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Abstract

This paper provides a proof-theoretic study of quantified non-normal modal logics. It introduces
labelled sequent calculi based on neighbourhood semantics for the first-order extension, with both
varying and constant domains, of monotone non-normal modal logics, and studies the role of the
Barcan Formulas in these calculi. It will be shown that the calculi introduced have good structural
properties: invertibility of the rules, height-preserving admissibility of weakening and contraction,
and syntactic cut elimination. It will also be shown that each of the calculi introduced is sound
and complete with respect to the appropriate class of neighbourhood frames. In particular, the
completeness proof constructs a formal derivation for derivable sequents and a countermodel for
non-derivable ones, and gives a semantic proof of the admissibility of cut.

Keywords: Non-normal modal logics, quantified modal logics, labelled sequent calculus, neighbour-

hood semantics, Barcan Formulas.

1 Introduction
1 Propositional non-normal modal logics allow us to deal with many interpretations of
modal operators in which the schema �(A∧B) ⊃⊂ (�A∧�B) and/or the necessitation
rule � A� � �A don’t seem to hold – e.g., with epistemic [19], game-theoretic [18],
and ‘high-probability’ interpretations [10]. Quantified non-normal modal logics have
been studied in [1, 2, 3, 4, 20, 21]. In particular, [1, 2, 21] study constant domain
neighbourhood semantics, give characterization results for the Barcan Formulas, and
consider axiomatic calculi for non-normal logics; see [2] for the main results. Varying
domain semantics for non-normal logics and axiomatic systems for them are studied
in [4, 20] (and in the unpublished [3]). Nevertheless, [20] characterizes the Barcan
Formulas in terms of neighbourhood models instead of frames, and [4] considers mul-
tirelational semantics instead of the more general neighbourhood semantics. Even if
we focus our attention only on quantified monotone modal logics (QMML), that is
logics where the schema �(A ∧ B) ⊃ (�A ∧ �B) holds, we have interesting applica-
tions. To illustrate, [2] points that under a ‘high-probability’ interpretation of the
modal operator �, the Barcan Formula BF ≡ ∀x � A ⊃ �∀xA would be responsible
for the lottery paradox : one instance of BF would say that ‘if each individual ticket
of a lottery probably is a loser then probably all tickets are losers’ [2, p.176].
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2 Proof theory for quantified monotone modal logics

One limitation of these works on quantified non-normal modal logics is that com-
pleteness results of axiomatic systems with respect to classes of frames are not modular
and in many cases axiomatic systems are incomplete.
In recent years, the development of analytic sequent calculi for propositional non-

normal modal logics has been the object of active investigation, see [8, 13, 17] and
the related [9] where analytic labelled tableaux are introduced. In particular, [13]
extends the applicability of labelled sequent calculi [12] to propositional non-normal
modal logics through the internalization of neighbourhood semantics. We extend this
approach to the first-order case by internalizing the semantics of quantified monotone
neighbourhood frames. We shall start from neighbourhood frames with both varying
and constant domains, and then analyse the Barcan Formulas. As main results, we
will show that each labelled calculus considered has good structural properties and is
sound and complete with respect to the appropriate class of neighbourhood frames.
As for quantified normal modal logics, labelled calculi allow for an elegant and uniform
proof of completeness for all the QMML considered. This is a strong motivation for
the present approach. The case of quantified non-monotone logics is left for future
research.
The paper is organized as follows: Section 2 sketches propositional non-normal

modal logics based on neighbourhood semantics and it shows how the semantics can
be simplified for monotonic logics. Then, it presents the propositional labelled calculi
based on monotone neighbourhood frames introduced in [13]. Section 3 introduces
labelled calculi for QMML without the Barcan Formulas. The calculi considered are
based on neighbourhood frames with either varying or constant domains. Then, the
structural properties of these calculi are studied. The main results will be that all
rules are height-preserving invertible, that the rules of weakening and contraction are
height-preserving admissible, and that cut is admissible. Section 4 proves that each
calculus considered is sound and complete with respect to the appropriate class of
neighbourhood frames. Section 5 considers the Necessity of Identity and the Barcan
Formulas; geometric rules that allow to derive each of these schemata while preserving
the good structural properties of the underlying calculi are introduced. Furthermore,
the soundness and completeness results proved in Section 3 are extended to the new
cases. Lastly, Section 6 discusses other works on quantified non-normal modal logics.

2 Propositional non-normal modal logics

2.1 Language

Given a (finite or countable) set � of propositional variables, the language of propo-
sitional modal logics (L�) is generated by the following grammar:

A ∶∶= Pi � � � A ∨A � A ∧A � A ⊃ A � �A � �A ; (L�)

where Pi ∈ �. We assume the usual conventions for parentheses, and use the following
abbreviations: ¬A ≡ A ⊃ � and A ⊃⊂ B ≡ (A ⊃ B) ∧ (B ⊃ A).
The simplest way of introducing propositional non-normal modal logics (NNML)

is by presenting them as sets of L�-formulas. We do so, mostly following the naming
conventions introduced in [5]. The minimal NNML E is the smallest set of L�-
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Fig. 1: Lattice of NNML

formulas containing all L�-instances of propositional tautologies and of the schema:

E ∶= �A ⊃⊂ ¬� ¬A , (2.1)

that is closed under the following rules of inference:

A ⊃ B A
B

MP
A ⊃⊂ B�A ⊃⊂ �B RE

. (2.2)

Other NNML are obtained by extending E with some combination of the following
axioms:

M ∶= �(A ∧B) ⊃ (�A ∧ �B) C ∶= (�A ∧ �B) ⊃ �(A ∧B) N ∶= �� . (2.3)

For example, EM (or simply M) is the smallest extension of E containing all L�-
instances of the schema M . In Figure 1, we have depicted the logical relations among
members of NNML. Note that the logic EMCN is equivalent to the minimal normal
modal logic K. In this paper we will consider only the first-order extensions of logics
above the minimal monotone logic M. If L is one of these logics, we will sometimes
use �L A to say that A ∈ L.
2.2 Neighbourhood semantics for NNML

Definition 2.1 (Frame)
A (neighbourhood) frame is a pair F =<W,N >, where W is a non-empty set of states
(worlds) and N is a neighbourhood function defined over W :

N ∶W �→ 22
W

.
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Definition 2.2 (Model)
Given a frame < W,N >, a (neighbourhood) model defined over it is a triple M =<
W,N ,V > ,where V is a valuation function defined over �:

V ∶ ��→ 2W .

Definition 2.3 (Truth)
Given a model M =< W,N ,V > and a state w ∈ W , truth of an L�-formula A is
recursively defined as follows:

M,w � Pi i↵ w ∈ V(Pi)M,w ���
M,w � B ∨C i↵ M,w � B orM,w � C

M,w � B ∧C i↵ M,w � B andM,w � C

M,w � B ⊃ C i↵ M,w ��B orM,w � C

M,w � �B i↵ �B�M ∈N (w)M,w ��B i↵ �¬B�M ∉N (w)
where Pi ∈ � and �A�M is the truth set of A, i.e., �A�M = {v ∈W �M, v � A}.
We shall use w � A in place of M,w � A whenever possible; as in [13], a �∀ A is a
shorthand for ∀v ∈W (v ∈ a ⊃ v � A), and a �∃ A for ∃v ∈W (v ∈ a ∧ v � A).
We say that an L�-formula A is globally true inM whenever �A�M =W . A formula

is valid in a frame F if it is globally true in all models based on F . Finally, A is
valid with respect to a class of frames C (C � A) when it is valid in all members ofC. As it is well known, cf. [5], NNML can be semantically characterized as sets ofL�-formulas that are valid with respect to particular classes of neighbourhood frames.
In order to do so, we make use of the following notions. Given a neighbourhood frameF ≡<W,N >, we say that:

• F is monotone (or supplemented) i↵ for all w ∈W and all a, b in 2W , if a ⊆ b and
a ∈N (w), then b ∈N (w);

• F is closed under finite intersection i↵ for all w ∈W and all a, b in 2W , if a ∈N (w)
and b ∈N (w), then a ∩ b ∈N (w);

• F contains the unit i↵ for all w ∈W , W ∈N (w);
We can now summarize the characterization results for NNML, cf. [5]:

Theorem 2.4
The logic E is sound and complete with respect to the class of all neighbourhood
frames. EM is sound and complete with respect to the class of all monotone neigh-
bourhood frames. EC is sound and complete with respect to the class of all neigh-
bourhood frames closed under finite intersection. EN is sound and complete with
respect to the class of all neighbourhood frames that contain the unit. Each one
of EMC, EMN, and ECN is sound and complete with respect to the class of all
neighbourhood frames satisfying the two relevant properties. Lastly, EMCN is sound
and complete with respect to the class of all frames satisfying each one of the three
properties above.

In monotone frames, the forcing condition for modal formulas can be simplified be-
cause of the following:
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Lemma 2.5
The forcing conditions below give the same class of valid formulas over monotone
neighbourhood frames:

1. w �1 �A ≡ ∃a ∈N (w)(a �∀ A ∧ ∀v(v � A ⊃ v ∈ a))
w �1 �A ≡ ¬∃a ∈N (w)(a �∀ ¬A ∧ ∀v(v � ¬A ⊃ v ∈ a))

2. w �2 �A ≡ ∃a ∈N (w).a �∀ A
w �2 �A ≡ ∀a ∈N (w).a �∃ A

Proof. By induction on formula complexity, the only non-trivial cases being for � and�-formulas. For the former, see [13]. For the latter, suppose that w �1 �A, i.e., ¬∃a ∈N (w)(a �∀ ¬A∧∀v(v � ¬A ⊃ v ∈ a)). We claim that ¬∃a ∈N (w)(a �∀ ¬A). Assume∃a ∈ N (w)(a �∀ ¬A). Since a ⊆ �¬A�, by supplementation, we have �¬A� ∈ N (w),
therefore by choosing �¬A� as a neighbourhood, we have ∃a ∈N (w)(a �∀ ¬A∧∀v(v �¬A ⊃ v ∈ a)), which contradicts the assumption, therefore ¬∃a ∈N (w)(a �∀ ¬A), i.e.,
w �2 �A. The other direction, from w �2 �A to w �1 �A, is immediate.

Moreover, when considering monotone frames we can simplify the characterization
results for logics containing C and N as follows:

Proposition 2.6
The monotone modal logic

1. EMC is sound and complete with respect the class of all monotone frames that
are pre-basic: if a, b ∈N (w), then there is c ∈N (w) s.t.: c ⊆ a and c ⊆ b;

2. EMN is sound and complete with respect the class of all monotone frames that
are non-degenerate: for all w ∈W , N (w) ≠ �.

2.3 Labelled sequent calculi for MML

We recall from [13] the calculi for systems of non-normal logics that extend EM. Let
us consider two disjoint denumerable sets of labels: a set of world labels (denoted by
w, v, u) and a set of neighbourhood labels (denoted by a, b, c). The labelled language
is composed by:

1. Labelled formulas of shape w ∶ A (with A arbitrary L�-formula);

2. Additional atomic formulas of shapes (i) w ∶ a, (ii) a ∈ N(w),2 and (iii) a ⊆ b;
3. Forcing formulas of shapes a �∀ A and a �∃ A (with A arbitrary L�-formula).

