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Abstract 
This work addresses the problem of energy-efficient scheduling and allocation of tasks in multicore environments, where 
the tasks can allow a certain loss in accuracy in the output, while still providing proper functionality and meeting an energy 
budget. This margin for accuracy loss is exploited by using computing techniques that reduce the work load, and thus can also 
result in significant energy savings. To this end, we use the technique of loop perforation, that transforms loops to execute 
only a subset of their original iterations, and integrate this technique into our existing optimization tool for energy-efficient 
scheduling. To verify that a schedule meets an energy budget, both safe upper and lower bounds on the energy consumption 
of the tasks involved are needed. For this reason, we use a parametric approach to estimate safe (and tight) energy bounds that 
are practical for energy verification (and optimization applications). This approach consists in dividing a program into basic 
(‘branchless’) blocks, establishing the maximal (resp. minimal) energy consumption for each block using an evolutionary 
algorithm, and combining the obtained values according to the program control flow, by using static analysis to produce 
energy bound functions on input data sizes. The scheduling tool uses evolutionary algorithms coupled with the energy bound 
functions for estimating the energy consumption of different schedules. The experiments with our prototype implementation 
were performed on multicore XMOS chips, but our approach can be adapted to any multicore environment with minor 
changes. The experimental results show that our new scheduler enhanced with loop perforation improves on the previous 
one, achieving significant energy savings (31% on average for the test programs) for acceptable levels of accuracy loss. 

1 Introduction 
It is well-known that optimization of task scheduling and allocation (for energy efficiency) in mul-
ticore environments is an NP-hard problem. However, it can often be efficiently solved in practice 
with heuristic techniques, e.g., our approach based on Evolutionary Algorithms (EAs) [4]. 
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In this work, we turn our attention to the problem of scheduling tasks optimally where such 
tasks allow introducing a certain degree of accuracy loss, and energy budgets have to be met. 
Numerous applications, such as video streaming or machine learning, can tolerate certain levels of 
accuracy loss, while still meeting the expected quality levels in the observable results. A technique 
that allows trading performance for accuracy is loop perforation [19], which in essence consists in 
skipping every n-th loop iteration, for a given n. A decrease in accuracy requirements then allows 
reductions in computational load, leading to both an increase in performance and a decrease in energy 
consumption. Thus, in this article we trade Quality of Service (QoS) for energy, since accuracy can 
be considered one aspect of QoS. More specifically, we tackle the following scheduling problem in 
multicore systems: given a set of tasks with known release times and number of cycles to compute 
them, find a proper allocation and scheduling of the tasks (allowing task migration), as well as a 
(V,f ) assignment (i.e. a voltage and frequency pair) for the cores, in such a way that the total energy 
consumption is minimized (ensuring that a given energy budget is met), and accuracy is maximized 
(ensuring that a minimal acceptable accuracy level is also met). 

In our approach, different levels of accuracy are achieved by applying the loop perforation tech­
nique with different values for the parameter n mentioned above. Hence, we deal with two competing 
objectives: accuracy and energy. Accuracy is defined in terms of deviation of the output after apply­
ing the loop perforation. To estimate the energy consumption corresponding to a given schedule, 
and to be able to verify/certify that an energy budget is met, we use a technique that infers safe 
upper and lower bounds on the energy consumed by each of the tasks involved. 

Our previous work [3] used average energy models, which give an average energy consumption of 
each task in a schedule and hence an average energy consumption of the whole schedule. Herein we 
extend our energy-efficient scheduling algorithm by using upper- and lower-bound energy models 
that provide safe upper and lower bounds on the energy consumption of each task and hence on the 
whole schedule. Such bounds on task energy consumption are obtained by using our approach [12] 
that infers parametric upper and lower bounds on the energy consumption of a program by using 
a combination of static and dynamic techniques. The dynamic technique, based on an evolutionary 
algorithm, is used to determine the maximal/minimal energy consumption of each basic block. A 
static analysis is then used to combine the energy values obtained for the blocks according to the 
program control flow, and produce energy consumption bounds of the whole program. These bounds 
on energy consumption of a program are then used in our scheduling approach for energy-efficient 
scheduling to have a safer approximation of the energy consumption of a schedule. 

