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Abstract

The ambition constrained validity and the model witness problems
in the logic UCL, proposed in [10], for reasoning about circuits with
unreliable gates are analyzed. Moreover, two additional problems, mo-
tivated by the applications, are studied. One consists of finding bounds
on the reliability rate of the gates that ensure that a given circuit has
an intended success rate. The other consists of finding a reliability rate
of the gates that maximizes the success rate of a given circuit. Sound
and complete algorithms are developed for these problems and their
computational complexity is studied.

Keywords probabilistic logic, unreliable circuits, algorithms in logic,
computational complexity.

1 Introduction

Classical propositional logic is the right setting for the design and verification
of logic circuits represented by formulas. Some examples of recent work in
this broad area can be found in [3, 2].

In practice, logic circuits can be built with unreliable gates that can
produce the wrong output by fortuitous misfiring, hopefully with a very low
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probability. The interest on reasoning about such unreliable circuits was
pointed out by John von Neumann [13] and recently reawaken by devel-
opments towards nano-circuits, see for instance [4, 6, 9]. In fact, in nano
circuits, the extremely low level of energy carried by each gate leads to a
higher probability of it being disturbed by the environment and, so, mis-
firing. This was the motivation for proposing, see [10], the logic UCL for
reasoning about unreliable circuits, as an extension of propositional logic
(see also [11, 8] for more work on this topic).

In this paper, we investigate several computational and decision prob-
lems related with UCL, namely the ambition constrained validity problem,
the model witness problem, the reliability rate abduction problem and the
success rate optimization problem. The first two are common when analyz-
ing a logic from an algorithmic and complexity points of view. The remain-
ing constitute applications of UCL to real problems. For all the problems we
discuss an application scenario.

The ambition constrained validity problem is a decision problem for ver-
ifying whether or not a formula representing a circuit with unreliable gates
is a semantic consequence of a finite set of ambition formulas. An algorithm
for this problem is presented and shown to be in PSPACE and a restricted
version of it is proved to be co-NP complete (for computational complexity
issues the reader may consult [5]).

The model witness problem is a constructive model checking problem
where the objective is to give a model for a formula representing a circuit
with unreliable gates whenever there is one. An algorithm for this problem
is presented and shown to run deterministically in polynomial space. More-
over, we also show that a logarithmic version of the satisfiability problem
for UCL is NP complete.

The reliability rate abduction problem is a computational problem that
given a formula representing an unreliable circuit, an intended success rate
of the circuit and a natural number returns a set of intervals with limits
determined by the given natural number such that if the reliability rate of
the gates falls in those intervals then the circuit has the given success rate.
Herein we define an algorithm for this problem that runs deterministically
in polynomial space. Moreover, we show that a restricted version of the
corresponding decision problem is in P.

Finally, we investigate the success rate optimization problem which is
a computational problem that given a formula representing an unreliable
circuit returns the maximum success rate of the circuit as well as a reliability
rate of the gates that ensures that success rate. We provide an algorithm for
this problem and show that it runs deterministically in exponential time.
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For solving these problems we make extensive use of the decidable theory
RCOF of real closed ordered fields (see [12]) namely some algorithms for this
theory (see [1]).

We provide an overview of UCL in Section 2. Sections 3, 4, 5 and 6
are dedicated to the computation and decision problems described above.
Finally, in Section 7, we point out further developments.

2 An overview of UCL

The unreliable-circuit logic UCL is an extension of propositional logic and
was introduced in [10] for reasoning about logic circuits with single-fan-out
unreliable gates that can produce the wrong output by fortuitous misfiring.
Herein, we provide an overview of its syntax and semantics.

We start by presenting a modicum of the theory of real closed ordered
fields, RCOF, and of propositional logic, PL, that we need later on for pre-
senting UCL.

The first-order signature Σrcof of RCOF contains the constants 0 and 1,
the unary function symbol −, the binary function symbols + and ×, and
the binary predicate symbols = and <. As usual, we may write t1 ≤ t2 for
(t1 < t2)∨ (t1 = t2) and t1 t2 for t1× t2. In the sequel, we denote by [[t]]ρ the
denotation of term t over the RCOF structure based on R and the assignment
ρ. We use 

fo for denoting satisfaction in first-order logic. In the sequel,
we use extensively the fact that the theory RCOF is decidable [12].

We need an enriched signature of propositional logic that we denote by
Σ. Let Σ be the signature for PL containing the propositional constants tt

(verum) and ff (falsum) plus the propositional connectives ¬ (negation), ∧
(conjunction), ∨ (disjunction), ⊃ (implication), ≡ (equivalence) and M3+2k

(k-ary majority) for each k ∈ N, as well as their negated-output counterparts
¬ (identity), ∧ (negated conjunction), ∨ (negated disjunction), ⊃ (negated
implication), ≡ (negated equivalence) and M3+2k (k-ary negated majority)
for each k ∈ N. We denote by L(X) the set of propositional formulas over
Σ and a set X of propositional variables. Given a formula ϕ ∈ L(X) and a
valuation v : X → {⊥,⊤}, we write v  ϕ, for saying that v satisfies formula
ϕ.

We now are ready to review the unreliable-circuit logic. The signature of
UCL is the triple (Σuc, ν, µ) where:

• Σuc contains Σ and the following additional connectives used for rep-
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resenting the unreliable gates:

¬̃, ¬̃, ∧̃, ∧̃, ∨̃, ∨̃, ⊃̃, ⊃̃, ≡̃, ≡̃, M̃3+2k and M̃3+2k;

• both ν and µ are symbols used for denoting probabilities.

Each unreliable gate is assumed to produce the correct output with prob-
ability ν. A circuit is accepted as good if it produces the correct output with
probability not less than µ.

We denote by Σ̃ the subsignature of the unreliable connectives in Σuc.
Thus, Σuc = Σ∪ Σ̃. Moreover, for each n ∈ N, we denote by Σn, Σ

uc
n and Σ̃n

the set of n-ary constructors in Σ, Σuc and Σ̃, respectively. Plainly, Σ̃0 = ∅.
Given a PL formula ϕ and a UCL formula ψ, we write

ϕ ⊑ ψ

for saying that ϕ is a possible outcome of ψ. This outcome relation is
inductively defined as expected:

• ϕ ⊑ ϕ provided that ϕ is a PL formula;

• c(ϕ1, . . . , ϕn) ⊑ c(ψ1, . . . , ψn) provided that n ≥ 1, c ∈ Σn and ϕi ⊑ ψi
for i = 1, ..., n;

• c(ϕ1, . . . , ϕn) ⊑ c̃(ψ1, . . . , ψn) provided that c̃ ∈ Σ̃n, and ϕi ⊑ ψi for
i = 1, ..., n;

• c(ϕ1, . . . , ϕn) ⊑ c̃(ψ1, . . . , ψn) provided that c̃ ∈ Σ̃n, and ϕi ⊑ ψi for
i = 1, ..., n.

For each such ψ, we denote by
Ωψ

the set {ϕ : ϕ ⊑ ψ} of all possible outcomes of ψ. Clearly, Ωϕ = {ϕ} for
each PL formula ϕ.

