of an element m then is defined by

f¬(m) = f→(m, f⊥). As in [7], we say that a Heyting algebra has the Disjunction

Property DP if its smallest filter {f⊥} is a prime filter. Note that in a Heyting

algebra with DP, the equation f∨(m,m
′) = f⊤ is equivalent to the condition that

m = f⊤ or m′ = f⊤. A Boolean algebra B has DP if and only if B has at most

two elements.

Our algebraic models are given by certain Heyting algebras with a designated

ultrafilter as truth-set. An ultrafilter is defined as a maximal filter (which exists

by Zorn’s Lemma). Maximal filters reflect the classical behavior of the logical

connectives in the sense of item (b) of the next Lemma. On the other hand, in-

tuitionistic truth can be represented by the greatest element of a Heyting algebra.

In this way, we are able to model and to combine classical and intuitionistic truth

within the same Heyting algebra. The following facts are crucial for our semantic

modeling.

Lemma 3.1. Let H be a Heyting algebra with universe H .

(a) U ⊆ H is an ultrafilter iff there is a Heyting algebra homomorphism h from H
to the two-element Boolean algebra B such that the top element of B is precisely

the image of U under h.

(b) If U ⊆ H is an ultrafilter, then for all m,m′ ∈ H:

• f∨(m,m
′) ∈ U iff m ∈ U or m′ ∈ U (i.e. U is a prime filter)

• m ∈ U or f¬(m) ∈ U

• f→(m,m′) ∈ U iff [m /∈ U or m′ ∈ U] iff f∨(f¬(m), m′) ∈ U .

Proof. (a) is a well-known property of Heyting algebras, (b) follows straightfor-

wardly from (a).

Definition 3.2. An EL3−-model is a Heyting algebra

M = (M,TRUE ,BEL, f⊥, f⊤, f∨, f∧, f→, f�, fK)

with a designated ultrafilter TRUE ⊆ M , a set BEL ⊆ M and additional unary

operations f� and fK such that for all m,m′, m′′ ∈M the following truth condi-

tions are fulfilled (as before, ≤ denotes the lattice order):

(i) f�(f∨(m,m
′)) ≤ f∨(f�(m), f�(m

′))

12



(ii) f�(m) ≤ m

(iii) f�(f→(m,m′)) ≤ f�(f→(f�(m), f�(m
′)))

(iv) f�(m) ∈ TRUE ⇔ m = f⊤

(v) fK(m) ∈ TRUE ⇔ m ∈ BEL

(vi) fK(f→(m,m′)) ≤ f→(fK(m), fK(m
′))

(vii) f�(m) ≤ f�(fK(m))

An EL3-model is an EL3−-model that satisfies the additional truth condition

(viii): fK(m) ≤ f¬(f¬(m)), for all propositionsm.

We regard M as a propositional universe and TRUE ⊆ M as the set of

propositions which are classically true. The propositions f⊤, f⊥ represent intu-

itionistic truth and intuitionistic falsity, respectively. BEL is the set of believed

propositions. If BEL ⊆ TRUE , then we identify belief with knowledge.

Recall that in any Heyting algebra: m ≤ m′ ⇔ f→(m,m′) = f⊤. Now

observe that the truth conditions (i)–(iii) and (vi)–(viii) of the above definition

correspond to applications of rule AN to the axioms (A1)–(A3) and (A6)–(A8),

respectively. Truth condition (iv) establishes the relation between intuitionistic

and classical truth via the necessity operator. Similarly, truth condition (v) defines

the relation between belief and classical truth.

Note that truth condition (viii) of an EL3-model, together with truth condition

(v) and Lemma 3.1, implies that BEL ⊆ TRUE . That is, believed propositions

are classically true and belief is knowledge in any EL3-model. On the other

hand, in any model, the condition BEL ⊆ TRUE is equivalent to the condition

f→(fK(m), m) ∈ TRUE , for all propositions m. From the definition of model

theoretic satisfaction below it will follow that models with the property BEL ⊆
TRUE are precisely the models satisfying classical reflection Kϕ→ ϕ.

