
A Complete Logic for Database Abstract State Machines

Qing Wanga, Flavio Ferrarottib, Klaus-Dieter Scheweb, Loredana Tecb

aResearch School of Computer Science, The Australian National University, Australia,
qing.wang@anu.edu.au

bSoftware Competence Center Hagenberg, Austria,
[flavio.ferrarotti|loredana.tec]@scch.at,kdschewe@acm.org

Abstract

In database theory, the term database transformation was used to refer to a unifying treat-
ment for computable queries and updates. Recently, it was shown that non-deterministic
database transformations can be captured exactly by a variant of ASMs, the so-called
Database Abstract State Machines (DB-ASMs). In this article we present a logic for DB-
ASMs, extending the logic of Nanchen and Stärk for ASMs. In particular, we develop a
rigorous proof system for the logic for DB-ASMs, which is proven to be sound and com-
plete. The most difficult challenge to be handled by the extension is a proper formalisation
capturing non-determinism of database transformations and all its related features such as
consistency, update sets or multisets associated with DB-ASM rules. As the database part
of a state of database transformations is a finite structure and DB-ASMs are restricted
by allowing quantifiers only over the database part of a state, we resolve this problem by
taking update sets explicitly into the logic, i.e. by using an additional modal operator [X],
where X is interpreted as an update set ∆ generated by a DB-ASM rule. The DB-ASM
logic provides a powerful verification tool to study properties of database transformations.

Acknowledgements. The research reported in this paper results from the project Be-
havioural Theory and Logics for Distributed Adaptive Systems supported by the Austrian
Science Fund (FWF): [P26452-N15]. It was further supported by the Austrian Re-
search Promotion Agency (FFG) through the COMET funding for the Software Compe-
tence Center Hagenberg.

1. Introduction

Queries and updates are two basic types of computations in databases, which cap-
ture the capability to retrieve and update data, respectively. In database theory, database
transformations refer to transforming database instances into other database instances, in-
cluding both queries and updates. More formally, a database transformation was defined
as a binary relation on database instances over an input schema and database instances

Preprint submitted to Logic Journal of the IGPL March 2, 2022

ar
X

iv
:1

60
2.

07
48

6v
4

 [
cs

.L
O

]
 3

0
M

ay
 2

01
7

over an output schema which must satisfy the four criteria: well-typedness, effective com-
putability, genericity and functionality [1, 3].

In the past 50 years, a main research topic of database transformations was to char-
acterise different subclasses of database transformations in terms of their logical or alge-
braical properties. Although prior studies have yielded fruitful results for queries, e.g.,
computable queries [12], determinate transformations [1], semi-deterministic transforma-
tions [44], constructive transformations [42, 45], etc., extending these results to updates is
by no means straightforward. In [43] Van den Bussche and Van Gucht conjectured that
queries and updates may have some fundamental distinctions, and raised the question of
whether there exists a theoretical framework that can unify both queries and updates.

In many real-life database applications, database queries and updates often turn out
to have intimate connections. For instance, a relation may be updated by using matched
tuples from another (possibly the same) relation on a join operation, tuples of a relation
may be deleted based on some selection criteria, etc. On one side, such connections
between queries and updates justify the fact that the embedding of queries in updates is
supported as a fundamental feature in all major commercial relational database systems.
On the other side, it brings up considerable concerns on the theoretical foundations for
database updates. In a sharp contrast to the elegant and fruitful theory for database
queries, the theoretical foundations for database updates, or more generally, for a unifying
framework encompassing both queries and updates are still lacking.

Recently, the rising trend of NoSQL database applications has further increased the im-
portance of studying database transformations as a unifying framework that encompasses
both queries and updates. This is because these application areas are often complicated
and their data is schema-less, heterogeneous, redundant, inconsistent and frequently mod-
ified. As a result, the query mechanisms used in NoSQL database applications are more
similar to traditional programming using programming languages, such as C or Java,
rather than traditional queries using SQL. The distinction between database queries and
updates has been considerably lessened. Thus, in order to rigorously manage and use data
in these database applications, a theoretical framework for database transformations is
required.

Nevertheless, formalising a unifying framework for database transformations is chal-
lenging. As reported in [43], the non-determinism of database transformations is a difficult
problem. Particularly, in the presence of unique identifiers, the representation of unique
identifiers is irrelevant and only the interrelationship between objects represented by them
matters [1]. Indeed, the degree of non-determinism is one of critical factors which deter-
mine the upper bound of the expressiveness of associated languages. Apart from the
issue of non-determinism, it has also been perceived that there is a mismatch between
the declarative semantics of query languages and the operational semantics of update
languages. Unlike many query languages which can describe what a program should ac-
complish rather than specify how to accomplish, update languages usually require explicit
specifications of operations and control flow. An obvious question is “how can different
semantics be integrated within one database language for database transformations?”.

2

We address these challenges by developing a theoretical framework for database trans-
formations using Abstract State Machines and studying the logical foundations of database
transformations in such a theoretical framework. Abstract State Machine (ASM) is a
universal model of computation introduced by Gurevich in his well-known attempts to
formalise different notions of algorithms [21, 22]. Gurevich’s sequential ASM thesis has
shown that sequential ASMs can exactly capture all the sequential algorithms that are
stipulated by three postulates [21]. As ASMs are essentially state machines operating on
states that are first-order structures, dynamics between states can be rigorously captured
by the concepts of updates, update sets or update multisets, as widely acknowledged in
the ASM research community [9, 22]. The sequential ASM thesis also sheds light into the
way of establishing a unifying theoretical framework for database transformations that
contain queries and updates. Intuitively, this is based on the observation that the class of
computations described by database transformations can be formalised as a class of ASMs
respecting database principles. This has led to the development of Database Abstract
State Machines (DB-ASMs), a variant of ASMs, as a model of computation for database
transformations, and the DB-ASM thesis which has proven that DB-ASMs satisfy the
five postulates stipulated for database transformations, and all computations stipulated
by the postulates for database transformations can also be simulated step-by-step by a
behaviourally equivalent DB-ASM [33]. This in a sense establishes the database analogue
of Gurevich’s sequential ASM thesis [21].

Contributions In this paper, we study the logical foundations of the DB-ASM thesis.
Our contributions are as follows.

Firstly, we characterise states of DB-ASMs by the logic of meta-finite structures [16]
which is then incorporated into a logic for DB-ASMs. In database theory, states of a
database transformation are predominantly regarded as finite structures. However, when
applying algorithmic operations to tackle database-related problems, the finiteness con-
dition on states often turns out to be too restrictive for several reasons: (1) database
transformations may deal with new elements from countably infinite domains, e.g. count-
ing queries produce natural numbers even if no natural numbers occur in a finite structure;
(2) finite structures may have invariant properties that possibly have infinite elements im-
plied in satisfying them, such as, numerical invariants of geometric objects or database
constraints; (3) each database transformation either implicitly or explicitly lives in a back-
ground that supplies all necessary information relating to computations and usually exists
in the form of infinite structures. Thus, we consider a state of database transformation as
a meta-finite structure consisting of (i) a database part, which is a finite structure, (ii) an
algorithmic part, which may be an infinite structure, and (iii) a finite number of bridge
functions between these two parts. Characterising states of database transformations us-
ing the logic of meta-finite structures enables us to reason about aggregate computations
commonly existing in database applications.

Our second contribution is the handling of bounded non-determinism in the logic of
DB-ASMs. This was also the most challenging problem we faced in this work. It is worth

3

to mention that non-deterministic transitions manifest themselves as a very difficult task
in the logical formalisation for ASMs. Nanchen and Stärk analysed potential problems to
several approaches they tried by taking non-determinism into consideration and concluded
[39]:

“Unfortunately, the formalisation of consistency cannot be applied directly to
non-deterministic ASMs. The formula Con(R) (as defined in Sect. 8.1.2 of
[9]) expresses the property that the union of all possible update sets of R in
a given state is consistent. This is clearly not what is meant by consistency.
Therefore, in a logic for ASMs with choose one had to add Con(R) as an
atomic formula to the logic.”

However, we observe that this conclusion is not necessarily true, as finite update sets
can be made explicit in the formulae of a logic to capture non-deterministic transitions.
In doing so, the formalisation of consistency defined in [39] can still be applied to such
an explicitly specified finite update set U yielded by a rule r in the form of the formula
con(r,X) where the second-order variable X is interpreted by U , as will be discussed
in Section 7.1. We can thus solve this problem by adding the modal operator [X] for
an update set generated by a DB-ASM rule. In doing so, DB-ASMs are restricted to
have quantifiers only over the database part of a state which is a finite structure, and
consequently update sets (or multisets) yielded by DB-ASM rules are restricted to be
finite. Hence, the logic for DB-ASMs is empowered to capture non-deterministic database
transformations.

Our third contribution is the development of a proof system for the logic for DB-ASMs,
which extends the proof system for the logic for ASMs [39] in several aspects:

• DB-ASMs can collect updates yielded in parallel computations under the multiset
semantics, i.e. update multisets, then aggregate updates in an update multiset to an
update set by applying so-called location operators. Our proof system can capture
this by incorporating the axioms for both the predicate of update multisets and the
predicate of update sets. The axioms also specify the interaction between update
multisets and update sets in relating to DB-ASM rules.

• A DB-ASM rule may be associated with different update sets. Applying different
update sets may lead to different successor states to the current state. As the logic for
DB-ASMs includes formulae denoting explicit update sets and update multisets, and
second-order variables that are bound to update sets or update multisets, our proof
system allows us to reason about the interpretation of a formula over all successor
states or over some successor state after applying a DB-ASM rule over the current
state.

• In addition to capturing the consistency of an update set yielded by a DB-ASM rule,
our proof system also develops two notions of consistency for a DB-ASM rule (i.e.

4

weak version and strong version). When a DB-ASM rule is deterministic, these two
notions coincide.

Our last contribution is a proof of the completeness of the logic for DB-ASMs. Due to
the importance of non-determinism for enhancing the expressive power of database trans-
formations and for specifying database transformations at flexible levels of abstraction,
DB-ASMs take into account choice rules. Consequently, the logic for DB-ASMs has to
handle all the issues related to non-determinism which have been identified as the source
of problems in the completeness proof of the logic for ASMs [39, 10]. Nevertheless, we
prove that we can use a Henkin semantics for the required (in our approach) second-order
quantification, and thus despite of the inclusion of second-order formulae in the logic for
DB-ASMs, we can establish a sound and complete proof system for the logic of DB-ASMs.
Note that, the logic for DB-ASMs preserves the restriction of the logic of Nanchen and
Stärk for ASMs [39] dealing only with properties of a single step of an ASM, not with
properties of whole ASM runs. This restriction to a one-step logic allows us to define a
Hilbert-style proof theory and to show its completeness, whereas for a logic dealing with
properties of whole ASM runs (and even more so, whole DB-ASMs runs) can hardly be
expected to be complete.

Outline The remainder of the article is structured as follows. Section 2 discusses related
work on logical characterisations of database transformations. Then we provide a moti-
vating example in Section 3. In Section 4 we discuss meta-finite structures and states of
DB-ASMs. In Section 5 we present the definitions of DB-ASM. As states of a database
transformation are meta-finite structures, in Section 6 we define a logic for DB-ASMs that
is built upon the logic of meta-finite structures. Subsequently, a detailed discussion of
basic properties of the logic for DB-ASMs, such as consistency, update sets and multisets,
along with the formalisation of a proof system is presented in Section 7. In Section 8,
we present some interesting properties of the logic for DB-ASMs which are implied by
the axioms and rules of the proof system introduced in Section 7. We prove in Section 9
that the logic for DB-ASMs is complete. We conclude the article with a brief summary in
Section 10.

2. Related Work

It is widely acknowledged that a logic-based perspective for database queries can pro-
vide a yardstick for measuring the expressiveness and complexity of query languages. To
extend the application of mathematical logics from database queries to database updates,
a number of logical formalisms have been developed providing the reasoning for both
states and state changes in a computation model [8, 46]. A popular approach was to take
dynamic logic as a starting point and then to define the declarative semantics of logical
formulae based on Kripke structures. It led to the development of the database dynamic
logic (DDL) and propositional database dynamic logic (PDDL) [36, 35, 37]. DDL has
atomic updates for inserting, deleting and updating tuples in predicates and for functions,

5

whereas PDDL has two kinds of atomic updates: passive and active updates. Passive
updates change the truth value of an atom while active updates compute derived updates
using a logic program. In [38] Spruit, Wieringa and Meijer proposed regular first-order
update logic (FUL), which generalises dynamic logic towards specification of database up-
dates. A state of FUL is viewed as a set of non-modal formulae. Unlike standard dynamic
logic, predicate and function symbols rather than variables are updatable in FUL. There
are two instantiations of FUL. One is called relational algebra update logic (RAUL) that
is an extension of relational algebra with assignments as atomic updates. Another one is
DDL that parameterizes FUL by two kinds of atomic updates: bulk updates to predicates
and assignment updates to functions. It was shown that DDL is also “update complete”
in relational databases with respect to the update completeness criterion proposed by
Abiteboul and Vianu in [2].

As we explained before ASMs turn out to be a promising approach for specifying
database transformations. The logical foundations for ASMs have been well studied from
several perspectives. Groenboom and Renardel de Lavalette presented in [18] a logic
called modal logic of creation and modication (MLCM) that is a multimodal predicate
logic intended to capture the ideas behind ASMs. On the basis of MLCM they developed
a language called formal language for evolving algebras (FLEA) [19]. Instead of values
of variables, states of an MLCM are represented by mathematical structures expressed in
terms of dynamic functions. The work in [31] generalises MLCM and other variations from
[13] to modification and creation logic (MCL) for which there exists a sound and complete
axiomatisation. In [34] Schönegge presented an extension of dynamic logic with update of
functions, extension of universes and simultaneous execution (called EDL), which allows
statements about ASMs to be directly represented. In addition to these, a logic complete
for hierarchical ASMs (i.e., ASMs that do not contain recursive rule definitions) was
developed by Nanchen and Stärk in [39]. This logic for ASMs differs from other logics in
two respects: (1) the consistency of updates has been accounted for; (2) modal operators
are allowed to be eliminated in certain cases. As already remarked, the ASM logic of
Nanchen and Stärk permits reasoning about ASM rules, but not about ASM runs, which
is the price to be paid for obtaining completeness. In this article we will extend this logic
for ASMs towards database transformations, in which states are regarded as meta-finite
structures and a bounded form of non-determinism is captured.

It was Chandra and Harel who first observed limitations of finite structures in database
theory [12]. They proposed a notion of an extended database that extends finite structures
by adding another countable, enumerable domain containing interpreted features such
as numbers, strings and so forth. The intention of their study was to provide a more
general framework that can capture queries with interpreted elements. Another extension
of finite structures was driven by the efforts to solve the problem of expressing cardinality
properties [7, 11, 17, 26, 29, 30, 40, 41]. For example, Grädel and Otto developed a
two-sorted structure that adjoins a one-sorted finite structure with an additional finite
numerical domain and added the terms expressing cardinality properties [17]. They aimed
at studying the expressive power of logical languages that involve induction with counting

6

on such structures. A promising line of work is meta-finite model theory. Grädel and
Gurevich in [16] defined meta-finite structures. Based on the work presented in [16], Hella
et al. in [23] studied the logical grounds of query languages with aggregation, which is
closely related to our work presented in this article. However, the logic for DB-ASMs
covers not only database queries with aggregation but also database updates. Put it
in another way, it is a logical characterisation for database transformations including
aggregate computing and sequential algorithms.

3. Motivating Example

To motivate our work, we use an example to illustrate how database transformations
can be captured by DB-ASMs and how a logic for DB-ASMs can be used for verifying
database transformations, i.e., one of the potential applications of the logic for DB-ASMs.

