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Abstract. Monotone transformation models are extended to inaccu-
rate data and are combined with recurrent neural networks in a new
battery model that is able to ascertain the health of rechargeable bat-
teries for automotive applications. The presented method exploits the
information contained in the vehicle’s operational records better than
other cutting-edge models, and uses a minimum amount of human ex-
pert knowledge. The experimental validation of the technique includes a
comparative analysis of batteries in different health conditions, compris-
ing first-principles models and different machine learning procedures.
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1 Introduction

Battery Management Systems (BMS) are electronic subsystems governing the
charge and discharge processes of batteries in Electric Vehicles (EVs). BMSs
include hardware and software layers to perform a continuous monitoring of
currents, voltages and temperatures of the batteries and implement mathemat-
ical models for synthesising the values of different latent variables, such as the
State of Charge (SoC) and the State of Health (SoH). These two latent vari-
ables are directly related to the range and dependability of the vehicle. Most of
EVs already provide an estimation of the SoC of their batteries in the driver’s
dashboard, but the battery SoH is not accessible for any of the vehicles that
are commercially available in 2017, because a reliable method for estimating the
SoH from on-vehicle measurements is not available as of yet [1].

In this paper, the SoH and SoC of the battery are obtained via computer
simulations of a battery model that is kept synchronised with the actual battery
state (see Figure 1). The main outcome sought in the presented study is the
characteristic Open Circuit Voltage (OCV) of the battery at equilibrium. This
is so because the functional dependence between the stored charge and the OCV
contains information related to the most common deteriorations of a battery
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Fig. 1. Battery model synchronised with the actual state of the battery

[2][3], thus a precise estimation of this curve could be easily transformed into
the needed health indicator.

Structures similar to that depicted in Figure 1 have been applied in the
past to many different battery models. As recently reviewed by Hu [4], static
“equivalent circuit” models (ECMs) are embedded the most in BMSs [5]. Non-
static or “learning” models are also feasible, including “black boxes” or pure
data-driven techniques such as statistical models, time series [6] and neural net-
works [7]; “grey boxes”, such as semi-physical models [8] and “white boxes” or
first-principle models, that are based on the knowledge about the electrical and
chemical processes that occur while the battery is being operated.

Learning a multi-output dynamical system model is usually intended to min-
imise the Mean Squared Error (MSE) between the observed output variables
and the model. The MSE of a multi-output model is defined as the sum of the
MSEs of all output variables. In past works [9] it was proposed that the MSEs
of the different predictor variables of the battery model were not combined into
a single scalar value but the model was regarded as a multi-criteria problem. In
any case, the resulting process had a high computational cost. The learning had
to be carried offline in a high performance computer. Hence, the BMS lacked
the capability of adapting the model to changes in the battery SoH.

In this paper, a different line of research is followed. ECMs are substituted
by Monotone Transformation Models [10], that are a more efficient solution to
this problem because of reasons that will be made clear in Section 3. Transfor-
mation models relate a pairwise ranking criterion to a monotone transformation
function and comprise two components: (a) a dynamical model, whose output
is comonotonic with the sought outputs (thus it induces the same ranking in



the output space as the true system), and (b) a smooth monotone function that
maps the output of this dynamical model to the desired output values.

There are some intrinsic advantages in the use of transformation models over
single or multi-criteria ECMs. On the one hand, the only assumption made in
transformation models is the comonotonicity of an instrumental variable (see
Section 2.1 and the second paragraph of Section 3) and the battery voltage.
This is a much weaker hypothesis than any of the semi-physical analogies used
before, let alone the first-principle models. The simplicity in the assumptions
is important because stronger hypothesis (such as the mentioned similarities
between an electrical circuit or a flexible vessel and the battery) end up being
false when the battery is aged (because the electrochemical processes change,
and the battery model comes to be very different). On the other hand, our
experiments have shown that the smooth monotone function mentioned before
is, with a high accuracy, an affine transformation of the OCV curve. Hence,
the computer resources needed for obtaining the health of the battery from the
on-vehicle measurements are somewhat reduced. This is very convenient if the
model is to be implemented in a BMS.

Notwithstanding, the use of transformation models introduces some difficul-
ties in its own. On-vehicle measurements are imprecise, thus standard statistical
rank tests may become inefficient when learning the intermediate dynamical
model in this particular application. In the presented method we take advantage
of recent rank tests for interval-valued data [11] that alleviate this problem.

The structure of this paper is as follows: in Section 2, transformation models
for coarse data are introduced. Section 3 particularises these models to batteries.
Section 4 contains experimental tests and discuss the obtained results. The paper
concludes in Section 5.