The truth conditions (i) and (iv) ensure that every model has the Disjunction

Property DP: for all m,m′ ∈M , f∨(m,m
′) = f⊤ iff m = f⊤ or m′ = f⊤.

Definition 3.3. Let M be an EL3-model. We say that
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• M is an EL4-model if for all m ∈ M: f�(m) ≤ f�(f�(m))9

• M is an EL5-model if for all m ∈ M the following holds:

f�(m) =

{

f⊤, if m = f⊤

f⊥, else

Note that the defining condition of EL5-models implies f�(m) ≤ f�(f�(m))
and f¬(f�(m)) ≤ f�(f¬(f�(m))), for all propositions m. In particular, every

EL5-model is an EL4-model.

Definition 3.4. Let L ∈ {EL3−, EL3, EL4, EL5}. An assignment of an L-

model M is a function γ : V → M that extends in the canonical way to a func-

tion γ : Fm → M: γ(⊥) = f⊥, γ(⊤) = f⊤, γ(�ϕ) = f�(γ(ϕ)), γ(Kϕ) =
fK(γ(ϕ)), γ(ϕ ∗ ψ) = f∗(γ(ϕ), γ(ψ)), for ∗ ∈ {∨,∧,→}. An L-interpretation

is a tuple (M, γ) consisting of an L-model and an assignment. The relation of

satisfaction is defined by

(M, γ) � ϕ :⇔ γ(ϕ) ∈ TRUE

and extends in the usual way to sets of formulas. The relation of logical conse-

quence is defined by Φ L ϕ :⇔ (M, γ) � Φ implies (M, γ) � ϕ, for every

L-interpretation (M, γ).

The following is not hard to prove (see, e.g., [5]):

Lemma 3.5.

(M, γ) � ϕ ≡ ψ ⇔ γ(ϕ) = γ(ψ).

That is, ϕ ≡ ψ is true iff ϕ and ψ denote the same proposition – this is pre-

cisely the intended meaning of an identity connective. By Lemma 3.1, the condi-

tion that the proposition f↔(m,m′) := f∧(f→(m,m′), f→(m′, m)) belongs to the

ultrafilter TRUE of a given model is equivalent to the condition: m ∈ TRUE ⇔

9Note that this, together with (iv), implies the weaker condition (4’): f�(m) = f⊤ ⇔ m = f⊤.

In a discussion on the last pages of our article [5], there is a minor incorrectness which, however,

has no impact on main results and is easily corrected as follows. It is claimed there correctly

that condition (4’) ensures soundness of S4-axiom �ϕ → ��ϕ. However, to warrant also a

sound application of AN, i.e. soundness of �(�ϕ → ��ϕ), one has to impose the stronger

truth condition f�(m) ≤ f�(f�(m)) on algebraic S4-models. Unfortunately, this detail was

overlooked in Corollary 5.7 of [5].
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m′ ∈ TRUE . The latter, however, does not imply m = m′. Thus, the Fregean

Axiom (ϕ↔ ψ) → (ϕ ≡ ψ) is not valid. This shows that we are actually dealing

with a non-Fregean semantics.10

4 Soundness, completeness and some consequences

It is a well-known fact that all intuitionistic theorems evaluate to the top element

in every Heyting algebra, under any assignment. Also recall that f→(m,m′) =
f⊤ ⇔ m ≤ m′ is a general law in Heyting algebras. Then the soundness of axioms

(INT) and (A1)–(A3) as well as the soundness of rule AN follows from properties

of Heyting algebras along with the truth conditions (i)–(iii) of a model. Theorem

scheme (T) of tertium non datur is sound because TRUE is an ultrafilter, see

Lemma 3.1 (b). Properties of ultrafilters also ensure soundness of rule MP. Fur-

thermore, one easily checks that the additional truth conditions of anEL3-, EL4-,

EL5-model ensure soundness of the axioms (A8), (A4), (A5), respectively – in-

clusively soundness of the application of AN to those axioms. We conclude that

the logics EL3−, EL3, EL4, EL5 are sound with respect to the corresponding

classes of models: Φ ⊢L ϕ implies Φ L ϕ, for L ∈ {EL3−, EL3, EL4, EL5}.