Example 3.1. Consider a relational database schema: City={Cid, Name} and Route=
{FromCid, ToCid, Distance}, which store route information of cities and their distance.
Assume that we have ∀c1, c2, d((c1, c2, d) ∈ Route → (c2, c1, d) ∈ Route). Then a rela-
tion of Route corresponds to an undirected graph in which the nodes represent cities and
the edges represent direct routes, for example, the undirected graph in Fig. 2 corresponds
to the relation of Route in Fig. 1. Assume that such graphs are always connected. Let
Q1(c) be the query “find a shortest path tree rooted at city c”. To answer this query, we
would need to find a spanning tree T with the root node c such that the path distance
from c to any other node c′ in T is the shortest path distance from city c to c′ in the graph
induced by Route.

City

Cid Name

c1 A
c2 B
c3 C
c4 D
c5 E

Route

FromCid ToCid Distance

c1 c2 d1

c1 c3 d3

c2 c4 d2

c3 c4 d1

c3 c5 d2

c5 c4 d4

.

Visited

Cid

Result

Cid TotalCost LastStop

Figure 1: An initial state

7

d1

d2

d1

d2

d3

d4

c1

c3 c2

c4

c5

Figure 2: An undirected graph

Dist : Cid→ N
Dist(c1) = 1
Dist(c2) = 2
Dist(c3) = 3
Dist(c4) = 4
Dist(c5) = 5

Val : Distance→ N
Val(d1) = 500.50
Val(d2) = 100.00
Val(d3) = 808.20
Val(d4) = 203.20

Figure 3: Two bridge functions

The DB-ASM rule in Fig. 5 (of the signature ΥG described next), which corresponds
to the famous Dijkstra’s algorithm, expresses the query Q1(c). Let ΥG be the signature
in Fig. 4. Apart from City and Route, ΥG includes Visited={Cid} to store the cities
that have been visited during the computation and Result={ChildCid, ParentCid} to
store the shortest path tree as a child-parent node relationship. We assume that in every
initial state the relations Visited and Result are empty (as shown in Fig. 1) and that
Initial=True. We also assume that the constant symbol Infinity is interpreted by a
natural number which is strictly greater than the sum of all the distances in Route, that
Zero is interpreted by the value 0, and that the values interpreting the constant symbols
True and False are different. A state in which every city has been visited, i.e., a state
in which Visited contains every city id in the database, is considered as a final state.
Notice that entries in the database part of the states which correspond to the distances
between adjacent nodes in Route are surrogates for the actual distances which are natural
numbers in the algorithmic part of the state. Thus, there are two bridge functions:

• Dist : Cid → N to keep track of cities visited during a computation and their
corresponding shortest distances to c, respectively;

• Val : Distance → N to map the surrogates for the actual distances to the natural
numbers in the algorithmic part.

ΥG = (Υdb,Υa,Fb), where

- City, Route, Visited, Result, c, True, False, Initial ∈ Υdb;

- Infinity, Zero, MDist ∈ Υa;

- Val, Dist ∈ Fb; and

- Min is a location operator.

Figure 4: A signature

In general, the DB-ASM in Fig. 5 proceeds in two stages:

8

• The first stage is described by Lines 2-12. The DB-ASM starts with an initial
state in which Initial = True, then assigns (in parallel) to every city a tentative
distance value (i.e., 0 for the city c and Infinity for all other cities), and ends with
Initial=False.

• The second stage is described by Lines 13-36. The shortest paths to reach other
cities from the city c are repeatedly calculated and stored in Result until a final
state in which every city has been visited is reached.

At Line 15 of the DB-ASM rule in Fig. 5 the location operator Min is assigned to
the location (MDist, ()), and thus MDist is updated to the shortest distance among the
collection of distances between the city in consideration and all its unvisited neighbor cities.
At Line 20, we can see that the DB-ASM is non-deterministic because a city is arbitrarily
chosen from the non-visited cities whose shortest paths are equally minimum at each step
of the computation process. This indeed exemplifies the importance of non-determinism
for specifying database transformations at a high-level of abstraction.

Now suppose that we want to know whether the properties P1 and P2 described
next, are satisfied by the DB-ASM corresponding to the DB-ASM rule in Fig. 5 over
certain states of signature ΥG. Clearly, the use of a logic to specify such properties of
DB-ASMs can contribute significantly to the verification of the correctness of database
transformations expressed by means of DB-ASMs. Although the logic proposed for DB-
ASMs in this paper can only reason about such properties within one-step of computation,
it nevertheless provides a useful tool which is a first step towards developing a logic that
can reason about properties of whole DB-ASMs runs.

(P1) In every non-initial state of a run, each city in the child/parent node relationship
encoded in Result has exactly one parent city, except for c which has none. In
other words, Result encodes a tree with root node c.

¬Initial→
∀xy(Result(x, y)→ x 6= c ∧ ∀z(z 6= y → ¬Result(x, z))) ∧ ∃x(Result(x, c))

(P2) In every state of a run, if a city not yet visited (by the algorithm) is a neighbour
city of one already visited, then the calculated (shortest so far) distance from c to
that city is strictly less than Infinity already.

∀xy(Visited(x) ∧ ¬Visited(y) ∧ ∃z(Route(x, y, z))→ Dist(y) < Infinity)

4. Meta-finite Structures as States

Meta-finite structures were originally studied by Grädel and Gurevich in order to
extend the methods of finite model theory beyond finite structures [16]. In a nutshell,
a meta-finite structure consists of (a) a primary part, which is a finite structure, (b) a

9

1 par
2 if Initial then
3 par
4 forall x with ∃y(City(x, y)) do
5 par
6 if x = c then Dist(x) := Zero endif
7 if x 6= c then Dist(x) := Infinity endif
8 endpar
9 enddo
10 Initial := false
11 endpar
12 endif
13 if ¬Initial then
14 seq
15 let (MDist, ()) ⇀Min in
16 forall x with ∃y(City(x, y) ∧ ¬Visited(x)) do
17 MDist := Dist(x)
18 enddo
19 endlet
20 choose x with Dist(x) = MDist ∧ ¬Visited(x) do
21 par
22 Visited(x) := True
23 forall y, z with Route(x, y, z) ∧ ¬Visited(y)∧
24 MDist + Val(z) < Dist(y) do
25 par
26 Dist(y) := MDist + Val(z)
27 Result(y, x) := True
28 forall x′ with x′ 6= x ∧Result(y, x′) do
29 Result(y, x′) := False
30 enddo
31 endpar
32 enddo
33 endpar
34 enddo
35 endseq
36 endif
37 endpar

Figure 5: A DB-ASM

secondary part, which is a (usually infinite) structure, and (c) a set of functions mapping
from the primary part into the second part. Typical examples of meta-finite structures
are finite objects arising in many areas of computer science, which usually consist of both
structures and numbers. For example, graphs with weights on the edges, where a graph
may be representable by a finite structure but its weights on the edges may be reals from
an infinite domain, and arithmetical operations performed on these weights may not be

10

any a priori fixed finite subdomain [16]. Another example is relational databases in which
each relation contains only a finite number of tuples. Although theoretically a relational
database is viewed as a finite structure, attribute domains of a relation are often assumed to
be countably infinite. In particular, such domains may be infinite mathematical structures,
e.g., the natural numbers with arithmetic, rather than merely plain sets, and such infinite
mathematical structures are widely used by aggregate queries in many real-life database
applications.

In [20] Gurevich argued that ASMs provide a model of computation that is more
powerful and more universal than other standard models of computation such as Turing
machines, in the sense that any algorithm, however abstract, can be simulated step-for-
step by an ASM. This is because a state of an ASM is abstract, which may include any
real world objects and functions at a chosen level of abstraction. Let us consider for
example algorithms that work with graphs. The conventional computation models require
a string representation of the given graph or similar, even in those cases when the algorithm
is independent of the graph representation. In particular, a same database might have
different representations, but the meaning of the data should not change. Database query
languages are supposed to reflect only representation-independent properties.

In ASMs, states are viewed as first-order structures, whereas in DB-ASMs we consider
states as meta-finite structures [33]. Conceptually, each state of a DB-ASM has a finite
database part and a possibly infinite algorithmic part, which are linked via bridge functions
such that actual database entries are treated merely as surrogates for the real values. This
permits a database to remain finite while allowing database entries to be interpreted in
possibly infinite domains such as the natural numbers with arithmetic operations. A
signature Υ of states comprises (i) a sub-signature Υdb for the database part, (ii) a sub-
signature Υa for the algorithmic part and (iii) a finite set Fb of bridge function names.
The base set of a state S is a nonempty set of values B = Bdb ∪ Ba, where Bdb is finite,
and Ba contains natural numbers, i.e., N ⊆ Ba. Function symbols f in Υdb and Υa,
respectively, are interpreted as functions fS over Bdb and Ba, and the interpretation of a
k-ary function symbol f ∈ Fb defines a function fS from Bk

db to Ba. For every state over
Υ, the restriction to Υdb results in a finite structure.

Since the states of DB-ASMs are defined as meta-finite structures, we now need to
define a matching logic so that it can be used in the conditional statements of DB-ASMs.
That is, we need a logic of meta-finite structures as introduced in [16]. Logics of meta-finite
structures distinguish among two types of terms. The first type, which we call database
terms, denote elements of the primary (finite) part of the meta-finite structure. The second
type, which we call algorithmic terms, denote elements of the secondary (possibly infinite)
part of the meta-finite structure.

Definition 4.1. Let Υ = Υdb∪Υa∪Fb be a signature of meta-finite states. Fix a countable
set Xdb of first-order variables, denoted with standard lowercase letters x, y, z, . . ., that
range over the primary database part of the meta-finite states (i.e., the finite set Bdb).
The set of database terms Tdb is defined as the closure of the set Xdb of variables under

11

the application of function symbols in Υdb. We assume that Υdb always include a function
symbol for equality. In turn, the set of algorithmic terms Ta is defined inductively as
follows:

• If t1, . . . , tn are database terms in Tdb and f is an n-ary bridge function symbol in
Fb, then f(t1, . . . , tn) is an algorithmic term in Ta.

• If t1, . . . , tn are algorithmic terms in Ta and f is an n-ary function symbol in Υa,
then f(t1, . . . , tn) is an algorithmic term in Ta.

• Nothing else is an algorithmic term in Ta.

We set TΥ,Xdb
= Tdb ∪ Ta.

In this context, a variable assignment (or valuation) ζ is a function which assigns to
every variable in Xdb a value in the base set of the database part Bdb of the meta-finite
state S. The value of a term t ∈ TΥ,Xdb

in a state S under a valuation ζ, denoted valS,ζ(t),
is defined as usual in first-order logic, i.e., using the classical Tarski’s semantics.

The logic of meta-finite states LFO which we use in the formalization DB-ASMs is
defined as the first-order logic with equality which is built up from equations between
terms in TΥ,Xdb

by using the standard connectives and first-order quantifiers. Its semantics
is defined in the standard way. The truth value of a formula of meta-finite states ϕ in S
under the valuation ζ is denoted as [[ϕ]]S,ζ .

5. Database Abstract State Machines

Our work in this paper concerns the model of Database Abstract State Machine (DB-
ASM) that captures the class of database transformations defined by the postulates in
the DB-ASM thesis [33, 47]. Accordingly, we assume that states of DB-ASMs are meta-
finite structures which include a minimum background of computation as required by the
background postulate in the axiomatization of database transformations in [33, 47] (note
that this is essentially the same background that is required in the parallel ASM thesis
[5, 6, 15]). That is, every state of a DB-ASM includes:

• An infinite reserve of values not used in a current state, but available to be added
to the active domain in any state transition.

• Boolean values (true and false), Bolean operations (¬, ∧, ∨ and →), and the unde-
finedness value (undef).

• A pairing constructor and a multiset constructor together with necessary operators
on tuples and multisets.

12

The bounded exploration postulate in the DB-ASM thesis [33, 47], as well as the
bounded exploration postulates in Gurevich’s sequential ASM thesis [21] and in the new
parallel ASM thesis [15] (which simplifies the parallel ASM thesis of Blass and Gurevich [5,
6]), are motivated by the accessibility principle, which can be defined as the prerequisite
that each location of a state must be uniquely identifiable. In fact, unique identifiability
also applies to databases as emphasised by Beeri and Thalheim in [4], and has to be claimed
for the basic updatable units in a database, for example, objects in [32]. The accessibility
principle is also a fundamental assumption used in the characterization proofs of the DB-
ASM thesis as well as of the sequential and parallel ASM thesis. We therefore assume
that it holds for every state of the DB-ASMs.

As explained in [21], an algorithm A can access an element a of a state by using
formulae ϕ and ψ(x) such that ϕ is a sentence and x is the only free variable in ψ(x),
and the equation ψ(x) = true has a unique solution in every state S satisfying ϕ. If this
information is available, then A can evaluate ϕ at a given state S, and provided that ϕ
holds in S, point to the unique solution a of the equation ψ(x) = true. To bridge the
gap between the formula ψ(x) and the element a, a new nullary function symbol c is
introduced, where c is interpreted as the unique solution of the equation ψ(x) = true if
ϕ holds and as undef otherwise. Using this approach, any given algorithm A (database
transformation or DB-ASM for that matter) can be formalized so that it can access any
location of its states, and therefore satisfies the accessibility principle. We avoid the formal
details here as this is a well known fact in the ASM community. For the remainder of this
paper, we simply assume that every element a of a state S can be accessed by producing
an appropriate nullary function symbol ca.

5.1. Syntax of Rules

For simplicity, we consider function arguments as tuples. That is, if f is an n-ary
function and t1, . . . , tn are arguments for f , we write f(t) where t is a term which evaluates
to the tuple (t1, . . . , tn). Let t and s denote terms in TΥ,Xdb

, f a dynamic function symbol
in Υ and let ϕ denote an LFO-formula of vocabulary Υ. The set of DB-ASM rules over
Υ is inductively defined as follows:

• assignment rule: update the content of f at the argument t to s;

f(t) := s

• conditional rule: execute the rule r if ϕ is true; otherwise, do nothing;

if ϕ then r endif

• forall rule: execute the rule r in parallel for each x satisfying ϕ;

forall x with ϕ do r enddo

• choice rule: choose a value of x that satisfies ϕ and then execute the rule r;

choose x with ϕ do r enddo

13

• parallel rule: execute the rules r1 and r2 in parallel;

par r1 r2 endpar

• sequence rule: first execute the rule r1 and then execute the rule r2;

seq r1 r2 endseq

• let rule: aggregates, using the location operator ρ, all updates to the location (f, t)
yielded by r (see definition of location and location operator in Section 5.2 next);

let (f, t)⇀ρ in r endlet

Notice that all variables appearing in a DB-ASM rule are database variables that must be
interpreted by values in Bdb. A rule r is closed if all variables of r are bounded by forall
and choice rules.

5.2. Update Sets and Multisets

In the ASM literature [9], locations, updates, update sets and update multisets are
the key concepts used to formalise the dynamics of computations. Thus, similar to ASMs
[9], DB-ASMs can be understood as an extension of finite state machines which proceed
by transitions from states to successor states through updates. In a state of a DB-ASM,
updatable dynamic functions are called locations, which are distinguished from static func-
tions that cannot be updated. Informally, such locations represent the abstract concept
of basic object containers, such as memory units. During each transition step, a DB-ASM
produces a set or multiset of updates that are used to change location contents in a state,
and location contents in a DB-ASM can only be changed by such updates.