A sequent is an expression � ⇒ � where � and � are multisets of formulas of the
labelled language. The rules of the base calculus G3.M are given in Table 1, and
the rules for its extensions with C and N are given in Table 2. In addition to the
usual propositional rules of the classic labelled calculus, we have rules for the local
forcing operators, for the modalities, and neighbourhood rules for the extensions that
include C and N . Such extensions are denoted by G3.M∗. In Table 1, the usual rules
appear for the propositional part with P ranging over atomic L�-formulas. Observe
that L� is listed as a zero-premiss rule rather than as initial sequent because � is
regarded as a zero-place connective. Observe also that the rules for local forcing
involve quantification only implicitly in the form of variable conditions so there is no
need to extend the language with quantification over possible worlds.
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Table 1: Rules of G3.M

Initial sequents: w ∶ P,�⇒�,w ∶ P , with P atomic

Propositional rules:

w ∶ A,�⇒� w ∶ B,�⇒�
w ∶ A ∨B,�⇒�

L∨ �⇒�,w ∶ A,w ∶ B
�⇒�,w ∶ A ∨B R∨

w ∶ A,w ∶ B,�⇒�
w ∶ A ∧B,�⇒�

L∧ �⇒�,w ∶ A �⇒�,w ∶ B
�⇒�,w ∶ A ∧B R∧

�⇒�,w ∶ A w ∶ B,�⇒�
w ∶ A ⊃ B,�⇒�

L ⊃ w ∶ A,�⇒�,w ∶ B
�⇒�,w ∶ A ⊃ B R ⊃

w ∶ �,�⇒�
L�

Rules for modalities:

b ∈ N(w), b �∀ A,�⇒�

w ∶ �A,�⇒�
L � (b fresh) a ∈ N(w),�⇒�,w ∶ �A,a �∀ A

a ∈ N(w),�⇒�,w ∶ �A R�
a �∃ A,a ∈ N(w),w ∶ �A,�⇒�

a ∈ N(w),w ∶ �A,�⇒�
L� b ∈ N(w),�⇒�, b �∃ A

�⇒�,w ∶ �A R� (b fresh)
Auxiliary rules:

w ∶ A,w ∈ a, a �∀ A,�⇒�

w ∈ a, a �∀ A,�⇒�
L �∀ u ∈ a,�⇒�, u ∶ A

�⇒�, a �∀ A
R �∀ (u fresh)

u ∶ A,u ∈ a,�⇒�

a �∃ A,�⇒�
L �∃ (u fresh) w ∈ a,�⇒�, a �∃ A,w ∶ A

w ∈ a,�⇒�, a �∃ A R �∃

Table 2: Rules for C and N over G3.M

c ∈ N(w), c ⊆ a, c ⊆ b, a ∈ N(w), b ∈ N(w),�⇒�

a ∈ N(w), b ∈ N(w),�⇒�
Prebasic (c fresh) a ∈ N(w),�⇒�

�⇒�
Nondeg (a fresh)

We observe that in the presence of rules, such as Prebasic, that introduce inclusions
we also need the following rule:

w ∈ b,w ∈ a, a ⊆ b,�⇒�

w ∈ a, a ⊆ b,�⇒�
L ⊆

The corresponding right rule (found in [13]) instead is not needed because in the
calculi that we use for monotonic extensions inclusions do not appear on the right
hand side of sequents. Moreover, calculi containing rule Prebasic must contain also

2
Observe that we depart from the notation of [13] in using the letter N instead of I for the formal neighbourhoods.
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its contracted instances, cf [15, p. 130]:

a ⊆ a, a ⊆ a, a ∈ N(w),�⇒�

a ∈ N(w),�⇒�
Prebasicc

We recall the following properties of the calculi:

Proposition 2.7 (Properties of G3.M∗)

1. Sequents of the following forms are G3.M∗-derivable:
(a) a �∀ A,�⇒�, a �∀ A
(b) a �∃ A,�⇒�, a �∃ A
(c) w ∶ A,�⇒�,w ∶ A
2. The following rules of substitution are height-preserving admissible in G3.M∗:

�⇒�
�[b�a]⇒�[b�a] [b�a] �⇒�

�[w�v]⇒�[w�v] [w�v]
3. The following rules of weakening are height-preserving admissible in G3.M∗:

�⇒�
�′,�⇒�

LW
�⇒�

�⇒�,�′ RW

4. Each rule of G3M.∗ is height-preserving invertible.

5. The following rules of contraction are height-preserving admissible in G3.M∗:
�′,�′,�⇒�

�′,�⇒�
LC

�⇒�,�′,�′
�⇒�,�′ RC

6. For any formula � of the labelled language, the following rule of Cut is admissible
in G3.M∗:

�⇒�,� �,�′ ⇒�′
�′,�⇒�,�′ Cut

7. Each calculus G3.M∗ is sound and complete with respect to validity in the class
of all frames for M∗.

3 Quantified monotone modal logics

3.1 Language

Let VAR be a denumerable set of individual variables x, y, z, . . . and let us fix a
signature S containing, for any n ∈ N, an at most denumerable set of n-ary relational
symbols P,Q,R . . . . Function symbols of any arity are omitted from S for the sake
of simplicity. The language LS is generated by the following grammar:

A ∶∶= Px1, . . . , xn � x = y � � � A ∨A � A ∧A � A ⊃ A � �A � �A � ∀xA � ∃xA ; (LS)
where P is an n-ary relational symbol in S and x, y, x1, . . . , xn ∈ VAR. The same con-
ventions and abbreviations used for L� hold, and we will use A,B,C as metavariables
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for LS -formulas (formulas, for shortness). The notions of free/bound occurrences of a
variable in a formula and of open/closed formulas are as usual. We define substitution
in such a way as to avoid capture of free variables while having substitutions always
defined.

Definition 3.1 (Substitution)
Substitution of free variables is defined as follows:

1. z[y�x] ≡ � y if z ≡ x,
z else ;

2. (Pz1, . . . , zn)[y�x] ≡ Pz1[y�x], . . . , zn[y�x] ;

3. �[y�x] ≡ � ;

4. (A ○B)[y�x] ≡ (A[y�x] ○B[y�x]), for ○ ∈ {∨,∧,⊃} ;

5. (○A)[y�x] ≡ ○(A[y�x]), for ○ ∈ {�,�} ;

6. (QzB)[y�x] ≡
�������������

QzB if z ≡ x,Qz′((B[z′�z])[y�x]) if z �≡ x, z ≡ y,
z′ �∈ B, and z′ �∈ {x, y}Qz(B[y�x]) if z �≡ x and z �≡ y,

�������������
for Q ∈ {∀,∃} .

3.2 Neighbourhood semantics for QMML

Definition 3.2 (Frame)
A quantified monotone frame is a tuple F =< W,N ,D, d > where W is a non-empty
set of states, N is a monotone neighbourhood function over W , D is a non-empty set
of objects, and d ∶ W �→ 2D is a function mapping each state w ∈ W to a (possibly
empty) set d(w) ⊆ D. A constant domain frame is any quantified monotone frame
such that d(w) =D for all w ∈W .

We will refer to D as the outer domain of the frame, and to d(w) as the inner
domain of the (state w of the) frame.

Definition 3.3 (Model)
Given a quantified monotone frame F =<W,N ,D, d >, a model based on F is a tuple< W,N ,D, d,V > where V is a world-dependent classical first-order interpretation of
the symbols in the signature S over the outer domain of F . Formally, for each n-ary
P ∈ S and each w ∈W , V(P,w) ⊆Dn.

An assignment over F is a function � that maps each variable to an object of the
outer domain of F . If � is an assignment over F and o is an object in D, we write
�x▷o for the assignment that maps x to o and behaves like � for the other variables.

Definition 3.4 (Satisfaction)
The satisfaction of a LS -formula A at a state w of a model M =< W,N ,D, d,V >
(based on a monotone frame) with respect to an assignment �, is defined by recursion
on A as follows (the propositional cases are as in Def. 2.3):



Proof theory for quantified monotone modal logics 9

M,�, w � Px1, . . . , xn i↵ < �(x1), . . . ,�(xn) > ∈ V(P,w)M,�, w � x = y i↵ �(x) = �(y)
M,�, w � �B i↵ there is a ∈N (w) s.t. M,�, v � B for all v ∈ a
M,�, w ��B i↵ for all a ∈N (w) there is v ∈ a s.t. M,�, v � B

M,�, w � ∀xB i↵ for all o ∈ d(w),M,�x▷o,w � B

M,�, w � ∃xB i↵ there is o ∈ d(w) s.t. M,�x▷o,w � B

Truth in a state of a model is defined as satisfaction under every assignment. The
notions of global truth and of validity are defined as for the propositional case, cf.
Section 2.2.

3.3 Labelled calculi for QMML

The calculus G3Q.M* is obtained from the calculus G3.M*, see Tables 1 (where, in
initial sequents, P is now an atomic formula of the first-order language LS) and 2, by
extending the labelled language with atomic formulas of shape x ∈ D(w) (individual
variables are disjoint from both world and neighbourhood labels), and by adding the
rules for the quantifiers and for identity that are given in Table 3. The rules for the
quantifiers are like the rules given in [16] for varying domain relational semantics; in
particular, rule Cons is added to a calculus when we want to consider its constant
domain version. For identity, we have to add new atomic formulas of shape w ∶ x = y
and we consider (i) the usual rules Ref and Repl that make = behave as a world-bound
‘real identity’ predicate (e.g., the rules of symmetry and transitivity for = are derivable
as in [15, Sect. 6.5]), and (ii) the rule Rig that is needed because variables are rigid
designators: if an assignment � maps two variables to the same object in one state,
then it does so in all states.
Moreover, we modify the syntax of neighbourhood labels by allowing to have both

simple labels of shape a, b, c as well as functional labels of shape a(x) where a is a
simple neighbourhood label and x is a variable. The instances of rules L�′ and R�′
with functional labels are in Table 3. Notice that now rules R� and L� work also
with respect to functional labels.3 Notice also that in rules L�′ and R�′ the label
a(y) may be fresh because of a(⋅) or because of y. Functional labels will not be used
until we consider BF, thus we postpone discussing them to Section 5.

3.4 Structural properties

In this section we shall prove the structural properties for the systems based on
QMML. Our proofs build on those of [13] and the overall argument has the same
structure, so we shall just recall the basic definitions of the inductive parameters to
be used, suitably extend them to the quantifier language, and present in detail the
new cases.
We recall that the height of a derivation is its height as a tree, i.e., the length of

its longest branch minus one (so that an initial sequent has height zero), and that �n
denotes derivability with derivation height bounded by n in a given system.