In the following, we consider EL5 as the underlying deductive system. The

notions of (in)consistent and maximal consistent set of formulas are defined as

usual. By standard arguments, any consistent set extends to a maximal consistent

set of formulas. We show that every maximal consistent set Φ is satisfiable, i.e.

there is an EL5-model M and an assignment γ : V → M such that (M, γ) � Φ.

For a maximal consistent set Φ, we define the relation ≈Φ on Fm by

ϕ ≈Φ ψ :⇔ Φ ⊢EL5 ϕ ≡ ψ.

Lemma 4.1. Let Φ ⊆ Fm be a maximal consistent set. The relation ≈Φ is an

equivalence relation on Fm with the following properties:

10A counterexample showing that the equivalencem ∈ TRUE ⇔ m′ ∈ TRUE does not imply

m = m′ is given by the model constructed in the proof of Theorem 4.4 below. The model is based

on the Heyting algebra of the closed interval of reals [0, 1]with (unique) ultrafilterTRUE = (0, 1].
If m ∈ TRUE , then f¬(m) = f→(m, 0) = 0 and f¬(f¬(m)) = f¬(0) = 1. Furthermore,

m = 0 implies f¬(f¬(m)) = 0. Thus, m ∈ TRUE iff f¬(f¬(m)) ∈ TRUE . However, for

any m ∈ TRUE r {1} we have m 6= f¬(f¬(m)) = 1. The model witnesses what is intended

by our non-Fregean semantics: intuitionistically equivalent formulas have the same meaning, but

classically equivalent formulas, such as ϕ and ¬¬ϕ, may denote different propositions.
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• If ϕ1 ≈Φ ψ1 and ϕ2 ≈Φ ψ2, then ¬ϕ1 ≈Φ ¬ψ1, �ϕ1 ≈Φ �ψ1, Kϕ1 ≈Φ

Kψ1 and (ϕ1 → ϕ2) ≈Φ (ψ1 → ψ2).

• If ϕ ≈Φ ψ, then ϕ ∈ Φ ⇔ ψ ∈ Φ.

Proof. The first item follows from the Substitution Property SP (see Lemma 2.1),

the second item follows from the fact that ϕ ≈Φ ψ implies Φ ⊢EL5 ϕ↔ ψ.

Lemma 4.2. If Ψ ⊆ Fm is consistent, then there is anEL5-interpretation (M, γ)
such that (M, γ) � Ψ.

Proof. Let Ψ be consistent. By Zorn’s Lemma, Ψ is contained in a maximal

consistent set Φ. For ϕ ∈ Fm, let ϕ be the equivalence class of ϕ modulo ≈Φ.

We define:

• M = {ϕ | ϕ ∈ Fm}

• TRUE = {ϕ | ϕ ∈ Φ}

• BEL = {ϕ | Kϕ ∈ Φ}

• functions f⊤, f⊥, f�, f∗, where ∗ ∈ {∨,∧,→}, by f⊤ = ⊤, f⊥ = ⊥,

f�(ϕ) = �ϕ, fK(ϕ) = Kϕ, f∗(ϕ, ψ) = ϕ ∗ ψ, respectively.

In the same way as in the proof of the corresponding Lemma 4.2 of [7], one shows

that M is a Heyting algebra with ultrafilter TRUE such that the truth conditions

of a model hold: M is a Heyting algebra because all intuitionistic theorems are

contained in Φ, in particular those of the form ϕ ↔ ψ. Rule AN then yields

Φ ⊢EL5 ϕ ≡ ψ. Thus, M satisfies the equations which axiomatize the class

of Heyting algebras. By Lemma 3.1, TRUE is an ultrafilter. Truth condition

(iv) of Definition 3.2 is warranted by Lemma 2.2. Truth condition (v) holds by

definition of the set BEL. The remaining truth conditions of a model follow from

the corresponding axioms, all contained in Φ, along with applications of rule AN.