Let S be a state over Υ, f ∈ Υ be a dynamic function symbol of arity n and a1, ..., an
be elements in Bdb or Ba depending on whether f ∈ Υdb∪Fb or f ∈ Υa, respectively. Then
(f, (a1, ..., an)) is called a location of S. An update of S is a pair (`, b), where ` is a location
and b ∈ Bdb or b ∈ Ba, depending on whether f ∈ Υdb or f ∈ Υa ∪ Fb, respectively, is the
update value of `. To simplify notations, we write (f, (a1, . . . , an), b) for the update (`, b)
with the location ` = (f, (a1, . . . , an)). The interpretation of ` in S is called the content
of ` in S, denoted by valS(`). An update set U is a set of updates; an update multiset
Ü is a multiset of updates. A location operator ρ is a multiset function that returns a
single value from a multiset of values, e.g. Average, Count, Sum, Max and Min used
in SQL. An update set U is called consistent if it does not contain conflicting updates,
i.e., for all (`, b), (`, b′) ∈ U we have b = b′. Likewise, we say that an update multiset
Ü is consistent if its corresponding update set U , obtained by setting the multiplicity of
each element (update) in Ü to 1, is a consistent update set. Otherwise, we say that Ü
is inconsistent. If U is a consistent update set, then there exists a unique state S + U
resulting from updating S with U . We have

valS+U (`) =

{
b if (`, b) ∈ U
valS(`) otherwise

14

If U is not consistent, then S + U is undefined.
To illustrate the concepts of location operator, update sets and update multisets, we

provide the following example in which parallel computations are synchronised by using a
let rule.

Example 5.1. Consider the relation Route in Fig. 6 and the two DB-ASMs presented
in Fig. 7.

FromCid ToCid Distance

c1 c2 d1

c1 c5 d4

c2 c3 d2

c1 c4 d1

Figure 6: A relation Route

let (`num, ())⇀sum in
forall x1, x2 with ∃x3(Route(x1, x2, x3)) do

`num := 1
enddo

endlet

(a) First DB-ASM

forall x1, x2 with ∃x3(Route(x1, x2, x3)) do
`num := 1

enddo

(b) Second DB-ASM

Figure 7: Two DB-ASMs

The first DB-ASM in Fig. 7.(a) computes the total number of routes in the relation
Route. Here sum is a location operator assigned to the location (`num, ()). In a state
containing the relation Route in Fig.6, the forall sub-rule yields the update multiset
{{(`num, (), 1), (`num, (), 1), (`num, (), 1), (`num, (), 1)}} and the update set {(`num, (), 1)}. In
turn the let rule (and thus the DB-ASM) yields the corresponding update set {(`num, (), 4)},
which results from the aggregation produced by the location operator sum of the four up-
dates to the location (`num, ()) that appear in the multiset produced by the forall rule.
Since the second DB-ASM in Fig. 7.(b) has no location operator associated with the
location (`num, ()) and the forall rule yields the same update multiset and update set as
before, this second DB-ASM produces the update set {(`num, (), 1)} instead.

15

5.3. Semantics of Rules

The semantics of DB-ASM rules is defined in terms of update multisets and update
sets. More specifically, each DB-ASM rule is associated with a set of update multisets,
which then “collapses” to a set of update sets. Thus, if r is a DB-ASM rule of signature Υ
and S is a state of Υ, then we associate a set ∆(r, S, ζ) of update sets and a set ∆̈(r, S, ζ)
of update multisets with r and S, respectively, where ζ is a variable assignment.

Let ζ[x 7→ a] denote the variable assignment which coincides with ζ except that it
assigns the value a to x. We formally define the sets of update sets and sets of update
multisets yielded by DB-ASM rules in Fig. 8 and Fig. 9, respectively. Assignment rules
create updates in update sets and multisets. Choice rules introduce non-determinism.
Each choice rule generates a set of update sets and a corresponding set of update multisets
which contain all the different update sets and multisets, respectively, corresponding to all
possible choices. Let rules aggregate updates to the same location into a single update by
means of location operators. All other rules only rearrange updates into different update
sets and multisets.

Lemma 5.1. For each state S, each DB-ASM rule r and each variable assignment ζ from
Xdb to the base set Bdb of the database part of S, the following holds:

1. ∆(r, S, ζ) and ∆̈(r, S, ζ) are finite sets.

2. Each U ∈ ∆(r, S, ζ) is a finite update set.

3. Each Ü ∈ ∆̈(r, S, ζ) is a finite update multiset.

Proof. (Sketch). We use structural induction on r. The case of the assignment rule is
obvious, as a single update will be created.

The conditional rule either produces exactly the same update sets and multisets as
before or a single empty update set and multiset, respectively. For the forall rule the set
V = {a ∈ Bdb | [[ϕ]]S,ζ[x7→a] = true} is finite, because x ranges over the finite set Bdb.

The stated finiteness then follows by induction, as ∆(r, S, ζ) and ∆̈(r, S, ζ) are finite sets,
all U ∈ ∆(r, S, ζ) and all Ü ∈ ∆̈(r, S, ζ) are finite, and the new update sets and update
multisets are built by set and multiset unions, respectively, that range over the finite set
V .

For all other rules, the individual update sets and multisets are built by ∪,], � and
aggregation with location operators applied to finite update sets and multisets, which
gives the statements 2 and 3. Furthermore, the sets of update sets and update multisets,
respectively, are built by comprehensions that range over finite sets. Hence they are finite
as well, which gives statement 1 and completes the proof.

A Database Abstract State Machine (DB-ASM) M over signature Υ consists of

• a set S of states over Υ, non-empty subsets SI ⊆ S of initial states and SF ⊆ S of
final states,

16

• ∆(f(t):=s, S, ζ) = {{(f, a, b)}} where a = valS,ζ(t) and b = valS,ζ(s)

• ∆(if ϕ then r endif , S, ζ) =

{
∆(r, S, ζ) if [[ϕ]]S,ζ = true

{∅} otherwise

• ∆(forall x with ϕ do r enddo, S, ζ)=
{U1 ∪ · · · ∪ Un | Ui ∈ ∆(r, S, ζ[x 7→ ai])},
where {a1, . . . , an} = {ai ∈ Bdb | [[ϕ]]S,ζ[x 7→ai] = true}

• ∆(choose x with ϕ do r enddo, S, ζ) =⋃
a∈Bdb

{∆(r, S, ζ[x 7→ a]) | [[ϕ]]S,ζ[x 7→a] = true}

• ∆(par r1 r2 endpar, S, ζ) =
{U1 ∪ U2 | U1 ∈ ∆(r1, S, ζ) and U2 ∈ ∆(r2, S, ζ)}

• ∆(seq r1 r2 endseq, S, ζ) =
{U1 � U2 | U1 ∈ ∆(r1, S, ζ) is consistent and U2 ∈ ∆(r2, S + U1, ζ)}∪
{U1 ∈ ∆(r1, S, ζ) | U1 is inconsistent},
where U1 � U2 = U2 ∪ {(`, a) ∈ U1 | ` 6= `′ for all (`′, a′) ∈ U2}

• ∆(let (f, t)⇀ρ in r endlet, S, ζ) =
{{(`, a) | a = ρ({{b | (`, b) ∈ Ü}})} ∪ {(`′, a) ∈ Ü | `′ 6= `} | Ü ∈ ∆̈(r, S, ζ)}
where ` = (f, valS,ζ(t))

Figure 8: Update sets of DB-ASM rules

• a closed DB-ASM rule r over Υ, and

• a binary successor relation δ over S determined by r, i.e.

δ = {(S, S + U)|U ∈ ∆(r, S) consistent},

where the set ∆(r, S) (ζ is omitted from ∆(r, S, ζ) since r is closed) of update sets yielded
by rule r over the state S defines the successor relation δ of M . A run of M is a finite
sequence S0, . . . , Sn of states with S0 ∈ SI , Sn ∈ SF , Si /∈ SF for 0 < i < n, and
(Si, Si+1) ∈ δ for all i = 0, . . . , n− 1.

17

• ∆̈(f(t):=s, S, ζ) = {{{(f, a, b)}}} where a = valS,ζ(t) and b = valS,ζ(s)

• ∆̈(if ϕ then r endif , S, ζ) =

{
∆̈(r, S, ζ) if [[ϕ]]S,ζ = true

{{{}}} else

• ∆̈(forall x with ϕ do r enddo, S, ζ)=
{Ü1] · · ·] Ün | Üi ∈ ∆̈(r, S, ζ[x 7→ ai])},
where {a1, . . . , an} = {ai ∈ Bdb | [[ϕ]]S,ζ[x 7→ai] = true}

• ∆̈(choose x with ϕ do r enddo, S, ζ) =⋃
a∈Bdb

{∆̈(r, S, ζ[x 7→ a]) | [[ϕ]]S,ζ[x 7→a] = true}

• ∆̈(par r1 r2 endpar, S, ζ) =
{Ü1] Ü2 | Ü1 ∈ ∆̈(r1, S, ζ) and Ü2 ∈ ∆̈(r2, S, ζ)}

• ∆̈(seq r1 r2 endseq, S, ζ) =
{Ü1 � Ü2 | Ü1 ∈ ∆̈(r1, S, ζ) is consistent and Ü2 ∈ ∆̈(r2, S + U1, ζ)}∪
{Ü1 ∈ ∆̈(r1, S, ζ) | Ü1 is inconsistent},
where Ü1 � Ü2 = Ü2] {{(`, a) ∈ Ü1 | ` 6= `′ for all (`′, a′) ∈ Ü2}}

• ∆̈(let (f, t)⇀ρ in r endlet, S, ζ) =
{{{(`, a) | a = ρ({{b | (`, b) ∈ Ü}})}}] {{(`′, a) ∈ Ü | `′ 6= `}} | Ü ∈ ∆̈(r, S, ζ)}
where ` = (f, valS,ζ(t))

Figure 9: Update multisets of DB-ASM rules

6. A Logic for DB-ASMs

In this section we introduce a logic for DB-ASMs. This logic for DB-ASMs, which we
denote as Ldb, is built as an extension of the logic LFO of meta-finite structures used in
the formalization of DB-ASMs (see Section 4).

We start with an informal introduction which highlights the main characteristics of
Ldb and provides some illustrative examples. Then we proceed to introduce its formal
syntax and semantics.

Same as in the logic of meta-finite structures LFO, in Ldb we distinguish between
database terms which are interpreted in the finite primary part of the states of DB-ASMs,
and algorithmic terms which are interpreted in the possible infinite secondary part. The

18

set Ta of algorithmic terms needs however to be extended with first-order variables which
range over the secondary part of the state and with a new kind of term (the ρ-terms).

ρ-terms are terms of the form ρv(t|ϕ) where ρ is a multiset operator, t is a term in Ta, v
is a variable which ranges either over the primary or secondary part of the state, and ϕ is a
Ldb formula. They are interpreted by the value resulting of applying the multiset operator
ρ to the multiset resulting of collecting the values of t under all valuations that satisfy
ϕ. The need for ρ-terms arises from the fact that DB-ASMs are able to collect updates
yielded in parallel computations under the multiset semantics, i.e., update multisets, and
then aggregate updates in an update multiset to an update set by using location operators.

Example 6.1. Consider the relation Route in Fig. 1. The following aggregate queries
are expressible by means of ρ-terms.

• Q1: Calculate the total number of direct routes.

Countx(1 | ∃yz(Route(x, y, z)))

In an SQL database, Q1 can be expressed by the following SQL statement:

SELECT count(*) FROM Route

• Q2: Find the maximum number of direct connections of any city in the database.

Maxx(County′(1 | ∃z(Route(x, y′, z))) | ∃yz(Route(x, y, z)))

In a similar way, Q2 can be expressed by the following SQL statement:

SELECT max(NumofConnections)

FROM (SELECT Cid, count(*) as NumofConnections

FROM Route

GROUP BY Cid)

Due to the importance of non-determinism for enhancing the expressive power of
database transformations, DB-ASMs include a non-deterministic choice rule. Conse-
quently, it is no longer enough to consider the individual updates associated to the unique
update set produced by a rule of a deterministic ASM, as it is the case in the logic for
ASMs [39] of Nanchen and Stärk. Instead, the logic Ldb needs to be able to describe
properties of the different update sets (and multisets) which can be associated to a given
DB-ASM rule. That is, the logic Ldb should allow us to handle multiple update sets, since
a non-deterministic DB-ASM rule can produce a possible different update set for each of
the possible choices.

19

A natural and concise way of handling update sets (and multisets) is by means of
second-order variables and second-order quantification. We therefore include both in the
language of Ldb, albeit with a Henkin’s semantics instead of the standard Tarski’s se-
mantics, so that we can avoid the well known incompleteness result of second-order logic.
For the same reason we additionally include the multi-modal operator [X], where X is
a second-order variable of arity 3. The intended meaning of a formula [X]ϕ is that ϕ is
true in the state obtained by applying the updates in X to the current state. In turn, to
express that X is the update set produced by a rule r, we also include atomic formulae of
the form upd(r,X) to the language of Ldb.

In order to encode update sets into second-order variables, we need to make some
assumptions more precise.

Definition 6.1. Given a DB-ASM of some schema Υ, we extend the sub-schema Υa of
the algorithmic part with a new nullary and static function symbol (constant) cfi for each
dynamic function fi ∈ Υ. We assume that in every state S, these new constant symbols
are interpreted by arbitrary, but pairwise different values. That is, if cfi and cfj are among

the new constant symbols, then cSfi 6= cSfj .

Let S be a state of this extended signature Υ, let ζ be a variable assignment into
S, let X be a second-order variable of arity 3 and let U = {(fi, a1, a2) | (a0, a1, a2) ∈
ζ(X) and a0 = cSfi}. We say ζ(X) represents U if U constitutes an update set for S and

(a0, a1, a2) ∈ ζ(X) iff a0 = cSf for some dynamic function f ∈ Υ and (f, a1, a2) ∈ U .

As noted earlier, the multiset semantics allows DB-ASMs to collect updates yielded in
parallel computations, i.e., update multisets. This multiset semantics is handled via the
inclusion of atomic formulae of the form upm(r,X). In this case, the intended meaning
is that upm(r,X) is true if X is a second-order variable of arity 4 which represents an
update multiset yielded by the rule r. We say that X represents an update multiset Ü
iff for every update (f, a0, a1) ∈ Ü with multiplicity n > 0 there are exactly n distinct
b1, . . . , bn such that (f, a0, a1, bi) ∈ X and vice versa.

Example 6.2. Consider Example 3.1 and the corresponding DB-ASM depicted in Fig. 5.
Let r denote the main rule of the DB-ASM and S denote one of its states. The following
formulae illustrate how the logic Ldb can be used to express desirable properties of this
DB-ASM.

