
Recovering decimation-based cryptographic sequences by means

of linear CAs∗

Sara D. Cardell1 and Amparo Fúster-Sabater2

1Imecc, Unicamp, Campinas, Brazil
2ITEFI, CSIC, Madrid, Spain

Abstract

The sequences produced by the cryptographic sequence generator known as the shrinking generator
can be modelled as the output sequences of linear elementary cellular automata. These sequences
are composed of interleaved m-sequences produced by linear structures based on feedback shifts.
This profitable characteristic can be used in the cryptanalysis of this generator. In this work we
propose an algorithm that takes advantage of the inherent linearity of these cellular automata and
the interleaved m-sequences. Although irregularly decimated generators have been conceived and
designed as non-linear sequence generators, in practice they can be easily analysed in terms of simple
linear structures.

keywords: decimation, shrinking generator, cellular automata, Zech logarithm, cryptanalysis
MSC2010: 94A55

1 Introduction

Stream ciphers are cryptographic primitives used to ensure privacy in digital communication [16]. Their
procedure consists in generating a long sequence as random as possible, called the keystream sequence,
from a short secret key and a public algorithm (the sequence generator). For encryption, the sender
performs a bit-wise XOR operation among the bits of the keystream sequence and the message (or
plaintext). The resultant message (or ciphertext) is sent to the receiver. For decryption, the receiver
generates the same keystream and performs the same bit-wise XOR operation between the ciphertext
and the keystream to recover the original message.

Most keystream generators are based on maximal-length Linear Feedback Shift Registers (LFSRs) [8]
whose output sequences, the so-called m-sequences, are combined by means of nonlinear functions to pro-
duce pseudorandom sequences for cryptographic applications. Desirable properties for such sequences can
be enumerated as follows: a) Long Period, b) Good statistical properties, c) Large Linear Complexity [15].

Among the current keystream generators used in this type of cryptography, the class of irregularly
decimated generators is one of the most popular [1, 14]. The underlying idea of this kind of generators is
the irregular decimation of an m-sequence according to the bits of another m-sequence. The result of this
decimation process is a new sequence that will be used as keystream sequence in stream ciphers. One
of the most representative elements of this family is the shrinking generator introduced by Coppersmith
et al. in [6]. The sequence produced by this generator is called the shrunken sequence and has good
cryptographic properties.

In [3], the authors showed that the shrunken sequence is composed of interleaving m-sequences gener-
ated by the same primitive polynomial. Furthermore, in [3] it was proven that the shrunken sequence can
be modelled as one of the (vertical) sequences produced by a linear cellular automata (CAs). This CA
produces other sequences, which we call companion sequences of the shrunken sequence. Such sequences
have the same characteristic polynomial as the shrunken sequence and are composed of interleaving m-
sequences as well. In this work, we use all these properties to propose an algorithm that recovers the

∗The first author was partially support by São Paulo State Research Council (FAPESP) grant 2015/07246-0 and CAPES.
This research has been partially supported by Ministerio de Economı́a, Industria y Competitividad (MINECO), Agencia
Estatal de Investigación (AEI), and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS, reference
TIN2017-84844-C2-1-R, and by Comunidad de Madrid (Spain) under project reference S2013/ICE-3095-CIBERDINE-CM,
also co-funded by European Union FEDER funds.

1

ar
X

iv
:1

80
2.

02
20

6v
1 

 [
cs

.C
R

] 
 6

 F
eb

 2
01

8



shrunken sequence given a small quantity of intercepted bits of such a sequence. In fact, the number
of bits needed for the cryptanalysis is dramatically reduced when compared with the shrunken sequence
period.

The paper is organized as follows: In Section 2, some basic concepts and definitions are provided for
the understanding of the work. In Section 3, we introduce some properties of the shrunken sequence as
well as the characterization of the 102-CA that generates the shrunken sequence as one of its (vertical)
sequences. Next, in Section 4, we review the main properties of the Zech logarithm, which will play an
important role in the recovering algorithm. In Section 5, an algorithm to recover the initial state of both
registers in the shrinking generator is proposed. Finally, the paper concludes with Section 6.

2 Preliminaries

In this section we introduce the basics to understand the next sections. In Subsection 2.1, we remind some
basic concepts about sequences and cryptography. In Subsections 2.2 and 2.3, we provide the definition
of the main concepts used throughout this paper: shrinking generator and cellular automaton.

2.1 Basic concepts

Let F2 be the Galois field of two elements. A sequence {ai} = {a0, a1, . . .} is a binary sequence or a
sequence over F2 if its terms ai ∈ F2, for i = 0, 1, . . .. Besides, the sequence {ai} is said to be periodic
if and only if there exists an integer T such that ai+T = ai, for all i ≥ 0.

Let l be a positive integer, and let c0, c1, . . . , cl−1 ∈ F2. A binary sequence {ai} satisfying the
recurrence relation

ai+l = c0ai + c1ai+1 + · · ·+ cl−2ai+l−2 + cl−1ai+l−1, i ≥ 0, (1)

is called an (l-th order) linear recurring sequence in F2. The first l terms {a0, a1, . . . , al−1} determine
the rest of the sequence uniquely and are known as the initial state. A relation of the form given in
expression (1) is called an (l-th order) linear recurrence relation.

The monic polynomial of degree l given by

p(x) = c0 + c1x+ · · ·+ cl−2x
l−2 + cl−1x

l−1 + xl ∈ F2[x],

is called the characteristic polynomial of the sequence {ai} and this is said to be generated by p(x).
The generation of linear recurring sequences can be implemented by Linear Feedback Shift Reg-

isters (LFSRs) [8]. These are electronic devices with l memory cells or stages which handle information
in the form of elements of F2 and that are based on shifts and linear feedback. If the characteristic poly-
nomial p(x) is primitive, then the LFSR is said to be maximal-length and the output sequence has period
2l − 1. This output sequence is called m-sequence (maximal sequence) or PN-sequence (pseudonoise
sequence).

Example 1: Given the primitive polynomial p(x) = 1 + x2 + x5, the linear recurrence relation is given
by:

ai+5 = ai+2 + ai, for i = 0, 1, 2, . . .

Given a initial state {1, 0, 0, 0, 0}, the m-sequence generated is the following

{1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0}

with maximum period 25 − 1 = 31. �

The linear complexity, LC, of a sequence {ai} is defined as the length of the shortest LFSR
that generates such a sequence. The linear complexity is related with the amount of sequence needed
to reconstruct the whole sequence. In cryptographic terms, the linear complexity must be as large as
possible in order to prevent the application of the Berlekamp-Massey algorithm [12]. This algorithm
efficiently computes the length and characteristic polynomial of the shortest LFSR given at least 2LC
sequence bits. A recommended value for LC is about half the sequence period.