As a proof of concept, in this article we focus on XMOS multicore chips, which provide support 
for Dynamic Voltage and Frequency Scaling (DVFS) at the chip level (i.e., all cores have the 
same voltage and frequency at the same time). However, we believe that our results can be easily 
generalized to other multicore environments. 

The rest of the article is organized as follows. Section 2 put our work in context with respect to the 
related work. Then, Section 3 details our proposed approach for evolutionary scheduling. Section 4 
presents an experimental evaluation of the approach and, finally, some conclusions are drawn in 
Section 5. 

2 Related work 
In the existing literature, techniques that include QoS as an objective in scheduling are mainly 
designed for Grid or Cloud Computing environments, where QoS is measured as either execution 
time, cost, etc., and has to be provided according to the signed Service Level Agreement (SLA) 



between the provider and the customer [21–23]. Multiobjective genetic algorithms were used in [23] 
to minimize cost and execution time, since they can be in conflict. A similar approach is presented 
in [22]. In the recent past, energy consumption has become a bottleneck, and techniques to reduce 
it have been developed, such as [21], where the authors try to minimize energy and maximize QoS 
at the same time in a Cloud Computing environment. The multiobjective optimization problem is 
solved using particle swarm optimization. However, as far as we know, none of the approaches in the 
literature propose to trade off QoS (accuracy in our case) with energy or performance in a scheduling 
problem by using a transformation of the program code, in our case, by using loop perforation. 

There is a significant group of publications that use EAs for the problem of optimal scheduling and 
allocation in multiprocessor systems that allow DVFS. For example, the approach presented in [17] 
aims to minimize both energy and makespan as a bi-objective problem. The same problem is solved 
in other work [16], but using the island model of parallel GA populations. Another approach [11] 
addresses the problem from two opposite points of view: in the first one, it optimizes the energy 
given the scheduler length, while in the other one it optimizes the scheduling length given the energy 
bound. However, none of these solutions include the possibility of two levels of parallelism as we 
do in this article (which is an extension of our previous work [2]), where each processor can have 
a number of different threads executing in parallel. In addition, we also introduce the possibility of 
task migration. 

3 The proposed evolutionary scheduling approach 

In this section, we describe our proposed evolutionary scheduling approach for trading-off accu­
racy vs. energy in multicore environments. First, the loop perforation technique, that we use for 
reducing energy consumption down to the allowed accuracy level, is described in Section 3.1. Then, 
Section 3.2 describes our custom multiobjective evolutionary algorithm for scheduling. Finally, in 
Section 3.3 we outline our technique for estimating upper and lower bounds on the energy con­
sumption of a schedule, that is based on the combination of static analysis of programs/tasks, with 
dynamic modeling of basic blocks. 

3.1 Loop perforation 

In general, the loop perforation technique transforms loops to execute a subset of their original 
iterations. In this article we use a particular case of this technique, modulo perforation, that skips 
every n-th iteration [19]. In this case, the perforation rate r, which represents the expected percentage 
of loop iterations to skip, is determined by r = 1

n. As we will see in Section 3.2, in our representation 
of individuals we use the value n, that we call the skipping iteration number. Such number can be 
varied to trade off accuracy vs. energy, so that for higher values of n, fewer iterations are skipped, 
which implies that the work load, the energy consumption and the accuracy of the computation are 
higher. Conversely, more energy is saved for lower values of n, at the cost of growing accuracy loss. 
This trade-off between accuracy and energy consumption justifies the usage of a multiobjective 
algorithm. As we will see in Section 3.2, loop perforation is one of the possible actions of our 
mutation operator. 

3.2 EA 

In this article we extend our previous work [4], where we developed a custom multiobjective evolu­
tionary algorithm (MOEA) for scheduling which is a dominance-based approach called 



FIG. 1. Individual representation 

Non-dominated Sorting Genetic Algorithm (NSGA-II) [8]. There exist also two other classes of 
approaches for MOEAs: aggregation-based (e.g. MOEA/D-M2M [15]) and indicator-based (e.g. 
HypE [1] and SMS-EMOA [5]). Some of these are known to perform better, particularly for many-
objective optimization (four or more objectives). The NSGA-III algorithm [7] has also been proposed 
for many-objective optimization problems. In our case, we have two conflicting objectives, accuracy 
and energy consumption, since we want to decrease the energy consumption as much as possible 
while maintaining the accuracy level as high as possible (and always above a given threshold). The 
non-dominated solutions are generated using NSGA-II, while the EA follows the standard steps of 
evolutionary algorithms: initialization and evolution, where we implement a standard tournament 
selection, and customized crossover and mutation operators. In the following, we give more details 
about the particular improvements carried out in this work. 