3
Thanks are due to an anonymous referee for noticing this fact.
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Table 3: Rules for the quantifiers and for identity

Rules for modalitites:

a(y) ∈ N(w), a(y) �∀ A[y�x],�⇒�

w ∶ �A[y�x],�⇒�
L�′, a(y) fresh a(y) ∈ N(w),�⇒�, a(y) �∃ A[y�x]

�⇒�,w ∶ �A[y�x] R�′, a(y) fresh
Rules for the quantifiers:

w ∶ A[y�x], y ∈D(w),w ∶ ∀xA,�⇒�

y ∈D(w), w ∶ ∀xA,�⇒�
L∀ z ∈D(w),�⇒�,w ∶ A[z�x]

�⇒�,w ∶ ∀xA R∀, z fresh
z ∈D(w),w ∶ A[z�x],�⇒�

w ∶ ∃xA,�⇒�
L∃, z fresh y ∈D(w),�⇒�,w ∶ ∃xA,w ∶ A[y�x]

y ∈D(w),�⇒�,w ∶ ∃xA R∃
Rules for identity:

w ∶ x = x,�⇒�
�⇒�

Ref
E[z�x],w ∶ y = z,E[y�x],�⇒�

w ∶ y = z,E[y�x],�⇒�
Repl

v ∶ y = z,w ∶ y = z,�⇒�
w ∶ y = z,�⇒�

Rig In rule Repl, E is either: w ∶ P ,
or x ∈D(w), or a(x) ∈ N(w)

Rule for constant domain:

x ∈D(w),�⇒�

�⇒�
Cons

Definition 3.5 (Weight of a labelled formula)
The label of formulas of the form w ∶ A is w. The label of formulas of the form a �∀ A,
a �∃ A is a. The label of a formula F will be denoted by l(F ). The pure part of
a labelled formula F is the part without the label and without the forcing relation,
either local (�∃, �∀) or worldwise (∶) and will be denoted by p(F ).
The weight of a labelled formula F is given by the pair (w(p(F )),w(l(F ))), where
• For all worlds labels w and all neighbourhood labels a, w(w) = 0 and w(a) = 1.
• – w(P ) = w(�) = 1,
– w(A ○B) = w(A) + w(B) + 1 for ○ conjunction, disjunction, or implication,
– w(�A) = w(�A) = w(A) + 1
– w(∃xA) = w(∀xA) = w(A) + 1

For formulas of the form x ∈ D(w) we stipulate w(x ∈ D(w)) = (0,0); for formulas
of the form a ∈ N(w), w ∈ a, we stipulate w(a ∈ N(w)) = w(w ∈ a) = (0,1); and for
formulas of the form a ⊆ b, w(a ⊆ b) = (1,1). Weights of labelled formulas are ordered
lexicographically.

From the definition of weight it is clear that the weight gets decreased if we move
from a formula labelled by a neighbourhood label to the same formula labelled by
a world label, or if we move (regardless the label) to a formula with a pure part of
strictly smaller weight.

Lemma 3.6
Sequents of the following forms are derivable in G3Q.M∗ for arbitrary formulas A in
the language of quantified modal logic:

1. a �∀ A,�⇒�, a �∀ A

2. a �∃ A,�⇒�, a �∃ A
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3. w ∶ A,�⇒�,w ∶ A
Proof. Items 1, 2 are proved as in [13]. To illustrate, item 2 is proved by the
following derivation, whose topmost sequent is derivable by inductive hypothesis since
w(u ∶ A) < w(a �∃ A),

u ∶ A,u ∈ A,�⇒�, a �∃ A,u ∶ A
u ∶ A,u ∈ A,�⇒�, a �∃ A R �∃
a �∃ A,�⇒�, a �∃ A L �∃

For 3, we supplement with the quantifier cases the proof by induction on weight given
in [13] .
A ≡ ∀xB. We have the following inference

z ∈D(w),w ∶ ∀xB,w ∶ B[z�x],�⇒�,w ∶ B[z�x]
z ∈D(w),w ∶ ∀xB,�⇒�,w ∶ B[z�x] L∀

w ∶ ∀xB,�⇒�,w ∶ ∀xB R∀
where the topsequent is derivable by induction hypothesis because w(B[z�x]) < w(∀xB).
The case with A ≡ ∃xB is proved in a similar way with L∃ and R∃ in place of R∀

and L∀, respectively.
Next, we prove that the calculi enjoy the property of hp-substitution of variables,

worlds, and (simple and functional) neighbourhood labels:

Proposition 3.7
The following hold in G3Q.M∗:
1. If �n �⇒ �, then �n �[b ⋅ �a⋅]⇒ �[b ⋅ �a⋅] where b ⋅ (a ⋅, respectively) might

be either b or b(y) ( a or a(y) respectively), for some variable y;

2. If �n �⇒�, then �n �[y�x]⇒�[y�x];
3. If �n �⇒�, then �n �[v�w]⇒�[v�w].
Proof. All three statements are proved by induction on the height of the derivation.
Notice that, since the substitution of variables may have impact on functional neigh-
bourhood labels, it is essential to prove the admissibility of substitution of functional
neighbourhood labels before that of variables in order to avoid clashes with variable
condition.
If the height is 0, �⇒� is an initial sequent or a conclusion of L�. The same then

holds for �[y�x]⇒�[y�x], for �[v�w]⇒�[v�w], and for �[b ⋅ �a⋅]⇒�[b ⋅ �a⋅].
If the derivation has height n > 0, we consider the last rule applied. If �⇒ � has

been derived by a rule without variable conditions, we apply the induction hypothesis
and then the rule. Rules with variable conditions require that we avoid a clash of
the substituted variable with the fresh variable in the premiss. This is the case for
the logical rules L�(′), R�(′) R �∀, L �∃, L∃, R∀ and for the neighbourhood rule
Nondeg. So, if �⇒� has been derived by one of these rules, we apply the inductive
hypothesis twice to the premiss, first to replace the fresh variable with another fresh
variable, di↵erent, if necessary, from the one we want to substitute, then to make the
substitution, and finally we apply the rule. In cases where the last step is by L�′ (R�′)
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with a variable condition on a(x) and the variable substitution [y�x] would clash with
its variable condition, we start by applying the hp-admissible substitution[b(x)�a(x)]
for some b(x) such that neither it nor b(y) occur in the sequent, then we apply the
inductive hypothesis and the rule.

The rules of weakening for the language of a labelled system with internalized
neighbourhood semantics such as G3Q.M∗ have the following form, where � is either
a “relational” atom of the form a ∈ N(w), w ∈ a, or x ∈ D(w),4 or a labelled formula
of the form w ∶ A, a �∀ A, a �∃ A:

�⇒�
�,�⇒�

L-Wkn
�⇒�

�⇒�,�
R-Wkn

Proposition 3.8
The structural rules of left and right weakening are hp-admissible in G3Q.M∗.
Proof. Straightforward induction, with a similar proviso as in the above proof for
rules with variable conditions.

Next, we prove hp-invertibility of the rules of G3Q.M∗, i.e., for every rule of
the form �′⇒�′

�⇒� , if �n � ⇒ � then �n �′ ⇒ �′, and for every rule of the form
�′⇒�′ �′′⇒�′′

�⇒� , if �n �⇒� then �n �′ ⇒�′ and �n �′′ ⇒�′′:
Lemma 3.9
The following hold in G3Q.M∗:
1. If �n �⇒�, a �∀ A then �n w ∈ a,�⇒�,w ∶ A.

2. If �n w ∈ a, a �∀ A,�⇒� then �n w ∈ a,w ∶ A,a �∀ A,�⇒�.

3. If �n w ∈ a,�⇒�, a �∃ A then �n w ∈ a,�⇒�,w ∶ A,a �∃ A.

4. If �n a �∃ A,�⇒� then �n w ∈ a,w ∶ A,�⇒�.

5. If �n w ∶ �A,�⇒� then �n a ∈ N(w), a �∀ A,�⇒�.

6. If �n a ∈ N(w),�⇒�,w ∶ �A then �n a ∈ N(w),�⇒�,w ∶ �A,a �∀ A.

7. If �n a ∈ N(w),w ∶ �A,�⇒� then �n a �∃ A,a ∈ N(w),w ∶ �A,�⇒�.

8. If �n �⇒�,w ∶ �A then �n a ∈ N(w),�⇒�, a �∃ A.

9. If �n w ∈ a, a ⊆ b,�⇒� then �n w ∈ a, a ⊆ b,w ∈ b,�⇒�.

10. If �n y ∈D(w),w ∶ ∀xA,�⇒� then �n w ∶ A[y�x], y ∈D(w),w ∶ ∀xA,�⇒�.

11. If �n �⇒�,w ∶ ∀xA then �n z ∈D(w),�⇒�,w ∶ A[z�x].
12. If �n w ∶ ∃xA,�⇒� then �n z ∈D(w),w ∶ A[z�x],�⇒�.

13. If �n y ∈D(w),�⇒�,w ∶ ∃xA then �n y ∈D(w),�⇒�,w ∶ ∃xA,w ∶ A[y�x].
14. If �n �⇒� then �n w ∶ x = x,�⇒�.

15. If �n w ∶ y = z,E[y�x],�⇒� then �n E[z�x],w ∶ y = z,E[y�x],�⇒�.

16. If �n w ∶ y = z,�⇒� then �n v ∶ y = z,w ∶ y = z,�⇒�.

17. For systems containing rule Cons, if �n �⇒� then �n x ∈D(w),�⇒�.

18. For systems containing rule Prebasic, if �n a ∈ N(w), b ∈ N(w),� ⇒ � then�n c ∈ N(w), c ⊆ a, c ⊆ b, a ∈ N(w), b ∈ N(w),�⇒�.

4
Indeed, such formulas are not needed for right weakening because they are never active on the right.
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19. For systems containing rule Nondeg, if �n �⇒� then �n a ∈ N(w),�⇒�.

Proof. Similar to the proof in [13], observing first that all the cases that are instances
of hp-admissibility of weakening (i.e., all cases but 1, 4, 5, 8, 11, and 12) follow from
Proposition 3.8 above. For the rest, the proof is by induction on n, considering the
last rule applied in a derivation. We prove only case 8, all others being similar.
For the base case, assume that �0 � ⇒ �,w ∶ �A, then, for some label v, either

some atomic v ∶ P occurs in both � and � or v ∶ � occurs in �. In both cases we have
that �0 a ∈ N(w),�⇒�, a �∃ A.
For the inductive step, we assume that the lemma holds up to derivation-height n

and we assume that �n+1 �⇒�,w ∶ �A. If the displayed instance of w ∶ �A is princi-
pal in the last step, we have (possibly using Proposition 3.7) a derivation of height n of
a ∈ N(w),�⇒�, a �∃ A and we are done. Else, the last step is by some rule R with
either one or two premisses and, possibly, with a variable condition. We consider only
the critical case of a rule R with one premiss �′ ⇒�′,w ∶ �A and a variable condition
on a. The premiss has a derivation of height n. We apply to it an height-preserving
admissible substitution, Proposition 3.7, to obtain �n �′[b�a]⇒ �′[b�a],w ∶ �A, for
some fresh neighbourhood label b. By induction we know the lemma holds for deriva-
tions of height n, and therefore we have �n a ∈ N(w),�′[b�a]⇒�′[b�a], a �∃ A. By
an instance of rule R we conclude �n+1 a ∈ N(w),�⇒�, a �∃ A.