Due to their low linear complexity, LFSRs are never used alone as keystream generators. In fact,
m-sequences generated by LFSRs have good statistical properties, desirable for keystream design, but
their linearity has to be destroyed, i.e., their linear complexity has to be increased before such sequences
are used for cryptographic purposes.

2



2.2 The shrinking generator

The shrinking generator was first introduced by Coppersmith et al. in [6]. It consists of two m-
sequences where one of them decimates the other one. Given two m-sequences {ai} and {bi} (i ≥ 0)
generated by two LFSRs of length L1 and L2, respectively, the decimation rule is very simple:{

If ai = 1 then sj = bi,

If ai = 0 then bi is discarded,

where the generated sequence, {sj} (j ≥ 0), is said to be the shrunken sequence. If gcd(L1, L2) = 1,
then the period of such sequence is T = (2L2−1)2L1−1. Furthermore, the characteristic polynomial of this
sequence is given by p(x)L, where p(x) is a primitive polynomial of degree L2 and 2L1−2 < L ≤ 2L1−1.
Therefore, the linear complexity of the shrunken sequence is given by LC = L · L2. As usual, the key of
this generator is the initial state of both registers.

Example 2: Consider the register R1 with characteristic polynomial p1(x) = 1 +x+x2 and initial state
{1, 1}. Next, consider the register R2 with characteristic polynomial p2(x) = 1 + x+ x3 and initial state
{1, 1, 1}. Then the shrunken-sequence can be computed as follows:

{ai} : 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
{bi} : 1 1 �A1 0 0 �A1 0 1 �A1 1 0 �A0 1 0 �A1 1 1 �A0 0 1 �A0
{sj} : 111 111 000 000 000 111 111 000 111 000 111 111 000 111

The shrunken sequence {sj} (in bold) has period 14 and it is not difficult to check that its characteristic
polynomial is p(x)2 = (1 + x2 + x3)2. Therefore, its linear complexity is LC = 6. �

2.3 Cellular Automaton

Cellular automata (CAs) were first introduced by von Neumann as simple models to study biological
processes such as self-reproduction [13]. An elementary one-dimensional CA consists of an arrangement of
cells (with binary contents in this work) where the value of each cell evolves deterministically according
to a set of rules involving its k nearest neighbours. Thus, the state of the cell in position i at time
t+ 1, denoted by xt+1

i , depends on the state of the k closest cells at time t. If these rules are composed
exclusively of XOR operations, then the CA is linear. There are several types of CA: null (null cells are
supposed to be adjacent to extreme cells) or periodic (extreme cells are adjacent), regular (every cell
uses the same updating rule) or hybrid (different rules are applied to distinct cells).

The rules considered in this work are:

Rule 102: xt+1
i = xti + xti+1

111 110 101 100 011 010 001 000
0 1 1 0 0 1 1 0

Rule 60: xt+1
i = xti−1 + xti

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0

Recall that the numbers 01100110 and 00111100 are the binary representations of 102 and 60, respec-
tively. This is the reason why they are called rule 102 and rule 60.

Given a CA of length l and initial state of the same length, it generates l (vertical) sequences. In
Table 1, we have a regular, periodic, 102-CA, with initial state {1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1} that
generates 14 (vertical) sequences.

3 Modelling the shrunken sequence

In this section, we underline some properties of the shrunken sequence, which will be used in the algorithm
proposed in Section 5. From now on, we consider two registers R1 and R2, with characteristic polynomials
p1(x), p2(x) ∈ F2[x], lengths L1 and L2 (gcd(L1, L2) = 1) and the periods of their corresponding m-
sequences are T1 = 2L1 − 1 and T2 = 2L2 − 1, respectively. Besides, the m-sequences generated by both
registers are denoted by {ai} and {bi} (i ≥ 0), respectively. Since only the 1s of {ai} generate shrunken
sequence bits, we assume without loss of generality that a0 = 1. As stated before, the shrunken sequence
{sj} (j ≥ 0) generated by both registers has period T = 2L1−1(2L2 − 1) and characteristic polynomial
p(x)L, with 2L1−2 < L ≤ 2L1−1.

3



Table 1: CA that generates the shrunken sequence in Example 2

102 102 102 102 102 102 102 102 102 102 102 102 102 102

1 0 1 0 1 1 0 0 0 1 1 1 0 1

1 1 1 1 0 1 0 0 1 0 0 1 1 0

0 0 0 1 1 1 0 1 1 0 1 0 1 1

0 0 1 0 0 1 1 0 1 1 1 1 0 1
0 1 1 0 1 0 1 1 0 0 0 1 1 1
1 0 1 1 1 1 0 1 0 0 1 0 0 1

1 1 0 0 0 1 1 1 0 1 1 0 1 0
0 1 0 0 1 0 0 1 1 0 1 1 1 1
1 1 0 1 1 0 1 0 1 1 0 0 0 1
0 1 1 0 1 1 1 1 0 1 0 0 1 0

1 0 1 1 0 0 0 1 1 1 0 1 1 0

1 1 0 1 0 0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 1 0 1 0 1 1 0 0
1 0 0 1 1 0 1 1 1 1 0 1 0 0

3.1 Properties of the shrunken sequence

If the shrunken sequence {sj} is decimated by distance d = 2L1−1 starting at position si, i = 0, 1, . . . , d−1,
then we obtain d m-sequences denoted by {sd·j+i}, for i = 0, 1, . . . , d − 1 and j ≥ 0. Such sequences
are called the interleaved m-sequences of the shrunken sequence and its characteristic polynomial is
again p(x). The polynomial p(x) can be computed as follows,

p(x) = (x+ αT1)(x+ α2T1)(x+ α4T1) · · · (x+ α2L2−1T1),

where α is root of p2(x) (see [3, Theorem. 3.3]).
Let us see an illustrative example.