Individual. A solution to the problem we are solving, i.e., an individual, contains information 
about the scheduling and allocation of each task, how many cycles of each task are executed in 
the current run (to support task migration), and voltage and frequency levels of the cores at each 
moment (the allowed (V,f ) pairs are represented as ‘state’ codes). Moreover, since in this work 
we add the possibility of decreasing accuracy by using loop perforation, we introduce another field: 
the skipping iteration number n, as explained in Section 3.1. For a given task, loop perforation is 
applied by using such skipping iteration number (and hence the corresponding perforation rate) on 
the loop(s) previously identified as tunable (i.e. filtering out critical loops whose perforation causes 
the computation to produce unacceptable results, crash, increase its execution time or execute with 
a memory error). 

An example of a part of an individual is given in Figure 1, which can be read as follows: on core 1 
in state 2, we execute in this order, 

• 48 cycles of task 1, without applying loop perforation on it (its skipping iteration number is 
zero), and 

• 77 cycles of task 5, with loop perforation skipping every 4th iteration. 

Population initialization. Individuals in the initial population are created by randomly assigning 
tasks to random cores in random (V,f ) settings with equal probability. However, in order to provide 
a load-balanced solution (as much as possible), the probability of choosing a core decreases as its 
load increases. The number of cycles of a task executed in each run, as well as the skipping iteration 
number, are randomly chosen. 

The crossover operator. In our customized crossover operator, the order of appearance of the 
tasks and their allocation are taken from only one of the parents, so that the child preserves such 
information. However, the child can take the distribution of the number of cycles and the skipping 
iteration number from any of the parents with equal probability. 



FIG. 2. Different possibilities for mutation 

The mutation operator. In each generation, one of the following actions is performed with the 
same probability (see Figure 2 for an example): 

• Swapping: tasks i and j, together with their corresponding number of cycles and skipping 
iteration number, change their positions in the solution. To avoid creating solutions which are 
not viable, tasks i and j must be assigned to cores that are in the same (V,f ) state. In Figure 2, 
tasks 1 and 2 are swapped between cores 1 and 2 (both cores are in state 1). 

• Moving: randomly move task i to another core and (V,f ) state. For the same reason as before, 
the new (V,f ) state must be the same as i’s original state. In Figure 2, the first part of task 1 
(40 cycles), originally allocated to core 1, is moved to core 2 (before task 2), and both cores 
are in state 1. 

• Cycle redistribution: randomly change the distribution of the number of cycles of task i between 
its appearances on the different cores. In Figure 2, task 1 now executes 25 cycles on core 1 in 
state 1 and 45 cycles on core 2 in state 2. 

• Loop perforation: randomly choose a task i, assign a skipping iteration number to it, decrease 
the total number of cycles accordingly to the cycles skipped by loop perforation, and (also 
randomly) distribute them among the existing appearances of task i in the solution. In Figure 2 
no loop perforation was performed on task 1 in the original solution (i.e. its skipping iteration 
number was zero). However, the application of this mutation assigns a skipping iteration number 
of 20 to task 1. As a result of loop perforation, its total number of cycles in the original solution, 
70, distributed between cores 1 (40) and 2 (30), is decremented to 60, with a different distribution 
between cores 1 (35) and 2 (25). 

Objective functions: energy consumption. This objective represents the total energy consumption 
of the given schedule, and it should be minimized. It is given with the following formula: 

E= (Pst,i'T+ (xij'pi j'
r
i j ))' (3.1) 



where Pst j is the static power of core i, T is the total execution time of the schedule, i.e., the moment 
when the last task finishes its execution, Ti>j is the execution time of taskj on core i, xij is a binary 
value, xij ∈{0,1}, that represents whether the taskj is executed on core i (xi>j = 1) or not (xi>j =0), 
and pi j is the power of taskj when executed on core i. 

Objective functions: accuracy. We define the accuracy as an average deviation of the output 
after applying loop perforation, and it should be minimized. If a task performs some sort of signal 
processing, where the output is a digital signal consisting of a number of samples, the deviation is 
calculated as the Euclidean distance between the outputs obtained with and without loop perforation. 