1. If the rule r over S yields an update set U containing an update (Visited, x,True),
then for every neighbour city y of x, the (current) shortest distance in state S + U
(calculated by the algorithm) between y and c is no longer Infinity. Representing
U by the second-order variable X, we obtain:

∃Xx
(

upd(r,X) ∧X(cVisited, x,True)→

[X]∀yz(Route(x, y, z)→ Dist(y) 6= Infinity)
)

20

2. If in the current state S, the distance between a non-visited (by the algorithm) city x
and c is minimal among the non-visited cities, then there is an update set U yielded
by the rule r in state S which updates the status of x to visited. Representing U by
the second-order variable X, we obtain:

∃x
(
¬Visited(x) ∧ ∀y

(
¬Visited(y)→ Dist(x) ≤ Dist(y)

)
→

∃X(upd(r,X) ∧ [X]Visited(x))
)

3. If the current state S is not an initial nor a final state and U is an update set yielded
by the rule r in S, then the value of MDist in the successor state S + U equals
the distance between c and the closest unvisited (by the algorithm in state S) city.
Representing U by the second-order variable X and using a ρ-term with location
operator Min, we obtain:

∀X
(
¬Initial ∧ ∃xy(City(x, y) ∧ ¬Visited(x)) ∧ upd(r,X)→

[X]MDist = Minx
(
Dist(x) | ∃y(City(x, y) ∧ ¬Visited(x))

))
4. If the current state S is not an initial nor a final state and U is an update set yielded by

the rule r in S, then every update multiset Ü yielded by r in S contains at least one
update (MDist, (), ai) such that ai coincides with the value stored in the location
(MDist, ()) in the successor state S+U and ai ≤ aj for every update (MDist, (), aj)
in Ü . Representing U and Ü by the second-order variables X and Y , respectively,
we obtain:

∀X
(
¬Initial ∧ ∃xy(City(x, y) ∧ ¬Visited(x)) ∧ upd(r,X)→

∀Y
(
upm(r, Y)→ ∃xy(Y (cMDist, (), x, y) ∧ [X]MDist = x∧

∀x′y′(Y (cMDist, (), x
′, y′)→ x ≤ x′))

))
6.1. Syntax

The set of database and algorithmic terms of the logic Ldb is defined as follows.

Definition 6.2. Let Υ = Υdb ∪ Υa ∪ Fb be a signature of meta-finite states and let
Λ denote a set of location operators. Fix a countable set X = Xdb ∪ Xa of first-order
variables. Variables in Xdb, denoted with standard lowercase letters x, y, z, . . ., range over
the database part of meta-finite states (i.e., the finite base set Bdb), whereas variables in
Xa, denoted with typewriter-style lowercase letters x, y, z, . . ., range over the algorithmic
part of meta-finite states (i.e. the possible infinite base set Ba). The set of terms of Ldb
is formed by the set Tdb of database terms and the set Ta of algorithmic terms as defined
by the following rules:

• If x ∈ Xdb, then x is a database term in Tdb.

21

• If x ∈ Xa, then x is an algorithmic term in Ta.

• If f ∈ Υdb and t ∈ Tdb, then f(t) is a database term in Tdb.

• If f ∈ Fb and t ∈ Tdb, then f(t) is an algorithmic term in Ta.

• If f ∈ Υa and t ∈ Ta, then f(t) is an algorithmic term in Ta.

• If ρ is a location operator in Λ, ϕ is Ldb-formula (as in Definition 6.3 below), t ∈ Ta
and v ∈ Xdb ∪ Xa, then ρv(t | ϕ) is an algorithmic term in Ta.

• Nothing else is a term in Tdb or Ta.

A pure term is defined as a term that is not a ρ-term and does not contain any sub-term
which is a ρ-term.

Next, we formally introduce the set of well formed formulae of Ldb.

Definition 6.3. Let Υ = Υdb ∪ Υa ∪ Fb be a signature of meta-finite states and let Λ
denote a set of location operators. Let Tdb and Ta be the corresponding set of database
and algorithmic terms over Υ and Λ (as per Definition 6.2). Extend the set X of first-order
variables with a countable set of second-order (relation) variables of arity r for each r ≥ 1.
The following rules define the set of well formed formulae (wff) of Ldb.

1. If s and t are terms in Tdb, then s = t is a wff.

2. If s and t are terms in Ta, then s = t is a wff.

3. If t1, . . . , tr are terms in Tdb ∪ Ta and X is a second-order variable of arity r, then
X(t1, . . . , tr) is a wff.

4. If r is a DB-ASM rule and X is a second-order variable of arity 3, then upd(r,X) is
a wff.

5. If r is a DB-ASM rule and X is a second-order variable of arity 4, then upm(r,X)
is a wff.

6. If ϕ is a wff, then (¬ϕ) is a wff.

7. If ϕ and ψ are wff’s, then (ϕ ∨ ψ) is a wff.

8. If ϕ is a wff and x ∈ Xdb, then ∀x(ϕ) is a wff.

9. If ϕ is a wff and x ∈ Xa, then ∀x(ϕ) is a wff.

10. If ϕ is a wff and X is a second-order variable, then ∀X(ϕ) is a wff.

11. If ϕ is a wff and X is a second-order variable of arity 3, then ([X]ϕ) is a wff.

12. Nothing else is a wff.

Formulae of the form ϕ ∧ ψ, ϕ → ψ, ∃x(ϕ), ∃x(ϕ) and ∃X(ϕ) are considered as
abbreviations of ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ, ¬∀x(¬ϕ), ¬∀x(¬ϕ) and ¬∀X(¬ϕ), respectively.

We say that a formula of Ldb is a pure formula if it can be defined using only the rules
1–2 and 6–9 in Definition 6.3 and does not contains any ρ-term. Notice that the formula
occurring in the if, forall and choose rules of DB-ASMs satisfy this definition, i.e., they

22

are pure formulae of Ldb. We also say that a term or formula of Ldb is static if it does
not contain any dynamic function symbol. Since static functions cannot be updated, it is
clear that the value of a static term as well as the truth value of a static formula cannot
change during the run of a DB-ASM.

The atomic formulae upd(r,X) and upm(r,X) are not strictly necessary. As shown
latter (see Lemmas 7.1 and 7.2), they can be eliminated from the language of Ldb without
affecting its expressive power.

6.2. Semantics

We use a semantics due to Henkin [24], in which the interpretation of second-order
quantifiers is part of the specification of a structure (state) rather than an invariant through
all models as in the case of the standard Tarski’s semantics.

Definition 6.4. Let Υ = Υdb ∪ Υa ∪ Fb be a signature of meta-finite states. A Henkin
meta-finite Υ-prestructure S is a meta-finite state of signature Υ and nonempty base set
B = Bdb∪Ba, which is extended with a new universe Dn of n-ary relations for each n ≥ 1,
where Dn ⊆ P(B × · · · ×B︸ ︷︷ ︸

n

).

Variable assignments into a Henkin meta-finite prestructure S are defined as usual,
except that we require that every assignment ζ satisfies the following conditions:

• If x is a first-order variable in Xdb, then ζ(x) ∈ Bdb.

• If x is a first-order variable in Xa, then ζ(x) ∈ Ba.

• If X is a second-order variable of arity n, then ζ(X) ∈ Dn.

Given a variable assignment, terms of the logic Ldb can be interpreted into a Henkin
meta-finite prestructure.

Definition 6.5. Let S be a Henkin meta-finite prestructure of signature Υ = Υdb∪Υa∪Fb
and let ζ be a variable assignment into S. If t is a term (either a database term or an
algorithmic term), then the value (interpretation) of t in S under ζ (denoted valS,ζ(t)) is
defined by the following rules:

• If t is a variable x ∈ Xdb or x ∈ Xa, then vals,ζ(t) = ζ(t).

• If t is of the form f(t′) where f ∈ Υ and t′ is a term, then vals,ζ(t) = fS(valS,ζ(t
′)).

• If t is of the form ρv(t
′ | ϕ), then

valS,ζ(t) = ρ({{valS,ζ[v 7→ai](t
′) | ai ∈ D and [[ϕ]]S,ζ[v 7→ai] = true}}),

where D = Bdb or D = Ba depending on whether v ∈ Xdb or v ∈ Xa, respectively.

23

The interpretation of Ldb-formulae into Henkin meta-finite prestructures is defined as
follows.

Definition 6.6. Let S be a Henkin meta-finite prestructure of signature Υ = Υdb∪Υa∪Fb,
extended as per Definition 6.1 with a new and different constant symbol cfi for each
dynamic function symbol fi ∈ Υ. Let ζ be a variable assignment into S. For X a second-
order variable of arity 3, we abuse the notation by writing valS,ζ(X) ∈ ∆(r, S, ζ), meaning
that there is a set U ∈ ∆(r, S, ζ) such that (f, a0, a1) ∈ U iff (cSf , a0, a1) ∈ valS,ζ(X).

Likewise, for X a second-order variable of arity 4, we write valS,ζ(X) ∈ ∆̈(r, S, ζ), meaning
that there is a multiset Ü ∈ ∆(r, S, ζ) such that (f, a0, a1) ∈ Ü with multiplicity n iff there
are exactly b1, . . . , bn pairwise different values such that (cSf , a0, a1, bi) ∈ valS,ζ(X) for every
1 ≤ i ≤ n.

If ϕ is an Ldb-formula, then the truth value of ϕ on S under ζ (denoted as [[ϕ]]S,ζ) is
either true or false and it is determined by the following rules:

• If ϕ is of the form s = t, then [[ϕ]]S,ζ =

{
true if valS,ζ(s) = valS,ζ(t);

false otherwise.

• If ϕ is of the form X(t1, . . . , tr), then

[[ϕ]]S,ζ =

{
true if (valS,ζ(t1), . . . , valS,ζ(tn)) ∈ valS,ζ(X);

false otherwise.

• If ϕ is of the form upd(r,X), then [[ϕ]]S,ζ =

{
true if valS,ζ(X) ∈ ∆(r, S, ζ);

false otherwise.

• If ϕ is of the form upm(r,X), then [[ϕ]]S,ζ =

{
true if valS,ζ(X) ∈ ∆̈(r, S, ζ);

false otherwise.

• If ϕ is of the form (¬ψ), then [[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ = false;

false otherwise.

• If ϕ is of the form (α ∨ ψ), then [[ϕ]]S,ζ =

{
true if [[α]]S,ζ = true or [[ψ]]S,ζ = true;

false otherwise.

• If ϕ is of the form ∀x(ψ), then [[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[x 7→a] = true for all a ∈ Bdb;
false otherwise.

• If ϕ is of the form ∀x(ψ), then [[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[x7→a] = true for all a ∈ Ba;
false otherwise.

24

• If ϕ is of the form ∀X(ψ), where X is a second-order variable of arity n, then

[[ϕ]]S,ζ =

{
true if [[ψ]]S,ζ[X 7→R] = true for allR ∈ Dn;

false otherwise.

• If ϕ is of the form ([X]ψ), then

[[ϕ]]S,ζ =

false if ζ(X) represents (as per Definition 6.1) an update setU

such thatU is consistent and [[ψ]]S+U,ζ = false;

true otherwise.

Remark 1. Note that if ϕ is of the from ([X]ψ), then ϕ is interpreted as true in any of the
following cases:

• ζ(X) represents an update set U which is inconsistent.

• ζ(X) does not represents an update set.

• ζ(X) represents a consistent update set U and ψ is interpreted as true in S + U .

For a sentence ϕ of Ldb to be valid in the given Henkin’s semantics, it must be true in
all Henkin meta-finite prestructures. This is a stronger requirement than saying that ϕ is
valid in the standard Tarski’s semantics. A sentence that is valid in the standard Tarski’s
semantics is true in those Henkin meta-finite prestructures for which each universe Dn is
interpreted as the set of all relations of arity n. But such a sentence ϕ might turn out to
be false in some Henkin meta-finite prestructure (i.e., ¬ϕ might evaluate to true in some
Henkin meta-finite prestructure).

Clearly, we do not want the universes Dn of the Henkin meta-finite prestructures to be
any arbitrary collections of n-ary relations. It is then reasonable to restrict our attention
to some collections of n-ary relations that we know about, because we can define them.

Definition 6.7. A Henkin meta-finite structure for a second-order language is a Henkin
meta-finite prestructure S that is closed under definability, i.e., for every formula ϕ, vari-
able assignement ζ and arity n ≥ 1, we have that

{ā ∈ An | [[ϕ]]S,ζ[a1 7→x1,...,an 7→xn] = true} ∈ Dn.

In the following, we restrict our attention to Henkin meta-finite structures. Notice
that, if M is a DB-ASM of some vocabulary Υ of meta-finite structures, we can use
Ldb formulae of the vocabulary Υ (extended with constant symbols cfi for each dynamic
function symbol fi ∈ Υ as per Definition 6.1) to express properties of M . We can then
verify these properties by evaluating the formulae over appropriate Henkin meta-finite
structures of the (extended) vocabulary Υ, and use the complete proof system which we
introduce next to derive logical consequences.

25

7. A Proof System

In this section we develop a proof system for the logic Ldb for DB-ASMs.

Definition 7.1. We say that a Henkin meta-finite structure S is a model of a formula ϕ
(denoted as S |= ϕ) iff [[ϕ]]S,ζ = true holds for every variable assignment ζ. If Ψ is a set
of formulae, we say that S models Ψ (denoted as S |= Ψ) iff S |= ϕ for each ϕ ∈ Ψ. A
formula ϕ is said to be a logical consequence of a set Ψ of formulae (denoted as Ψ |= ϕ) if
for every Henkin meta-finite structure S, if S |= Ψ, then S |= ϕ. A formula ϕ is said to
be valid (denoted as |= ϕ) if [[ϕ]]S,ζ = true in every Henkin meta-finite structure S with
every variable assignment ζ. A formula ϕ is said to be derivable from a set Ψ of formulae
(denoted as Ψ `R ϕ) if there is a deduction from formulae in Ψ to ϕ by using a set R of
axioms and inference rules.

We will define such a set R of axioms and rules in Subsection 7.4. Then we simply
write ` instead of `R. We also define equivalence between two DB-ASM rules.

Definition 7.2. Let r1 and r2 be two DB-ASM rules. Then r1 and r2 are equivalent
(denoted as r1 ≡ r2) if for every Henkin meta-finite structure S it holds that

S |= ∀X(upd(r1, X)↔ upd(r2, X)).

The substitution of a term t for a variable x in a formula ϕ (denoted as ϕ[t/x]) is defined
by the rule of substitution. That is, ϕ[t/x] is the result of replacing all free instances of x
by t in ϕ provided that no free variable of t becomes bound after substitution.

7.1. Consistency

In [39] Nanchen and Stärk use a predicate Con(r) as an abbreviation for the statement
that the rule r is consistent. As a rule r in their work is considered to be deterministic,
there is no ambiguity with the reference to the update set associated with r, i.e., each de-
terministic rule r generates exactly one (possibly empty) update set. Thus a deterministic
rule r is consistent iff the update set generated by r is consistent. However, in the logic
for DB-ASMs, the presence of non-determinism makes the situation less straightforward.

Instead, given a rule r of a signature Υ = Υdb ∪ Υa ∪ Fb of a DB-ASM, we can use
con(r,X) to expresses that X represents one of the possible update sets generated by the
rule r (which in our setting can be non-deterministic) and that X is consistent. This can
be expressed in the logic Ldb with the following formula:

con(r,X) ≡ upd(r,X) ∧ conUSet(X) (1)

26

where

conUSet(X) ≡
∧

cf∈Fdyn∧f∈Υdb

∀xyz((X(cf , x, y) ∧X(cf , x, z))→ y = z) ∧ (2)

∧
cf∈Fdyn∧f∈Υa

∀xyz((X(cf , x, y) ∧X(cf , x, z))→ y = z) ∧

∧
cf∈Fdyn∧f∈Fb

∀xyz((X(cf , x, y) ∧X(cf , x, z))→ y = z)

for Fdyn the set of constants representing the dynamic function symbols in Υ (see Defini-
tion 6.1).

As the rule r may be non-deterministic, it is possible that r yields several update sets.
Thus, we develop the consistency of DB-ASM rules in two versions:

• A rule r is weakly consistent (denoted as wcon(r)) if at least one update set generated
by r is consistent. This can be expressed as follows:

wcon(r) ≡ ∃X(con(r,X)) (3)

• A rule r is strongly consistent (denoted as scon(r)) if every update set generated by
r is consistent. This can be expressed as follows:

scon(r) ≡ ∀X(upd(r,X)→ conUSet(X)) (4)

In the case that a rule r is deterministic, the weak notion of consistency coincides with
the strong notion of consistency, i.e., wcon(r) ≡ scon(r).