In UCL, by a term we mean a univariate polynomial written according
to the term syntax of RCOF, using ν as the variable. Symbol µ is also taken
as a variable in the context of RCOF but it is not used in UCL terms.

Three kinds of formulas are needed for reasoning about circuits with
unreliable gates:
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x1 x2 x3

∼

∼

∼

Figure 1: Circuit represented by the c-formula (x1 ∨̃ (¬̃x2)) ∧̃ x3.

• Circuit formulas or c-formulas that are propositional formulas built
with the symbols in Σuc and X. These c-formulas can be used for
representing unreliable circuits. For instance, the c-formula

(x1 ∨̃ (¬̃ x2)) ∧̃ x3

represents the unreliable circuit in Figure 1. Circuit formulas can also
be used for asserting relevant properties of unreliable circuits. For
example, given the c-formula ψ and the PL formula ϕ, the c-formula

ψ ≡ ϕ

is intended to state that the unreliable circuit represented by ψ can
be accepted as equivalent to the reliable circuit represented by ϕ, in
the sense that the two circuits agree with probability of at least µ.

• Outcome formulas or o-formulas that are of the general form

Φ ⊑P ψ

where ψ is a c-formula, Φ ⊆ Ωψ and P is a term. Such an o-formula
is used with the intent of stating that the probability of the outcome
of ψ being in Φ is at least P . For instance,

{(x1 ∨ (¬x2)) ∧ x3, (x1 ∨ (¬x2)) ∧ x3} ⊑ν2 (x1 ∨̃ (¬̃x2)) ∧̃ x3

should be true in any interpretation of UCL because (x1 ∨ (¬x2))∧ x3
and (x1 ∨ (¬x2))∧ x3 are both possible outcomes of (x1 ∨̃ (¬̃x2)) ∧̃ x3
(the former when all the unreliable gates perform perfectly and the
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latter when only the OR gate fails), the probability of the former is
ν3, the probability of the latter is (1− ν)ν2, and ν3 + (1− ν)ν2 = ν2.
We may use ϕ1, . . . , ϕm ⊑P ψ instead of {ϕ1, . . . , ϕm} ⊑P ψ.

• Ambition formulas or a-formulas that are of the general form

µ ≤ P

where P is a term. Such an a-formula can be used for constraining the
envisaged non-failure probability µ of the overall circuit. For example,
every interpretation of UCL where the a-formula

µ ≤ ν2 + (1− ν)2

holds should make

(¬(x1 ∨ x2))≡ (¬̃(x1 ∨̃ x2))

true, since ¬(x1∨x2) and ¬(x1∨x2) are the outcomes of the circuit at
hand ¬̃(x1 ∨̃x2) that make it in agreement to the ideal one ¬(x1∨x2),
the probability of outcome ¬(x1∨x2) is ν

2, the probability of outcome
¬(x1 ∨ x2) is (1− ν)

2, and, so, their aggregated probability is

ν2 + (1− ν)2.

We denote by Lc(X), Lo(X) and La the set of c-formulas, o-formulas
and a-formulas, respectively, and by Luc(X) the set Lc(X) ∪ Lo(X) ∪ La

of all UCL formulas. Observe that each of these sets is decidable. Given a
c-formula ψ and ϕ ∈ Ωψ, we write

P[ψ ⊲ ϕ]

for the UCL term that provides the probability of outcome ϕ of ψ. This
term is inductively defined as follows:

• P[ϕ ⊲ ϕ] is 1 for each ϕ ∈ L(X);

• P[c(ψ1, . . . , ψn)⊲c(ϕ1, . . . , ϕn)] is
n∏

i=1

P[ψi ⊲ϕi] for each n ≥ 1, c ∈ Σn

and ϕi ⊑ ψi for i = 1, . . . , n;

• P[c̃(ψ1, . . . , ψn) ⊲ c(ϕ1, . . . , ϕn)] is ν

n∏

i=1

P[ψi ⊲ ϕi] for each c̃ ∈ Σ̃n and

ϕi ⊑ ψi for i = 1, . . . , n;
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• P[c̃(ψ1, . . . , ψn)⊲c(ϕ1, . . . , ϕn)] is (1−ν)
n∏

i=1

P[ψi ⊲ϕi] for each c̃ ∈ Σ̃n

and ϕi ⊑ ψi for i = 1, . . . , n.

For instance,
P[¬̃(x1 ∨̃ x2) ⊲ ¬(x1 ∨ x2)]

is the polynomial
ν(1− ν)

since, for the given input provided by x1 and x2, outcome ¬(x1∨x2) happens
when ¬̃ behaves as it should and ∨̃ fails, that is, when ¬̃ produces the correct
output and ∨̃ misfires.

Each interpretation of UCL should provide a valuation to the variables in
X, a model of RCOF and an assignment to the variables ν and µ. However,
the choice of the model of RCOF is immaterial since all such models are
elementarily equivalent (see Corollary 3.3.16 in [7]) and, so, we adopt the
ordered field R of the real numbers. Thus, by an interpretation of UCL we
mean a pair

I = (v, ρ)

where v is a propositional valuation and ρ is an assignment over R such that:

{
1
2 < ρ(µ) ≤ 1
1
2 < ρ(ν) ≤ 1.

We now proceed to define satisfaction, by an interpretation I = (v, ρ).
Starting with c-formulas, we write

I 
uc ψ

for stating that

R ρ 
fo µ ≤

∑

ϕ ⊑ ψ

v  ϕ

P[ψ ⊲ ϕ].

That is, the aggregated probability of the outcomes of ψ that are (classically)
satisfied by v is at least the value of µ. Concerning o-formulas, we write

I 
uc Φ ⊑P ψ

for stating that

R ρ 
fo P ≤

∑

ϕ∈Φ

P[ψ ⊲ ϕ].
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That is, the collection Φ of possible outcomes of ψ has aggregated probability
greater than or equal to the value of P . Finally, concerning a-formulas, we
write

I 
uc µ ≤ P

for stating that
R ρ 

fo µ ≤ P.

That is, the required probability ρ(µ) for the correct output being produced
by the whole circuit does not exceed the value of P . Satisfaction is extended
to mixed sets of o-formulas, c-formulas and a-formulas with no surprises.
Given Γ ⊆ Luc(X), I 

uc Γ if I 
uc γ for each γ ∈ Γ. Then, entailment and

validity in UCL are also defined as expected. Given {θ} ∪ Γ ⊆ Luc(X), we
write

Γ �
uc θ

for stating that Γ entails θ in the following sense:

I 
uc θ whenever I 

uc Γ, for every interpretation I.

Finally, we write �
uc θ for ∅ �

uc θ.

3 Ambition constrained validity problem

We discuss the complexity of the ambition constrained version of the validity
problem for UCL that consists on determining whether a formula represent-
ing a circuit with unreliable gates can be entailed by a finite set of ambition
formulas. This problem coincides with the usual formulation of the valid-
ity problem for c-formulas whenever the set of ambition formulas is empty.
It can be used, for example, to prove that a circuit with unreliable gates
behaves as its ideal counterpart at least with a certain probability.