We show that the defined model is an EL5-model, i.e. we verify the second

condition of Definition 3.3. It is enough to check that f�(ϕ) ∈ TRUE implies

f�(ϕ) = f⊤, and f�(ϕ) /∈ TRUE implies f�(ϕ) = f⊥. By axiom (A4) and truth

condition (iv) of a model, we get the following implications: f�(ϕ) ∈ TRUE ⇒
f�(f�(ϕ)) ∈ TRUE ⇒ f�(ϕ) = f⊤. By axiom (A5) and truth condition (iv) of

a model, we obtain the following implications: f�(ϕ) /∈ TRUE ⇒ f¬(f�(ϕ)) ∈
TRUE ⇒ f�(f¬(f�(ϕ))) ∈ TRUE ⇒ f¬(f�(ϕ)) = f⊤ ⇒ f�(ϕ)) = f⊥. We

have proved that M is an EL5-model. Finally, we define the assignment γ : V →
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M by x 7→ x. Then it follows by induction on the complexity of formulas that

γ(ϕ) = ϕ, for any formula ϕ. Hence,

ϕ ∈ Φ ⇔ ϕ ∈ TRUE ⇔ γ(ϕ) ∈ TRUE ⇔ (M, γ) � ϕ.

By CPC, Φ 0EL5 ϕ implies that Φ ∪ {¬ϕ} is consistent in EL5. This yields

the Completeness Theorem.

Corollary 4.3. Let L ∈ {EL3−, EL3, EL4, EL5} and Φ ∪ {ϕ} ⊆ Fm. Then

Φ L ϕ if and only if Φ ⊢L ϕ.

In [1], the principle of intuitionistic reflection “given a proof of Kϕ, one can

construct a proof of ϕ” is rejected. In fact, it is shown [[1], Theorem 5] that

Kϕ → ϕ is not derivable in Intuitionistic Epistemic Logic. In the following, we

prove a corresponding result for our modal logics.

Theorem 4.4. 0EL5 �Kϕ→ �ϕ.

Proof. It is enough to construct an EL5-model that satisfies �Kϕ and ¬�ϕ.

Then 1EL5 �Kϕ → �ϕ and the assertion follows from soundness of logic EL5.

We consider the closed interval M = [0, 1] of real numbers from 0 to 1 and the

semi-open subset TRUE = (0, 1] =M r {0}. One easily checks that the natural

order on M induces a Heyting algebra with disjunction property where meet and

join are the operations for infimum and supremum, respectively, and implication

is given by f→(m,m′) = 1 if m ≤ m′, and f→(m,m′) = m′ if m > m′. Of

course, TRUE is an ultrafilter on M . Let b ∈ M be any real with 0 < b < 1.

Then we put BEL = [b, 1]. We define operations f� and fK on M as follows:

f�(m) :=

{

1, if m = 1

0, else

and

fK(m) :=

{

1, if m ∈ BEL

0, else.

Then it is not hard to verify that all truth conditions of an EL5-model are

fulfilled. We show this in detail only for truth condition (vi): fK(f→(m,m′)) ≤
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f→(fK(m), fK(m
′)), for all reals m,m′ ∈ [0, 1]. Of course, the condition is ful-

filled if fK(f→(m,m′)) = 0. So we assume fK(f→(m,m′)) = 1, i.e. f→(m,m′) ∈
BEL. Then it is enough to show that fK(m) ≤ fK(m

′). Again, we may assume

fK(m) = 1, i.e. m ∈ BEL. If m ≤ m′, then we get m′ ∈ BEL and fK(m
′) = 1.

Otherwise, m′ < m. This implies m′ = f→(m,m′). Since f→(m,m′) ∈ BEL,

we conclude fK(m
′) = 1. Thus, truth condition (vi) holds.

By definition of the set BEL, there exists a m ∈ BEL r {1}. Then for

x ∈ V and for any assignment γ : V → M with γ(x) = m, we have γ(�Kx) =
f�(γ(Kx)) = f�(fK(m)) = 1, and γ(�x) = f�(m) = 0. Thus, (M, γ) � �Kx
and (M, γ) 2 �x.

Theorem 4.4 can also be seen as a model existence theorem. In fact, it was not

so clear whether there exist (non-trivial) models for our epistemic logics. Note

that the model construction presented in the completeness proof does not serve as

a model existence theorem since it presupposes the consistency of the underlying

deductive system. Consistency, in turn, follows from the existence of models ... .