3.3 Inferring energy bounds statically by evolutionary analysis of basic blocks 
To approximate upper and lower bounds on the energy consumption of a schedule, we use the 
approach that we proposed in [3]. It combines (dynamic) energy modelling techniques, to infer 
energy bounds on the program’s basic blocks by using an EA, with static analysis techniques, that 
use these bounds on basic blocks to infer bounds on the whole program as a function of its input 
data sizes. 

3.3.1 Energy modelling of basic blocks 
The first step of our energy bounds analysis is to determine upper and lower bounds on the energy 
consumption of each basic (‘branchless’) program block. We perform the modelling at this level 
rather than at the instruction level to cater for inter-instruction dependencies and to approximate 
non-conservative bounds. 

Generating the basic blocks to be modelled. A basic block over an inter-procedural Control Flow 
Graph (CFG) is a maximal sequence of distinct instructions, S1 through Sn, such that all instructions 
Sk,1<k<n have exactly one in-edge and one out-edge (excluding call/return edges), S1 has one 
out-edge and Sn has one in-edge. A basic block therefore has exactly one entry point at S1 and 
one exit point at Sn. To divide a program into such basic blocks, the program is first compiled 
to the Instruction Set Architecture (ISA) representation, and then a data flow analysis of the CFG 
corresponding to the ISA representation is performed. The basic blocks are further modified so that 
they can be run/measured in isolation: 

(1) A basic block with k function call instructions is divided into k+1 basic blocks without the 
function call instructions. 

(2) A number of special ISA instructions (e.g. return, call) are omitted from the block. The cost of 
such instructions is measured separately and added to the cost of the block. 

(3) Memory read/write instructions are abstracted to a fixed memory region available to each basic 
block to avoid memory violations. 

An example of the modification 1 above is shown in Figure 3, Listing 1.2, which is an ISA 
representation of a recursive factorial program where the instructions are grouped together into 3 
basic blocks B1, B2 and B3. Consider basic block B2. Since it has a (recursive) function call to fact 
at address 12, it is further divided into two blocks in Listing 1.3, so that the instructions before and 
after the function call form two blocks B21 and B22 respectively. 

For each modified basic block, a set of input arguments is inferred. This set is used for an 
individual representation to drive the EA algorithm to maximize/minimize the energy consumption 



Listing 1.1: factorial 
function. 

int fact(int N) 
{ 

if (N <= 0) 
return 1; 

return N * fact(N - 1); 
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FIG 3. Example: basic block modifications 

of the block. For the entry block, the input arguments are derived from the signature of the function. 
The set gen(B) characterizes the set of variables read without being previously defined in block B. 
It is defined as: 

n 

gen(b)= (J lv I v €ref(k) AV(j < k).v £def(j)}, 
k=1 

where ref(n) and def(n) denote the variables referred to and defined/updated at a node n in block b 
respectively. 

For the basic blocks in Figure 3, Listing 1.2, the sets of input arguments are gen(B1)={r0}, 
g-e«(521)={sp[0x1]}, ge«(i?22)={sp[0x1],r0} andge«(53) = 0. 

The energy consumption of blocks B21 and B22 is maximized (minimized) by providing values to 
the input arguments to the blocks by using an EA. The energy consumption of 52 can be characterized 
as: 

B2J=B2l+B2t + bll, 

where B2je, B2fe and blj denote the energy consumption of the B21, B22 blocks and the bl I S A 
instruction, with approximation A (where A = upper or A = lower). 

EA for estimating the energy of a basic block. In the following we detail the most important 
aspects of the E A used for estimating the maximal (i.e. worst case) and minimal (i.e. best case) 
energy consumption of a basic block. The same E A is used for both cases, but the objective function 
is maximized or minimized for the former and latter case respectively. 
Individual. The search space dimensions are the different input variables to the blocks. Our goal 
is to find the combination of input values which maximizes (minimizes) the energy of each block. 
Thus, an individual is simply an array of input values given in the order of their appearance in the 
block. In the initial population, the input values to an individual are randomly assigned to 32-bit 
numbers. In addition, some corner cases that are known to cause high (low) energy consumption for 
particular instructions are included.1 

1For example all 1s for high energy consumption, or all 0s for low energy consumption as operands to a multiply ISA 
instruction. 