Example 3: Consider two registers with characteristic polynomials p1(x) = 1 + x + x3 and p2(x) =
1 + x+ x4 and initial states {1, 0, 0} and {1, 0, 0, 0}, respectively. The shrunken sequence given by

{1000 1111 1010 0001 1001 0110 1100 1101 0100 0010 1110 0011 0111 0101 1011 . . .}

has period T = 60 and characteristic polynomial p(x)4 = (1 + x3 + x4)4. If we decimate the shrunken
sequence by 4, then we find that the shrunken sequence is composed of 4 m-sequences:

b0 b7 b14 b6 b13 b5 b12 b4 b11 b3 b10 b2 b9 b1 b8
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

{s4j} → 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

{s4j+1} → 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0

{s4j+2} → 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1

{s4j+3} → 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1

(2)

These four m-sequences {s4j+i} (0 ≤ i < 4) have the same characteristic polynomial p(x) = 1+x3+x4,
thus all of them are shifted versions of one single m-sequence. This shift depends on the positions of the

1s in the m-sequence {ai} (see Section 3.1.2). The bits 0 , 0 and 0 in the sequence {s4j} represent

the starting point of the sequences {s4j+i} (1 ≤ i ≤ 3), respectively. �

3.1.1 Relation between register R2 and the shrunken sequence

Given the shrunken sequence {sj}, the following results help us to find the m-sequence {bi} generated by
register R2.

Proposition 1: Let δ ∈ {1, 2, 3, . . . , T2 − 1}, such that T1δ = 1 mod T2. If the first interleaved m-
sequence is decimated by distance δ, then the resultant sequence is {bi}.

Proof 1: According to the properties of the m-sequences, {ai} has 2L1−1 ones in the first T1 bits [8].
Besides, we know that the m-sequence {ai} decimates {bi} to obtain the shrunken sequence. Therefore,

4



the first interleaved m-sequence of the shrunken sequence is {b0, bT1 , b2T1 , . . . , b(T2−1)T1
}. If this sequence

is decimated by distance δ, then the following sequence is obtained: {b0, bδT1
, b2δT1

, . . . , b(T2−1)δT1
}. We

know that T1δ = 1 mod T2 and, therefore, the sequence can be seen as {b0, b1, b2, . . . , b(T2−1)}, which is
the m-sequence generated by the register R2. �

The previous proposition leads us to the following results.

Corollary 1: If the shrunken sequence is decimated by distance 2L1−1δ, then the m-sequence {bi} is
obtained.

Corollary 2: If the primitive polynomials p1(x), p2(x) ∈ F2[x] have degrees L1 and L1 + 1, respectively,
then δ = T2 − 2.

Proof 2: We proceed with the following computations:

(T2 − 2)T1 = (2L1+1 − 3)(2L1 − 1) = 22L1+1 − 3 · 2L1 − 2L1+1 + 3 = 22L1+1 − (2L1+1 − 1)

−(2L1+1 − 1)− 2L1 + 1 = 2L1(2L1+1 − 1)− 2(2L1+1 − 1) + 1.

Since T2 = 2L1+1 − 1, then (T2 − 2)T1 = 1 mod T2. Consequently, we have that δ = T2 − 2. �

In Example 3, we had that L1 = 3 and L2 = 4. In this case, we can apply Corollary 2 and δ =
T2 − 2 = 13. If we decimate the first interleaved m-sequence by 13 (see expression (2)), then we obtain
{bi}, the m-sequence generated by p2(x) = 1 + x+ x4. In this case {bi} = {100010011010111}.

3.1.2 Relation between register R1 and the shrunken sequence

In this section we analyse how to recover the m-sequence {ai} from the shrunken sequence {sj}. As-
sume the first interleaved m-sequence is denoted by {vi}. Since the other interleaved m-sequences
are the same but shifted, we assume they have the form {vd1+i}, {vd2+i}, . . . , {vd2L1−1−1

+i} for some

di ∈ {0, 1, 2, . . . , 2L2−2}:

{vi} : v0 v1 v2 . . . vT2−1
{vd1+i} : vd1 vd1+1 vd1+2 . . . vd1+T2−1
{vd2+i} : vd2 vd2+1 vd2+2 . . . vd2+T2−1

...
...

...
...

...
{vd

2L1−1−1
+i} : vd

2L1−1−1
vd

2L1−1−1
+1 vd

2L1−1−1
+2 . . . vd

2L1−1−1
+T2−1

In order to illustrate this idea, consider again Example 3. In this case, we had four interleaved
m-sequences

{s4j} = {vi}, {s4j+1} = {vd1+i}, {s4j+2} = {vd2+i} and {s4j+3} = {vd3+i}.

In is well known that a maximum-length LFSR of length L, produces an m-sequence with 2L−1 ones
in the first period. Now, we are ready to introduce the following result.

Proposition 2: Let {0, i1, i2, . . . , i2L1−1−1} be the set of positions of the 1s in the m-sequence {ai} in
its first period. Therefore, dk = δ · ik mod (2L1−1 − 1), for k = 1, 2, . . . , 2L1−1 − 1, where δ has the form
given in Proposition 1.

In Example 3, we had four interleaved m-sequences {vi}, {vi+d1}, {vi+d2} and {vi+d3}. It is easy to
check, from expression (2), that d1 = 9, d2 = 5 and d3 = 3. In this case, T1 = 7 and T2 = 15, then,
according to Corollary 2, δ = 13. With this information, we can compute the positions of the 1s in {ai}
(i0 = 0, without loss of generality):

13 · i1 = 9 mod 15→ i1 = 3

13 · i2 = 5 mod 15→ i2 = 5

13 · i3 = 3 mod 15→ i3 = 6

Therefore, the set of positions is given by {0, 3, 5, 6} and then the m-sequence is {ai} = {1, 0, 0, 1, 0, 1, 1}.
�

5



Table 2: General 102-CA

102 102 102 102 102 . . . 102 . . .

s0 s0 + s1 s0 + s2 s0 + s1 + s2 + s3 s0 + s4 . . . s0 + s8 . . .
s1 s1 + s2 s1 + s3 s1 + s2 + s3 + s4 s1 + s5 . . . s1 + s9 . . .
s2 s2 + s3 s2 + s4 s2 + s3 + s4 + s5 s2 + s6 . . . s2 + s10 . . .
s3 s3 + s4 s3 + s5 s3 + s4 + s5 + s6 s3 + s7 . . . s3 + s11 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

3.2 Characterization of the CA

In [3, Theorem 3.10], the authors showed that there exists a 102-CA of length L = T
gcd(2L2−1,D)

that

generates the shrunken sequence as one of the (vertical) sequences. We remind that T is the period of
the shrunken sequence and D = Zα(1), where Zα(1) is the Zech logarithm of 1 on basis α [9] (see also
Definition 1 in Section 4).

Furthermore, it was shown that there are 2L1−1 different sequences that appear repeated several times
along the CA. Such sequences have the same characteristic polynomial p(x)L as that of the shrunken
sequence [3, Theorem 3.9]. We call these sequences the companion sequences of the shrunken sequence.