Theorem 4.5. 0EL5 Kϕ ∨K¬ϕ.

Proof. The model constructed in the proof of Theorem 4.4 is a counterexample:

Choose anym ∈M with 0 < m < b. Thenm /∈ BEL and f¬(m) = f→(m, f⊥) =
f⊥ = 0 /∈ BEL. Hence, for γ(x) = m, we have (M, γ) 2 Kx ∨K¬x.

K(ϕ ∨ ψ) → (Kϕ ∨Kψ) is not valid in Intuitionistic Epistemic Logic [[1],

Theorem 10] neither it holds in our epistemic logics:

Theorem 4.6. 0EL5 K(ϕ ∨ ψ) → (Kϕ ∨Kψ)

Proof. We consider the Lindenbaum-Tarski algebra of IPC. This is a Heyting al-

gebra with disjunction property – in fact, the top element f⊤ is the class of all

intuitionistic theorems, and the bottom element f⊥ is the class of all intuitionistic

contradictions. Let TRUE be any ultrafilter and let BEL ⊆ TRUE be any filter

which is not prime. Of course, such filters exist: consider, e.g., the intersection

of two distinct ultrafilters. We define the operations f� and fK as in the proof of

Theorem 4.4, where, of course, 0 and 1 are replaced by f⊥ and f⊤, respectively.

Then all truth conditions of an EL5 model are fulfilled. Again, we show this in

detail only for truth condition (vi): fK(f→(m,m′)) ≤ f→(fK(m), fK(m
′)), for

all propositions m. We may assume that fK(f→(m,m′)) = f⊤, i.e. f→(m,m′) ∈
BEL. It suffices to show that fK(m) ≤ fK(m

′). We may assume fK(m) = f⊤,

i.e. m ∈ BEL. By definition of the relative pseudo-complement in a Heyting
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algebra, we have f∧(m, f→(m,m′)) ≤ m′. But BEL is a filter containing m and

f→(m,m′). It follows that m′ ∈ BEL, i.e. fK(m
′) = f⊤.

The next result is an adaption of [[7]], Theorem 5.1].

Theorem 4.7. Let L ∈ {EL3−, EL3, EL4, EL5} and let Φ ∪ {χ} ⊆ Fm0 be a

set of propositional formulas. Then

�Φ ⊢L �χ⇔ Φ ⊢IPC χ.

Proof. The right-to-left direction can be shown, e.g., by induction on the length of

derivations. In order to show the left-to-right direction, we assume Φ 0IPC χ and

construct an EL5-model (M, ε) such that (M, ε) � �Φ and (M, ε) 2 �χ. Then

�Φ 1EL5 �χ and, by soundness, �Φ 0EL5 �χ. The model is constructed exactly

in the same way as in [[7]], Theorem 5.1], but with the additional ingredients

of the set BEL of known propositions and the function fK . If we define these

as BEL = {f⊤} and fK(m) = f�(m), for all propositions m, then all truth

conditions of an EL5-model are satisfied.

Theorem 4.7 ensures that the map ϕ 7→ �ϕ is an embedding of IPC into the

modal systems presented in this paper. Of course, that mapping does not extend

to an embedding of IEL into our modal logics. In fact, if one adds tertium non

datur to IEL, then intuitionistic knowledge collapses into classical truth.

A prominent method to interpret IPC through a classical logic is Gödel’s trans-

lation of IPC into modal system S4 via the map ϕ 7→ tr(ϕ), where tr(ϕ) is the

result of prefixing each sub-formula of ϕ with �. Gödel considered S4 as a calcu-

lus of classical provability. Gödel’s translation extends to embeddings of IEL−

and IEL into S4V − and S4V , respectively, where the latter are bi-modal logics

augmenting S4 with epistemic axioms for a verification modality V . The BHK

reading of intuitionistic epistemic principles then is explained through the classi-

cal logics S4V − and S4V (see [8, 1]). A comparison of those bi-modal logics

with the present approach could be a promising task for future work. An inter-

esting feature of our modal logics is that the modal operator � plays the role of a

truth predicate for intuitionistic truth. In fact, under the assumption that the propo-

sition denoted by ⊤ stands for intuitionistic truth, the scheme �ϕ ↔ (ϕ ≡ ⊤) of

Lemma 2.2 can be seen as an adaption of the well-known Tarski-biconditionals,

expressed here in the object language of our classical modal logics:
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�ϕ (i.e. “ϕ is intuitionistically true”) iff ϕ holds intuitionistically.11