The ambition constrained validity problem is the map

acVALUCL : Lc(X)× ℘finL
a → {0, 1}

that given a formula ψ representing a circuit with unreliable gates and a
finite set Γ of ambition formulas, returns 1 if and only if Γ �

uc ψ.
In order to propose an algorithm for this problem, we need to refer

to algorithms for the problems MCPL and SAT∃RCOF. The MCPL model
checking problem for propositional logic is the map

MCPL : L(X) × V → {0, 1}
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that given a propositional formula ϕ and a valuation v returns 1 if and only
if v  ϕ. Observe that there is an algorithm (see [5]) running in polynomial
time for this problem. Herein, we use the name AMCPL to refer to such
algorithm.

To introduce the problem SAT∃RCOF, we need to refer to the language
L∃(Σrcof) consisting of the closed formulas over the first-order signature Σrcof

for the theory of real closed ordered fields (see [12]) of the form ∃x1 . . . ∃xk θ
where θ is a quantifier free formula. More precisely, the satisfiability problem
for the existential fragment of the theory of real closed ordered fields is the
map

SAT∃RCOF : L∃(Σrcof)→ {0, 1}

that given a formula in L∃(Σrcof) returns 1 if and only if there is an real closed
ordered field that satisfies the formula. Observe that there is an algorithm
for this problem that given an existential formula η with s polynomials each
of a degree at most d, over a set of k variables, executes at most sk+1dO(k)

operations (see Theorem 13.13 in [1]) in the ring generated by the coefficients
of the polynomials. We use the name ASAT∃RCOF to refer to this algorithm.

Moreover, we need also some notation. Given a c-formula ψ, we denote
by var(ψ) the set of all propositional variables in ψ, by unr(ψ) the sequence
of all unreliable connectives occurring in ψ, and by Vvar(ψ) the set of all
valuations from var(ψ) to {⊥,⊤}. Moreover, we use | · | for the map that
returns the number of elements of the argument and ‖ · ‖ for the map that
returns the size in bits of the argument.

Soundness and completeness

Let AacVALUCL be the algorithm in Figure 2. Observe that it is in fact an
algorithm since the cycles in Step 1 and Step 1(b) are over finite sets Vvar(ψ)
and Ωψ, respectively, and AMCPL and ASAT∃RCOF are algorithms. Moreover,
it is straightforward to conclude that the execution of the algorithm returns
either 0 or 1.

Theorem 3.1 Let ψ ∈ Lc(X) and Γ ⊆ La. Then,

AacVALUCL(ψ,Γ) returns 1 iff acVALUCL(ψ,Γ) = 1.

Proof:

(→) Assume that AacVALUCL(ψ,Γ) returns 1. Then, for every valuation v

(†) ASAT∃RCOF

(
∃µ∃ν ¬

(
1

2
< µ, ν ≤ 1⊃

(∧
Γ⊃ P vψ ≥ µ

)))
= 0.
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Inputs: c-formula ψ and finite set Γ of a-formulas.

1. For each v ∈ Vvar(ψ) do:

(a) Let P vψ := 0;

(b) For each ϕ ∈ Ωψ:

i. If AMCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

(c) If ASAT∃RCOF

(
∃µ∃ν ¬

(
1
2 < µ, ν ≤ 1⊃

(∧
Γ⊃ P vψ ≥ µ

)))
= 1

then Return 0;

2. Return 1.

Figure 2: Algorithm AacVALUCL for Problem acVALUCL.

Let (v, ρ) be an interpretation of UCL. Assume that (v, ρ) 
uc Γ. By (†)

Rρ 
fo 1

2
< µ, ν ≤ 1⊃

(∧
Γ⊃ P vψ ≥ µ

)
.

Thus,
Rρ 

fo P vψ ≥ µ

and so (v, ρ) 
uc ψ.

(←) We prove the result by contraposition. Assume that AacVALUCL(ψ,Γ)
returns 0. Thus, AacVALUCL(ψ,Γ) returns 0 in step 1(c) for a valuation v.
Then,

ASAT∃RCOF

(
∃µ∃ν ¬

(
1

2
< µ, ν ≤ 1⊃

(∧
Γ⊃ P vψ ≥ µ

)))
= 1.

Hence, there is an assignment ρ such that





(1) Rρ 
fo 1

2 < µ, ν ≤ 1

(2) Rρ 
fo
∧

Γ

(3) Rρ 6fo P vψ ≥ µ.

Consider the interpretation (v, ρ) of UCL. Then, by (2) (v, ρ) 
uc Γ. More-

over, by (3), (v, ρ) 6uc ψ. QED
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Complexity

We start by showing that the decision problem acVALUCL is in PSPACE.
With an additional restriction on the size in bits of the number of unreliable
connectives we are able to show that it is a co-NP complete problem.

Theorem 3.2 The problem acVALUCL is in PSPACE.

Proof: We are going to prove that algorithm in Figure 2 uses a polynomial
amount of space. Let n be the size in bits of the inputs ψ and Γ. Thus,
|var(ψ)|, |Γ|, |unr(ψ)| are in O(n). Then:

• The storage of v in Step 1 uses O(n) bits;

• The assignment in Step 1(a) uses O(1) bits;

• The storage of ϕ in Step 1(b) uses O(n) bits;

• The inner cycle 1(b) iterates O(2n) times;

• The algorithm AMCPL runs in polynomial space O(nk) for some k;

• The storage of each coefficient of polynomial P[ψ ⊲ ϕ] uses O(nk) bits
for some k. Indeed

P[ψ ⊲ ϕ] =

|unr(ψ)|−ℓ∑

j=0

(
|unr(ψ)| − ℓ

j

)
(−1)jνℓ+j

assuming that the number of unreliable connectives in ψ that were
replaced in ϕ by ideal connectives is ℓ;

• The storage of polynomial P[ψ ⊲ ϕ] uses O(nk) bits for some k;

• Each coefficient in P vψ is obtained by summing the coefficients of the
same degree in {P[ψ ⊲ ϕ] : ϕ ∈ Ωψ and v  ϕ}. There are at most 2n

coefficients of the same degree each using O(nk) bits for some k and so

the maximum value of each coefficient is in O(2n
k

) for some k. Hence,
the maximum value of each coefficient of P vψ is less than

2n∑

j=1

2n
k

= 2n
k+n.

So, the storage of each coefficient in P vψ is in O(nk) for some k;
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• The storage of polynomial P vψ uses O(nk) bits for some k;

• The number of operations when executing ASAT∃RCOF is

(|Γ|+ 5)3|unr(ψ)|O(2)

in the ring generated by the coefficients of the polynomials in

∃µ∃ν ¬

(
1

2
< µ, ν ≤ 1⊃

(∧
Γ⊃ P vψ ≥ µ

))
;

• Each such ring operation executed by ASAT∃RCOF has a polynomial cost
in terms of bit operations (see Section 8.1 of [1]). Hence, the execution
of ASAT∃RCOF in step 1(c) uses at most O(nk) bits for some k;

• The number of bits used in each iteration of cycle 1 is the sum of the
number of bits used in the storage of polynomial P vψ plus the number

of bits used by ASAT∃RCOF in step 1(c). So it is O(nk) for some k;

• Each iteration of cycle 1 reuses the space used in the previous iteration.
So the cycle uses at most O(nk) bits for some k.