7.2. Update Sets

We present the axioms for the predicate upd(r,X) of the logic Ldb. Since a DB-ASM
rules may be non-deterministic, a straightforward extension of the formalisation of upd
for the forall and parallel rules used in the logic for ASMs [39] is not sufficient in our case
(cf. Axioms U3 and U4 below with the corresponding axions in [39]).

As before, we assume that if f is a dynamic function symbol in the given signature of
meta-finite states Υ = Υdb∪Υa∪Fb, then there is a corresponding constant (static nullary
function) symbol cf ∈ Υa as per Definition 6.1. We use Fdyn to denote the set of all cf
such that f is a dynamic function symbol in Υ. In the following, S denotes an arbitrary
Henkin structure of signature Υ and B = Bdb ∪ Ba denotes the base set (domain) of the
database and algorithmic parts of S. W.l.o.g. we further assume that Bdb ∩Ba = ∅.

Let ζ be a valuation into S. In the formulation of the axioms we use the predicate
isUSet(X) to denote that ζ(X) represents an update set for S (see Definition 6.1). That
is, for every triple (a1, a2, a3) ∈ ζ(X), we have that a1 = cSf for some dynamic function

27

f ∈ Υ and a2, a3 are values of the appropriate database or algorithmic base sets depending
on whether f is a database, algorithmic or bridge function symbol.

isUSet(X) ≡∀x1x2x3

(
X(x1, x2, x3)→

∨
cf∈Fdyn∧f∈Υdb

x1 = cf

)
∧

∀x1x2x3

(
X(x1, x2, x3)→

∨
cf∈Fdyn∧f∈Υa

x1 = cf

)
∧

∀x1x2x3

(
X(x1, x2, x3)→

∨
cf∈Fdyn∧f∈Fb

x1 = cf

)
∧

∀x1x2x3(¬X(x1, x2, x3))∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))

The axioms for upd(r,X) are as follows (cf. the definition of update sets in Fig. 8):

• Our first three axioms express that X represents an update set yielded by the as-
signment rule f(t) := s iff it contains exactly one update which is (f, t, s).

U1.1: If f is a database function symbol in Υdb then

upd(f(t) := s,X)↔ isUSet(X) ∧X(cf , t, s)∧
∀x1x2x3(X(x1, x2, x3)→ x1 = cf ∧ x2 = t ∧ x3 = s)∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))

U1.2: If f is an algorithmic function symbol in Υa then

upd(f(t) := s,X)↔ isUSet(X) ∧X(cf , t, s)∧
∀x1x2x3(X(x1, x2, x3)→ x1 = cf ∧ x2 = t ∧ x3 = s)∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))

U1.3: If f is a bridge function symbol in Fb then

upd(f(t) := s,X)↔ isUSet(X) ∧X(cf , t, s)∧
∀x1x2x3(X(x1, x2, x3)→ x1 = cf ∧ x2 = t ∧ x3 = s)∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))

• Axiom U2 asserts that, if the formula ϕ evaluates to true, then X is an update set
yielded by the conditional rule if ϕ then r endif iff X is an update set yielded by
the rule r. Otherwise, the conditional rule yields only an empty update set.

U2: upd(ifϕ then r endif,X)↔ (ϕ ∧ upd(r,X))∨(
¬ϕ ∧ isUSet(X) ∧ ∀x1x2x3(¬X(x1, x2, x3))∧
∀x1x2x3(¬X(x1, x2, x3)) ∧ ∀x1x2x3(¬X(x1, x2, x3))

)
28

• Axiom U3 states that X is an update set yielded by the rule forall x with ϕ do
r enddo iff X coincides with Ua1 ∪ · · · ∪ Uan , where {a1, . . . , an} = {ai ∈ Bdb |
valS,ζ[x 7→ai](ϕ) = true} and Uai (for 1 ≤ i ≤ n) is an update set yielded by the rule
r under the variable assignment ζ[x 7→ ai]. Note that the update sets Ua1 , . . . , Uan
are encoded into the second-order variable Y of arity four.

U3: upd(forallxwithϕdo r enddo, X)↔ isUSet(X)∧
∃Y
(
∀zy1y2(X(z, y1, y2)↔ ∃x(Y (z, y1, y2, x)))∧
∀zy1y2(X(z, y1, y2)↔ ∃x(Y (z, y1, y2, x)))∧
∀zy1y2(X(z, y1, y2)↔ ∃x(Y (z, y1, y2, x)))∧
∀x
(
(ϕ→ ∃Z(upd(r, Z)∧

∀zy1y2(Z(z, y1, y2)↔ Y (z, y1, y2, x))∧
∀zy1y2(Z(z, y1, y2)↔ Y (z, y1, y2, x))∧
∀zy1y2(Z(z, y1, y2)↔ Y (z, y1, y2, x))))∧

(¬ϕ→ ∀zy1y2(¬Y (z, y1, y2, x))∧
∀zy1y2(¬Y (z, y1, y2, x))∧
∀zy1y2(¬Y (z, y1, y2, x)))

))
• Axiom U4 states that X is an update set yielded by the parallel rule par r1 r2

endpar iff it corresponds to the union of an update set yielded by r1 and an update
set yielded by r2.

U4: upd(par r1 r2 endpar, X)↔ isUSet(X)∧
∃Y1Y2

(
upd(r1, Y1) ∧ upd(r2, Y2)∧
∀zy1y2(X(z, y1, y2)↔ (Y1(z, y1, y2) ∨ Y2(z, y1, y2)))∧
∀zy1y2(X(z, y1, y2)↔ (Y1(z, y1, y2) ∨ Y2(z, y1, y2)))∧
∀zy1y2(X(z, y1, y2)↔ (Y1(z, y1, y2) ∨ Y2(z, y1, y2)))

)
• Axiom U5 asserts that X is an update set yielded by the rule choose x with ϕ do
r enddo iff it is an update set yielded by the rule r under a variable assignment
ζ[x 7→ a] which satisfies ϕ.

U5: upd(choosexwithϕdo r enddo, X)↔ ∃x(ϕ ∧ upd(r,X))

• Axiom U6 asserts that X is an update set yielded by a sequence rule seq r1 r2

endseq iff it corresponds either to an inconsistent update set yielded by rule r1, or
to an update set formed by the updates in an update set Y2 yielded by rule r2 in
a successor state S + Y1, where Y1 encodes a consistent set of updates produced by

29

rule r1, plus the updates in Y1 that correspond to locations other than the locations
updated by Y2.

U6: upd(seq r1 r2 endseq, X)↔
(
upd(r1, X) ∧ ¬conUSet(X)

)
∨(

isUSet(X)∧
∃Y1Y2(upd(r1, Y1) ∧ conUSet(Y1) ∧ [Y1]upd(r2, Y2)∧
∀zy1y2(X(z, y1, y2)↔ ((Y1(z, y1, y2) ∧ ∀x(¬Y2(z, y1, x))) ∨ Y2(z, y1, y2)))∧
∀zy1y2(X(z, y1, y2)↔ ((Y1(z, y1, y2) ∧ ∀x(¬Y2(z, y1, x))) ∨ Y2(z, y1, y2)))∧
∀zy1y2(X(z, y1, y2)↔ ((Y1(z, y1, y2) ∧ ∀x(¬Y2(z, y1, x))) ∨ Y2(z, y1, y2))))

)
• Our next axioms assert that X is an update set yielded by the rule let (f, t) ⇀ρ in r

endlet iff there is an update multiset Y yielded by the rule r that collapses into X,
when the update values to the location (f, t) which appear in Y are aggregated using
the location operator ρ, and the multiplicity of identical updates to a same location
other than (f, t) is ignored. Since ρ-terms are algorithmic terms, f can either be a
bridge or an algorithmic function symbol. Thus we have two possible cases.

U7.1: If f is an algorithmic function symbol in Υa then

upd(let (f, t)⇀ρ in r endlet, X)↔ isUSet(X) ∧ ∃Y
(
upm(r, Y)∧

∀x1x2x3

(
X(x1, x2, x3)↔

(
((x1 6= cf ∨ t 6= x2) ∧ ∃z(Y (x1, x2, x3, z)))∨

(x1 = cf ∧ x2 = t ∧ x3 = ρy(y|∃z(Y (x1, x2, y, z))))
))
∧

∀x1x2x3

(
X(x1, x2, x3)↔ ∃z(Y (x1, x2, x3, z))

)
∧

∀x1x2x3

(
X(x1, x2, x3)↔ ∃z(Y (x1, x2, x3, z))

))
U7.2: If f is a bridge function symbol in Fb then

upd(let (f, t)⇀ρ in r endlet, X)↔ isUSet(X) ∧ ∃Y
(
upm(r, Y)∧

∀x1x2x3

(
X(x1, x2, x3)↔

(
((x1 6= cf ∨ t 6= x2) ∧ ∃z(Y (x1, x2, x3, z)))∨

(x1 = cf ∧ x2 = t ∧ x3 = ρy(y|∃z(Y (x1, x2, y, z))))
))
∧

∀x1x2x3

(
X(x1, x2, x3)↔ ∃z(Y (x1, x2, x3, z))

)
∧

∀x1x2x3

(
X(x1, x2, x3)↔ ∃z(Y (x1, x2, x3, z))

))
The following lemma is a direct consequence of Axioms U1–U7.

Lemma 7.1. Each formula in the DB-ASM logic Ldb can be replaced by an equivalent
formula not containing any subformulae of the form upd(r,X).

7.3. Update Multisets

Each DB-ASM rule is associated with a set of update multisets as defined in Fig. 9. The
axioms presented in this section assert how an update multiset is yielded by a DB-ASM
rule, i.e., they define the predicate upm(r,X).

30

Same as in the axioms for update sets, we assume that if f is a dynamic function
symbol in the given signature of meta-finite states Υ = Υdb ∪ Υa ∪ Fb, then there is a
corresponding constant (static nullary function) symbol cf ∈ Υa as per Definition 6.1.
We use Fdyn to denote the set of all cf such that f is a dynamic function symbol in Υ.
Again, S denotes an arbitrary Henkin structure of signature Υ, B = Bdb ∪ Ba denotes
the base set (domain) of the database and algorithmic parts of S, and w.l.o.g. we assume
Bdb ∩Ba = ∅.

In the formulation of the axioms we use the predicate isÜSet(X) which is analogous
to the predicate isUSet(X) defined in the case of update sets. Let ζ be a valuation into S,
isÜSet(X) expresses that ζ(X) represents an update multiset set for S. That is, for every
tuple (a1, a2, a3, a4) ∈ ζ(X), we have that a1 = cSf for some dynamic function f ∈ Υ, a4 is
an arbitrary value of Ba, and a2, a3 are values of the appropriate database or algorithmic
base sets depending on whether f is a database, algorithmic or bridge function symbol.

isÜSet(X) ≡∀x1x2x3x4

(
X(x1, x2, x3, x4)→

∨
cf∈Fdyn∧f∈Υdb

x1 = cf

)
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)→

∨
cf∈Fdyn∧f∈Υa

x1 = cf

)
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)→

∨
cf∈Fdyn∧f∈Fb

x1 = cf

)
∧

∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))∧
∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))∧
∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))∧
∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))∧
∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))

The axioms for the predicate upm(r,X) are analogous to the axioms for the predicate
upd(r,X), except for the fact that we need to deal with multisets represented as relations.

• Axioms Ü1.1–Ü1.3 express that X represents an update multiset yielded by the
assignment rule f(t) := s iff it contains exactly one update with multiplicity 1, and
that update is (f, t, s).

Ü1.1: If f is a database function symbol in Υdb then

upm(f(t) := s,X)↔ isÜSet(X) ∧ ∃z
(
X(cf , t, s, z)∧

∀x1x2x3x4(X(x1, x2, x3, x4)→ x1 = cf ∧ x2 = t ∧ x3 = s ∧ x4 = z)
)
∧

∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))

31

Ü1.2: If f is an algorithmic function symbol in Υa then

upm(f(t) := s,X)↔ isÜSet(X) ∧ ∃z
(
X(cf , t, s, z)∧

∀x1x2x3x4(X(x1, x2, x3, x4)→ x1 = cf ∧ x2 = t ∧ x3 = s ∧ x4 = z)
)
∧

∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))

Ü1.3: If f is a bridge function symbol in Fb then

upm(f(t) := s,X)↔ isÜSet(X) ∧ ∃z
(
X(cf , t, s, z)∧

∀x1x2x3x4(X(x1, x2, x3, x4)→ x1 = cf ∧ x2 = t ∧ x3 = s ∧ x4 = z)
)
∧

∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))

• Axiom Ü2 asserts that, if the formula ϕ evaluates to true, then X is an update
multiset yielded by the conditional rule if ϕ then r endif iff X is an update multiset
yielded by the rule r. Otherwise, the conditional rule yields only an empty update
multiset.

Ü2: upm(ifϕ then r endif, X)↔ (ϕ ∧ upm(r,X))∨(
¬ϕ ∧ isÜSet(X) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))∧
∀x1x2x3x4(¬X(x1, x2, x3, x4)) ∧ ∀x1x2x3x4(¬X(x1, x2, x3, x4))

)
• Axiom Ü3 states that X is an update multiset yielded by the rule forall x with ϕ

do r enddo iff X coincides with Üa1] · · ·] Üan , where {a1, . . . , an} = {ai ∈ Bdb |
valS,ζ[x 7→ai](ϕ) = true} and Üai (for 1 ≤ i ≤ n) is an update multiset yielded
by the rule r under the variable assignment ζ[x 7→ ai]. Note that the update
multisets Üa1 , . . . , Üan are encoded into the second-order variable Y of arity five.
We use the informal expression “F is a bijection from X to Y ” to denote that
there is a bijection f from ζ(X) to ζ(Y) such that F (a1, a2, a3, a4, b1, b2, b3, b4, b5)
iff f((a1, a2, a3, a4)) = (b1, b2, b3, b4, b5). It is a well known fact that F can be easily
defined in first-order logic (see for instance [14]).

32

Ü3: upm(forallxwithϕdo r enddo, X)↔ isÜSet(X)∧
∃Y F

(
“F is a bijection from X to Y ”∧
∀zy1y2y3z

′y′1y
′
2y
′
3x(F (z, y1, y2, y3, z

′, y′1, y
′
2, y
′
3, x)→

(z = z′ ∧ y1 = y′1 ∧ y2 = y′2))∧
∀zy1y2y3z

′y′1y
′
2y
′
3x(F (z, y1, y2, y3, z

′, y′1, y
′
2, y
′
3, x)→

(z = z′ ∧ y1 = y′1 ∧ y2 = y′2))∧
∀zy1y2y3z

′y′1y
′
2y
′
3x(F (z, y1, y2, y3, z

′, y′1, y
′
2, y
′
3, x)→

(z = z′ ∧ y1 = y′1 ∧ y2 = y′2))∧
∀x
(
(ϕ→ ∃Z(upm(r, Z)∧

∀zy1y2y3(Z(z, y1, y2, y3)↔ Y (z, y1, y2, y3, x))∧
∀zy1y2y3(Z(z, y1, y2, y3)↔ Y (z, y1, y2, y3, x))∧
∀zy1y2y3(Z(z, y1, y2, y3)↔ Y (z, y1, y2, y3, x))))∧

(¬ϕ→ ∀zy1y2y3(¬Y (z, y1, y2, y3, x))∧
∀zy1y2y3(¬Y (z, y1, y2, y3, x))∧
∀zy1y2y3(¬Y (z, y1, y2, y3, x)))

))
• Axiom Ü4 states that X represents an update multiset yielded by the rule par r1 r2

endpar iff X represents an update multiset Ü1] Ü1 where Ü1 is an update multiset
yielded by r1 and Ü2 is an update multiset yielded by r2.