The Disjunction Property of IPC is mirrored in our classical logics:

Corollary 4.8. Suppose L ∈ {L3, EL3−, EL3, EL4, EL5} and ϕ, ψ ∈ Fm0.

The following restricted disjunction property holds:

⊢L �ϕ ∨�ψ ⇒ ⊢L �ϕ or ⊢L �ψ.

Proof. Suppose ⊢L �ϕ ∨ �ψ. Of course, ϕ → (ϕ ∨ ψ) and ψ → (ϕ ∨ ψ) are

theorems of IPC. By AN and distribution, �ϕ→ �(ϕ∨ψ) and �ψ → �(ϕ∨ψ).
Again by IPC, we obtain (�ϕ ∨ �ψ) → �(ϕ ∨ ψ). Now we apply Theorem 4.7

and the Disjunction Property of IPC.

5 Algebraic semantics for IEL− and IEL

The goal of this final section is to modify our algebraic semantics towards a se-

mantics for the logics IEL− and IEL designed in [1] where Kripke-style seman-

tics is presented. First, we observe that dropping the scheme of tertium non datur

and adding the axiom scheme ϕ→ �ϕ toEL3− andEL3 would result in systems

which are essentially equivalent to IEL− and IEL, respectively. In fact, by rule

AN, ϕ ≡ �ϕ then would be a theorem and, by SP, the formulas ϕ and �ϕ could

be replaced by each other in every context. The semantical counterparts of those

modifications are the following. First, without tertium non datur, the set TRUE

of true propositions of a model (see Definition 3.2) is no longer required to be an

ultrafilter, but only a prime filter. Second, the theorem ϕ ≡ �ϕ corresponds to the

semantic condition: f�(m) = m, for all propositions m of a given model. Truth

condition (iv) of a model then forces the equality TRUE = {f⊤}, i.e. TRUE

is the smallest prime filter of the underlying Heyting algebra and classical truth

becomes intuitionistic truth. The conditions concerning the set BEL ⊆ M of be-

lieved propositions remain unchanged. Consequently, we may define an algebraic

model for IEL− as follows:

Definition 5.1. An IEL−-model is a Heyting algebra

M = (M,BEL, f⊥, f⊤, f∨, f∧, f→, fK)

11The biconditionals �ϕ↔ (ϕ ≡ ⊤) are also valid in the Lewis-style modal systems S1+SP ,

S3, S4 and S5. However, formula ⊤ does not stand for intuitionistic truth in those systems – in

fact, �(ϕ ∨ ψ) → (�ϕ ∨�ψ) is not a theorem.
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with a set BEL ⊆ M and an additional unary operation fK such that for all

propositionsm,m′ ∈M the following truth conditions hold:

(i) f⊤ ∈ BEL

(ii) fK(m) = f⊤ ⇔ m ∈ BEL

(iii) m ≤ fK(m)

(iv) fK(f→(m,m′)) ≤ f→(fK(m), fK(m
′))

(v) f∨(m,m
′) = f⊤ ⇒ (m = f⊤ or m′ = f⊤)

If additionally fK(m) ≤ f¬(f¬(m)) holds for all m ∈ M , then we call M an

IEL-model.

Note that truth condition (v) is the Disjunction Property DP which ensures that

the smallest filter {f⊤} of the underlying Heyting algebra is prime. Recall that DP

is implicitly satisfied by all EL3−-models. Also truth condition (i), f⊤ ∈ BEL, is

an implicit property of each EL3−-model.

The language of Intuitionistic Epistemic Logic does not contain the symbol

�. In the following we shall work with the set of formulas Fme = {ϕ ∈ Fm |
symbol � does not occur in ϕ}.