2 Transformation models for coarse data

The flexibility of black boxes as universal approximators comes at a cost: the
amount of training data needed for complete characterisations of complex non-
linear dynamical systems is hardly attainable. The well known bias-variance
dilemma applies here: there must be a balance between the properties of the
system that are taken for granted and those that are learned from data. The
more knowledge is introduced, the less training instances are needed, but the
higher the systematic error may become. Conversely, too flexible models may
generalise poorly to unseen areas of the phase space.

Therefore, there is a need for models that make minimal assumptions about
the dynamics of the system being studied, in the hope that these assumptions
have a wide range of applicability and the systematic error is not increased.
In this paper we are interested in those models that encode small amounts of
prior knowledge by enforcing the monotonicity of certain nonlinear blocks in
the transference function. For instance, any digitally sampled system can be
regarded as the composition of a continuous system and a staircase function.
Saturations, dead zones, backlashes and different kind of hysteresis also match



this kind of “monotonic” prior information. The best studied cases are arguably
monotonic Hammerstein or Wiener models, that consist in a composition of a
linear system with a nonlinear monotonic function [12].

2.1 Learning monotonic dynamical systems

Let the pair (f, θ) comprise a dynamical model defined by a parameter θ, that
is applied to an input variable {ut}t, ut ∈ Rm, and a monotonical function
f : R → R that is applied to the output of the dynamical model. The notation
“{ut}t” stands for “sequence of values of the variable u, indexed by the time t”.
The output of the dynamical model is the sequence {zt(θ)}t, zt(θ) ∈ R.

Given a pair of sequences {yt}t (desired output) and {ut}t (observed input),
the purpose of the learning algorithm is to find the value of θ and the function
f for which the sequence {f(zt(θ))}t best approximates the desired output of
the system {yt}t. Prediction error models minimise the MSE between the model
output and the desired output,

MSE(f, θ) =

T∑
t=d

(f(zt(θ))− yt)2. (1)

Transformation models search for the simplest model whose output is comono-
tonical with the desired output of the system. For example, the MINLIP algo-
rithm for Monotone Wiener Systems [13] solves the following problem:

min complexity(f)

s.t. f(zt(θ)) = yt, for all t = d+ 1, . . . , T (2)

where d accounts for the effect of the initial conditions (state of the system at
t = 0). If noise is to be present, residuals et are introduced such that yt =
f(zt(θ) + et) and the learning algorithm solves the following problem:

min complexity(f) and |et| (3)

s.t. f(zt(θ) + et) = yt, for all t = d+ 1, . . . , T. (4)

Lastly, f is recovered through an isotonic regression algorithm on the set of
pairs {(zt(θ), yt)}t [10]. The complexity of f is measured through its Lipschitz
constant, which is the lowest value L such that

|f(zi)− f(zj)| ≤ L|zi − zj | for all i, j. (5)

2.2 Transformation models for coarse data

Given that f is monotonic, the sequences {zt(θ)+et}t=d+1,...,T and {yt}t=d+1,...,T

are comonotonic but {zt(θ)} and {yt} are not comonotonic anymore. However,
we expect that the errors et are small enough thus there still exist two large



comononotic subsequences of {zt(θ)} and {yt}. Indeed, we can think of a sta-
tistical “degree of comonotonicity” defined through a statistical rank test. Since
these tests measure the degree to which the ranks of two different variables are
the same, the values of the variables do not matter but their order. For instance,
the Kendall Tau test [11]

τ({zt(θ)}t=d+1,...,T , {yt}t=d+1,...,T ) (6)

consists in sorting the sequence of pairs (zt, yt) by the first field, and then count-
ing how many of the yt are in order and how many are disordered. These values
are substracted and normalised to produce a coefficient that is 1 or −1 for
comonotonic or anticomonotonic sequences, and 0 for independent sequences.

An approximation to the best transformation model can be obtained by
means of the following multi-criteria optimisation:

min complexity(f) (7)

min τ({zt(θ)}t=d+1,...,T , {yt}t=d+1,...,T ) (8)

where the Lipschitz number of f is minimised along with the Kendall Tau dis-
tance between the aforementioned sequences. It is remarked that Eqs. (7) and
(8) are only an approximation of Eqs. (3) and (4), because the term with |et|
has been removed.

In this paper, we propose that this term penalising |et| is removed from the
definition of the “noisy” case, that should depend on a new set of assumptions.
Suppose that the desired inputs ut and outputs yt of the model are not accurately
perceived but we know that they are enclosed in two sequences of intervals ut
and yt, ut ∈ ut and yt ∈ yt for all t. Let the set zt be

zt(θ, {ut}) = {zt(θ, ut) : ut ∈ ut}. (9)

The new set of assumptions for the noisy (set-valued) learning problem is as
follows:

min complexity(f) (10)

s.t. {f(z) : z ∈ zt(θ, {ut})} ⊆ yt, for all t = d+ 1, . . . , T. (11)

Given that these assumptions do not depend on the unknown values et anymore,
the new problem is equivalent to

min complexity(f) (12)

min τ
(
{zt(θ, {ut})}t=d+1,...,T ; {yt}t=d+1,...,T

)
. (13)

where τ is an set-valued generalisation of the Kendall Tau distance (or any other
suitable rank test) [11].