FIG. 4. Crossover 

FIG. 5. Mutation 

Crossover. We use an even-odd crossover, since it provides more variability than a standard n-point 
crossover. In our approach, the first child is created by taking the first element and every other one 
after it from one of the parents, e.g., the mother. The second element and every other one come from 
the other parent, i.e., the father. The second child is created in the opposite way. This operation is 
depicted in Figure 4, where P1 and P2 are the parents, and C1 and C2 are the resulting children. 
Mutation. Since the (dynamic) energy consumption in digital circuits is mainly the result of bit 
flipping, the search space is explored by performing (random) bit flipping in the mutation operation 
as follows. For each gene (i.e. input value to the basic block): 

(1) Randomly create a 32-bit integer, which will be used as a mask. 
(2) Perform the XOR operation of this mask and the corresponding gene. This way, only the bits 

of the gene at positions where the value of the mask is 1 are flipped. 

This operation is depicted in Figure 5, where the input values are given as binary numbers. 

Objective function. The objective function that we want to maximize (or minimize) is the energy of 
a basic block, which is measured directly from the chip. The concrete settings for these experiments 
will be explained in Section 4.1. 

In general, pipeline effects such as stalls (to resolve pipeline hazards), which depend on the state 
of the processor at the start of the execution of a basic block, can affect the estimated upper/lower 
bound on the energy consumption of such block. In our approach, intra-block pipeline effects are 
accounted for, since the dependencies among the instructions within a block are preserved. However, 
the inter-block pipeline effects need to be accounted for. These can be modelled in a conservative 
way by assuming a maximum stall penalty for the upper bound estimation of each block (e.g. by 
adding three cycles to the execution time of the block). Similarly, for the lower bound estimation 
a zero stall penalty can be used. To approximate this effect, in [6] the authors characterize each 



block through pairwise executions with all of its possible predecessors. Each basic block pair is 
characterized by executing it on an Instruction Set Simulation (ISS) to collect cycle counts. 

The XMOS XS1 architecture used in our experiments does not have these pipeline effects by 
design, since exactly one instruction per thread is executed in a 4-stage pipeline (see Section 4.1 for 
more details). 

3.3.2 Energy consumption of the program 

Once the energy models of each basic block of the program are obtained, they are fed into an 
existing static analyser that takes into account the control flow of the program and infers safe 
upper/lower bounds on its energy consumption. Such analyser is a specialization of the generic 
resource analysis framework provided by CiaoPP [18] for programs written in the XC programming 
language [20] and running on the XMOS XS1-L architecture. We have also written the necessary 
code (i.e. assertions [9]) to feed this analyser with the block-level upper/lower bound energy model. 

The generic resource analyser ensures that the inferred bounds are safe if it is fed with energy 
models providing also safe bounds. In [14] we performed a previous instantiation of such generic 
analyser by using the instruction-level energy model described in [10] that provided average energy 
values. As a result, the analysis inferred energy functions for the whole program that could possibly 
estimate values that are below the actual upper bound of the program. 

The analysis is general enough to be applied to other programming languages and architectures 
(see [13, 14] for details) provided that an energy model for a particular architecture exists. It enables 
a programmer to symbolically bound the energy consumption of a program/5 on input data x without 
actually running P(x), since it is based on an abstract domain that sets up a system of recursive cost 
equations that capture the energy consumption of the program as a function of the sizes of its input 
arguments x. The transformation-based analysis framework of [13, 14] transforms the assembly 
(or LLVM IR) representation of the program into an intermediate semantic program representation 
(HC IR), that the analysis operates on, which is a series of connected code blocks, represented as 
Horn Clauses. The analyser deals with this HC IR always in the same way, independent of where it 
originates from, setting up cost equations for all code blocks (predicates). 

Consider the example in Figure 3, Listing 1.2. The recursive cost equations that are set up charac­
terize the energy consumption of the whole function fact using the approximation^ for each block 
inferred by the EA: 

factA
e(R0) = B1j+fact_aux^(0<R0,R0) 

f ^A (T> T>( \ B2A+factA(R0—1) if B is true 
tact anx _D,_/Y0)^ i n < 

e I B3e if B is false. 
The cost of the fact function is captured by the equation factA(R0) under approximation A (e.g. 

upper/lower) which in turn depends on B1A (i.e. the energy consumption of block B1) and the 
equation fact_auxj., which represents the branching originated from the last instruction of block Bl. 
It captures the cost of blocks B2 and 5 3 based on the condition on the input size R0. 