Thus, the space complexity of AacVALUCL(ψ,Γ) is in PSPACE. QED

We now consider a restricted version of the ambition constrained validity
problem which is co-NP complete. Let

acVALUCL
log : Lc

log(X)× ℘finL
a → {0, 1}

be a map that given a formula ψ representing a circuit with unreliable gates
such that |unr(ψ)| ∈ O(log ‖ψ‖) and a finite set Γ of ambition formulas,
returns 1 if and only if Γ �

uc ψ. To analyse the complexity of acVALUCL
log ,

we need to refer to the well known validity problem

VAL : L(X)→ {0, 1}

that given a classical propositional formula ϕ returns 1 if and only if ϕ is a
tautology. Observe that this problem is co-NP complete.

Theorem 3.3 The problem acVALUCL
log is co-NP complete.
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Proof: Indeed:
(a) acVALUCL

log is in co-NP. We show that the complement of acVALUCL
log

is in NP. That is, given ψ and Γ it returns 1 iff Γ 6�uc ψ. We consider
a version of the algorithm in Figure 2 that generates nondeterministically
a valuation (the witness in this algorithm) and that returns 1 whenever
the original algorithm for that valuation returns 0 and returns 0 when the
original algorithm for that valuation does not return 0. Observe that the
time for generating each valuation is polynomial on ‖ψ‖. Since the number of
unreliable gates is logarithmic on ‖ψ‖, the inner cycle over Ωψ only iterates
a polynomial number of times on ‖ψ‖. Moreover, each iteration only takes
at most polynomial time on ‖ψ‖. The execution of ASAT∃RCOF in step 1(c)
takes O(nk) time, for some k. Hence, the whole verification part of the
nondeterministic algorithm runs in polynomial time.

(b) Every problem in co-NP is reducible many-to-one in polynomial time
to acVALUCL

log . Consider the map that given a formula ϕ without unreliable
connectives returns the pair (ϕ, ∅). It is obvious to see that this map is
computable in polynomial time. Moreover,

VAL(ϕ) = 1 iff acVALUCL
log (ϕ, ∅) = 1.

The thesis follows since VAL is co-NP complete. QED

Corollary 3.4 The problem acVALUCL is co-NP hard.

Proof: Indeed acVALUCL
log ⊂ acVALUCL and, by the previous theorem,

acVALUCL
log is co-NP complete. QED

Application scenario

Suppose that one wants to certify at least with probability equal to the
reliability rate of the gates, that circuit x1∨̃x2 with the unreliable connective
∨̃ behaves as its ideal counterpart. Algorithm AacVALUCL can be used for this
verification. In fact

AacVALUCL((x1 ∨̃ x2)≡ (x1 ∨ x2), {µ ≤ ν})

returns 1 meaning that µ ≤ ν �
uc (x1 ∨̃x2)≡ (x1∨x2) as one wants to show.

4 Model witness problem

We now concentrate on the problem of constructing an interpretation (if
there is at least one) satisfying a formula representing a circuit with unreli-
able gates.
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Input: c-formula ψ.

1. For each v ∈ Vvar(ψ) do:

(a) Let P vψ := 0;

(b) For each ϕ ∈ Ωψ:

i. If MCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

(c) If [[P vψ ]]
ν 7→1 > 1

2 then Return (1, (v, (1, [[P vψ ]]
ν 7→1)));

(d) If ASAT∃RCOF

(
∃ν
(
(12 < ν < 1) ∧ (12 < P vψ < 1)

))
= 0 then

Go to 1;

(e) Let ν2 := 3;

(f) While True do:

i. For each ν1 ∈ N from ⌈ν2+1
2 ⌉ to (ν2 − 1) do:

A. If [[P vψ ]]
ν 7→

ν1
ν2 > 1

2 then Return (1, (v, (ν1
ν2
, [[P vψ ]]

ν 7→
ν1
ν2 )));

ii. Let ν2 := ν2 + 1;

2. Return (0, ·).

Figure 3: Algorithm AMWUCL for Problem MW.
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The model witness problem is a map

MWUCL : Lc(X)→ {0, 1} ×

(
V ×

(
Q ∩ (

1

2
, 1]

)2
)

where V is the set of all finite valuations such that

• MW(ψ) = (1, (v, (ν, µ))) implies that (v, ρ) uc ψ where ρ(ν) = ν and
ρ(µ) = µ;

• MW(ψ) = (0, ·) implies that there are no v and ρ such that (v, ρ) uc ψ

and 1
2 < ρ(µ), ρ(ν) ≤ 1.1

In order to propose an algorithm for the model witness problem, we need
to refer to the SAT∃RCOF problem described in the previous section.

Soundness and completeness

Let AMWUCL be the algorithm in Figure 3. The fact that it is an algorithm
follows from the next result.

Theorem 4.1 Let ψ ∈ Lc(X). Then,

• If MW(ψ) = (1, ·) then AMWUCL(ψ) returns (1, ·);

• If MW(ψ) = (0, ·) then AMWUCL(ψ) halts;

• IfAMWUCL(ψ) returns (1, (v, (ν, µ))) then (v, ρ), where ρ(ν) = ν, ρ(µ) =
µ, is an interpretation satisfying ψ.

Proof:

(1) Assume that MW(ψ) = (1, (v, (ν, µ))). Let ρ be such that ρ(ν) = ν and
ρ(µ) = µ. Then (v, ρ) 

uc ψ, that is

Rρ 
fo
∑

ϕ∈Ωψ
vϕ

P[ψ ⊲ ϕ] ≥ µ.

Observe that, when executing AMWUCL for ψ,

P vψ is
∑

ϕ∈Ωψ
vϕ

P[ψ ⊲ ϕ].

1We use · for representing arguments not relevant for the case at hand.
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There are three cases to consider:
(a) [[P vψ ]]

ν 7→1 > 1
2 . Then, AMWUCL(ψ) returns (1, ·).

(b) [[P vψ ]]
ν 7→1 ≤ 1

2 and [[P vψ ]]
ν 7→ν < 1. Then, in step (d),

ASAT∃RCOF

(
∃ν

(
(
1

2
< ν < 1) ∧ (

1

2
< P vψ < 1)

))
= 1.

Let
P = {2ν − 1, 1 − ν, 2P vψ − 1, 1− P vψ}.

Then
S = {d ∈ R : P (d) > 0, P ∈ P} 6= ∅

and so, by Theorem 13.16 of [1], in each semi-algebraically connected compo-
nent of S there exists a rational number. Let m

n
be such a rational number.