Example 4: In Example 2, we obtained a shrunken sequence of period T = 14 and characteristic poly-
nomial p(x)2 = (1 + x2 + x3)2. In Table 1, it is possible to see how to obtain this sequence as one of the
output (vertical) sequences of a 102-CA of length 14. It is possible to check that there is another sequence
apart from the shrunken sequence that appears shifted along the CA: {0 1 0 0 1 0 1 1 1 1 0 1 1 1 0}.
Both sequences appear seven times, but shifted each time D = 2 · Zα(1) = 10 positions. �

3.3 Companion sequences

We have seen that if we locate the shrunken sequence in the zero column of the CA, 2L1−1 different
sequences are generated, including the shrunken sequence. All these sequences have the same char-
acteristic polynomial p(x)L and are composed by interleaving 2L1−1 m-sequences with characteristic
polynomial p(x) [3].

In Example 4, two sequences were generated by the CA, the shrunken sequence and another sequence
with the same period and the same characteristic polynomial p(x)2 = (1+x2 +x3)2. If we decimate both
sequences by 2, we can see that both sequences are composed of two m-sequences whose characteristic
polynomial is p(x) = 1 + x2 + x3. This means, that all the m-sequences are the same but shifted (see
Table 3)

Consequently, we can deduce that the fact of knowing some bits of the companion sequences of the CA
can help us to recover parts of the shrunken sequence. More precisely, we can recover the first interleaved
m-sequence of the shrunken sequence using the interleaved m-sequences of the same shrunken sequence
and the interleaved m-sequences of the companion sequences.

Consider a linear 102-CA and consider that the sequence in the zero column is the shrunken sequence
{si}. The form of the corresponding companion sequences is computed in Table 2. It is not difficult to
check that the companion sequences in columns whose indices are 2j , for j = 0, 1, 2, . . ., have the form
{si + si+2j}. In fact, the general form of these columns can be found in [2].

Let us denote the interleaved m-sequences of the shrunken sequence by {vd00+i}, {vd01+i}, {vd02+i},
. . . , {vd0

2L1−1−1
+i}, i ≥ 0, where d00 = 0. Remember that the positions d0k depend on the location of the

1s in the m-sequence {ai} generated by the first register R1 (see Section 3.1.2).
Let us denote the interleaved m-sequences of the first companion sequence in the CA by {vd10+i},

{vd11+i}, {vd12+i}, . . . , {vd12L1−1−1
+i}, i ≥ 0. We can compute these new positions using the definitions of

rule 102 and Zech logarithm as follows

d1k = Zα(d0k − d0k+1) + d0k+1, k = 0, 1, . . . , 2L1−1 − 2,

d12L1−1−1 = Zα(d02L1−1−1 − 1) + 1.

6



Table 3: Interleaved m-sequences of the shrunken sequence and the companion sequences of Example 3

(a)

1 1
0 0

0 1

1 0
1 0
1 1
0 1

(b)

0 1

0 0
1 0
1 1
1 1
0 1

1 0

(c)

0 0
1 0
1 1
1 1
0 1
1 0
0 1

(d)

1 0
1 1
0 1
1 1
0 0
0 1
1 0

Similarly, we can compute the shifts positions for the j-th companion sequence, j = 1, 2, . . . , L− 1 as:

djk = Zα(dj−1k − dj−1k+1) + dj−1k+1, k = 0, 1, . . . , 2L1−1 − 2, (3)

dj
2L1−1−1 = Zα(dj−1

2L1−1−1 − 1) + 1.

Notice that the companion sequences in columns t · 2L1−1, with t = 1, 2, . . . , L/(2L1−1) − 1 in the
CA, are again the shrunken sequence, but starting in positions t · D · 2L1−1, respectively [3, Theorem
3.8]. Moreover, the companion sequence in the column t · 2L1−1 + m for m = 1, 2, . . . , 2L1−1 − 1 and
t = 0, 1, . . . , L/(2L1−1)−1 is the same as the companion sequence in the m-th column starting in position
t ·D · 2L1−1. Therefore, we have that:

dt·2
L1−1+m

k = dmk + t ·D mod (2L2 − 1)

for k = 0, 1, . . . , 2L1−1 − 1, m = 0, 1, . . . , 2L1−1 − 1 and t = 0, 1, . . . , L/(2L1−1)− 1.
This means that, the positions djk for the companion sequence in the j-th column with j ≥ 2L1−1 can

be computed easily using the positions dsi , with 0 ≤ s < 2L1−1 (without logarithms).

Example 5: Consider the shrunken sequence in Example 2. The CA in Table 1 generates two sequences,
the shrunken sequence and one companion sequence. Both sequences are composed of interleaved m-
sequences (see Table 3).

Let us consider the sequence in the 7-th column of the CA. In this particular case, we have that t = 3,
D = 5 and 2L1−1 = 2. Therefore, this sequence is the same sequence as the companion sequence but

starting in position t ·D · 22L1−1

mod 14 = 2 (see red bits in Table 1). Furthermore, the two interleaved
m-sequences of this sequence are the same as the first interleaved m-sequence of the shrunken sequence
(Table 3a) starting in positions:

d70 = d10 +D · 3 mod 7 = 2 and d71 = d11 +D · 3 mod 7 = 1, respectively.

Let us consider the column in the 10-th position, that is, t = 5. Then, this sequence is the shrunken
sequence, but starting in position t·D ·2L1−1 mod 14 = 8 (see the green bits in Table 1). Furthermore, the
two interleaved m-sequences this sequence is composed of are the same as the first interleaved m-sequence
of the shrunken sequence (Table 3a) starting in positions:

d100 = d00 +D · 5 mod 7 = 4 and d101 = d01 +D · 5 mod 7 = 2, respectively.

�

4 Zech’s logarithm

Zech logarithms are named after Julius Zech which published a table of these type logarithms (which
he called addition logarithms) for doing arithmetic in Zp. These logarithms are also called as Jacobi
logarithms after C. G. J. Jacobi who used them for number theoretic investigations [10].

Assume we are working over the finite field Fq, where q = pm, with p prime and m a positive integer.
We now introduce the definition of Zech logarithm.

Definition 1: Let α ∈ Fq be a primitive element. The Zech logarithm with basis α is the application
Zα : Zq → Z∗q ∪ {∞}, such that each element t ∈ Zq corresponds to Zα(t), attaining 1 + αt = αZα(t).

7



Example 6: Let α ∈ F23 a root of the primitive polynomial p(x) = 1 + x+ x3. Then:

α3 = 1 + α→ Zα(1) = 3

α4 = α+ α2

α5 = α2 + α3 = 1 + α+ α2 = 1 + α4 → Zα(4) = 5

α6 = α+ α2 + α3 = 1 + α2 → Zα(2) = 6

Next we find the complete Zech logarithm table for F23 :

x 1 2 3 4 5 6
Zα(x) 3 6 1 5 4 2

�

Zech logarithms are discrete logarithms and they are, thus, hard to compute. Now, we are going to
show some of their properties that can be used to easily compute them with trivial operations. These
results can be found in [9].