Since all the propositional rules of G3Q.M∗ are easily shown to be hp-invertible,
we have:
Corollary 3.10
All the rules of G3Q.M∗ are hp-invertible.

The rules of contraction for the language of a labelled system with internalized
neighbourhood semantics such as G3Q.M∗ have the following form, where � is either
a “relational” atom of the form a ∈ N(w), w ∈ a, or x ∈ D(w), or a labelled formula
of the form w ∶ A, a �∀ A, a �∃ A:

�,�,�⇒�

�,�⇒�
L-Ctr

�⇒�,�,�

�⇒�,�
R-Ctr

Theorem 3.11
The rules of left and right contraction are hp-admissible in G3Q.M∗.
Proof. Similar to the proof in [13], by simultaneous induction on the height of deriva-
tion for left and right contraction.
In the base case the premiss is either an instance of an initial sequent or a conclusion

of L�, and so is the conclusion. In the inductive step we have to consider the last rule
(instance) R used in the derivation of the premiss. If the contraction formula � is not
principal in R, we can simply contract the instances of � that are in the premiss(es)
(since the premiss(es) has(have) lower height), and then we conclude with an instance
of rule R. Else, (at least) one instance of the contraction formula is principal in R.
If R is an instance of a rule with repetition of the principal formula(s) we proceed
as in the case above.5 Finally, if � is principal in R and R is an instance of a rule

5
Note that, if R is an instance of Prebasic, it might be that we have to conclude with an instance of its contracted

version

a ⊆ a,a ⊆ a,a ∈N(w),�⇒�

a ∈N(w),�⇒�
Prebasicc

. No other rule considered in the paper needs a contracted version.
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without repetition of the principal formula(s), we begin by applying invertibility to
the premiss(es) of R, then we apply the inductive hypothesis, and we conclude by an
instance of R.

Cut is a rule of the form

�⇒�,� �,�′ ⇒�′
�,�′ ⇒�,�′ Cut

where � is any formula of the language of the labelled calculus G3Q.M∗. We have:

Theorem 3.12
Cut is admissible in G3Q.M∗.
Proof. By double induction, with primary induction on the weight of the cut formula
and subinduction on the cut height, i.e., the sum of the heights of derivations of the
premisses of cut. The cases in which the premisses of cut are either initial sequents or
obtained through the rules for ∧, ∨, or ⊃ follow the treatment of Theorem 3.2.3 of [15]
since in the calculus initial sequents are limited to atomic formulas of the form w ∶ P ,
with the exception that there are rules for equality with principal atomic formulas.
However, such cases do not cause any extra trouble since a cut with an initial sequent
produces a sequent with the same conclusion modulo a weakening in the context, and
thus can be replaced by admissible weakening steps.
For the cases in which the cut formula is a side formula in at least one rule used

to derive the premisses of cut, the cut reduction is dealt with in the usual way by
permutation of cut, with possibly an application of hp-substitution to avoid a clash
with the fresh variable in rules with variable condition. In all such cases the cut height
is reduced. We just give an example of such a reduction, all the other cases being
similar:

�⇒�,�

a ∈ N(w), a �∀ A,�,�′ ⇒�′
w ∶ �A,�,�′ ⇒�′ L�

w ∶ �A,�,�′ ⇒�,�′ Cut

the neighbourhood label a occurring in the premiss of L� is fresh, but nothing prevents
it from appearing in the left premiss of cut; therefore, prior to the permutation of cut,
we need to replace it with a neighbourhood label which is fresh not just with respect
to the conclusion of L� but also with respect to the left premiss of cut. Let the new
fresh variable be c. The transformed derivation, with cut reduced to a cut of smaller
height, is as follows:

�⇒�,� c ∈ N(w), c �∀ A,�,�′ ⇒�′
c ∈ N(w), c �∀ A,�,�′ ⇒�,�′ Cut

w ∶ �A,�,�′ ⇒�,�′ L�
The cases with cut formula principal in both premisses of cut and either proposi-

tional or of the form a �∀ A, a �∃ A, w ∶ �A, and w ∶ �A are dealt as in [13] (with the
monotonic version of the rules for � and �). To illustrate, if � is w ∶ �A, we have:

b ∈ N(w),�⇒�, b �∃ A
�⇒�,w ∶ �A R� w ∶ �A,a �∃ A,a ∈ N(w),�′ ⇒�′

w ∶ �A,a ∈ N(w),�′ ⇒�′ L�
�, a ∈ N(w),�′ ⇒�,�′ Cut
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which can be transformed into the following derivation having two smaller cuts, the
upper one with lower height, and the lower one with a cut formula of reduced weight:

D[a�b]
a ∈N(w),�⇒�, a �∃ A

�⇒�,w ∶ �A a �∃ A,w ∶ �A,a ∈N(w),�′ ⇒�

a �∃ A,a ∈N(w),�,�′ ⇒�,�′ Cut

�
2, a ∈N(w)2,�′ ⇒�

2,�′ Cut

�, a ∈N(w),�′ ⇒�,�′ L-Ctr∗ and R-Ctr∗

If the cut formula is w ∶ ∀xA, principal in both premisses of cut,

y ∈D(w),�⇒�,w ∶ A[y�x]
�⇒�,w ∶ ∀xA R∀ z ∈D(w),w ∶ A[z�x],w ∶ ∀xA,�′ ⇒�′

z ∈D(w),w ∶ ∀xA,�′ ⇒�′ L∀
z ∈D(w),�,�′ ⇒�,�′ Cut

This is transformed into a derivation with two smaller cuts, the upper one with the
original cut formula but smaller derivation height, and the lower one with a cut
formula of reduced weight:

D[z�y]
z ∈D(w),�⇒�,w ∶ A[z�x]

�⇒�,w ∶ ∀xA z ∈D(w),w ∶ A[z�x],w ∶ ∀xA,�′ ⇒�
′

z ∈D(w),w ∶ A[z�x],�,�′ ⇒�,�′ Cut

z ∈D(w)2,�2,�′ ⇒�
2,�

Cut

z ∈D(w),�,�′ ⇒�,�′ L-Ctr∗ and R-Ctr∗

For cut formula of the form ∃xA principal in both premisses of cut, the reduction is
similar to the above.

4 Soundness and completeness

Next, we give a proof of soundness and completeness of our calculi with respect to
quantified monotone frames. Specifically, we show that all the rules are sound, and
we show that proof search in each calculus either produces a proof, or provides us
with a saturated branch which is used to define a countermodel in the appropriate
class of quantified monotone frames.
The truth of a formula in the labelled system with respect to a modelM =<W,N ,D, d,V > depends on assignments of syntactic components in the models, so

not just variables but also labels for possible worlds and neighbourhoods. We thus
need to extend the notion of SN -realisation (introduced in [14]) with assignments for
first-order variables in a quantified neighbourhood model:

Definition 4.1 (SN -realization)
Given a set S of world labels w and a set NL of neighbourhood labels a, and a neigh-
bourhood modelM = (W,N ,D, d,V), an SN -realisation (⇢, ⌫) is a pair of functions
mapping each w ∈ S into ⇢(w) ∈ W and mapping each a ∈ NL into ⌫(a) ∈ N (w)
for some w ∈ W . We introduce the notion ‘M satisfies a formula F under an SN -
realisation (⇢, ⌫) and an assignment of variables �’ and denote it by M �⇢,⌫,� F ,
where we assume that the labels in F occur in S, NL.

•M �⇢,⌫,� w ∈ a i↵ ⇢(w) ∈ ⌫(a)
•M �⇢,⌫,� a ∈ N(w) i↵ ⌫(a) ∈N (⇢(w))
•M �⇢,⌫,� x ∈D(w) i↵ �(x) ∈ d(⇢(w))
•M �⇢,⌫,� a ⊆ b i↵ ⌫(a) ⊆ ⌫(b)
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•M �⇢,⌫,� w ∶ A i↵ M,�,⇢(w) � A (see Definition 3.4)

•M �⇢,⌫,� a �∃ A i↵ ∃v ∈W (v ∈ ⌫(a) ∧M,�, v � A)
•M �⇢,⌫,� a �∀ A i↵ ∀v ∈W (v ∈ ⌫(a) ⊃M,�, v � A)

Given a sequent � ⇒ �, let S, NL be the sets of world and neighbourhood labels
occurring in � ∪�, and let (⇢, ⌫) be an SN -realisation and � an assignment of vari-
ables, we define: M �⇢,⌫,� �⇒� if wheneverM �⇢,⌫,� F for all formulas F ∈ � thenM �⇢,⌫,� G for some formula G ∈�. We further defineM-validity by:

M � � ⇒ � i↵ M �⇢,⌫,� � ⇒ � for every SN -realisation (⇢, ⌫) and every
assignment �.

We say that a sequent �⇒� is valid in a quantified monotone neighbourhood frameF if M � � ⇒ � for every quantified monotone neighbourhood model M based onF . Finally, we say that a sequent � ⇒ � is Q.L-valid if it is valid in all quantified
monotone neighbourhood frames that are frames for the logic L.

Soundness

Below, we shall use the notationM �⇢,⌫,� � forM �⇢,⌫,� F for all F ∈ �, where �⇢,⌫,�
is the notion of truth introduced in Definition 4.1.

Theorem 4.2
If �⇒� is derivable in G3Q.M, then it is valid in the class of quantified monotone
neighbourhood frames. In the extensions with rule Prebasic and Nondeg, validity holds
with respect to pre-basic and non-degenerate frames, respectively. In the extensions
with rule Cons, validity holds with respect to constant domain frames.