If we assume (for simplicity of exposition) that each basic block has unitary cost in terms of 
energy consumption, i.e., Bie = 1 for all i, we obtain the energy consumed by fact as a function 
of its input data size (R0):facte(R0)=R0+1. 

The functions inferred by the static analysis are arithmetic functions (polynomial, exponential, 
logarithmic, etc.) that depend on input data sizes (natural numbers). 



TABLE 1. Energy functions for 3 different pairs of voltage (V) / frequency (F, in MHz) 

fir(N) 
biquad(N) 

(V,F) = (1.00,450) 
7.93 N+24.5 

38 N+12 

(V,F) = (0.87,400) 
5.36 N+18.9 
22.6 N + 7.2 

(V,F) = (0.80,350) 
3.41 N+15.2 
17.5 N+5.2 

4 Experimental evaluation 

4.1 Testing environment 

XMOS Chips. As mentioned before, in our experiments we target the XMOS XS1-L architecture 
as a proof of concept. For building up the energy model and all the measurements in our experiments 
we use a board containing one core with 8 threads. All threads have their own register set and up to 
4 instructions per thread can be buffered, which are scheduled in a way that minimizes simultaneous 
memory accesses by consecutive threads. The threads enter a 4-stage pipeline, meaning that only 
one instruction from a different thread is executed at each pipeline stage. If the pipeline is not full, 
the empty stages are filled with NOPs (no operation). Effectively, this means that we can assume 
that the threads are running in parallel, with frequency F/N, where F is the frequency of the chip, 
and N =max(4,#Threads). As also mentioned before, DVFS is implemented at the chip level, which 
means that all the threads have the same voltage and frequency at a given point in time. 

Task Set. We use two real-world programs for testing: 

• fir(N): Finite Impulse Response (FIR) filter. In essence, it computes the inner-product of 
two vectors: a vector of input samples, and a vector of coefficients. 

• biquad(N): Part of an equalizer implementation, which uses a cascade of Biquad filters. The 
energy consumed depends on N, the number of filters in the cascade, also known as banks. 

These filters are often used in signal processing, where a certain level of accuracy loss can be 
permitted. This makes them good candidates for experimenting with the accuracy/energy trade-off. 
We have used four different FIR implementations, with different numbers of coefficients: 85, 97, 
109 and 121. Furthermore, we have used four implementations of the Biquad program, with different 
numbers of banks: 5, 7, 10 and 14. We have tested our approach in scenarios with 32 tasks, each 
one corresponding to one of the above mentioned implementations. The tasks corresponding to the 
same implementation have different release times. 

The energy consumed by the programs is inferred at compile time by the static analysis described 
in Section 3.3.2. The resulting energy functions from this analysis are given in Table 1 for the two 
benchmarks used. In the case of FIR, the parameter N is the number of coefficients, while in the 
case of the Biquad cascade, N is the number of banks. The analysis assumes that a single program 
is running on one thread on the XMOS chip, while all other threads are inactive. This means that 
only the first stage of the pipeline is occupied with an instruction, while the rest are empty, i.e., 
occupied with NOPs. In our implementation, the EA algorithm approximates the total energy of a 
schedule taking the sum of the energies of all the tasks running on different cores, i.e., threads, as 
we have seen in Section 3.2. However, in reality if all the threads are active and execute a program, 
each pipeline stage will contain an instruction from a different thread. For this reason, we can say 
that the estimation produced by the static analysis of the energy consumed by a set of tasks is an 
upper bound on the actual energy consumption. However, this estimation provides precise enough 
information for the EA to decide which schedule is better. 



TABLE 2. Energy savings obtained with different levels of minimal acceptable accuracy. 