Proposition 3: Given the Zech logarithm defined as in Definition 1. The following properties follow
easily:

a) Zα(q − 1− x) = Zα(x)− x mod (q − 1)

b) Zα(p x) = p Zα(x) mod (q − 1)

c) Zα(0) = −∞, for p = 2

d) Zα( q−12 ) = −∞, for p 6= 2

Remark 1: Notice that for fields of characteristic two we have that Zα(n) = m implies that Zα(m) = n.

Consider now the notion of cyclotomic coset mod(q − 1) given in [8].

Definition 2: Let F2L denote the Galois field of 2L elements. An equivalence relation R is defined on
its elements α, β ∈ Fq such as follows: αRβ if there exists an integer j, 0 ≤ j ≤ L− 1, such that

2j · α = β mod (2L − 1).

The resultant equivalence classes into which F∗2L is partitioned are called the cyclotomic cosets modulo
2L − 1.

The leader element of every coset is the smallest integer in such an equivalence class.
According to [9], Zech logarithms map cosets onto cosets of the same size, that is, Zα : Cs1 → Cs2 ,

where |Cs1 | = |Cs2 |.
On the other hand, we consider the mapping I : Nq → Nq, with I(x) = q − 1 − x, where Nq =

{0, 1, 2, . . . , q − 2} ∪ {−∞}. According to [9], Zα(I(x)) = Zα(x)− x mod (q − 1) and

Z−1α (Zα(x)− x) = I(x). (4)

Like Zα(x), the application I(x) also maps a cyclotomic coset onto another of the same size. If Zα(x)
is known, then the value of Zα(I(x)) can be computed. For fields with characteristic two, Z−1α (x) = Zα(x)
and the computations are particularly simple.

Example 7: Consider the field F25 , constructed with the primitive polynomial p(x) = 1+x2+x5. There
are six cyclotomic cosets given by:

C1 = {1, 2, 4, 8, 16} C7 = {7, 1, 14, 25, 19}
C3 = {3, 6, 12, 24, 17} C11 = {11, 22, 13, 26}
C5 = {5, 10, 20, 9, 18} C15 = {15, 30, 29, 27}

8



Table 4: Zech logarithms for F25

x Zα(x) x Zα(x) x Zα(x) x Zα(x)
0 −∞ 8 20 16 9 24 15
1 18 9 16 17 30 25 21
2 5 10 4 18 1 26 28
3 29 11 19 19 11 27 6
4 10 12 23 20 8 28 26
5 2 13 14 21 25 29 3
6 27 14 13 22 7 30 17
7 22 15 24 23 12

From p(x) we know that Zα(2) = 5. Since we are working over a field with characteristic two and
according to b) in Proposition 3, we can compute the logarithms of the other elements of C2 and C5:

Zα(2) = 5→ Zα(5) = 2

Zα(4) = 2Zα(2) = 10→ Zα(10) = 4

Zα(8) = 2Zα(4) = 20→ Zα(20) = 8

Zα(16) = 2Zα(8) = 9→ Zα(9) = 16

Zα(1) = 2Zα(16) = 18→ Zα(18) = 1

Let us now use the map I to obtain the logarithms for elements in C3 and C15. According to the
definition of this map, it is easy to compute I(2) = 29. Then, according to (4), we know that Zα(29) = 3.
Using the same method as above, we can compute every logarithm in C3 and C15.

Equally, we have I(3) = 28 and according to equation (4), Zα(28) = 26. Therefore, we can compute
every logarithm in cosets C11 and C7.

Using these properties, we can compute every logarithm in F25 , with very simple operations mod 31.
The complete Zech logarithm table for F25 can be found in Table 4. �

Next, we find some minor results about Zech logarithms.

Proposition 4: If β1 = Zα(α1 − α2) + α2 and β2 = Zα(α2 − α3) + α3, then:

1. β1 = Zα(α2 − α1) + α1

2. Zα(α1 − α3) + α3 = Zα(β1 − β2) + β2 (for fields of characteristic equal to two)

Proof 3: 1. According to the definition of Zech logarithm:

αβ1 = αZα(α1−α2)+α2 = (1 + αα1−α2)αα2 = αα1 + αα2 = (1 + αα2−α1)αα1 = αZα(α2−α1)+α1

2. Again, according to the definition of Zech logarithm:

β1 = Zα(α1 − α2) + α2 → αβ1 = αα1 + αα2 (5)

β2 = Zα(α2 − α3) + α3 → αβ2 = αα2 + αα3 (6)

Summing both equations (5) and (6), we get

αβ1 + αβ2 = αα1 + αα3 → Zα(β1 − β2) + β2 = Zα(α1 − α3) + α3

�

Remark 2: 1. The first part of Proposition 4 implies that

dji = Zα(dj−1i − dj−1i+1 ) + dj−1i+1 = Zα(dj−1i+1 − d
j−1
i ) + dj−1i ,

and, thus, we can change the order of the computations if needed.

9



Table 5: CA that generates the shrunken sequence in Example 2

102 102 102 102 102 102 102 102 102 102 102 102 102 102

1 1 0 1 0 0 1 0 0 1 1 1
0 1 1 1 0 1 0 1 0
1 0 0 1 1 1 1 1 0 1 0 0
1 0 1 0 0 1 1 1 0
1 1 1 1 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 0 1
0 0 1 0 0 1 1 1 1 1 0 1
0 1 0 1 0 0 1 1 1

1 1 1 1 0 1 0 0 1 0 0 1
0 0 1 1 1 0 1 0 1

0 1 0 0 1 0 0 1 1 1 1 1
1 1 0 1 0 1 0 0 1
0 1 1 1 1 1 0 1 0 0 1 0
1 0 0 1 1 1 0 1 0

2. The second part of Proposition 4 implies that

dji = Zα(dj−1i − dj−1i+1 ) + dj−1i+1 = Zα(dj−2i − dj−2i+2 ) + dj−2i+2 ,

and, thus, we can choose the best positions for our computations.

The algorithm we will propose in Section 5 makes use of the Zech logarithm to compute the positions
given in (3). Using the properties we have seen in this section, we can reduce the complexity of the
algorithm reducing the number of calculations.

5 Recovering the shrunken sequence

In this section, we use the CAs and their properties to recover the complete shrunken sequence. We know
that the shrunken sequence and the companion sequences appear several times along the same CA, with
shift D = 2L1−1Zα(1) (see Section 3.2).