Proof. By induction on the height n of the derivation of �⇒� in G3Q.M∗.
For n = 0, observe that initial sequents have the same labelled formula in the

antecedent and in the succedent so the claim is obvious. Similarly if the antecedent
contains w ∶ � because we assume that for no w ∈ W and no assignment � we have
thatM,�, w � �.
For the inductive step, consider the last rule in the derivation of �⇒ �. If it is a

propositional rule, the claim is immediate by the definition of the forcing clauses for
the propositional connectives.
If the last rule is R �∀, assume by induction hypothesis that u ∈ a,�⇒�, u ∶ A is

valid. Let (⇢, ⌫) be an arbitrary SN -realisation and � an arbitrary assignment for
the conclusion and assume that M �⇢,⌫,� �. Since u is fresh, ⇢ can be extended to
⇢′, an S-realization for the premiss with ⇢′(u) ∈ ⌫(a). Then (using the assumption
that u ∉ �) we have M �⇢′,⌫,� u ∈ a,�. By the hypothesis M � u ∈ a,� ⇒ �, u ∶ A,
we have that either (1) M �⇢′,⌫,� G for some G in � or (2) M �⇢′,⌫,� u ∶ A. In the
former case we are done, so let us assume that M �⇢′,⌫,� G for no G in �. Since
u ∉ �, this will be the case uniformly, independently of the choice of ⇢′(u), so we’ll
haveM �⇢′,⌫,� u ∶ A for all ⇢′(u) ∈ ⌫(a), and thereforeM �⇢,⌫,� a �∀ A.
If the last rule is L �∀, the claim holds since ifM �⇢,⌫,� w ∈ a and M �⇢,⌫,� a �∀ A,

thenM �⇢,⌫,� w ∶ A by simply unfolding the definitions.
If the last rule is R �∃, consider an arbitrary SN -realisation (⇢, ⌫) and an arbitrary

assignment �, and assume that (1)M �⇢,⌫,� w ∈ a,�. Then, by induction hypothesis,
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either (2)M �⇢,⌫,� G for some G ∈�, or (3)M �⇢,⌫,� w ∶ A, or (4)M �⇢,⌫,� a �∃ A.
If (2) or (4) hold, then the claim follows. If (3) holds, we have ⇢(w) � A. Observe
that (1) gives in particular ⇢(w) ∈ ⌫(a), so there is u ∈ ⌫(a) such thatM,�, u � A, i.e.
⌫(a) �∃ A. It follows that the conclusion of the rule isM-valid for the SN -realization(⇢, ⌫) and the assignment �.
If the last rule is L �∃, assume that M �⇢,⌫,� a �∃ A,� for an arbitrary SN -

realisation for the conclusion (⇢, ⌫) and assignment �. Then there is w ∈ ⌫(a) such
that M,�, w � A. Since u is fresh, we can extend ⇢ to an S-realization for the
premiss by choosing ⇢′(u) = w. Then we have M �⇢′,⌫,� u ∈ a, u ∶ A by definition,
and M �⇢′,⌫,� � because u ∉ �. By induction hypothesis, the premiss of the rule isM-valid, and therefore there is G in � such that M �⇢′,⌫,� G. Since u ∉ �, this is
the same asM �⇢,⌫,� G.
If the last rule is L�, assume the premiss valid and let (⇢, ⌫) be an arbitrary SN -

realisation and � an arbitrary assignment withM �⇢,⌫,� w ∶ �A,�. This means that
there is ↵ in N(⇢(w)) with ↵ ⊆ �A��. Since a is fresh, we can extend ⌫ to ⌫′ by
having ⌫′(a) = ↵. We have M �⇢,⌫′,� a ∈ N(w), a �∀ A by the definitions and alsoM �⇢,⌫′,� � because a ∉ � and by hypothesisM �⇢,⌫,� �. Again by hypothesis, there
is B in � withM �⇢,⌫′,� B and thus by freshness of a we haveM �⇢,⌫,� B.
If the last rule is R�, assume the premiss valid and assume for an arbitrary SN -

realisation (⇢, ⌫) and assignment � that M �⇢,⌫,� a ∈ N(w),�. From the validity of
the premiss we have that one of the following alternatives holds: 1: M �⇢,⌫,� B for
some B in �. 2. M �⇢,⌫,� w ∶ �A. 3. M �⇢,⌫,� a �∀ A. Observe that the latter gives,
together withM �⇢,⌫,� a ∈ N(w) thatM �⇢,⌫,� w ∶ �A so in each of the three cases
we have proved the claim.
If the last rule is L�, assume the premiss valid and assume for an arbitrary SN -

realisation (⇢, ⌫) and assignment � thatM �⇢,⌫,� a ∈ N(w),w ∶ �A,�. ThenM �⇢,⌫,�
a �∃ A and by the hypothesis we conclude thatM �⇢,⌫,� B for some B ∈�.
If the last rule is R� assume M � b ∈ N(w),� ⇒ �, b �∃ A. Let (⇢, ⌫) be an

arbitrary SN -realization and � be an arbitrary assignment such thatM �⇢,⌫,� �. We
extend ⌫ to an N -realization ⌫′ such that ⌫′(b) ∈ N (⇢(w)). Since B is not in �, we
haveM �⇢,⌫′,� b ∈ N(w),� and by the hypothesis eitherM �⇢,⌫′,� B with B ∈ � orM �⇢,⌫′,� b �∃ A. If the former holds we are done (thanks to the freshness of b). Else,
independently of the choice of ⌫′(b), there is ⇢(u) ∈ ⌫′(b) such that M �⇢,⌫′,� u ∶ B,
and thereforeM �⇢,⌫,� w ∶ �A.
The case of rule L�′ (R�′) is similar to L� (R�) and can be omitted.
If the last rule is L∀, assume the premiss valid. Let (⇢, ⌫) be an arbitrary SN -

realisation and � an arbitrary assignment such that M �⇢,⌫,� y ∈ D(w),w ∶ ∀xA,�.
Then in particular M �⇢,⌫,� w ∶ ∀xA, i.e., for all o ∈ d(�(w)), M �⇢,⌫,�x▷o A. SinceM �⇢,⌫,� y ∈ D(w), we have M �⇢,⌫,� w ∶ A[y�x]. Thus all the formulas in the
antecedent of the premiss are validated in (⇢, ⌫,�) and by inductive hypothesis there
is F in � such thatM �⇢,⌫,� F , so the conclusion is valid.
If the last rule is R∀, assume the premiss z ∈ D(w),� ⇒ �,w ∶ A[z�x] valid. Let(⇢, ⌫) be an arbitrary SN -realisation and � an arbitrary assignment that validates

all the formulas in �. We claim that one of the formulas in � or w ∶ ∀xA is valid
under (⇢, ⌫,�). Let z ∈ d(⇢(w)) and �′ ≡ �x▷z. We have M �⇢,⌫,�′ z ∈ D(w),�, so
by inductive hypothesisM �⇢,⌫,�′ F for some F in � orM �⇢,⌫,�′ w ∶ A[z�x]. In the
former case,M �⇢,⌫,� F (because z is fresh), in the latter,M �⇢,⌫,� ∀xA.
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The cases of L∃ and R∃ are similar, respectively, to R∀ and L∀.
If the last rule is Ref, assume by induction hypothesis that M � w ∶ x = x,� ⇒

�. Let (⇢, ⌫) be an arbitrary SN -realisation and � an arbitrary assignment for the
conclusion and assume thatM �⇢,⌫,� �. Since �(x) = �(x), we haveM � w ∶ x = x,�.
The assumption givesM � F for some F ∈�, so the conclusion of the rule is valid.
If the last rule is Repl, assume M � w ∶ y = z,E[y�x],�. Since we have �(y) =

�(z) and M � E[y�x], also M � E[z�x] holds. Inductive hypothesis gives the
conclusion. Validity of Rig is straightforward. It is also straightforward to show that
rules Prebasic, Nondeg and Cons preserve validity over quantified monotone models
in the corresponding classes.

Completeness

Next, we move to completeness. First, we give the definition of saturated branch.
Intuitively, a branch is saturated when, in root-first proof search, all the applicable
rules have been applied.

Definition 4.3 (Saturation)
A branch in a proof search from the endsequent up to a sequent �⇒ � is saturated
with respect to a rule R if condition (R) below holds, where we indicate with ↓� (↓�)
the union of the antecedents (succedents) in the branch from the end-sequent up to
�⇒�:

(Init) There is no w ∶ P in ���.

(L⊥) There is no w ∶⊥ in �.

(L∧) If w ∶ A ∧B is in ↓�, then w ∶ A and w ∶ B are in ↓�.
(R∧) If w ∶ A ∧B is in ↓�, then either w ∶ A or w ∶ B is in ↓�.

(L∨) If w ∶ A ∨B is in ↓�, then either w ∶ A or w ∶ B is in ↓�.
(R∨) If w ∶ A ∨B is in ↓�, then w ∶ A and w ∶ B are in ↓�.

(L⊃) If w ∶ A ⊃ B is in ↓�, then either w ∶ A is in ↓� or w ∶ B is in ↓�.
(R⊃) If w ∶ A ⊃ B is in ↓�, then w ∶ A is in ↓� and w ∶ B is in ↓�.

(L�∀) If w ∈ a and a �∀ A are in �, then w ∶ A is in ↓�.
(R�∀) If a �∀ A is in ↓�, then for some w there is w ∈ a in � and w ∶ A in ↓�.

(L�∃) If a �∃ A is in ↓�, then for some w there is w ∈ a in � and w ∶ A is in ↓�.
(R�∃) If w ∈ a is in � and a �∃ A is in �, then w ∶ A is in ↓�.

(L�) If w ∶ �A is in ↓�, then for some a, a ∈ N(w) is in � and a �∀ A is in ↓�.
(R�) If a ∈ N(w) is in � and w ∶ �A is in ↓�, then a �∀ A is in ↓�.
(L�) If a ∈ N(w) is in � and w ∶ �A is in ↓�, then a �∃ A is in ↓�.
(R�) If w ∶ �A is in ↓�, then for some a, a ∈ N(w) is in � and a �∃ A is in ↓�.

(L∀) If y ∈D(w),w ∶ ∀xA are in �, then w ∶ A[y�x] is in ↓�.
(R∀) If w ∶ ∀xA is in ↓�, then for some z, z ∈D(w) is in ↓� and w ∶ A[z�x] in ↓�.

(L∃) If w ∶ ∃xA is in ↓�, then for some z, z ∈D(w) and w ∶ A[z�x] are in ↓�.
(R∃) If w ∶ ∃xA is in � and y ∈D(w) is in �, then w ∶ A[y�x] is in ↓�.

(Ref) If x,w are in �,�, then w ∶ x = x is in �.
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(Repl) If w ∶ y = z,E[y�x] are in �, where E is either w ∶ P or x ∈ D(w), or
a(x) ∈ N(w), then E[z�x] is in �.

(Rig) If w ∶ y = z is in � and v is in �,�, then v ∶ y = z is in �.

(L⊆) If w ∈ a and a ⊆ b are in �, then w ∈ b is in �.

(Cons) If x,w are in �,�, then x ∈D(w) is in �.

(Prebasic) If a ∈ N(w), b ∈ N(w) are in �, then for some c, c ∈ N(w), c ⊆ a, c ⊆ b are
in �.

(Nondeg) If w is in �,�, then for some a, a ∈ N(w) is in �.