Ü4: upm(par r1 r2 endpar, X)↔ isÜSet(X)∧
∃Y1Y2

(
upm(r1, Y1) ∧ upm(r2, Y2)∧
∀zy1y2y3z

′y′1y
′
2y
′
3(Y1(z, y1, y2, y3) ∧ Y2(z′, y′1, y

′
2, y
′
3)→ y3 6= y′3)∧

∀zy1y2y3z
′y′1y

′
2y
′
3(Y1(z, y1, y2, y3) ∧ Y2(z′, y′1, y

′
2, y
′
3)→ y3 6= y′3)∧

∀zy1y2y3z
′y′1y

′
2y
′
3(Y1(z, y1, y2, y3) ∧ Y2(z′, y′1, y

′
2, y
′
3)→ y3 6= y′3)∧

∀zy1y2y3(X(z, y1, y2, y3)↔ (Y1(z, y1, y2, y3) ∨ Y2(z, y1, y2, y3)))∧
∀zy1y2y3(X(z, y1, y2, y3)↔ (Y1(z, y1, y2, y3) ∨ Y2(z, y1, y2, y3)))∧
∀zy1y2y3(X(z, y1, y2, y3)↔ (Y1(z, y1, y2, y3) ∨ Y2(z, y1, y2, y3)))

)
• Axiom Ü5 asserts that X is an update multiset yielded by the rule choose x with
ϕ do r enddo iff it is an update multiset yielded by the rule r under a variable
assignment ζ[x 7→ a] which satisfies ϕ.

Ü5: upm(choosexwithϕdo r enddo, X)↔ ∃x(ϕ ∧ upm(r,X))

• Axiom Ü6 asserts that X is an update multiset yielded by a sequence rule seq r1 r2

endseq iff it corresponds either to an inconsistent update multiset Y1 yielded by

33

rule r1, or to an update multiset formed by the updates in an update multiset Y2

yielded by rule r2 in a successor state S + U , where U is the set of updates which
appear in the multiset Y1, plus the updates in Y1 that correspond to locations other
than the locations that appear in the updates in Y2.

Ü6: upm(seq r1 r2 endseq, X)↔
(
upm(r1, X) ∧ ¬conÜSet(X)

)
∨(

isÜSet(X)∧
∃Y1Y

′
1Y2

(
upm(r1, Y1) ∧ conÜSet(Y1) ∧ isUSet(Y ′1) ∧ [Y ′1]upm(r2, Y2)∧

∀zy1y2(Y ′1(z, y1, y2)↔ ∃y3(Y1(z, y1, y2, y3)))∧
∀zy1y2(Y ′1(z, y1, y2)↔ ∃y3(Y1(z, y1, y2, y3)))∧
∀zy1y2(Y ′1(z, y1, y2)↔ ∃y3(Y1(z, y1, y2, y3)))∧
∀zy1y2y3(X(z, y1, y2, y3)↔ ((Y1(z, y1, y2, y3) ∧ ∀x1x2(¬Y2(z, y1, x1, x2)))∨

Y2(z, y1, y2, y3)))∧
∀zy1y2y3(X(z, y1, y2, y3)↔ ((Y1(z, y1, y2, y3) ∧ ∀x1x2(¬Y2(z, y1, x1, x2)))∨

Y2(z, y1, y2, y3)))∧
∀zy1y2y3(X(z, y1, y2, y3)↔ ((Y1(z, y1, y2, y3) ∧ ∀x1x2(¬Y2(z, y1, x1, x2)))∨

Y2(z, y1, y2, y3)))
))

• Our next axioms assert that X is an update multiset yielded by a let rule let (f, t)⇀
ρ in r endlet iff it corresponds to an update multiset Y yielded by the rule r except
for the updates to the location (f, t) which are collapsed into a unique update in X
by aggregating their values using the operator ρ. Again notice that a ρ-term is an
algorithmic term and thus we have to consider only two cases.

Ü7.1: If f is an algorithmic function symbol in Υa then

upm(let (f, t)⇀ρ in r endlet, X)↔ isÜSet(X) ∧ ∃Y z
(
upm(r, Y)∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔

(
((x1 6= cf ∨ t 6= x2) ∧ Y (x1, x2, x3, x4))∨

(x1 = cf ∧ x2 = t ∧ x3 = ρy(y|∃x0(Y (x1, x2, y, x0))) ∧ x4 = z)
))
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔ Y (x1, x2, x3, x4)

)
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔ Y (x1, x2, x3, x4)

))
Ü7.2: If f is a bridge function symbol in Fb then

upm(let (f, t)⇀ρ in r endlet, X)↔ isÜSet(X) ∧ ∃Y z
(
upm(r, Y)∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔

(
((x1 6= cf ∨ t 6= x2) ∧ Y (x1, x2, x3, x4))∨

(x1 = cf ∧ x2 = t ∧ x3 = ρy(y|∃x0(Y (x1, x2, y, x0))) ∧ x4 = z)
))
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔ Y (x1, x2, x3, x4)

)
∧

∀x1x2x3x4

(
X(x1, x2, x3, x4)↔ Y (x1, x2, x3, x4)

))
34

Analogous to Lemma 7.1, the following result is a straightforward consequence of
Axioms Ü1–Ü7.

Lemma 7.2. Each formula in the DB-ASM logic Ldb can be replaced by an equivalent
formula not containing any subformulae of the form upm(r,X).

7.4. Axioms and Inference Rules

We present a set of axioms and inference rules which constitute a proof system for
the logic Ldb for DB-ASMs. A good starting point is the natural formalism L2 as defined
in [27] for the relational variant of second-order logic on which Ldb is based. L2 uses the
usual axioms and rules for first-order logic, with quantifier rules applying to second-order
variables as well as first-order variables, and with the stipulation that the range of the
second-order variables includes at least all the relations definable by the formulae of the
language.

A deductive calculus for L2 is obtained by augmenting the inference rules and axioms
of first-order logic with the comprehension axiom schema SO-C (which is a form of the
Comprehension Principle of Set Theory), and with the axiom schema of universal instan-
tiation SO-UI and the inference rule of universal generalization SO-UG for second-order
variables.

SO-C ∃X∀v1, . . . , vk(X(v1, . . . , vk)↔ ϕ), where k ≥ 1, v1, . . . , vk are first-order variables
from Xdb ∪ Xa, and X is a k-ary second-order variable which does not occur free in
the formula ϕ.

SO-UI ∀X(ϕ)→ ϕ[Y/X], provided the arity of X and Y coincides.

SO-UG ψ→ϕ[Y/X]
ψ→∀X(ϕ) , provided Y is not free in ψ.

The axioms and rules of L2 together with the axioms for update sets and multisets
form the basis of the proposed proof system for the logic Ldb for DB-ASMs. The complete
list of axioms and rules is composed by:

• The Axioms SO-C, SO-UI and SO-UG of the deductive calculus L2.

• The Axioms U1–U7 in Section 7.2 which assert the properties of upd(r,X).

• The axioms Ü1–Ü7 in Section 7.3 which assert the properties of upm(r,X).

• Axiom M1 and Rules M2-M3 from the axiom system K of modal logic, which is the
weakest normal modal logic system [25]. Axiom M1 is called Distribution Axiom
of K, Rule M2 is called Necessitation Rule of K and Rule M3 is the inference rule
called Modus Ponens in the classical logic. By using these axioms and rules together,
we are able to derive all modal properties that are valid in Kripke frames.

35

M1 [X](ϕ→ ψ)→ ([X]ϕ→ [X]ψ)

M2 ϕ
[X]ϕ

M3 ϕ,ϕ→ψ
ψ

• Axiom M4 asserts that, if an update set X is not consistent, then there is no
successor state obtained after applying X over the current state and thus [X]ϕ is
interpreted as true for any formula ϕ. As applying a consistent update set X over
the current state is deterministic, Axiom M5 describes the deterministic accessibility
relation in terms of [X].

M4 ¬conUSet(X)→ [X]ϕ

M5 ¬[X]ϕ→ [X]¬ϕ

• Axiom M6 is called Barcan Axiom. It originates from the fact that all states in
a run of a DB-ASM have the same base set, and thus the quantifiers in all states
always range over the same set of elements.

M6 ∀v([X]ϕ) → [X]∀v(ϕ), where v stands for any first-order variable in Xdb ∪ Xa
or any second-order variable.

• Axioms M7 and M8 assert that the interpretation of static and pure formulae is
the same in all states of a DB-ASM, which is not affected by the execution of any
DB-ASM rule r.

M7 ϕ ∧ upd(r,X)→ [X]ϕ, for static and pure ϕ

M8 con(r,X) ∧ [X]ϕ→ ϕ, for static and pure ϕ

• Axioms A1.1–A1.3 assert that, if a consistent update set X does not contain any
update to a given location, then the content of that location in a successor state
obtained after applying X remains unchanged. Axioms A2.1–A2.3 assert that, if a
consistent update set X contains an update (f, a, b), then the content of the location
(f, a) in the successor state obtained after applying X is equal to b. Axiom A3 says
that, if a DB-ASM rule r yields an update multiset, then the rule r also yields an
update set.

A1.1 If f is a database function symbol,
conUSet(X) ∧ ∀z(¬X(cf , x, z)) ∧ f(x) = y → [X]f(x) = y

A1.2 If f is an algorithmic function symbol,
conUSet(X) ∧ ∀z(¬X(cf , x, z)) ∧ f(x) = y→ [X]f(x) = y

36

A1.3 If f is a bridge function symbol,
conUSet(X) ∧ ∀z(¬X(cf , x, z)) ∧ f(x) = y→ [X]f(x) = y

A2.1 If f is a database function symbol,
conUSet(X) ∧X(cf , x, y)→ [X]f(x) = y

A2.2 If f is an algorithmic function symbol,
conUSet(X) ∧X(cf , x, y)→ [X]f(x) = y

A2.3 If f is a bridge function symbol,
conUSet(X) ∧X(cf , x, y)→ [X]f(x) = y

A3 upm(r,X)→ ∃Y (upd(r, Y))

• The following are axiom schemes from first-order logic.

P1 ϕ→ (ψ → ϕ)

P2 (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

P3 (¬ϕ→ ¬ψ)→ (ψ → ϕ)

• The standard axiom of universal instantiation UI of the classical first-order calcu-
lus needs to be restricted to static terms (which do not contain dynamic function
names). Otherwise, if we substitute a term t for a variable x, then t can be evalu-
ated in different states due to sequential composition of transition rules. The rule of
universal generalization UG is the same as in the classical first-order calculus and
applies to both types of first-order variables. An analogous axiom and inference rule
can be added for ∃. This however is not necessary since in this paper ∃ is viewed as
an abbreviation of ¬∀¬.

UI ∀v(ϕ(v))→ ϕ[t/v] if ϕ is pure or t is static, t is a database term or an algorithmic
term depending on whether v is a first-order variable in Xdb or Xa, respectively,
and t is free for v in ϕ(v).

UG ψ→ϕ[v′/v]
ψ→∀v(ϕ) if v and v′ are first-order variables of a same type, i.e., both belong

to Xdb or both belong to Xa, and v′ is not free in ψ.

• The following are the equality axioms adapted from first-order logic with equality.
Axiom EQ1 asserts the reflexivity property, Axiom EQ2 asserts the substitutions
for functions, Axiom EQ3 asserts the substitutions for second-order variables, and
Axiom EQ4 asserts the substitutions for ρ-terms. Again, terms occurring in the ax-
ioms are restricted to be static, which do not contain any dynamic function symbols.

EQ1 t = t for static term t.

37

EQ2 t1 = tn+1 ∧ ... ∧ tn = t2n → f(t1, ..., tn) = f(tn+1, ..., t2n) for any function f
and static terms ti (i = 1, ..., 2n).

EQ3 t1 = tn+1 ∧ ... ∧ tn = t2n → (X(t1, ..., tn) ↔ X(tn+1, ..., t2n)) for any second-
order variable X and static terms ti (i = 1, ..., 2n).

EQ4 t1 = t2 ∧ (ϕ1 ↔ ϕ2) → ρv(t1|ϕ1) = ρv(t2|ϕ2) for pure formulae ϕ1 and ϕ2,
static terms t1 and t2, and v a first-order variable.

• The following axiom is taken from dynamic logic. It asserts that that executing a
sequence rule is equivalent to executing its sub-rules sequentially.

DY1 ∃X(upd(seq r1 r2 endseq, X) ∧ [X]ϕ)↔
∃X1(upd(r1, X1) ∧ [X1]∃X2(upd(r2, X2) ∧ [X2]ϕ))

• Axiom E is the extensionality axiom. Recall that r1 ≡ r2 if for every Henkin meta-
finite structure S it holds that S |= ∀X(upd(r1, X) ↔ upd(r2, X)) (see Defini-
tion 7.2).

E r1 ≡ r2 → (∃X1(upd(r1, X1) ∧ [X1]ϕ)↔ ∃X2(upd(r2, X2) ∧ [X2]ϕ))

The following soundness theorem for the proof system is relatively straightforward,
since the non-standard axioms and rules are just a formalisation of the definitions of the
semantics of rules, update sets and update multisets.

Theorem 7.3. Let ϕ be a formula and let Φ be a set of formulae in the logic Ldb for
DB-ASMs. If Φ `L2 ϕ, then Φ |= ϕ.

8. Derivation

In this section we present some properties of the logic for DB-ASMs which are implied
by the axioms and rules from the previous section. This includes some properties known
for the logic for ASMs [39]. In particular, the logic for ASMs uses the modal expressions
[r]ϕ and 〈r〉ϕ with the following semantics:

• [[[r]ϕ]]S,ζ =

{
true if [[ϕ]]S+U,ζ = true for all consistent U ∈ ∆(r, S, ζ),

false otherwise

• [[〈r〉ϕ]]S,ζ =

true if [[ϕ]]S+U,ζ = true for at least one consistent

U ∈ ∆(r, S, ζ),

false otherwise

38

Instead of introducing modal operators [] and 〈 〉 for a DB-ASM rule r, we use the
modal expression [X]ϕ for an update set yielded by a possibly non-deterministic rule. The
modal expressions [r]ϕ and 〈r〉ϕ in the logic for ASMs can be treated as the shortcuts for
the following formulae in our logic.

[r]ϕ ≡ ∀X(upd(r,X)→ [X]ϕ). (5)

〈r〉ϕ ≡ ∃X(upd(r,X) ∧ [X]ϕ). (6)

Lemma 8.1. The following axioms and rules used in the logic for ASMs are derivable in
the logic for DB-ASMs, where the rule r in Axioms (c) and (d) is assumed to be defined
and deterministic.

(a) ([r](ϕ→ ψ) ∧ [r]ϕ)→ [r]ψ

(b) ϕ→ [r]ϕ, for static and pure ϕ.

(c) ¬wcon(r)→ [r]ϕ

(d) [r]ϕ↔ ¬[r]¬ϕ

Proof. We can prove them as follows:

• (a): By Equation 5, we have that [r](ϕ → ψ) ∧ [r]ϕ ≡ ∀X(upd(r,X) → [X](ϕ →
ψ)) ∧ ∀X(upd(r,X) → [X]ϕ). By the axioms from classical logic, this is in turn
equivalent to ∀X(upd(r,X) → ([X](ϕ → ψ) ∧ [X]ϕ)). Then by Axiom M1, we get
∀X(upd(r,X) → (([X]ϕ → [X]ψ) ∧ [X]ϕ)). Finally, by rule M3 (Modus Ponens),
we derive ∀X(upd(r,X) → [X]ψ), which by Equation 5 is equivalent to [r]ψ in the
logic for ASMs.