In Example 2, we had a shrunken sequence of period 14. In Table 1, we saw that there exists a CA
of length 14 that produces this sequence in its leftmost column. If we intercept the first 6 bits of the
shrunken sequence, we can recover 21 elements in the CA (see the purple triangle in Table 5). According
to the properties of this CA, these sequences are repeated along the CA and, thus, we can recover the
same number of bits in other positions (see the other triangles in Table 5). In this case, the triangles
of recovered bits overlap. Therefore, we can recover completely all the elements in the CA and, thus,
recover the complete shrunken sequence.

In general, we need to intercept

N = 2L1−1 + T −D = 2L1−1(2L2 −Zα(1))

bits of the shrunken sequence for the recovered triangles to overlap. This number depends completely
on the value of Zα(1), which depends on the primitive polynomial p(x) (characteristic polynomial of
the interleaved m-sequences). This means that sometimes the number of needed intercepted bits will be
greater than suitable for practical applications. For example, in Table 6 we can see the different values
of Zα(1), for different primitive polynomials of degree 5. In order to make more difficult the recovery,
we would use p(x) = 1 + x + x2 + x3 + x5 since it produces the minimum value of Zα(1). In order to
recover the sequence, we expect the cryptographer to use q(x) = 1 + x2 + x3 + x4 + x5, which produces
the maximum value of Zα(1), and we have to intercept a smaller number bits to recover the complete
sequence.

5.1 Cryptanalysis

In this section we introduce a cryptanalysis of the shrinking generator based on the results given in
Section 3. This attack is based on an exhaustive search over the initial states of the first register R1.
Thus, the complexity of the brute-force attack trying all the possible keys is reduced by a factor 2L2 .

10



Table 6: Values of Zα(1) for different primitive polynomials of degree 5

p2(x) Zα(1)

x5 + x2 + 1 18
x5 + x4 + x2 + x+ 1 19
x5 + x3 + x2 + x+ 1 12

x5 + x3 + 1 14
x5 + x4 + x3 + x+ 1 13
x5 + x4 + x3 + x2 + 1 20

5.1.1 General idea

Given n bits, sss = {s0, s1, . . . , sn−1}, of the shrunken sequence, Algorithm 1 tests if a given initial state
aaa = {a0, a1, . . . , aL1−1} for the register R1 is considered correct or not. The idea is to recover bits of
the first interleaved m-sequence of the shrunken sequence. If two different bits are stored in the same
position, the initial state aaa is incorrect. If aaa is considered correct, Algorithm 1 also returns the matrix A
with the value and the positions of the recovered bits in the first interleaved m-sequence. Once we have
recover a part of the first interleaved m-sequence, we can recover the complete shrunken sequence.

Algorithm 1. Crypto: Test an initial state for R1

Input: p1(x), p(x), δ, sss and aaa
function [M,Stop] =SubCrypto(p1(x), p(x), δ, sss,aaa)

01: Compute {ai} using p1(x) and aaa until finding n = length(sss) ones;
02: Store in P the positions of the 1s in the generated bits of {ai};
03: Store in P the new positions computed as Pi · d mod (2L2 − 1);
04: Store [Pi, si] in a matrix M ;
05: Stop = 1;
06: while Stop = 1 and n > 1
07: Update P with the new positions;
08: Update sss with {s0 + s1, s1 + s2, . . . , sn−2 + sn−1};
09: Store [m,n]=size(M);
10: for j = 0 to m− 1
11: for k = 0 to length(P )− 1
12: if Mj1 = Pk
13: if Mj2 6= sk
14: Initialise M ;
15: Stop = 0;
16: end if
17: end if
18: Store [Pk, sk] in M ;
19: end for
20: end for
21: end while
end function
Output:
M : Recovered bits and their position in the first interleaved m-sequence.
Stop: 1 if the initial state is considered correct and 0 otherwise.

Remark 3: It is worth pointing out that this work can be equivalently done with rule 60, xt+1
i =

xti−1 + xti. In this case, the sequences would appear in reverse order along the CA, but the results would
be identical.

11



5.1.2 Numerical example

We are going to consider the advantageous case when L2 = L1+1. We know that δ = T2−2 (Corollary 2)
and, furthermore, p(x) is the reciprocal polynomial of p2(x) (see [3]). In this case, it is not necessary
to compute δ, which prevent us from doing more calculations. We will also see that in this case, the
computations of the logarithms on the first round are trivial.

Example 8: Consider two registers R1 and R2 with characteristic polynomials p1(x) = 1+x+x3+x4+x6

and p2(x) = 1 + x3 + x7, respectively.
Assume we intercept 10 bits of the shrunken sequence: sss = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0}.
Notice that, in this case, the period of the sequence is 26(27 − 1) = 8128.
We apply Algorithm 1 in order to check if the initial state a = {1, 1, 1, 0, 1, 1} is correct for R1.
Since L2 = L1 +1, we know that p(x) is the reciprocal polynomial of p2(x), that is, p(x) = 1+x4 +x7.
In this case, we have that the distance of decimation is δ = T2 − 2 = 27 − 3 = 125 (Corollary 2).
Input: p1(x) = 1 + x + x3 + x4 + x6, p(x) = 1 + x4 + x7, δ = 125, aaa = {1 1 1 0 1 1} and

sss = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0}.
We compute bits of the m-sequence generated by R1 using aaa and store the positions of the ones until

we find 10 ones: pos = {0, 1, 2, 4, 5, 6, 8, 10, 11, 13}.
The positions of the intercepted 10 bits in the first interleaved m-sequence are:

d0i = pos = {0, 125, 123, 119, 117, 115, 111, 107, 105, 101}

.
Each bit of sss is stored in the respective position of pos. We store this information in the matrix M

and order by position:

MT =

[
0 101 105 107 111 115 117 119 123 125
1 0 0 0 0 1 0 0 0 0

]
We compute new positions and new bits to update the matrix M . The new bits are computed applying

rule 102 to the elements of sss, {1 0 0 0 1 1 0 0 0} and they are stored, respectively, in the positions (mod
127):

d10 = Zα(125) = 65

d11 = Zα(125− 123) + 123 = 2Zα(1) + 123 = 63

d12 = Zα(123− 119) + 119 = 4Zα(1) + 119 = 126

d13 = Zα(119− 117) + 117 = 2Zα(1) + 117 = 57

d14 = Zα(117− 115) + 115 = 2Zα(1) + 115 = 55

d15 = Zα(115− 111) + 111 = 4Zα(1) + 111 = 118

d16 = Zα(111− 107) + 107 = 4Zα(1) + 107 = 114

d17 = Zα(107− 105) + 105 = 2Zα(1) + 105 = 45

d18 = Zα(105− 101) + 101 = 4Zα(1) + 101 = 108

Up to now, there are no repeated positions, then we continue with the next round. The new bits to be
stored are given by {1, 0, 0, 1, 0, 1, 0, 0} and the next positions are:

12



d20 = Zα(123) = 3

d21 = Zα(125− 119) + 119 = 2Zα(3) + 119 = 111

d22 = Zα(123− 117) + 117 = 2Zα(3) + 117 = 109

d23 = Zα(119− 115) + 115 = 4Zα(1) + 115 = 122

d24 = Zα(117− 111) + 111 = 2Zα(3) + 111 = 103

d25 = Zα(115− 107) + 107 = 8Zα(1) + 107 = 121

d26 = Zα(111− 105) + 105 = 2Zα(3) + 105 = 97

d27 = Zα(107− 101) + 101 = 2Zα(3) + 101 = 93

Position 111 appears again and we have to store 0 again. There is no contradiction.
In next round we have to store the bits {1 0 1 1 1 1 0} in the positions d3i , i = 1, . . . , 6. However,

we know that it is easier to compute the positions d4i , i = 1, . . . , 5 (see Remark 2) for the new bits
{1 1 0 0 0 1}.

d40 = Zα(117) = 90

d41 = Zα(125− 115) + 115 = 2Zα(5) + 115 = 88

d42 = Zα(123− 111) + 111 = 4Zα(3) + 111 = 95

d43 = Zα(119− 107) + 107 = 4Zα(3) + 107 = 91

d44 = Zα(117− 105) + 105 = 4Zα(3) + 115 = 89

d45 = Zα(115− 101) + 101 = 2Zα(7) + 101 = 109

Position 109 appears again and we have to store a 1, but there is another bit in this position with
value 0. We have a contradiction, so the guessed initial state is not correct.

Output: STOP = 0 The initial state aaa = {1, 1, 0, 0, 0, 0, 0, 0} is not correct since we found a contra-
diction. �

In this case, we have just needed to compute the logarithms Zα(1), Zα(3), Zα(5), Zα(7), Zα(117),
Zα(123), Zα(125). However, according to Section 4 we will see that we just need to compute two of these
logarithms.

We start computing Zα(1) = 97 and according to Remark 1, we have Zα(97) = 1. It is easy to see
that 7 and 97 are in the same cyclotomic coset, since 4 · 97 = 7 mod 127. Therefore, we have:

Zα(7) = Zα(4 · 7) = 4Zα(7) = 4

Now, we know that

Zα(123)− 123 = Zα(−123) = Zα(4) = 4Zα(1) = 7→ Zα(123) = 3

and then Zα(3) = 123. It is aso possible to check that 123 and 125 are in the same cyclic coset, since
125 = 26 · 123 mod 127. Therefore, Zα(125) = 26Zα(123) = 65.

Finally, we need to compute Zα(5) = 50.

Zα(117)− 117 = Zα(−117) = Zα(10) = 2Zα(5) = 100→ Zα(117) = 90.

So computing Zα(1) and Zα(5) and due to the properties of Zech logarithm, we can deduce all the
logarithms needed in this example. In general, the number of logarithms we need to compute in order to
obtain the contradiction we need is smaller than it seems, due to the properties showed in Section 4.

13



5.2 Recovering the initial state of R2

The idea is to use the recovered bits of the first interleaved m-sequence to recover the m-sequence produced
by R2. According to Proposition 1, if we know this m-sequence, we can recover the initial state of the
m-sequence {bi} generated by R2.

Example 9: We consider Example 8. Assume we apply Algorithm 1 with the correct initial state
aaa = {1, 0, 0, 0, 0, 0}. In this case, the algorithm returns STOP=1 and the matrix M with the recovered
bits. In Appendix A, we find the returned matrix M and it is possible to see that we have recovered 46
bits and their positions in the first interleaved m-sequence of the shrunken sequence, which we denote
now by {vi}. We know that these sequence has as characteristic polynomial p(x) = 1 + x4 + x7 and the
period is 127. Therefore, we know that vi + vi+4 + vi+7, for i ≥ 0 and then:

v46 + v50 + v53 = 0 −→ v46 = 0

v47 + v51 + v54 = 0 −→ v51 = 1

We known 12 consecutive bits {v45, v46, . . . , v56}, of the first interleaved m-sequence {vi} and we know that
the characteristic polynomial of the sequence has degree 7. Thus, we compute the whole m-sequence {vi}.
Finally according to Proposition 1, the initial state of R2 will correspond to {b0, b125, b123, b121, , b119, b117,
b115}. �

5.3 Discussion

In this algorithm, we have performed an exhaustive search over 2L1−1 initial states of R1, which reduces
the complexity of a brute-force attack by a factor of 2L2 . In Table 7 some numerical results are depicted.
We denote by p1(x) and p2(x) the characteristic polynomials R1 and R2, respectively, n is the number
of intercepted bits, T represents the period of the corresponding shrunken sequence and NIS denotes the
number of R1 initial states with no contradiction. From these results we can deduce that our algorithm
presents two main advantages against other proposals.

First, compared with other probabilistic approaches (see, for example, [7]) the algorithm here pre-
sented is deterministic. This means that depending on the number of intercepted bits, the set of the
possible correct states can have different sizes, but the correct one is certainly contained in such a set.

Second, although the higher the degrees of the characteristic polynomials are, the more intercepted
bits we need, the required keystream length grows linearly in the length of R2 while the period of the
shrunken sequence grows exponentially. This means that the number of intercepted bits n needed for
the attack is very low compared with the period of the shrunken sequence. This fact did not happen in
other proposals like [11]. Low requirement of intercepted bits is a quite realistic condition for practical
cryptanalysis.

The number of initial states for R1 with no contradiction is very low compared with the number of
initial states analysed, so it makes easier the checking of the true pair of initial states in both registers
R1 and R2.

Finally, this algorithm is particularly adequate for parallelization. In fact, it is possible to divide the
2L1−1 possible initial states into several groups and process each group of states separately.

The computation of Zech logarithms is the most time-consuming part of the algorithm. However, we
have seen in Section 4 that many of the properties of this discrete logarithm can be used to reduce the
calculations. For instance, in Example 8, the algorithm had to compute ten logarithms, but due to the
properties of the Zech logarithm, computing only two logarithms the problem was solved.

Furthermore, at the end of Section 3.3, we saw that the computations of the positions dmk can be
computed performing a simple addition mod (2L2 − 1).