A branch is saturated relative to a system S of rules if it is saturated with respect to
each rule of S.
Observe that in some cases of the above definition the downarrow (↓) does not appear:
the reason is that it is not needed because the principal formula(s) is(are) copied in
the premiss.
The definition of saturated branch is extended to infinite branches B ≡ {�i ⇒�i}i≥0

by replacing, in the definition above, � (or ↓�) by �, the union of the �i, and � (or↓�) by �, the union of the �i. The first clause (Init) is modified to requiring that
for all i, there is no w ∶ P in �i ∩�i.
Given a sequent � ⇒ � we apply root-first all the available rules. Observe that,

by invertibility of the rules, there is no prescribed order in which they need to be
applied. We want to avoid the possibility that the search produces an infinite branch
which is not saturated, something that would result, e.g., from applying the same rule
infinitely many times in consecutive steps. This is achieved as usual in such proofs
through a counter: if there are m rules, at step 1 we apply rule R1 to all formulas
that match its conclusion, at step 2 rule R2, and in general for all n ≤ m we apply
at step n all possible instances of rule Rn. In this way we’ll obtain a proof-search
tree that can be either a derivation, or a non-derivation; the latter can either be a
finite search tree that contains finite saturated branches, or an infinite search that,
by König’s lemma, contains an infinite saturated branch. We shall now prove that a
saturated branch (either finite or infinite) for a sequent �⇒� gives a countermodel.

Lemma 4.4
Let B ≡ {�i ⇒�i} be a branch in a proof-search tree for �⇒� saturated relative to
a system S of rules. Then there exists a countermodelM to �⇒�, which makes all
the formulas in � true, and all the formulas in � false. The countermodel is in the
class of models relative to the logic Q.L that corresponds to the system S of rules.

Proof. Consider a saturated branch and define the countermodelM ≡ (W,N ,D, d,V)
as follows:

1. The set W of worlds consists of all the world labels in �;

2. For each neighbourhood label a in �, we associate ↵a, the set that consists of all
the w in W such that w ∈ a is in �;

3. For each w in W , the set of neighbourhoods of w consists of all the ↵a such that
a ∈ N(w) is �;

4. The set D consists of all [x], where [x] is the equivalence class of all variables
such that v ∶ x = y (for some v) occurs in � (it is immediate to see that [x] is an
equivalence class since identity is an equivalence relation);
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5. For each w in W , d(w) consists of all the [x] such that x ∈D(w) is �.
6. The valuation is defined on atomic formulas by w � P if w ∶ P is in � and is

extended to arbitrary labelled formulas following the clauses of Definition 4.1.

We then define a realization (⇢, ⌫) by ⇢(w) ≡ w and ⌫(a) ≡ ↵a. We define the
assignment � as �(x) ≡ [x]. Next we prove the following:

1. If A is in �, thenM �⇢,⌫,� A.

2. If A is in �, thenM ��⇢,⌫,� A.

The two claims are proved simultaneously by cases/induction on the weight of A
(cf. Definition 3.5).
(a) If A is a formula of the form a ∈ N(w), w ∈ a, or x ∈ D(w), claim 1 holds by

definition of M. Claim 2 is empty for these subcases because such formulas never
occur on the right-hand side of sequents.
(b) If A is a formula of the form w ∶ x = y and it is in �, we have �(x) = �(y)

because x and y are in the same equivalence class of variables, soM �⇢,⌫,� w ∶ x = y.
If w ∶ x = y is in � then saturation clause Init entails that x and y are in di↵erent
equivalence classes, soM ��⇢,⌫,� w ∶ x = y.
(c) If A is a labelled atomic formula w ∶ P , the claims hold by definition of � and by

the saturation clause Init no inconsistency arises. If A is ⊥, it holds by definition of
the forcing relation that it is never forced, and therefore 2 holds, whereas 1 holds by
the saturation clause for L ⊥. If A is a conjunction, or a disjunction, or an implication,
the claim holds by the corresponding saturation clauses and inductive hypothesis on
smaller formulas.
(d) If a �∃ A is in �, by the saturation clause (L�∃), for some w, w ∈ a and w ∶ A

are in �. Then M �⇢,⌫,� w ∈ a by clause (a) above and by induction hypothesisM �⇢,⌫,� w ∶ A, thereforeM �⇢,⌫,� a �∃ A.
If a �∃ A is in �, then it is in � because such formulas are always copied to the

premisses in the right-hand side of sequents. Consider an arbitrary world w in ↵a.
Then, by definition ofM we have w ∈ a in � and thus, by the saturation clause (R�∃),
we also have that w ∶ A is in �. By induction hypothesis we haveM ��⇢,⌫,� w ∶ A and
thereforeM ��⇢,⌫,� a �∃ A. The proof for formulas of the form a �∀ A is similar.
(e) If w ∶ �A is in �, then for some a, a ∈ N(w) and a �∀ A are in �. By induction

hypothesis we obtainM �⇢,⌫,� a �∀ A, and thereforeM �⇢,⌫,� w ∶ �A.
If w ∶ �A is in �, then because of the form of the rules of the calculus it actually

is in �. Let ↵a be a neighbourhood in N (w) in the model. By the saturation clause,
we have that a �∀ A is in �. By induction hypothesis we obtain M ��⇢,⌫,� a �∀ A,
and thereforeM ��⇢,⌫,� w ∶ �A.
(f) If w ∶ �A is in �, then it actually is in �. Assume that ↵a is a neighbourhood

in N (w), then a ∈ N(w) is in � and by saturation a �∃ A is in �. By induction
hypothesis we obtainM �⇢,⌫,� a �∃ A and thereforeM �⇢,⌫,� w ∶ �A.
If w ∶ �A is in �, then for some a, a ∈ N(w) is in � and a �∃ A is in �. By

induction we have thatM ��⇢,⌫,� a �∃ A, and henceM ��⇢,⌫,� w ∶ �A.
(g) If w ∶ ∀xA is in �, consider all the domain atoms z ∈ D(w). If there is no such

atom, then by definition, ∀xA is forced at w in the model. Else we find w ∶ A[z�x] in
�, forced in the model by the inductive hypothesis, and therefore w ∶ ∀xA is forced
as well.
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If w ∶ ∀xA is in �, we find by construction z ∈ D(w) in � and w ∶ A[z�x] in �.
By the inductive hypothesis, A[z�x] is not forced at w in the model, where [z] is an
element of the domain d(w), thus w ∶ ∀xA is not forced either.
(h) The cases with w ∶ ∃xA in � and w ∶ ∃xA in � are symmetric to those of

w ∶ ∀xA in � and w ∶ ∀xA in �, respectively.
(i) In order to prove completeness for extensions of Q.M we need to prove that

the countermodelM is in the intended class. If the branch is saturated with respect
to Prebasic, observe that because of rule L⊆, if c ⊆ a ∈ �, we have ↵c ⊆ ↵a, that is,
extensional inclusion in the model respects formal inclusion. It therefore follows that
the defined countermodel is pre-basic.
If we have saturation with respect to Nondeg, then for every world w in the model,N (w) is non-empty, so the countermodel is non-degenerate.
Finally, if we have saturation with respect to rule Cons, for every world w in W

and for every object [x] in D, the formula x ∈D(w) is in �, so the countermodel has
constant domain.

We are ready to prove the completeness of the calculi.

Theorem 4.5
If A is valid (respectively, valid over all non-degenerate/pre-basic/constant-domain
frames) then there is a derivation inG3Q.M∗ (inG3Q.M∗ + {Nondeg�Prebasic�Cons})
of ⇒ w ∶ A, for any label w.

Proof. For every A we either find a derivation or a saturated branch. By the above
lemma a saturated branch gives a countermodel to A. It is also immediate to notice
that saturation under rule Nondeg (Prebasic, Cons) ensures that the countermodel is
based on a frame that is non-degenerate (pre-basic, with constant domain, respec-
tively). It follows that if A is valid it has to be derivable.

5 Necessity of Identity and Barcan Formulas

In this section, we shall establish which rules are needed to derive in calculi based on
G3Q.M∗ the Necessity of Identity

x = y ⊃ � x = y (NI)

and the Barcan Formulas � ∀xA ⊃ ∀x �A (CBF)

∀x �A ⊃ �∀xA (BF)

This will be done by applying a sort of ‘bootstrapping’ procedure: we shall use the
rules of the basic calculus G3Q.M to find the other rules that are needed, in a root-
first proof search, to derive such formulas. We shall rely on the structural results
already established for G3Q.M∗, especially invertibility of all its rules. On the other
hand, in discussing the outcome of this procedure, we shall assume the soundness and
completeness results – to be proved in Section 5 – in order to transform the rules we
found into frame properties.
We begin with NI; rule Nondeg, needed to derive the Necessity of Identity, is in

Table 2.
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Table 4: Rules for CBF

b ∈ N(w), b ⊆ a, In(b,w), a ∈ N(w),�⇒�

a ∈ N(w),�⇒�
SubIn, b fresh

y ∈D(v), v ∈ b, In(b,w), y ∈D(w),�⇒�

v ∈ b, In(b,w), y ∈D(w),�⇒�
In

Proposition 5.1
G3Q.M*+{Nondeg} � NI

v ∶ x = y, v ∈ a, a ∈ N(w),w ∶ x = y⇒ w ∶ � x = y, v ∶ x = y
v ∈ a, a ∈ N(w),w ∶ x = y⇒ w ∶ � x = y, v ∶ x = y Rig

a ∈ N(w),w ∶ x = y⇒ w ∶ � x = y, a �∀ x = y R �∀
a ∈ N(w),w ∶ x = y⇒ w ∶ � x = y R�

w ∶ x = y⇒ w ∶ � x = y Nondeg

⇒ w ∶ x = y ⊃ � x = y R ⊃
It is immediate to see that the same rule Nondeg is needed to derive the Necessity of
Distinctness: ND ∶= x ≠ y ⊃ �x ≠ y. Moreover, rule Nondeg is also needed to derive
the necessitation axiom N ∶= �� in G3Q.M*. Thus, as expected, we found a strong
relationship between NI, ND and N in QMML: each of them is valid over the class
of all monotone neighbourhood frames where for all w ∈W , N (w) ≠ �.
Now we move to the Converse Barcan Formula CBF. The proof search tree for CBF

in the derivation below invokes rules that are listed in Table 4:

Proposition 5.2
G3Q.M*+{SubIn, In} � CBF

v ∶A[y�x], v ∈ a,y ∈D(v), v ∈ b, b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶A[y�x]
v ∈ a,y ∈D(v), v ∈ b, b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶A[y�x] L �∀

y ∈D(v), v ∈ b, b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶A[y�x] L ⊆
v ∈ b, b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶A[y�x] In

b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], b �∀ A[y�x] R �∀

b ∈N(w), b ⊆ a,In(b,w), a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x] R�′

a ∈N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x] SubIn

y ∈D(w),w ∶ �∀xA⇒ w ∶ �A[y�x] L�′
w ∶ �∀xA⇒ w ∶ ∀x �A

R∀
⇒ w ∶ �∀xA ⊃ ∀x �A

R ⊃

Rule SubIn requires that each neighbourhood a of a state w contains another neigh-
bourhood b of w with a certain property In(b,w) specified in the rule In, namely that
the inner domain of each member of b is an extension of that of w. This shows that
in a varying domain neighbourhood semantics, CBF is not valid over all monotone
frames, as it happens over constant domain neighbourhood frames, cf. Theorem 6.1.
The di↵erence is that frames have also to satisfy a property generalizing that for in-
creasing domains in normal modal logics. Notice that as a limit case we can consider
a rule analogous to the one for increasing domains in calculi for normal modal logics:

y ∈D(v), y ∈D(w), v ∈ a, a ∈ N(w),�⇒�

y ∈D(w), v ∈ a, a ∈ N(w),�⇒�
Incr
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Table 5: Rules for BF

b ∈ N(w),Min(b, a,w), a ∈ N(w),�⇒�

a ∈ N(w),�⇒�
Min, b fresh

y ∈D(w), v ∈ b,Min(b, a,w), y ∈D(v),�⇒�

v ∈ b,Min(b, a,w), y ∈D(v),�⇒�
MinD

v ∈ a(y), v ∈ b,Min(b, a,w), a(y) ∈ N(w), y ∈D(w),�⇒�

v ∈ b,Min(b, a,w), a(y) ∈ N(w), y ∈D(w),�⇒�
MinN

y ∈D(w),�⇒� a ∈ N(w),�⇒�

�⇒�
NE, y, a fresh

In G3Q.M*+{Incr} we have the following simpler derivation of CBF:

y ∈D(v), v ∈ a,a ∈ N(w), v ∶ ∀xA,v ∶ A[y�x], a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶ A[y�x]
y ∈D(v), v ∈ a,a ∈ N(w), v ∶ ∀xA,a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶ A[y�x] L∀

v ∈ a,a ∈ N(w), v ∶ ∀xA,a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶ A[y�x] Incr

v ∈ a,a ∈ N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], v ∶ A[y�x] L �∀
a ∈ N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x], a �∀ A[y�x] R �∀

a ∈ N(w), a �∀ ∀xA,y ∈D(w)⇒ w ∶ �A[y�x] R�′
y ∈D(w),w ∶ �∀xA⇒ w ∶ �A[y�x] L�′

w ∶ �∀xA⇒ w ∶ ∀x �A
R∀

⇒ w ∶ �∀xA ⊃ ∀x �A
R ⊃

Nevertheless, Proposition 5.2 shows that rule Incr is not necessary to derive CBF
since it is enough to consider frames whose domains are increasing with respect to
some subset of a given neighbourhood.
Lastly, we consider the Barcan Formula BF . The proof search tree is in Proposition

5.3 and the rules we found are in Table 5.

Proposition 5.3
G3Q.M*+{Min,MinD,MinN,NE} � BF

v ∶A[y�x], . . .⇒ v ∶A[y�x]
v ∈ a(y), a(y) �∀ A[y�x], . . .⇒ v ∶A[y�x] L �∀

a(y) ∈N(w), a(y) �∀ A[y�x], y ∈D(w), y ∈D(v), v ∈ b,Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ v ∶A[y�x] MinN

w ∶ �A[y�x], y ∈D(w), y ∈D(v), v ∈ b,Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ v ∶A[y�x] L�′
y ∈D(w), y ∈D(v), v ∈ b,Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ v ∶A[y�x] L∀

y ∈D(v), v ∈ b,Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ v ∶A[y�x] MinD

v ∈ b,Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ v ∶ ∀xA
R∀

Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ b �∀ ∀xA
R �∀

b ∈N(w),Min(b,a,w),x ∈D(w),w ∶ ∀x �A⇒ w ∶ �∀xA
R�

a ∈N(w), a �∀ A,x ∈D(w),w ∶ ∀x �A⇒ w ∶ �∀xA
Min

w ∶ �A[x�x],x ∈D(w),w ∶ ∀x �A⇒ w ∶ �∀xA
L�′

x ∈D(w),w ∶ ∀x �A⇒ w ∶ �∀xA
L∀ �

w ∶ ∀x �A⇒ w ∶ �∀xA
NE

⇒ w ∶ ∀x �A ⊃ �∀xA
R ⊃

The right branch � above NE is like the left one, but without the lowermost instances
of L∀ and L�′. In the left branch these two rule instances are needed only to introduce
(bottom-up) a ∈ N(w) which, in the right branch, is introduced directly by NE.
Roughly, rule NE ensures that no world is such that both its inner domain and its set

of neighbourhoods are empty. The rules Min, MinN and MinD are more complicated
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and require a more detailed explanation. Essentially their role is the following: they
ensure the existence of a minimal neighbourhood for every family of neighbourhoods
that are indexed by elements of the domain. This minimal neighbourhood b, whose
existence is granted by rule Min, respects a decreasing-domain-like property in that
each object in the inner domain of one member of b is also in the inner domain
of the base state. Moreover, thanks to rule MinN, b is minimal in the sense that
it is contained in each neighbourhood of the base world that is part of a family of
neighbourhoods indexed by objects in its inner domain. This explains the need for
functional labels: they are needed to keep track of the dependency of neighbourhoods
on existing objects when we consider minimal neighbourhoods that are needed to
derive BF . Observe that rule MinN is similar to rule Prebasic in Table 2, which is
needed to derive C in calculi for monotone modalities, but it is independent of it
because it gives us a subset of a set a1, . . . an of neighbourhoods of a state w only
if each ai is a member of a family of neighbourhoods that is indexed by a di↵erent
object of the inner domain of w. Therefore, in general BF and C are independent of
each other over varying domain neighbourhood frames.

A digression on the Barcan Formula

The Barcan Formula is a very strong property, as shown by its paradoxical con-
sequences when it involves a modality with a non-normal interpretation, as in the
lottery paradox. It is therefore not surprising that its derivation in our system should
require additional strong properties on the neighbourhood semantics. Here we have
shown that the existence of minimal neighbourhoods for families of neighbourhoods
indexed by elements of the domain is a su�cient condition for the validity of the
Barcan Formula.
This minimality property can be related to the characterizing property of Alexan-

drov topologies, namely the fact that open sets are closed under arbitrary intersections.
There are several equivalent characterizations of Alexandrov topologies, among these
the property that the intersection of neighbourhoods6 of a point is still a neighbour-
hood of the point and the property that every point has a smallest neighbourhood.
The most interesting consequence of being an Alexandrov topology is something that
bridges topology in the most traditional sense of mathematical analysis to applications
in ordered structures. We briefly recall the essential part of the link.7

Given a topological space (X, ⌧) we can define a preorder (called the specialization
preorder) by

x � ⌧y ≡ ∀a ∈ ⌧(x ∈ a ⊃ y ∈ a)
Conversely, given a preorder (X, � ) we can define a topology ⌧ � by taking as opens
the subsets of X which are upper sets with respect to � , i.e. subsets a of X with
the property ∀x, y(x ∈ a ∧ x � y ⊃ y ∈ a). We indicate the property of a being an
upper set with U(a). It is then natural to ask whether these two operations between
topological spaces and preorders are inverse of each other. It is easy to verify that

x � ⌧ � y if and only if ∀a ∈ ⌧ � (x ∈ a ⊃ y ∈ a) if and only if ∀a(U(a) ∧ x ∈ a ⊃ y ∈ a)
6
Recall that a neighbourhood of a point x in a topological space (X,⌧) is a subset of X that contains an open

of ⌧ that contains x, and an open set is a subset of X with the property that for every point x it contains, there is

a neighbourhood of x included in it.

7
For a reference to this correspondence see [11], p. 45; observe however that Johnstone requires the T0 property

to get an order (with antisymmetry) rather than just a preorder and the details are left as exercises.
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if and only if x � y. However, in general the topology ⌧ � ⌧

is a finer topology than
⌧ , i.e. it has more open sets: If a is ⌧ , it is immediate to see that it is an upper
set with respect to the specialization preorder, i.e. a is in ⌧ � ⌧

. We show that the
converse holds when the topology is Alexandrov. So, let a be in ⌧ � ⌧

; to prove that
a is actually in ⌧ we need to prove that for every x ∈ a there is a neighbourhood of x
included in a. Let c be the intersections of all open sets in ⌧ that contain x. By the
Alexandrov property, c is in ⌧ , so we only have to prove that c is included in a. Let
y ∈ c, i.e., by definition of c, ∀b ∈ ⌧(x ∈ b ⊃ y ∈ b), i.e. x � ⌧y. Since x is in a and a is
an upper set w.r.t. � ⌧ , we have y ∈ a. Since y was arbitrary in c, c ⊆ a.
The equivalence between Alexandrov topologies and topologies induced by a pre-

order is known also in the context of possible worlds semantics as the equivalence be-
tween relational models and neighbourhood models with the property of monotonicity
(upward closure) and the property that the intersection of the neighbourhoods of w is
a neighbourhood of w. Since relational models characterize normal modal logics, it is
interesting to ask ourselves whether imposing validity of the Barcan Formula takes to
a collapse of neighbourhood semantics into relational semantics, and therefore makes
the logic normal.
We have seen that to get validity of the Barcan Formula it is enough to require the

existence of minimal neighbourhoods (w.l.o.g., intersections) only for families indexed
by elements of the domain. So the question reduces to asking whether arbitrary
families of neighbourhoods can be indexed by elements of the domain. Clearly, the
cardinality of a family of neighbourhoods of w is bounded by the number of elements
in N (w), which in turn is bounded by the cardinality of the power set of W , P(W ).
Thus in the end, an indexed family of neighbourhoods of w can be reduced to a family
indexed by the domain of w if the cardinality of the domain is at least the cardinality
of P(W ).
Structural properties

The proof of all the structural properties of the afore-mentioned extensions is a routine
exercise and we shall not give it in detail, but just observe that, because of the form
of the rules, it proceeds exactly as in Section 3.4.

Soundness and completeness

In order to extend the soundness and completeness results to QMML containing the
Necessity of Identity and/or the Barcan Formulas, we start by defining classes of
monotone neighbourhood frames where such formulas are valid.

Definition 5.4 (Frame properties)
Let F be a varying domain (monotone) neighbourhood frame. We say that F is a
frame for

• NI whenever F is non-degenerate: for all w ∈W , N (w) ≠ �;
• CBF whenever F is subset-increasing : for each w ∈W and each a ∈ N (w) there
is b ∈N (w) such that:
1. b ⊆ a;
2. For all v ∈ b, o ∈ d(w) implies o ∈ d(v).
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• BF whenever F is minimal-decreasing : for each w ∈W
1. d(w) ∪N (w) ≠ �;
2. If I ⊆ d(w), then there is b ∈N (w) such that:
(a) If i ∈ I and a(i) ∈N (w), then b ⊆ a(i), and
(b) If v ∈ b and o ∈ d(v), then o ∈ d(w).

Theorem 5.5 (Soundness)
If �⇒� is derivable in G3Q.M∗+{Nondeg}, G3Q.M∗+{SubIn,In}, or G3Q.M∗+{Min, MinD, MinN, NE}, then it is valid, respectively, in the class of all quantified
monotone neighbourhood frames for NI, CBF, or BF.