Then consider the assignment in (i) with ν2 = n. Observe that

ν1 ∈ {⌈
n + 1

2
⌉, . . . , n− 1}

and that 2m
n
− 1 > 0. Hence m > n

2 and so m ≥ ⌈n+1
2 ⌉. On the other hand,

1 − m
n
> 0 and so m ≤ n − 1. Then in cycle (i) there is an iteration where

ν1 is m and so, since 2[[P vψ ]]
ν 7→

ν1
ν2 − 1 > 0 then the algorithm returns (1, ·).

(c) [[P vψ ]]
ν 7→1 ≤ 1

2 and [[P vψ ]]
ν 7→ν = 1. Then ν < 1. Hence, there is 1

2 < ν′ < 1

such that 1
2 < [[P vψ ]]

ν 7→ν′ < 1. Then, this case follows (b).

(2) Assume that MW(ψ) = (0, ·). Then, there are no v and ρ such that
(v, ρ) 

uc ψ and 1
2 < ρ(µ), ρ(ν) ≤ 1. Then the guard in step 1(d) is always

true and so the cycle in step 1(f) is never executed. Hence the execution
terminates since the set Vvar(ψ) is finite.

(3) Assume that AMWUCL(ψ) returns (1, (v, (ν, µ))). Then, one of following
two cases holds:

(a) Condition in step 1(c) is satisfied for valuation v. Take ρ(ν) = 1 and
ρ(µ) = [[P vψ ]]

ν 7→1. Then, (v, ρ) 
uc ψ.

(b) Condition in step 1(f)(A) is satisfied for valuation v and ν equal to ν1
ν2
.

Then take ρ(ν) = ν1
ν2

and ρ(µ) = [[P vψ ]]
ν 7→

ν1
ν2 . Then, (v, ρ) 

uc ψ. QED

Complexity

We start by showing that problem MW is in PSPACE. Moreover, we also
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show that its decision version is NP complete when restricting the number
of unreliable connectives in a c-formula.

Theorem 4.2 Algorithm AMW runs deterministically in polynomial space.

Proof: Let ψ ∈ Lc(X). We are going to prove that algorithm in Figure 3
uses a polynomial amount of space. Let n be the size in bits of the input ψ.
Thus, |var(ψ)| and |unr(ψ)| are in O(n). Then:

• The storage of v in Step 1 uses O(n) bits;

• The storage of ϕ in Step 1(b) uses O(n) bits;

• The inner cycle 1(b) iterates O(2n) times;

• The algorithm MCPL runs in polynomial space O(nk) for some k;

• The storage of each coefficient of polynomial P[ψ ⊲ ϕ] uses O(nk) bits
for some k;

• The storage of polynomial P[ψ ⊲ ϕ] uses O(nk) bits for some k;

• The storage of each coefficient in P vψ is in O(nk) for some k;

• The storage of polynomial P vψ uses O(nk) bits for some k;

• The number of operations when executing ASAT∃RCOF is

42|unr(ψ)|O(1)

in the ring generated by the coefficients of the polynomials in

∃ν

(
(
1

2
< ν < 1) ∧ (

1

2
< P vψ < 1)

)
;

• Each such ring operation executed by ASAT∃RCOF has a polynomial cost
in terms of bit operations (see Section 8.1 of [1]). Hence, the execution
of ASAT∃RCOF in step 1(d) uses at most O(nk) bits for some k;

• The number of bits used in each iteration of cycle 1(f) is the sum of

the number of bits used for storing ν1, ν2 and [[P vψ ]]
ν 7→

ν1
ν2 . By Theo-

rem 13.16 of [1], the bitsize of ν1
ν2

is τdO(1) where τ is the bitsize of
the coefficients of the polynomial P vψ of degree at most d. Hence, the

bitsize of ν1
ν2

is O(nk) for some k. Therefore, the number of bits for

storing ν1, ν2 is O(nk) for some k. Moreover, the number of bits for

storing [[P vψ ]]
ν 7→

ν1
ν2 is also polynomial;
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Input: c-formula ψ and valuation v.

1. Let P vψ := 0;

2. For each ϕ ∈ Ωψ:

(a) If MCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

3. If [[P vψ ]]
1 > 1

2 then Return 1;

4. Return ASAT∃RCOF

(
∃ν
(
(12 < ν < 1) ∧ (12 < P vψ < 1)

))
.

Figure 4: Algorithm ASATUCL

log
for Problem SATUCL

log .

• Each iteration of cycle 1(f) reuses the space used in the previous iter-
ation. So the cycle uses at most O(nk) bits for some k.

Thus, the algorithm runs deterministically in polynomial space. QED

It is straightforward to define the decision version of this problem. Such
a problem is the satisfiability problem SAT for UCL. Herein, we consider a
restricted version of this problem which is NP complete. The logarithmic

satisfiability problem for UCL is the map

SATUCL
log : Lc

log(X)→ {0, 1}

that given a formula ψ representing a circuit with unreliable gates such that
|unr(ψ)| ∈ O(log(|ψ|)), returns 1 if and only if there is an interpretation I

such that I 
uc ψ. To analyze the complexity of SATUCL

log we need to refer
to the well known satisfiability problem for propositional logic. Let

SAT : L(X)→ {0, 1}

be the map that given a classical propositional formula ϕ returns 1 if and
only if there is a valuation v that satisfies ϕ. Observe that the SAT problem
is NP complete.

Theorem 4.3 The problem SATUCL
log is NP complete.
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Proof: Indeed:
(a) SATUCL

log is in NP. We consider the algorithm that generates nondeter-
ministically a valuation (the witness) with the verification subalgorithm de-
scribed in Figure 4. Observe that the generation of each valuation is polyno-
mial on ‖ψ‖. Since the number of unreliable gates is logarithmic on ‖ψ‖, the
cycle in step 2 over Ωψ only iterates a polynomial number of times. More-
over, each iteration only takes polynomial time. The execution of ASAT∃RCOF

takes O(‖ψ‖k) time, for some k. Moreover, the evaluation of a polynomial of
degree O(log(‖ψ‖)) on a rational constant is polynomial in time. Hence, the
whole verification part of the nondeterministic algorithm runs in polynomial
time.

(b) Every problem in NP is reducible many-to-one in polynomial time to
SATUCL

log . Consider the identity map over L(X). It is computable in polyno-
mial time. Since,

SAT(ϕ) = 1 iff SATUCL
log (ϕ) = 1

using Proposition 2.1 in [10], the thesis follows taking into account that SAT
is NP complete. QED

Application scenario

The algorithm AMWUCL(ψ) is stronger than a model checking algorithm since
the former builds explicitly a model when the given formula is satisfiable.
Recall that in a model checking algorithm a model is also given and the
objective is to verify whether or not the model satisfies the formula.

Given a circuit, AMWUCL(ψ) allows to determine: (1) a target success
rate, (2) a reliability rate of the gates and (3) a classical model, satisfying
such a circuit for the returned success and reliability rates.

For example, consider the application of algorithm AMWUCL(ψ) to the
formula

((¬̃ x) ∨ (¬̃x) ∨ (¬̃x))≡ (x ∨ (¬x)).