6 Conclusions

The shrinking generator was conceived and designed as a nonlinear keystream generator based on
maximum-length LFSRs. However, this generator can be modelled in terms of 102-CAs. The effort
to introduce decimation in order to break the inherent linearity of the LFSRs has been useless, since the
shrunken sequence can be modelled as the output sequence of a model based on linear CAs. In this work,

14



Table 7: Some numerical results for the algorithm

p1(x) p2(x) n T NIS
1 + x2 + x3 1 + x3 + x4 8 60 1

1 + x2 + x3 1 + x3 + x5 9 124 1

1 + x2 + x5 1 + x+ x6 11 1008 1

1 + x3 + x5 1 + x+ x7 13 2032 1

1 + x2 + x5 1 + x3 + x7 14 2032 1

1 + x+ x6 1 + x3 + x7 16 4046 1

1 + x+ x7 1 + x2 + x3 + x4 + x8 16 16320 1

1 + x+ x7 1 + x4 + x9 16 32704 1

1 + x2 + x3 + x4 + x8 1 + x4 + x9 17 65408 1

1 + x4 + x9 1 + x3 + x10 18 261888 1

1 + x4 + x9 1 + x2 + x5 + x9 + x10 19 261888 1

1 + x2 + x11 1 + x+ x5 + x8 + x12 27 4193280 3

1 + x9 + x10 + x12 + x13 1 + x+ x2 + x5 + x6 + x13 + x14 30 67104768 3

1 + x9 + x10 + x12x13 1 + x+ x4 + x15 + x16 52 268431360 1

1 + x+ x2 + x5 + x6 + x13 + x14 1 + x2 + x5 + x14 + x15 40 268427264 126

1 + x2 + x5 + x14 + x15 1 + x+ x4 + x6 + x16 50 1073725440 29

1 + x+ x4 + x15 + x16 1 + x+ x2 + x6 + x10 + x11 + x17 58 4294934528 206

we analyse a family of one-dimensional, linear, regular and cyclic 102-CA that describe the behaviour of
the shrinking generator. These CAs generate a family of sequences with the same characteristic polyno-
mial and the same period as the shrunken sequence. Taking advantage of the linearity and the similarity
between the sequences generated by these CAs, we propose a cryptanalysis based on the exhaustive search
among the initial states of the first register.

A natural extension of this work is the generalization of this procedure to other cryptographic sequence
generators: (a) All the family of the decimation-based keystream generators (the self-shrinking generator,
the generalized self-shrinking generator or the modified self-shrinking generator[2, 4, 5]). (b) The so-called
interleaved m-sequences, as they present very similar structural properties to those of the sequences
obtained from irregular decimation generators.

References

[1] Lejla Batina, Joseph Lano, Nele Mentens, Sıddıka Berna Örs, Bart Preneel, and Ingrid Verbauwhede.
Energy, performance, area versus security trade-offs for stream ciphers. In In The State of the Art
of Stream Ciphers, Workshop Record (2004), ECRYPT, pages 302–310, 2004.

[2] Sara D. Cardell and Amparo Fúster-Sabater. Linear models for the self-shrinking generator based
on CA. Journal of Cellular Automata, 11(2-3):195–211, 2016.

[3] Sara D. Cardell and Amparo Fúster-Sabater. Modelling the shrinking generator in terms of linear
CA. Advances in Mathematics of Communications, 10(4):797–809, 2016.

[4] Sara D. Cardell and Amparo Fúster-Sabater. Recovering the MSS-sequence via CA. Procedia
Computer Science, 80:599–606, 2016.

[5] Sara D. Cardell and Amparo Fúster-Sabater. Discrete linear models for the generalized self-shrunken
sequences. Finite Fields and Their Applications, 47:222–241, 2017.

[6] Don Coppersmith, Hugo Krawczyk, and Yishay Mansour. The shrinking generator. In Advances
in Cryptology – CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 23–39.
Springer-Verlag, 1993.

[7] Jovan Dj. Golić. Correlation analysis of the shrinking generator. In Advances in Cryptology-
Crypto’2001, volume 2139 of Lecture Notes in Computer Science, pages 440–457. Springer-Verlag,
Berlin, 2001.

[8] Solomon W. Golomb. Shift Register-Sequences. Aegean Park Press, Laguna Hill, California, 1982.

[9] Klaus Huber. Some comments on Zech’s logarithms. IEEE Transactions on Information Theory,
36(4):946–950, 1990.

15



[10] C. G. J. Jacobi. Über die kreisteilung und ihre anwendung auf die zahlentheorie. Journal für die
Reine und Angewandte Mathematik, 30:166–182, 1846.

[11] Thomas Johansson. Reduced complexity correlation attacks on two clock-controlled generators. In
Advances in Cryptology – ASIACRYPT’98, volume 1514 of Lecture Notes in Computer Science,
pages 342–357. Springer-Verlag, Berlin, 1998.

[12] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information
Theory, 15(1):122–127, 1969.

[13] John Von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign,
IL, USA, 1966.

[14] Christof Paar and Jan Pelzl. Understanding Cryptography. Springer, Berlin, 2010.

[15] Alberto Peinado and Amparo Fúster-Sabater. Generation of pseudorandom binary sequences by
means of LFSRs with dynamic feedback. Mathematical and Computer Modelling, 57(11–12):2596–
2604, 2013.

[16] Matthew Robshaw and Olivier Billiet, editors. New Stream Cipher Designs: The eSTREAM Final-
ists, volume 4986 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008.

16



A Tables

M =



0 1
12 1
23 0
24 1
25 1
32 0
38 1
40 0
41 0
43 1
45 1
47 0
48 1
49 0
50 1
52 1
53 1
54 1
55 0
56 1
59 0
60 1
64 0
66 0
68 1
78 1
79 0
87 0
91 0
95 0
98 0
99 1
101 0
103 0
105 1
107 0
108 1
109 0
110 0
111 0
112 1
114 0
115 0
117 0
118 0
119 0



17


	1 Introduction
	2 Preliminaries
	2.1 Basic concepts
	2.2 The shrinking generator
	2.3 Cellular Automaton

	3 Modelling the shrunken sequence
	3.1 Properties of the shrunken sequence
	3.1.1 Relation between register R2 and the shrunken sequence
	3.1.2 Relation between register R1 and the shrunken sequence

	3.2 Characterization of the CA
	3.3 Companion sequences

	4 Zech's logarithm
	5 Recovering the shrunken sequence
	5.1 Cryptanalysis
	5.1.1 General idea
	5.1.2 Numerical example

	5.2 Recovering the initial state of R2
	5.3 Discussion

	6 Conclusions
	A Tables