Proof. The proof extends that of Theorem 4.2 by considering the new inductive
cases given by the non-logical rules for NI,CBF and BF .
It is easy to see that these rules preserve validity over the appropriate class of

frames. To illustrate, we consider rule SubIn. Assume the premiss valid and consider
an arbitrary SN -realization (⇢, ⌫) and an arbitrary assignment � such thatM �⇢,⌫,�
a ∈ N(w),� withM based on a subset-increasing frame. This means that, for some
fresh label b, ⌫(b) is such that ⌫(b) ⊆ ⌫(a), ⌫(b) ∈ N (w), and for all v such that
⇢(v) ∈ ⌫(b), and all x such that �(x) ∈ d(⇢(w)), we have that �(x) ∈ d(⇢(v)). This
latter fact implies that M⇢,⌫,� � In(b,w), and, since M⇢,⌫,� � b ∈ N(w), b ⊆ a, by
induction hypothesis we conclude that there is G ∈� such thatM �⇢,⌫,� G.

Theorem 5.6 (Completeness)
If A is valid in the class of all quantified monotone neighbourhood frames for NI,
CBF, or BF, then⇒ w ∶ A is derivable in G3Q.M∗+{Nondeg},G3Q.M∗+{SubIn,In},
or G3Q.M∗+{Min,MinD,MinN,Ne}.
Proof. The proof extends that of Theorem 4.5. The notion of saturation, Definition
4.3, and the truth lemma, 4.4, are extended to cover the new rules. The details are
left to the reader.
We have only to prove that the countermodel M given by a saturated branch

is based of a frame for NI, CBF, or BF, respectively. To illustrate, if we are in
G3Q.M∗+{Min,MinD,MinN,NE}, we have to prove thatM is based on a minimal-
decreasing frame. Let us consider a generic w ∈W . By saturation under rule RE we
immediately have that d(w) ∪N (w) ≠ �. Now, take I ⊆ d(w) such that, for each
i ∈ I, the neighbourhood a(i) ∈ N (w) and, therefore, the formula a(i) ∈ N(w) is in
�. By saturation under rule Min, there is a label b such that both b ∈ N(w) and
Min(b, a,w) are in �. This already ensures that ↵b ∈N (w). Moreover, by saturation
under rule MinN and by construction of M, we have that v ∈ ↵b implies v ∈ ↵a(i),
for each i ∈ I. Finally, by saturation under rule MinD and by construction of M,
we have that v ∈ ↵b and i ∈ d(v) imply i ∈ d(w). We conclude thatM is based on a
minimal-decreasing frame.

6 Related work and conclusion

The only kind of proof systems that have been presented in the literature for QNML
are axiomatic systems, studied in [1, 2, 4, 20, 21]. We sketch here the main results
that have been obtained in [2] for logics with constant domain and those in [4] for
logics with varying domain.
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In [2], a language without identity and a constant domain neighbourhood semantics
is considered. The following correspondence results are proved for CBF and BF over
constant domain frames:

Theorem 6.1 ([2])

1. The Converse Barcan Formula CBF is valid over constant domain neighbourhood
frames that are either monotone or such that �D� = 1.

2. The Barcan Formula BF is valid over constant domain neighbourhood frames that
are closed under ≤�D�-intersection, i.e., such that for any set of neighbourhoods{a(i) ∶ i ∈ I}, if �I � ⊆ �D� and, for all i ∈ I, a(i) ∈N (w), then �i∈I a(i) ∈N (w).

This theorem shows that over constant domain frames there is a very strong relation
between CBF and M as well as between BF and C: if the frame has a domain contain-
ing more than one object (it is nontrivial), then CBF and M are valid over the same
class of frames, and, provided the domain is finite, the same holds for BF and C. As
it is shown in [2], if the domain is infinite, it is possible to construct a countermodel
for BF over a frame validating C.
The proof systems for quantified non-normal modal logics considered in [2] are ax-

iomatic systems. Given an axiomatic presentation of the propositional non-normal
modal logic E(M), Costa and Pacuit [2, Theorems 3.20 and 3.21] consider its quanti-
fied extension Q.E(M) and prove that Q.E(M) is sound and complete with respect
to the class of all constant domain (monotone) neighbourhood frames. It is important
to notice that soundness and completeness for a generic logic Q.L, possibly containing
CBF and/or BF, are proved not with respect to (classes of) constant domain frames,
but with respect to classes of constant domain general frames, i.e. a frame together
with a well-behaved restriction on the set of possible valuations over it.
If we limit ourselves to monotone constant domain frames, the results in Theo-

rem 6.1.1 can be simplified in such a way that the class of constant domain frames
considered becomes the one we have considered in Definition 5.4 for CBF and over
which we have proved that the appropriate labelled calculus is sound and complete.
It follows that the labelled calculus G3Q.M�+Cons (+SubIn, In) and the axiomatic
system Q.M� (+ CBF) allow to prove the same identity-free LS -formulas.
In [4], quantified non-normal logics with free quantification and identity are consid-

ered, but instead of a varying domain neighbourhood semantics, the paper considers
a varying domain multirelational semantics. This semantics is a generalization of
(varying domain) Kripke semantics for quantified normal modal logics where, instead
of a single accessibility relation, we have a non-empty set of accessibility relationsR = {Ri ∶ i ∈ I}.
More precisely, a multirelational frame is a tuple:8

F =<W,R,D, d,> (6.1)

where W,D,d, are as in Definition 3.2, and R is a non-empty set of binary accessi-
bility relations Ri ⊆ W ×W . A multirelational model M is a multirelational frame
augmented with a valuation V (cf. Definition 3.3); assignments are mappings � from

8
For simplicity, we consider multirelational frames where the outer domain D is constant, and not increasing as

in [4].
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the variables to the outer domain of F . The satisfaction clauses are like the ones for
neighbourhood models, save for the modalities, for which we have:

M ,�, w � �A i↵ ∃Ri ∈R, Ri(w) ⊆ �A�M ,� (6.2)

M ,�, w ��A i↵ ∀Ri ∈R, Ri(w) ∩ �A�M ,� ≠ � (6.3)

where Ri(w) ≡ {v � v ∈W and wRiv}. The notions of truth in a model and of validity
are defined as expected. There is a precise correspondence between multirelational
frames and monotone non-degenerate neighbourhood frames, as it is shown by the
following truth-preserving translation.

Definition 6.2 (Translation between multirelational and non-degenerate neighbour-
hood frames)

1. Given a multirelational model M =< W,R,D, d,V >, the (monotone and non-
degenerate) neighbourhood modelMM =<W,NM ,D, d,V > is given by definingNM as the family of sets, for all w ∈W , NM (w) where ai ∈NM (w) i↵ ai ⊇ Ri(w)
(for Ri ∈R).

2. Given a monotone and non-degenerate neighbourhood modelM =<W,N , D, d,V >,
the multirelational model MM =<W,RM,D, d,V > is given byRM ≡ {Ra �a ∈N}
where each Ra is such that for all w, v ∈W , wRav i↵ a ∈N (w) and v ∈ a.

Lemma 6.3

1. Given a multirelational model M =< W,R,D, d,V > and an LS -formula A, we
have:9

M ,�,w � A i↵ MM ,�,w � A

2. Given a monotone non-degenerate neighbourhood model M =< W,N ,D, d,V >
and an LS -formula A, we have:

M,�, w � A i↵ MM,�, w � A

Proof. Both proofs are by induction on the weight of A. The only non trivial cases
are those where a modal operator is principal in A. For example, the case of 2 where
A ≡ �B is as follows:M,�, w � �B i↵∃a ∈N (w), a ⊆ �B�M,� i↵∃a ∈N (w), ∀v ∈W (v ∈ a ⊃M,�, w � B) i↵ (by IH)∃a ∈N (w), ∀v ∈W (v ∈ a ⊃MM,�, w � B) i↵∃Ra ∈RM, Ra(w) ⊆ �B�MM,� i↵

MM,�,w � �B
It is immediate to notice that multirelational semantics validates the non-normal

modal logic MN. Moreover, it validates the necessity of identity and of distinctness.
For the Barcan Formulas, the following correspondence results are proven in [4]:

9
Without loss of generality, we do not consider SN-realizations.
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Theorem 6.4 ([4])

1. The Converse Barcan Formula CBF is valid over all multirelational frames F such
that:∀w ∈W , if ∀Rk ∈ R,Rk(w) ≠ �, then ∀Rj ∈ R there is Ri ∈ R such that: (i)
Ri(w) ⊆ Rj(w) and (ii) ∀v ∈ Ri(w), d(w) ⊆ d(v).

2. The Barcan Formula BF is valid over all multirelational frames such that:∀w ∈ W , either ∃Ri ∈ R s.t. Ri(w) = � or, if n = �R� and m = �dw � (possibly
!), then for any sequence of worlds v1, . . . , vn such that wRivi (i ≤ n) and
for any sequence of accessibility relations Rj1 , . . . ,Rjm , there is a world u ∈{z1, . . . , zm} ∩�i≤mRji(w) such that d(w) ⊇ d(u).

The proof systems for QMML considered in [4] are axiomatic systems. Given an
axiomatic presentation of the monotone logic EMN, let Q0=.MN(+CBF+�E) be its
extension to the quantified case obtained by adding axioms and rules for free quantifi-
cation and the axioms for identity (and CBF and the schema �E), cf. [4] for the de-
tails. In [4, Theorems 6.11 and 6.13] it is proved that Q0=.MN and Q0=.MN+CBF+�E
are sound and complete (with respect to the appropriate classes of multirelational
frames).

Conclusion

This paper has introduced labelled calculi for quantified monotone modal logics. In
particular, we have given labelled calculi for both varying and constant domain mono-
tone neighbourhood frames and we have considered the Barcan Formulas and the Ne-
cessity of Identity. We have shown that these calculi have good structural properties
and that each calculus is sound and complete with respect to the appropriate class of
quantified monotone neighbourhood frames. This means that our labelled calculi are
equivalent (with respect to derivable formulas) to the axiomatic systems for monotone
logics possibly containing CBF considered in [2, 4]. To our knowledge, we provided
the first completeness result with respect to classes of neighbourhood frames validat-
ing BF. One of the main advantages of using labelled calculi is the possibility to give
a uniform and modular completeness theorem that covers QMML with or without
NI, CBF, and BF.
We have not considered labelled calculi for quantified non-monotone modal logics.

For logics without BF the extension to non-monotonic logics should be immediate.
Nevertheless, BF would become less tractable because over non-monotonic logics it
requires closure under arbitrary intersection, and it is hard to capture this notion
with finitary rules. We leave this problem for future research.
Notice that the bootstraping procedure used in Section 5 gives rules, and conse-

quently semantic conditions, that are su�cient to derive (validate) the Necessity of
Identity and the Barcan Formulas, but it does not show their optimality. With re-
spect to constant domain monotone frames, their optimality (over non-trivial frames)
follows from Theorem 6.1. With respect to (calculi for) varying domain frames, the
optimality of the conditions we found for NI and for CBF follows from Theorem 6.4.
We conjecture that the rules in Table 5 for BF over (calculi for) varying domain
neighbourhood frames are optimal, and we leave the proof for future research.
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Another open direction for future research is the identification of decidable frag-
ments of quantified monotone modal logics.
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