There are several cases to consider.

• Assume that the first valuation considered in cycle 1 is v such that
v(x) = 0. Then P vψ is the polynomial 1 − (1 − ν)3 where ψ is the

formula above. Then [[P vψ ]]
ν 7→1 = 1 > 1

2 and so the algorithm returns

(1, (v, (1, 1))

in step 1(c).
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• Assume that the first valuation considered in cycle 1 is v such that
v(x) = 1. Then P vψ is the polynomial 1 − ν3 where ψ is the formula

above. Then [[P vψ ]]
ν 7→1 = 0 6> 1

2 . Then cycle 1(f) returns immediately

(1, (v, 23 ,
19
27 )).

5 Reliability rate abduction problem

In this section, we discuss the problem of finding possible intervals, of length
defined by a given natural number, where the value of ν guarantees a given
target success rate of a given circuit.

The reliability rate abduction problem is the map

RRAUCL : Lc(X)×
(
Q ∩

(
1
2 , 1
])
× N+ → ℘fin((Q ∩

(
1
2 , 1
]
)× (Q ∩

(
1
2 , 1
]
))

that given a formula ψ representing a circuit with unreliable gates, a rational
number µ in the interval

(
1
2 , 1
]
and a positive natural number k, returns the

set ℓ of all intervals of the form (12 +
j
2k ,

1
2 +

j+1
2k ] for j ∈ {0, . . . , k− 1} such

that for every interval (a, b] ∈ ℓ, valuation v and assignment ρ over R such
that ρ(µ) = µ and a < ρ(ν) ≤ b,

(v, ρ) 
uc ψ.

Soundness and completeness

Let ARRAUCL be the algorithm in Figure 5. Observe that it is in fact an
algorithm since (1) the cycles in Step 2, Step 2(a) and Step 2(a)(ii) are over
finite sets {0, . . . , k − 1}, Vvar(ψ) and Ω(ψ), respectively; and (2) MCPL and

SAT∃RCOF are algorithms.

Theorem 5.1 Let ψ ∈ Lc(X), µ ∈ Q ∩ (12 , 1], and k ∈ N+. Then,

ARRAUCL(ψ, µ, k) returns ℓ iff RRAUCL(ψ, µ, k) = ℓ.

Proof:

(→) Assume that ARRAUCL(ψ, µ, k) returns ℓ. Let (12 + j
2k ,

1
2 + j+1

2k ) ∈ ℓ.
Then for every ν such that

(
1

2
+

j

2k
< ν ≤

1

2
+
j + 1

2k

)

we have [[P vψ ]]
ν 7→ν ≥ µ for each v. Let ρ be such that ρ(ν) ∈ (12+

j
2k ,

1
2+

j+1
2k )

and ρ(µ) = µ. Then (v, ρ) 
uc ψ for every valuation v and so (12 + j

2k ,
1
2 +
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Inputs: c-formula ψ, µ in Q ∩ (12 , 1] and k ∈ N+.

1. ℓ := {};

2. For each j = 0, . . . , k − 1:

(a) For each v ∈ Vvar(ψ) do:

i. Let P vψ := 0;

ii. For each ϕ ∈ Ωψ:

A. If MCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

iii. If SAT∃RCOF

(
∃ν
((

1
2 +

j
2k < ν ≤ 1

2 +
j+1
2k

)
∧ (µ > P vψ)

))
=

1
then go to 2;

(b) ℓ := ℓ ∪ {(12 + j
2k ,

1
2 +

j+1
2k )}

3. Return ℓ;

Figure 5: Algorithm ARRAUCL for Problem RRAUCL.
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j+1
2k ) ∈ RRAUCL(ψ, µ, k).

(←) Let (12 + j
2k ,

1
2 + j+1

2k ) ∈ RRAUCL(ψ, µ, k). Then, for every valuation v

and assignment ρ over R such that ρ(µ) = µ and 1
2 + j

2k < ρ(ν) ≤ 1
2 + j+1

2k
we have

(v, ρ) 
uc ψ,

that is,

Rρ 
uc
∑

ϕ∈Ωψ
vϕ

P[ψ ⊲ ϕ] ≥ µ.

Since
P vψ =

∑

ϕ∈Ωψ
vϕ

P[ψ ⊲ ϕ]

then
Rρ 

uc P vψ ≥ µ.

Thus, when running algorithm ARRAUCL with input (ψ, µ, k), for every val-
uation, the guard of the If in step 2(a)(iii) is false and so the interval
(12 + j

2k ,
1
2 + j+1

2k ) is in the list returned by ARRAUCL(ψ, µ, k). QED

Complexity

We now analyze the space complexity of algorithm ARRAUCL . Afterwards we
discuss the decision version of problem RRAUCL.

Theorem 5.2 The algorithm ARRAUCL runs deterministically in polynomial
space.

Proof: We are going to prove that algorithm in Figure 5 uses a polynomial
amount of space. Let n be the size in bits of the input ψ, µ and k. Thus,
|var(ψ)|, ‖µ‖, ‖k‖ and |unr(ψ)| are in O(n). Then:

• The storage of j in Step 2 uses O(n) bits;

• The storage of v in Step 2(a) uses O(n) bits;

• The storage of ϕ in Step 2(a)(ii) uses O(n) bits;

• The inner cycle 2(a)(ii) iterates O(2n) times;

• The algorithm MCPL runs in polynomial space O(nk) for some k;
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• The storage of each coefficient of polynomial P[ψ ⊲ ϕ] uses O(nk) bits
for some k;

• The storage of polynomial P[ψ ⊲ ϕ] uses O(nk) bits for some k;

• The storage of each coefficient of P vψ uses O(nk) bits for some k;

• The storage of polynomial P vψ uses O(nk) bits for some k;

• The number of operations when executing SAT∃RCOF is

25|unr(ψ)|O(1)

in the ring generated by the coefficients of the polynomials in

∃ν

((
1

2
+

j

2k
< ν ≤

1

2
+
j + 1

2k

)
∧ (µ > P vψ)

)
;

• Each such ring operation executed by SAT∃RCOF has a polynomial cost
in terms of bit operations (see Section 8.1 of [1]). Hence, the execution
of SAT∃RCOF in step 2(a)(iii) uses at most O(nk) bits for some k;

Thus, the algorithm runs deterministically in polynomial space. QED

We now consider a decision problem for RRAUCL and prove that it is NP
complete. The logarithmic reliability rate decision problem is the map

RRDUCL
log : Lc

log(X)×

(
Q ∩

(
1

2
, 1

])
→ {0, 1}

that given a formula ψ representing a circuit with unreliable gates such that
|unr(ψ)|, |var(ψ)| ∈ O(log ‖ψ‖) and a success circuit rate µ, returns 1 if and
only if there is an assignment ρ with ρ(µ) = µ such that

(v, ρ) 
uc ψ

for every valuation v.

Theorem 5.3 The problem RRDUCL
log is in P .