• (b): By Rule M7, we have that ϕ → upd(r,X) ∧ [X]ϕ, for static and pure ϕ.
By the universal generalization rule for second-order variables (SO-UG), we obtain
ϕ → ∀X(upd(r,X) ∧ [X]ϕ). Finally, Equation 5 gives us ϕ → [r]ϕ for static and
pure ϕ.

• (c): By Equation 3, we have ¬wcon(r)↔ ¬∃X(con(r,X)). In turn, by Equation 1,
we get ¬wcon(r) ↔ ¬∃X(upd(r,X) ∧ conUSet(X)). Since a rule r in the logic for
ASMs is deterministic, we get ¬wcon(r) ↔ ¬conUSet(X). By Axiom M4, we get
¬wcon(r)→ [r]ϕ.

• (d): By Equation 5, we have ¬[r]¬ϕ ≡ ∃X(upd(r,X) ∧ ¬[X]¬ϕ). By applying Ax-
iom M5 to ¬[X]¬ϕ, we get ¬[r]¬ϕ ≡ ∃X(upd(r,X) ∧ [X]ϕ). When the rule r is
deterministic, the interpretation of ∀X(upd(r,X)→ [X]ϕ) coincides the interpreta-
tion of ∃X(upd(r,X) ∧ [X]ϕ) and therefore [r]ϕ↔ ¬[r]¬ϕ.

39

The logic for ASMs introduced in [39] is deterministic, i.e., it excludes nondeterministic
choice rules. In contrast, our logic for DB-ASMs includes a nondeterministic choice rule.
Note that the formula Con(R) in Axiom 5 in [39] (i.e., in ¬Con(R)→ [R]ϕ) corresponds
to the weak version of consistency (i.e., wcon(r)) in the context of our logic for DB-ASMs.

Lemma 8.2. The following properties are derivable in the logic for DB-ASMs.

(e) con(r,X) ∧ [X]f(v1) = v2 → X(cf , v1, v2) ∨ (∀v3(¬X(cf , v1, v3)) ∧ f(v1) = v2), where
v1, v2, v3 ∈ Xdb if f is a database function symbol, v1, v2, v3 ∈ Xa if f is an algo-
rithmic function symbol, and v1 ∈ Xdb and v2, v3 ∈ Xa if f is a bridge function
symbol

(f) con(r,X) ∧ [X]ϕ→ ¬[X]¬ϕ

(g) [X]∃v(ϕ)→ ∃v([X]ϕ), where v ∈ Xdb ∪ Xa is a first-order variable.

(h) [X]ϕ1 ∧ [X]ϕ2 → [X](ϕ1 ∧ ϕ2)

Proof. (e) is derivable by applying Axioms A1 and A2. (f) is a straightforward result of
Axiom M5. (g) can be derived by applying Axioms M5 and M6. Regarding (h), it is
derivable by using Axioms M1-M3.

Lemma 8.3. For arbitrary terms t, s and first-order variables v1, v2 of the appropriate
type (depending on whether f is a database, algorithmic or bridge function symbol), the
following properties in [19] are derivable in the logic for DB-ASMs.

• v1 = t→ (v2 = s↔ [f(t) := s]f(v1) = v2)

• v1 6= t→ (v2 = f(v1)↔ [f(t) := s]f(v1) = v2)

In DB-ASMs, two parallel computations may produce an update multiset, in which
there are identical updates to a location assigned with a location operator. Without an
outer let rule, the rule par r r endpar could be simplified to r. This however is no longer
the case if we consider update multisets.

Example 8.1. In the DB-ASM rule below, sum is a location operator assigned to the
location (tnum,()). Two identical updates (i.e., (tnum,(),1) and (tnum,(),1)) are first
generated in an update multiset, and then aggregated into one update (tnum,(),2) in an
update set.

40

let (tnum, ())⇀sum in
par

tnum := 1
tnum := 1

endpar
endlet

The update multiset is collapsed into the update set {(tnum, (), 2)}, whereas without the
let rule we would obtain {(tnum, (), 1)}.

Following the approach of defining the predicate joinable in [39], we define the predicate
joinable over two DB-ASM rules. As DB-ASM rules are allowed to be nondeterministic, the
predicate joinable(r1, r2) means that there exists a pair of update sets without conflicting
updates, which are yielded by rules r1 and r2, respectively. Then, based on the use of
predicate joinable, the properties in Lemma 8.4 are all derivable.

joinable(r1, r2) ≡∃X1X2

(
upd(r1, X1) ∧ upd(r2, X2)∧∧

cf∈Fdyn∧f∈Υdb

∀xyz(X1(cf , x, y) ∧X2(cf , x, z)→ y = z)∧

∧
cf∈Fdyn∧f∈Υa

∀xyz(X1(cf , x, y) ∧X2(cf , x, z)→ y = z)∧

∧
cf∈Fdyn∧f∈Fb

∀xyz(X1(cf , x, y) ∧X2(cf , x, z)→ y = z)
)

(7)

Lemma 8.4. The following properties for weak consistency are derivable in the logic of
DB-ASMs.

(i) wcon(f(t) := s)

(j) wcon(ifϕ then r endif)↔ ¬ϕ ∨ (ϕ ∧ wcon(r))

(k) wcon(forallxwithϕdo r enddo)↔
∀x(ϕ→ wcon(r) ∧ ∀y(ϕ[y/x]→ joinable(r, r[y/x])))

(l) wcon(par r1 r2 endpar)↔ wcon(r1) ∧ wcon(r2) ∧ joinable(r1, r2)

(m) wcon(choosexwithϕdo r enddo)↔ ∃x(ϕ ∧ wcon(r))

(n) wcon(seq r1 r2 endseq)↔ ∃X(con(r1, X) ∧ [X]wcon(r2))

(o) If f is a bridge function symbol:
wcon(let (f, t)⇀ρ in r endlet)↔

∃XY (upd(r,X) ∧ conUSet(Y) ∧ ∀xy(Y (cf , x, y)↔ (t = x ∨X(cf , x, y)))∧
∀zxy(X(z, x, y)↔ Y (z, x, y)) ∧ ∀zxy(X(z, x, y)↔ Y (z, x, y)))

41

We omit the proof of the previous lemma as well as the proof of the remaining lemmas
in this section, since they are lengthy but relatively easy exercises. Furthermore, most of
them are similar to the proofs of the analogous results in Nanchen’s thesis [28].

Lemma 8.5. The following properties for the formula [r]ϕ are derivable in the logic for
DB-ASMs.

(p) [ifϕ then r endif]ψ ↔ (ϕ ∧ [r]ψ) ∨ (¬ϕ ∧ ψ)

(q) [choosexwithϕdo r enddo]ψ ↔ ∀x(ϕ→ [r]ψ)

Lemma 8.6 states that a parallel composition is commutative and associative while a
sequential composition is associative.

Lemma 8.6. The following properties for parallel and sequential compositions are deriv-
able in the logic for DB-ASMs.

(r) par r1 r2 endpar ≡ par r2 r1 endpar

(s) par (par r1 r2 endpar) r3 endpar ≡ par r1 (par r2 r3 endpar) endpar

(t) seq (seq r1 r2 endseq) r3 endseq ≡ seq r1 (seq r2 r3 endseq) endseq

Lemma 8.7. The extensionality axiom for transition rules in the logic for ASMs [39] is
derivable in the logic for DB-ASMs.

(u) r1 ≡ r2 → ([r1]ϕ↔ [r2]ϕ)

9. Completeness

In this section we prove the completeness of the proof system of the logic Ldb for
DB-ASMs which we introduced in the previous section.

In the following, S denotes an arbitrary Henkin meta-finite structure of signature (of
meta-finite states) Υ = Υdb ∪ Υa ∪ Fb (recall Definition 6.7. As before, B = Bdb ∪ Ba
denotes the base set (domain) of individual of S, where Bdb and Ba are the base sets of
the database and algorithmic parts, respectively, and Dn the universe of n-ary relations.

Clearly, we cannot axiomatize an arbitrary set Λ = {ρ1, . . . , ρm} of location operators.
Note that even if we just take a simple location operator such as PRODUCT and axiom-
atize it, that leads us outside linear arithmetic and thus to an incomplete theory. As a
compromise solution for this problem, we treat location (multiset) operators as standard
non-axiomatized functions as follows.

42

Definition 9.1. We assume that Υ further includes a subset ΥΛ = {fρ1 , . . . , fρm} of
static function symbols, where each fρi is interpreted in S by a corresponding function
fS
ρi

: D2 → Ba defined as follows:

fSρi(A) =

{
ρi({{a | (a, b) ∈ A}}) if {{a | (a, b) ∈ A}} ∈ dom(ρi)

undef otherwise.

We then assume that the formulae of Ldb do not include any ρ-term of the form ρv(t|ϕ).
This does not affect the expressive power of Ldb since every formula ϕ can be translated
(under the assumption made in Definition 9.1) into an equivalent formula ϕ′ which does
not use any ρ-term. We can proceed as follows. Let ρ1

v1(t1|ψ1), . . . , ρnvn(tn|ψn) be the
ρ-terms which appear in an atomic sub-formula α of ϕ. Let α′ be the following formula:

∀X1 . . . Xnv1 . . . vnz1 . . . zn

(∧
1≤i≤n

(
Xi(zi, vi)↔ (ψ′i ∧ (ti = zi)

′)
)
→ α′′

)
,

where X1, . . . , Xn, v1, . . . , vn, z1, . . . , zn are variables which do not appear free in α, ψ′i and
(ti = zi)

′ are obtained by recursively applying this procedure to every atomic sub-formula
of ψi and to ti = zi, respectively, and α′′ is obtained by replacing ρ1

v1(t1|ψ1), . . . , ρnvn(tn|ψn)
in α by fρ1(X1), . . . , fρn(Xn), respectively. Then the formula ϕ′ can be defined as the
formula obtained by replacing every atomic sub-formula α of ϕ by α′.

We can now proceed with proving the completeness of Ldb. The strategy is to show that
Ldb (with ρ-terms conveniently replaced by functions as explained above) is a syntactic
variant of a complete first-order theory of types.

Let Υ = Υdb ∪Υa ∪ Fb ∪ΥΛ be a signature of Henkin meta-finite structures. Assume
w.l.o.g. that Υdb, Υa, Fb and ΥΛ are pairwise disjoint. Let ΥT be the signature formed
by:

• The function symbols of Υ.

• Unary relations Tdb and Ta.

• For each n ≥ 1 a 1-ary relation symbol Tn.

• For each n ≥ 1 a (n+ 1)-ary relation symbol En.

Tdb(x) and Ta(x) are intended to state that x is an individual belonging to the database
part and to the algorithmic part, respectively. Likewise, Tn(x) is intended to state that
x is a relation of arity n. Finally, Tn(y1, . . . , yn, x) is intended to state that the tuple
(y1, . . . , yn) belongs to the relation x.

A Henkin meta-finite structure S of signature Υ determines a unique first-order struc-
ture S′ of vocabulary ΥT as follows:

• The domain of S′ is dom(S′) = Bdb ∪ Ba ∪
⋃
n≥1Dn, where Bdb and Ba denote the

base sets of the database and algorithmic parts of S, respectively, and Dn denotes
the universe of n-ary relations of S.

43

• The interpretation in S′ of the function symbols in ΥT∩(Υdb∪Fb) is the same as their
interpretation in S for arguments in dom(S′) ∩Bdb and it is extended arbitrarily to
arguments in dom(S′)\Bdb. Likewise, the interpretation in S′ of the function symbols
in ΥT ∩ Υa is the same as their interpretation in S for arguments in dom(S′) ∩ Ba
and it is extended arbitrarily to arguments in dom(S′) \Ba.

• The interpretation in S′ of function symbols in ΥT ∩ΥΛ is as per Definition 9.1 for
arguments in D2 and it is extended arbitrarily to arguments in dom(S′) \D2.

• Tdb is interpreted as Bdb and Ta as Ba.

• For every n ≥ 1, Tn is interpreted as Dn and En as set membership restricted to
n-tuples.

Each Ldb-formula ϕ of signature Υ can be rewritten as a first-order formula ϕ∗ of
signature ΥT , where ϕ∗ is obtained from ϕ by applying the following steps:

1. Replace each atomic formula of the form upd(r,X) and upm(r,X) by their corre-
sponding definitions using the Axioms U1–U7 and Ü1–Ü7, respectively.

2. Bring all remaining atomic formulae into the form v1 = v2, f(v2) = v1 orX(v1, . . . , vn)
(where each vi denotes an appropriate first-order variable xi or xi depending on the
context) by applying the following equivalences:

s = t ↔ ∃v1(s = v1 ∧ t = v1)

X(t1, . . . , tn) ↔ ∃v1 . . . vn(t1 = v1 ∧ · · · ∧ tn = vn ∧X(v1, . . . , vn))

f(s) = v1 ↔ ∃v2(s = v2 ∧ f(v2) = v1)

3. Eliminate all modal operators by applying the following equivalences (again where
each vi denotes an appropriate first-order variable xi or xi depending on the context):

[X]v1 = v2 ↔ (IsUSet(X) ∧ conUSet(X)→ v1 = v2)

[X]Y (v1, . . . , vn) ↔ (IsUSet(X) ∧ conUSet(X)→ Y (v1, . . . vn))

[X]f(v2) = v1 ↔ (IsUSet(X) ∧ conUSet(X)→
X(cf , v2, v1) ∨ ∀v3(¬X(cf , v2, v3) ∧ f(v2) = v1))

[X]¬ϕ ↔ (IsUSet(X) ∧ conUSet(X)→ ¬[X]ϕ)

[X](ϕ ∨ ψ) ↔ ([X]ϕ ∨ [X]ψ)

[X]∀v(ϕ) ↔ ∀v([X]ϕ)

[X]∀Y (ϕ) ↔ ∀Y ([X]ϕ)

4. Replace each atomic formula of the form X(t1, . . . , tn) by E(t1, . . . , tn, X), and rela-
tivise quantifiers over individuals in Bdb to Tdb, quantifiers over individuals in Ba to
Ta, and quantifiers over n-ary relations in Dn for some n ≥ 1 to Tn. More precisely,

44

ϕ∗ is obtained by the recurrent application of the following rules to the formula ϕ
obtained after applying steps 1–3.

(v1 = v2)∗ = v1 = v2

(Y (v1, . . . , vn))∗ = E(v1, . . . , vn, Y)

(f(v2) = v1)∗ = f(v2) = v1

(¬ϕ)∗ = ¬(ϕ∗)

(ϕ ∨ ψ)∗ = (ϕ∗ ∨ ψ∗)
(∀x(ϕ))∗ = ∀x(Tdb(x)→ ϕ∗)

(∀x(ϕ))∗ = ∀x(Ta(x)→ ϕ∗)

(∀X(ϕ))∗ = ∀X(Tn(X)→ ϕ∗) (if X has arity n)

It is then relatively easy to prove:

Lemma 9.1. A Ldb-formula ϕ is true in S iff ϕ∗ is true in S′.

Thus, if ϕ∗ is valid, then ϕ is true in all Henkin meta-finite structures. Note that the
converse does not always holds. For example, ∃x(x = x) is true in all Henkin meta-finite
structure (note that by the Background PostulateBa is not empty), but ∃x(Ta(x)∧(x = x))
is not valid. In general, not every ΥT -structure is an S′ structure for some Henkin meta-
finite Υ-structure S. Indeed, each ΥT -structure S′ which does correspond to some Henkin
meta-finite structure S satisfies the following properties (cf. [27]):

1. Υ-correctness:

• f(x1) = x2 → Tdb(x1) ∧ Tdb(x2) for every f ∈ Υdb,

• f(x1) = x2 → Tdb(x1) ∧ Ta(x2) for every f ∈ Fb,
• f(x1) = x2 → Ta(x1) ∧ Ta(x2) for every f ∈ Υa,

• f(x1) = x2 → T2(x1) ∧ Ta(x2) for every f ∈ ΥΛ.