Definition 5.2. Suppose M is an IEL−-model, γ : V → M is an assignment and

ϕ ∈ Fme. Satisfaction is defined as follows:

(M, γ) � ϕ :⇔ γ(ϕ) = f⊤

We say that a formula ϕ is valid in logic IEL− (in logic IEL) if (M, γ) � ϕ, for

all IEL−-models (all IEL-models) M and for all corresponding assignments

γ ∈ MV .

In contrast to our strong completeness theorems for the classical logicsEL3−,

EL3, EL4, EL5, we prove here only weak soundness and completeness of IEL−

and IEL w.r.t. the proposed algebraic semantics.

Theorem 5.3 (Soundness and Completeness). Let ϕ ∈ Fme. Then ϕ is a theorem

of IEL− (of IEL) if and only if ϕ is valid in IEL− (in IEL).
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Proof. One easily checks that an IEL−-model satisfies all axioms of IEL−. Also

rule MP is sound, for if in some model γ(ψ → ϕ) = f⊤ and γ(ψ) = f⊤, then

γ(ψ) ≤ γ(ϕ) and thus γ(ϕ) = f⊤. By induction on derivations, all theorems of

IEL− are valid. By definition, an IEL-model satisfies additionally all formulas

of the form Kϕ → ¬¬ϕ. Thus, IEL is sound w.r.t. the class of all IEL-models.

In order to prove completeness, we consider the Lindenbaum-Tarski algebra of

logic IEL−. Recall that such an algebra is given by the equivalence classes of

formulas modulo the relation ≈ defined by ϕ ≈ ψ ⇔ ϕ ↔ ψ is a theorem,

along with the canonical operations on the equivalence classes. In the case of

our epistemic language, this yields the following operations (where ϕ denotes

the equivalence class of formula ϕ modulo ≈): fK(ϕ) := Kϕ and f∗(ϕ, ψ) :=
ϕ ∗ ψ, for ∗ ∈ {∨,∧,→}. It remains to check that ≈ is a congruence relation,

i.e. ϕ1 ≈ ψ1, ϕ2 ≈ ψ2 implies Kϕ1 ≈ Kψ1 and ϕ1 ∗ ϕ2 ≈ ψ1 ∗ ψ2, for

∗ ∈ {∨,∧,→}. Suppose ϕ1 ↔ ψ1 is a theorem of IEL−. Then, by co-reflection,

K(ϕ1 → ψ1) and K(ψ1 → ϕ1) are theorems, too. The distribution axiom yields

Kϕ1 ↔ Kψ1. The remaining cases follow from properties of IPC. It follows that

≈ is a congruence relation. If ϕ↔ ψ is (the substitution-instance of) a theorem of

IPC, then ϕ = ψ. Thus, the resulting algebra M satisfies the set of equations that

axiomatizes the class of Heyting algebras and is therefore itself a Heyting algebra.

Its top element is the congruence class f⊤ := ⊤, i.e. the class of all IEL−-

theorems. In [[1], Theorem 12] it is shown that both IEL− and IEL have the

disjunction property, which means that the smallest theory, respectively, is prime.

Then the Heyting algebra M has the Disjunction Property DP: f∨(ϕ, ψ) = f⊤
implies ϕ = f⊤ or ψ = f⊤. If we put BEL = {ϕ | Kϕ is a theorem of IEL−},

then one easily verifies that M = ({ϕ | ϕ ∈ Fme},BEL, f⊥, f⊤, f∨, f∧, f→, fK)
satisfies all conditions of an IEL−-model established in Definition 5.1. Consider

the assignment ε defined by x 7→ x. By induction on the complexity of formulas

one shows that ε(ϕ) = ϕ, for any ϕ ∈ Fme. Thus, (M, ε) � ϕ ⇔ ε(ϕ) =
ϕ = f⊤ ⇔ ⊢IEL− ϕ, for any ϕ ∈ Fme. So if ϕ is not a theorem of IEL−, then

ϕ is not satisfied by interpretation (M, ε) and cannot be valid. We have shown

completeness of IEL− w.r.t. the class of all IEL−-models. Completeness of

IEL w.r.t. the class of all IEL-models follows similarly.
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