Proof: Indeed:
We are going to prove that algorithm in Figure 6 runs in polynomial time.
Let n be the size in bits of the input ψ and µ. Thus, |var(ψ)| and |unr(ψ)|
are in O(log n). Then:
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Inputs: c-formula ψ and µ in Q ∩ (12 , 1].

1. ℓ := {};

2. For each v ∈ Vvar(ψ) do:

(a) Let P vψ := 0;

(b) For each ϕ ∈ Ωψ:

i. If MCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

(c) ℓ := ℓ ∪ {P vψ};

3. Return SAT∃RCOF
(
∃ν
((

1
2 < ν ≤ 1

)
∧
∧
P∈ℓ (µ ≤ P )

))
.

Figure 6: Algorithm ARRDUCL for Problem RRDUCL.

• The cycle in step 2 iterates O(n) times;

• The inner cycle in step 2(b) iterates O(n) times;

• The algorithm MCPL runs in polynomial time O(nk) for some k;

• The computation of P[ψ ⊲ ϕ] runs in O(nk) for some k;

• The sum of the polynomials P[ψ ⊲ ϕ] and P vψ takes O(nk) time for
some k;

• The time complexity of executing cycle 2(b) is in O(nk) for some k;

• The time complexity of executing cycle 2 is in O(nk) for some k;

• The number of operations when executing SAT∃RCOF is

O(n)2O(log n)O(1)

in the ring generated by the coefficients of the polynomials in

∃ν

((
1

2
< ν ≤ 1

)
∧
∧

P∈ℓ

(µ ≤ P )

)
;

• Each such ring operation executed by SAT∃RCOF has a polynomial cost
in terms of bit operations (see Section 8.1 of [1]). Hence, the execution
of SAT∃RCOF in step 3 takes at most O(nk) time for some k.
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Thus, the algorithm runs in polynomial time. QED

Application scenario

Suppose that we want to determine the reliability rate of gates that ensure
that the circuit represented by the formula x ∨̃ (¬̃x) has a success rate of
0.7. We can use algorithm ARRAUCL to address this problem. Indeed, using
k = 3, the execution of ARRAUCL(x ∨̃ (¬̃x), 0.7, 3) returns {(0.875, 1)}. This
means that if the circuit uses gates with a reliability rate over 0.875 then
the probability of x ∨̃ (¬̃x) being equivalent to x ∨ (¬x) is at least 0.7.

6 Success rate optimization problem

Assume that we have two circuits with unreliable gates and we want to
determine how close they are of being equivalent by finding the reliability
rate of the gates that maximizes their equivalence. In a more abstract way,
this problem consists of, given a formula in UCL, finding a success rate and a
reliability rate of the gates in such a way that the success rate is a maximum.

The success rate optimization problem is the map

SROUCL : Lc(X)→ {0, 1} ×

(
Q ∩

(
1

2
, 1

])2

that given a formula ψ representing a circuit with unreliable gates returns
either 1 together with a pair (ν, µ) of rational numbers such that:

• (v, ρ) uc ψ for every valuation v and assignment ρ such that ρ(ν) = ν

and ρ(µ) = µ;

• For every assignment ρ′ with 1
2 < ρ′(ν), ρ′(µ) ≤ 1, if (v′, ρ′) 

uc ψ for
every valuation v′ then ρ′(µ) ≤ µ;

or returns 0 as the first component if there is no such pair (ν, µ) satisfying
the above conditions.

In order to propose an algorithm for this problem, we need to introduce
some material related to the theory of real closed ordered fields.

Let P be a finite set of polynomials over Σrcof. A P-atom is a formula
of the form P = 0, P 6= 0, P > 0 and P < 0 where P ∈ P, and a P-
formula is a formula written with P-atoms. Given a set P of polynomials,
let QPLP(Σrcof) be the set of all P-formulas of the form

Qx1 . . . Qxn δ
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where Q is either ∀ or ∃ and δ is a quantifier free formula, and let QFL(Σrcof)
be the set of all quantifier free formulas over Σrcof.

Given a set of polynomials P, the cylindrical quantifier elimination prob-
lem is the map

CQEP : QPLP(Σrcof)→ QFL(Σrcof)

that given a formula η in QPLP(Σrcof) returns ff if η is not satisfiable, oth-
erwise returns a formula η′ in QFL(Σrcof) with the same free variables and
such that R 

fo η ≡ η′. Herein, we consider the algorithm 11.16 of [1] for

solving this problem, that runs in (sd)O(1)k time where s is the number of
polynomials in P, d is a bound on the degree of the polynomial and k is the
number of quantified variables in the given formula.

Inputs: c-formula ψ.

1. P := {};

2. For each v ∈ Vvar(ψ) do:

(a) Let P vψ := 0;

(b) For each ϕ ∈ Ωψ:

i. If MCPL(ϕ, v) = 1 then P vψ := P vψ +P[ψ ⊲ ϕ];

(c) P := P ∪ {P vψ};

3. η := ∀x∀y

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)
∧

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)
;

4. Return CQEP(η).

Figure 7: Algorithm ASROUCL for Problem SROUCL.

Soundness and completeness

Let ASROUCL be the algorithm in Figure 7 where [P ]νx is the polynomial
obtained from polynomial P by replacing ν by x. Observe that it is in fact
an algorithm since (1) the cycles in Step 2 and in Step 2(b) are over a finite
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set of valuations and outcomes, respectively; and (2) MCPL and CQEP are
algorithms.

Theorem 6.1 Let ψ ∈ Lc(X). Then,

1. ASROUCL(ψ) returns ff if and only if SROUCL(ψ)|1 = 0;

2. If ASROUCL(ψ) returns a satisfiable formula (µ ∼= µ) ∧ α, where µ is
a term without variables and α is a disjunction of a conjunction of
atoms involving only variable ν then SROUCL(ψ) = (1, (ν, µ)) where ν
satisfies α in RCOF;

3. If SROUCL(ψ) = (1, (ν, µ)) then Rρ 
fo ASROUCL(ψ) where ρ is such

that ρ(µ) = µ and ρ(ν) = ν.

Proof:

1. (→) Assume that ASROUCL(ψ) returns ff. Then there are two cases:
(a) There are no µ and ν such that

Rρ 
fo

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)

where ρ is such that ρ(µ) = µ and ρ(ν) = ν. Hence, for every assignment ρ
there is a valuation v such that

Rρ 6fo

(
1

2
< µ, ν ≤ 1 ∧ µ ≤ P vψ

)
,

that is, (v, ρ) 6uc ψ. So SROUCL(ψ)|1 is 0.

(b) Otherwise, there is ρ such that

Rρ 6fo

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)
.

Hence there is not a solution of optimisation problem:



max
µ,ν

µ

1
2 < µ, ν ≤ 1 ∧

∧
P∈P µ ≤ P

and so SROUCL(ψ)|1 is 0.

(←) SROUCL(ψ)|1 = 0. There are two cases.
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(a) For every assignment ρ with 1
2 < ρ(µ), ρ(ν) ≤ 1 there is a valuation v

such that (v, ρ) 6uc ψ. Hence, given such a ρ let v be such that (v, ρ) 6uc ψ.
Thus, Rρ 6fo µ ≤ P vψ and so CQEP(η) returns ff.