2. Non-emptiness: ∃x(Ta(x)).

3. Disjointness: Ti(x)→ ¬Tj(x) for every i, j ∈ N ∪ {a, db} such that i 6= j.

4. Elementhood: En(x1, . . . , xn, y)→ Tn(y)∧(Tdb(x1)∨Ta(x1))∧· · ·∧(Tdb(xn)∨Ta(xn))
for every n ≥ 1.

5. Extensionality: Tn(x) ∧ Tn(y) ∧ ∀z̄(En(z̄, x)↔ En(z̄, y))→ x = y for every n ≥ 1.

6. Comprehension: ∃y∀x̄(En(x̄, y)↔ ψ) for every n ≥ 1 and y non-free in ψ.

Lemma 9.2. If A is a first-order structure of signature ΥT which satisfies properties 1–6
above and sub(A) is the sub-structure of A generated by the elements of (Tdb)

A ∪ (Ta)
A ∪⋃

n≥1(Tn)A, then sub(A) = S′ for some Henkin meta-finite structure S of signature Υ and

corresponding first-order structure S′ of signature ΥT determined by S.

45

Proof. Given A with domain dom(A), we define S as follows:

• Bdb = (Tdb)
A is the base set of the database part of S.

• Ba = (Ta)
A is the base set of the algorithmic part of S.

• For each n ≥ 1, the universe Dn of n-ary relations consists of the sets {ā ∈ (Bdb ∪
Ba)

n | (En)A(ā, s)} for all s ∈ (Tn)A.

• The interpretation of each function symbol f ∈ Υ is the same as in A but restricted
to arguments from Bdb, Ba or D2 depending on whether f belongs to Υdb, Υa ∪ Fb
or ΥΛ, respectively.

By the Υ-correctness, non-emptiness and comprehension properties of A, we get that S is
a Henkin meta-finite structure.

We claim that sub(A) is isomorphic to S′ via g : dom(S′)→ dom(sub(A)) where

g(x) =

{
x if x ∈ (Tdb)

S′ ∪ (Ta)
S′

{ā ∈ ((Tdb)
S′ ∪ (Ta)

S′
)n | (En)S

′
(ā, x)} if x ∈ (Tn)S

′

First, we get that g is well defined by the disjointness property and by the fact that, by
definition of S and S′, every element x in dom(S′) is in (Tdb)

S′∪(Ta)
S′∪

⋃
n≥1(Tn)S

′
. That

g is surjective follows from the definition of S′ from A and the fact that dom(sub(A)) is
the restriction of dom(A) to dom(S′). By the extensionality property, we get that g is
injective. By definition we get that g preserves the function symbols in Υ as well as the
relation symbols Tdb, Ta and Tn for every n ≥ 1. Finally, for every n ≥ 1, we get that g
preserves En by the elementhood property.

Let Ψ be the set of formulae listed under properties 1–6 above. We then get the
following Henkin style completeness theorem.

Theorem 9.3. A Ldb-formula ϕ is true in all Henkin meta-finite structures iff ϕ∗ is
derivable in first-order logic from Ψ (i.e., iff Ψ ` ϕ∗).

Proof. Assume that Ψ ` ϕ∗, and let S be a Henkin meta-finite structure. Then S′ |= Ψ
and therefore S′ |= ϕ∗. By Lemma 9.1, we get that S |= ϕ.

Conversely, assume that ϕ is true in all Henkin meta-finite structures. Towards showing
Ψ |= ϕ∗, let us assume that A |= Ψ, and let sub(A) be its substructure generated by the
elements of (Tdb)

A ∪ (Ta)
A ∪

⋃
n≥1(Tn)A. Then by Lemma 9.2, sub(A) = S′ for some first-

order structure S′ determined by a Henkin meta-finite structure S. Since by assumption
we have that S |= ϕ, it follows from Lemma 9.1 that S′ |= ϕ∗ and therefore sub(A) |= ϕ∗.
But each quantifier in ϕ∗ is relativised to (Tdb)

A, (Ta)
A or (Tn)A for some n ≥ 1, and then

we also have that A |= ϕ∗. We have shown that Ψ |= ϕ∗, and then, by the completeness
theorem of first-order logic, we get that Ψ ` ϕ∗.

46

We know from Theorem 7.3 that the deductive calculus L2 introduced in Section 7.4 is
sound. Thus, if ϕ is a Ldb-formula derivable in L2, then ϕ is true in all Henkin meta-finite
structures. It is then immediate from Theorem 9.3 that ϕ∗ is derivable in first-order logic
from Ψ. On the other hand, it can be proven by an easy but lengthy induction on the
length of the derivations that if ϕ∗ is derivable in first-order from Ψ, then ϕ is derivable
in L2.

Lemma 9.4. ϕ∗ is derivable in first-order from Ψ iff ϕ is derivable in L2.

Finally, Theorem 9.3 and Lemma 9.4 immediately imply that the logic Ldb is complete
to reason about DB-ASMs.

Theorem 9.5. Let ϕ be a Ldb-formula and Φ be a set of Ldb-formulae. If Φ |= ϕ, then
Φ `L2 ϕ.

10. Conclusions

This article presents a logic for DB-ASMs. In accordance with the result that DB-
ASMs and database transformations are behaviourally equivalent, it thus represents a
logical characterisation for database transformations in general.

The logic for DB-ASMs is built upon the logic of meta-finite structures. The formal-
isation of multiset operations is captured by the notion of ρ-term. The use of ρ-terms
greatly enhances the expressive power of the logic for DB-ASMs since aggregate comput-
ing in database applications can be easily expressed by using ρ-terms. On the other hand,
ρ-terms can easily lead to incompleteness if we try to axiomatize them in the proof system.
We avoid this problem by considering them as non-interpreted functions. In this way, we
cannot reason about properties of ρ-terms themselves, but we can still use them in the
formulae of our complete proof system to express meaningful properties of DB-ASMs.

As discussed in [39] and [10], the non-determinism accompanied with the use of choice
rules poses a further challenging problem. In this work, we realized that the update sets
produced by non-deterministic DB-ASMs rules are definable in a variant of second-order
logic in which the second-order quantifiers are interpreted using a Henkin semantics, thus
becoming part of the specification of a model rather than an invariant through all models
as in the case of the classical second-order semantics. Base on these definitions, we use
the modal operator [X] where X is a second-order variable that represents an update set
U generated by a (possibly non-deterministic) DB-ASM rule r. By introducing [X] into
the logic for DB-ASMs, it is shown that nondeterministic database transformations can
also be captured.

The use of a Henkin semantics in the definition of the logic Ldb for DB-ASMs allowed
us to show that Ldb is actually a syntactic variant of a complete first-order theory of types.
In turn, this allowed us to establish a sound and complete proof system for the logic for
DB-ASMs, which can be turned into a tool for reasoning about database transformations.
However, this is restricted to reasoning about steps, not full runs, but no complete logic

47

for reasoning about runs can be expected. In the future we will continue to investigate
how the logic for DB-ASMs can be tailored towards different classes of database trans-
formations such as XML data transformations and used for verifying the properties of
database transformations in practice.

References

[1] Serge Abiteboul and Paris C. Kanellakis. Object identity as a query language prim-
itive. In Proceedings of the 1989 ACM SIGMOD international conference on Man-
agement of data, pages 159–173. ACM Press, 1989.

[2] Serge Abiteboul and Victor Vianu. A transcation language complete for database
update and specification. In Moshe Y. Vardi, editor, Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
260–268. ACM, 1987.

[3] Serge Abiteboul and Victor Vianu. Datalog extensions for database queries and
updates. J. Comput. Syst. Sci., 43(1):62–124, 1991.

[4] Catriel Beeri and Bernhard Thalheim. Identification as a primitive of data models.
In Torsten Polle, Torsten Ripke, and Klaus-Dieter Schewe, editors, Fundamentals of
Information Systems, pages 19–36. Kluwer Academic Publishers, Boston Dordrecht
London, 1999.

[5] Andreas Blass and Yuri Gurevich. Abstract state machines capture parallel algo-
rithms. ACM Transactions on Computational Logic, 4(4):578–651, October 2003.

[6] Andreas Blass and Yuri Gurevich. Abstract state machines capture parallel algo-
rithms: Correction and extension. ACM Transactions on Computation Logic, 9(3):1–
32, 06 2008.

[7] Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time compu-
tation over unordered structures. The Journal of Symbolic Logic, 67(3):1093–1125,
September 2002.

[8] Anthony J. Bonner and Michael Kifer. The state of change: A survey. In International
Seminar on Logic Databases and the Meaning of Change, Transactions and Change
in Logic Databases, pages 1–36. Springer-Verlag, 1998.

[9] E. Börger and Robert F. Stärk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., 2003.

[10] Egon Börger and Robert F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

48

[11] J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. In Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, pages 612–617. IEEE Computer Society, 1989.

[12] Ashok K. Chandra and David Harel. Computable queries for relational data bases.
Journal of Computer and System Sciences, 21(2):156–178, 1980.

[13] D Fensel and R Groenboom. MLPM: Defining a semantics and axiomatization for
specifying the reasoning process of knowledge-based systems. In Proceedings of the
12th European Conference on Artificial Intelligence (ECAI-96), Budapest, Hungary,
1996.

[14] Flavio Ferrarotti, Wei Ren, and Jose Maria Turull Torres. Expressing properties in
second- and third-order logic: hypercube graphs and SATQBF. Logic Journal of the
IGPL, 22(2):355–386, 2014.

[15] Flavio Ferrarotti, Klaus-Dieter Schewe, Loredana Tec, and Qing Wang. A new thesis
concerning synchronised parallel computing - simplified parallel ASM thesis. Theor.
Comput. Sci., 649:25–53, 2016.

[16] E. Grädel and Y. Gurevich. Metafinite model theory. Information and Computation,
140(1):26–81, 1998.

[17] Erich Grädel and Martin Otto. Inductive definability with counting on finite struc-
tures. In Selected Papers from the Workshop on Computer Science Logic, pages
231–247. Springer-Verlag, 1993.

[18] R. Groenboom and G. Renardel de Lavalette. Reasoning about dynamic features in
specification languages - a modal view on creation and modification. In Proceedings of
the International Workshop on Semantics of Specification Languages (SoSL), pages
340–355. Springer-Verlag, 1994.

[19] R. Groenboom and G. Renardel de Lavalette. A formalization of evolving algebras.
In Proceedings of Accolade95. Dutch Research School in Logic, 1995.

[20] Yuri Gurevich. A new thesis (abstracts). American Mathematical Society, 6(4):317,
August 1985.

[21] Yuri Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1):77–111, July 2000.

[22] Yuri Gurevich. Abstract state machines: An overview of the project. In International
Symposium on Foundations of Information and Knowledge Systems, pages 6–13, 2004.

[23] Lauri Hella, Leonid Libkin, Juha Nurmonen, and Limsoon Wong. Logics with aggre-
gate operators. Journal of the ACM, 48(4):880–907, 2001.

49

[24] Leon Henkin. Completeness in the theory of types. J. Symbolic Logic, 15(2):81–91,
06 1950.

[25] G.E. Hughes and MJ Cresswell. A new introduction to modal logic. Burns & Oates,
1996.

[26] N. Immerman. Expressibility as a complexity measure: Results and directions. In
Proceedings of Second Conference on Structure in Complexity Theory, pages 194–202,
1987.

[27] Daniel Leivant. Higher order logic. In Dov M. Gabbay, Christopher J. Hogger, J. A.
Robinson, and Jörg H. Siekmann, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume2, Deduction Methodologies, pages 229–322. Oxford
University Press, 1994.

[28] Stanislas Nanchen. Verifying abstract state machines. PhD thesis, ETH Zürich, 2007.

[29] M. Otto. Bounded variable logics and counting – A study in finite models, volume 9.
Springer-Verlag, 1997.

[30] Martin Otto. The expressive power of fixed-point logic with counting. Journal of
Symbolic Logic, 61:147–176, 1996.

[31] G. Renardel de Lavalette. A logic of modification and creation. In Logical Perspectives
on Language and Information. CSLI publications, 2001.

[32] Klaus-Dieter Schewe and Bernhard Thalheim. Fundamental concepts of object ori-
ented databases. Acta Cybernetica, 11(1-2):49–84, 1993.

[33] Klaus-Dieter Schewe and Qing Wang. A customised ASM thesis for database trans-
formations. Acta Cybernetica, 19(4):765–805, 2010.

[34] A. Schönegge. Extending Dynamic Logic for Reasoning about Evolving Algebras.
Technical Report 49/95, Universität Karlsruhe, Fakultät für Informatik, 1995.

[35] P.A. Spruit. Logics of Database Updates. PhD thesis, Faculty of Mathematics and
Computer Science, Vrije Universiteit, Amsterdam, 1994.

[36] P.A. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer. Dynamic database logic: The first-
order case. In U.W. Lipeck and B. Thalheim, editors, Modelling Database Dynamics,
pages 103–120. Springer, 1993.

[37] Paul Spruit, Roel Wieringa, and John-Jules Meijer. Axiomatization, declarative se-
mantics and operational semantics of passive and active updates in logic databases.
Journal of Logic and Computation, 5:27–50, 1995.

50

[38] Paul Spruit, Roel Wieringa, and John-Jules Meyer. Regular database update logics.
Theoretical Computer Science, 254(1-2):591–661, 2001.

[39] Robert Stärk and Stanislas Nanchen. A logic for abstract state machines. Journal of
Universal Computer Science, 7(11), 2001.

[40] Jose Maria Turull Torres. On the expressibility and the computability of untyped
queries. Annals of Pure and Applied Logic, 108(1-3):345–371, 2001.

[41] Jose Maria Turull Torres. Relational databases and homogeneity in logics with count-
ing. Acta Cybernetica, 17(3):485–511, 2006.

[42] J. Van den Bussche. Formal Aspects of Object Identity in Database Manipulation.
PhD thesis, University of Antwerp, 1993.

[43] Jan Van den Bussche and Dirk Van Gucht. Non-deterministic aspects of object-
creating database transformations. In Selected Papers from the Fourth International
Workshop on Foundations of Models and Languages for Data and Objects, pages 3–16.
Springer-Verlag, 1993.

[44] Jan van den Bussche and Dirk van Gucht. A semideterministic approach to object
creation and nondeterminism in database queries. J. Comput. Syst. Sci., 54(1):34–47,
1997.

[45] Jan Van Den Bussche, Dirk Van Gucht, Marc Andries, and Marc Gyssens. On the
completeness of object-creating database transformation languages. Journal of the
ACM, 44(2):272–319, 1997.

[46] Pascal van Eck, Joeri Engelfriet, Dieter Fensel, Frank van Harmelen, Yde Venema,
and Mark Willems. A survey of languages for specifying dynamics: A knowledge
engineering perspective. IEEE Transactions on Knowledge and Data Engineering,
13(3):462–496, 2001.

[47] Qing Wang. Logical Foundations of Database Transformations for Complex-Value
Databases. Berlin, Germany: Logos-Verlag, 2010.

51

	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Meta-finite Structures as States
	5 Database Abstract State Machines
	5.1 Syntax of Rules
	5.2 Update Sets and Multisets
	5.3 Semantics of Rules

	6 A Logic for DB-ASMs
	6.1 Syntax
	6.2 Semantics

	7 A Proof System
	7.1 Consistency
	7.2 Update Sets
	7.3 Update Multisets
	7.4 Axioms and Inference Rules

	8 Derivation
	9 Completeness
	10 Conclusions