Max. 
Avg. Error 

10 6 

2-10 -6 

3 1 0 6 

Case 1: 
Avg. En.(mJ) 

0.487 
0.461 
0.434 

Case 2: 
Avg. En.(mJ) 

0.721 
0.597 
0.666 

Savings(%) 
Avg. 
16.18 
18.21 
31.04 

CI0.05 
0.93 - 31.42 
3.54 - 32.87 
13.72 - 48.37 

4.2 Testing scenario 

As already said, we have tested our approach on a scenario of 32 tasks, where each task implements 
either an FIR or a Biquad cascade. For the case of FIR, loop perforation takes out a few coefficients, 
while in the case of Biquad cascade, it takes out a few banks. All tasks have different release time. 
There are no task deadlines. However, we should bear in mind that in the case of DVFS it is not 
beneficial to scale down voltage and frequency indefinitely, since at some point the static power 
consumption becomes more significant than the dynamic part, resulting in an increment of the total 
energy consumption. The input signal to all tasks is a standardized set of input samples used for 
testing in the signal processing area. 

4.3 Obtained results and discussion 

The EA has been trained with the following parameters: a population of 200 individuals, evolved for 
150 generations, with a crossover rate of 0.9, and a mutation rate of 0.9 — since mutation introduces 
loop perforation, a high rate is needed. 

To illustrate the energy savings provided by loop perforation (referred to as Case 1 in the follow­
ing), we have trained another EA, where the objectives are to minimize energy and execution time, 
without the possibility of loop perforation (referred to as Case 2 in the following). This algorithm 
has been trained with the same parameters given above. Since both algorithms are multiobjective, 
their result is a Pareto front of possible solutions with different trade-offs between the objectives. 

In Case 1 we have picked a solution with the smallest energy objective value, whose maximal 
deviation from the final result (accuracy) is below (above) a given threshold, while in Case 2 we 
have chosen a solution with the smallest energy objective. The results are presented in Table 2, with 
the following columns: 

• Column 1: Maximal acceptable average deviation (or equivalently, minimal acceptable level 
of accuracy) of the final result. 

• Column 2: Average energy of the final schedule obtained for a set of experiments of Case 1 
by using static analysis, given in mJ (mili Joules). 

• Column 3: The same as Column 2 but for Case 2. 
• Column 4: Percentage of savings obtained, calculated as Colum

C
n
o
3
l
-
u m

C
n
o
3
lumn2 ·100. 

• Column 5: Statistics of the experiments expressed as a 0.05 confidence interval, i.e., 95% 
certainty that the final result will belong to this interval. 

As we can observe, the energy savings that can be obtained with loop perforation are significant and 
range from 3% to 40% in the different experiments, even with a small permitted level of deviation. 
The savings are proportionally the same, irrespective of whether we use average or upper-bound 
energy models. As expected, Figure 6 shows that if we increase the accepted level of average 
deviation, the energy savings also increase. However, the relationship between the accuracy and the 



FIG. 6. Energy savings for different accuracy levels 
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Tasks Tasks 

FIG. 7. Comparing the actual energy of a schedule with estimations using average models (left) and 
upper/lower bound models (right) 

energy savings depends on the application: some applications can preserve acceptable accuracy by 
skipping more loop iterations (and hence achieve bigger energy savings) than others. 

Since the acceptable level of deviation is small, and the number of iterations performed by F I R 
is bigger than the one corresponding to Biquad cascade, we can observe that in the final result tasks 
that perform F I R can skip more iterations than the ones performing Biquad, which can skip one 
iteration at most. 

In Figure 7, a random schedule of 8 tasks (comprising 4 tasks of each of Biquad and F I R filters) 
executing sequentially on a single thread, is selected for measurement on the hardware. The graph on 
the left compares the actual measurement of the schedule against the estimated energy consumption 
using average energy models, while the graph on the right compares the actual measurement against 
estimations using the approach described in Section 3.3. The latter estimations are safe, in the sense 
that the energy consumption inferred using upper (resp. lower) bound models always over- (resp. 



under-) approximate the actual measurement. In contrast, the former estimations slightly under­

estimate the actual energy measurement. 

5 Conclusions 

In this work, we have presented an approach for energy-efficient scheduling in multicore environ­
ments, adapted to multicore XMOS processors, where significant additional energy can be saved if 
a certain level of accuracy reduction in the final result is allowed. This gradual accuracy reduction is 
achieved by using the loop perforation technique. To certify/verify that a schedule meets an energy 
budget, safe bounds are needed (both upper and lower bounds). Since our previous estimations 
using an average energy model do not meet such condition, we have used a parametric approach 
that estimates safe (and tight) energy bounds that can be used for energy verification in practice. 
Our experimental results show that, even with small acceptable levels of deviation in the output, 
significant energy savings can be obtained. 
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