(b) Otherwise, for every assignment ρ with 1
2 < ρ(µ), ρ(ν) ≤ 1 such that

(v, ρ) 
uc ψ for every valuation v, there is an assignment ρ′ with 1

2 <

ρ′(µ), ρ′(ν) ≤ 1 such that (v′, ρ′) 
uc ψ for every valuation v′ and ρ′(µ) >

ρ(µ). Let ρ be such that 1
2 < ρ(µ), ρ(ν) ≤ 1 and (v, ρ) 

uc ψ for every
valuation v and ρ′ with 1

2 < ρ′(µ), ρ′(ν) ≤ 1 such that (v′, ρ′) 
uc ψ for

every valuation v′ and ρ′(µ) > ρ(µ). Take ρ′′ as the assignment such that
ρ′′(x) = ρ′(ν), ρ′′(y) = ρ′(µ), ρ′′(ν) = ρ(ν) and ρ′′(µ) = ρ(µ). Hence

Rρ′′ 6fo

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)

and so CQEP(η) returns ff.

2. Assume that ASROUCL(ψ) returns a satisfiable formula (µ ∼= µ)∧α where µ
is a term without variables and α is a disjunction of a conjunction of atoms
involving only variable ν. Then,

R 
fo ∀x∀y

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)
∧

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)

≡

(µ ∼= µ) ∧ α.

Since (µ ∼= µ) ∧ α is a satisfiable formula let ρ be an assignment such that
ρ(µ) = µ and Rρ 

fo α. Then, for each valuation v, Rρ 
fo µ ≤ P vψ

and so (v, ρ) 
uc ψ for every v. Moreover, let ρ′ be an assignment with

1
2 < ρ′(ν), ρ′(µ) ≤ 1 and assume that (v′, ρ′) 

uc ψ for every valuation
v′. Take ρ′′ as the assignment such that ρ′′(x) = ρ′(ν), ρ′′(y) = ρ′(µ),
ρ′′(ν) = ρ(ν) and ρ′′(µ) = ρ(µ). Hence

Rρ′′ fo ∀x∀y

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)
∧

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)
.

28



Since

Rρ′′ fo 1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

then
Rρ′′ fo y ≤ µ.

Therefore ρ′(µ) ≤ ρ(µ) and so ρ′(µ) ≤ µ. Thus, SROUCL(ψ) = (1, (ν, µ)) for
some ν.

3. Assume that SROUCL(ψ) = (1, (ν, µ)). Let ρ be an assignment such that
ρ(µ) = µ and ρ(ν) = ν. Then (v, ρ) 

uc ψ hence Rρ 
fo µ ≤ P vψ for every

valuation v and so

Rρ 
fo

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)
.

Let ρ′ be {x, y}-equivalent to ρ with 1
2 < ρ′(x), ρ′(y) ≤ 1 and assume that

Rρ′ fo
∧

P∈P

y ≤ [P ]νx.

Let ρ′′ be an assignment such that ρ′′(ν) = ρ′(x) and ρ′′(µ) = ρ′(y). Hence

Rρ′′ fo
∧

P∈P

µ ≤ P.

Therefore, (v′, ρ′′) 
uc ψ for very valuation v′. Thus, ρ′′(µ) ≤ ρ(µ) and so

ρ′(y) ≤ ρ(µ). Finally,

Rρ′ fo

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)

and so Rρ 
fo ASROUCL(ψ). QED

Complexity

We analyse the time complexity of algorithm ASROUCL .

Theorem 6.2 The algorithm ASROUCL runs deterministically in exponential
time.

Proof: We are going to prove that algorithm in Figure 7 takes an exponen-
tial amount of time. Let n be the size in bits of the input ψ. Thus, |var(ψ)|
is in O(n). Then:
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• The outer cycle in step 2 iterates O(2n) times;

• The inner cycle in step 2(b) iterates O(2n) times;

• The algorithm MCPL runs in polynomial time O(nk) for some k;

• The computation of P[ψ ⊲ ϕ] runs in O(nk) for some k;

• The sum of the polynomials P[ψ ⊲ ϕ] and P vψ takes O(nk) time for
some k;

• The time complexity of executing cycle in step 2(b) is in O(nk) for
some k;

• The time complexity of executing cycle in step 2 is in O(nk) for some
k;

• The number of operations when executing CQE is

(2nn)O(1)2

since the number of polynomials is O(2n), the maximum degree of each
polynomial is O(n) and the number of variables is 2. The operations
are over the integral domain generated by the coefficients of the poly-
nomials in

∀x∀y

(
1

2
< µ, ν ≤ 1 ∧

∧

P∈P

µ ≤ P

)
∧

((
1

2
< x, y ≤ 1 ∧

∧

P∈P

y ≤ [P ]νx

)
⊃ y ≤ µ

)
;

• Each such integral domain operation executed by CQE has a polyno-
mial cost in terms of bit operations (see Section 8.1 of [1]). Hence, the
execution of CQE in step 3 takes at most O(nk) time for some k.

Hence, algorithm ASROUCL runs deterministically in exponential time. QED

Application scenario

Suppose that we want to determine the maximum success rate of a circuit
and the reliability rate of the gates that ensures such a maximum. In this
case we can use algorithm ASROUCL . For example, assume that we want to
investigate how close is the circuit represented by the following c-formula

(¬̃x) ∨ (¬̃x) ∨ (¬̃x)
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to the circuit represented by the formula x ∨ (¬x). For that, we can apply
algorithm ASROUCL to the formula

((¬̃ x) ∨ (¬̃x) ∨ (¬̃x))≡ (x ∨ (¬x))

which returns
(ν ∼= 0.6306) ∧ (µ ∼= 0.931773).

This means that the maximum fidelity between the given circuits is 0.931773
providing that the reliability rate of the gates is 0.6306. This information is
also useful to an engineer in what concerns the gates to be used in order to
obtain the circuit with the best possible success rate.

7 Outlook

In this paper, we investigated the complexity of some computational and de-
cision problems in the logic UCL for reasoning about circuits with unreliable
gates (cf [10]). The algorithms herein proposed for these problems rely on
algorithms that are known for propositional logic (which was expected since
UCL is a conservative extension of PL) and on algorithms for real closed
ordered fields (see [1]).

Our results allow to conclude that establishing the validity in UCL is
not more difficult than to establish validity in propositional logic, providing
that the number of connectives representing unreliable gates is logarithmic
on the length of the formula. Moreover, the same happens with respect
to the satisfiability problem. That is, establishing the satisfiability in UCL

is not more difficult than to establish satisfiability in propositional logic,
providing that the number of connectives representing unreliable gates is
logarithmic on the length of the formula.

Research on UCL aims at extending the logic to allowing probabilistic
inputs and afterwards to address the issue of reasoning about quantum cir-
cuits with unreliable gates. Thereafter, we intend to analyze computation
and decision problems in this context.
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