Rank tests for interval-valued data Extending a rank test to set-valued data
is problematic because many different ranks may be compatible with sequences
of coarse data. For example, consider the following two sequences:
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Fig. 2. Transformation model of a battery: the dynamical model depicted in Figure
1 computes an instrumental variable that is comonotonic with the perceived battery
voltage. An interval-valued rank test measures the comonotonicity and the dynamical
model is adapted if needed. The monotonical function “f” is obtained with isotonic
regression between the instrumental variable and the desired output.

t xt zt
1 1 2
2 1.5 ± 1 3
3 2 4

Depending on the value of x2, these sequences are comonotonic (when 1 < x2 <
2), of have discordant pairs (when x2 ≤ 1 or x2 ≥ 2). Hence, the value of the
rank coefficient is also set-valued. Different generalisations of rank correlation
tests to set-valued data exist. For instance, in [11] the Kendall Tau distance for
coarse data implements the following extension:

τ
(
{xt}t=1...N , {yt}t=1...N

)
=
{
τ({xt}t=1...N , {yt}t=1...N ) : xt ∈ xt, yt ∈ yt

}
. (14)

Observe that τ is also set-valued thus equation (13) makes reference to the lower
bound of this statistic (minimin approach [14]).

Kendall Tau test may not be the most informative when the noise is high and
there are many overlapping intervals. A simple alternative consists in replacing
the distance τ in Eq. (14) by a measure of the dispersion of the residual of an
isotonic regression of {y} with respect to {x}. This dispersion is also a measure of
the “degree of comonotonicity”, although it is not easy to ascertain its statistical
significance if it was to be used as a statistical test. In the case at hand, however,
this is valid because it is only the distance and not the statistical significance
that is needed.

3 Particularisation to battery models

The particularisation of this structure to battery models is summarised in Figure
2. A nonlinear dynamical model is fed with the operational signals of the vehicle
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Fig. 3. Dynamical model of the effective charge: the dynamical model of the effective
charge comprises a neural network with two inputs: current and charge (integral of the
current). The output of the net is the difference between the actual charge and the
effective charge.

(current, temperature, etc.) thus its state is kept in sync with the internal state
of the true battery. The output of this model is an instrumental variable, with
a high degree of comonotonicity with the perceived voltage of the battery. The
dynamical model is adapted so as to minimise (the lower bound of) one of the
(interval-valued) rank-correlation tests seen in the preceding section. Finally, f
is the monotonical function for which the lowest bound of the following set of
errors is reached:

{
∑
||f(zt)− yt||2 for all zt ∈ zt(θ), yt ∈ yt}. (15)

Interestingly enough, the instrumental variable z can be given a physical
meaning in this setup. Notice that, if the battery is charged at an infinitesimal
pace, the battery voltage is a monotonical function of the battery charge, i.e.
the OCV curve. As a consequence of this, if the instrumental variable z is a
monotonic transform of the battery charge when the current is small, it results
that f must also be a monotone transform of the OCV curve. This property can
be attained if the dynamical model is designed as the sum of the actual charge
of the battery and an additional term, which is learned from data by means of
a learning algorithm that promotes that the norm of the output of the model is
as low as possible.

If the learned model (with f being a transform of the OCV curve) is sub-
jected to high charge or discharge currents, z can be understood as an “effective
charge”: the charge that an hypothetical battery at equilibrium should store for
having the same voltage as the battery being modelled. Hence the dynamical
model would be predicting the diffusion and over-potential effects [15] in the
battery.

Since a human-understandable definition of these diffusion and over-potential
effects is not needed for assessing the health of the battery, a black-box (a re-
current neural network) has been used in this paper: an Echo State Network
(ESN) with a linear activation layer [16]. Recurrent networks, and particularly



ESNs, can learn models where the output depends on the input and also on the
past history of the system, as happens with batteries. The disposition of the
elements in the presented model is displayed in Figure 3. It is remarked again
that the neural network is not modelling the effective charge but the difference
between the effective charge and the actual charge (thus the output of the net
tends to zero if the current is sustainedly low). Observe also that the weights
of the output layer cannot be determined by ridge regression [17] (because the
desired output is unknown). A gradient descent algorithm is used for minimising
a rank correlation test between (a) the sum of the charge and the output of the
net and (b) the voltage of the battery, with an additional term penalising the
absolute value of the integral in time of the net output.

Lastly, let us explain the meaning assigned to the intervals yt and ut in this
context. On the one hand, the intervals yt reflect the tolerance of the sensors in
the vehicle. If yt is the output value that is actually observed at the battery, then
yt = yt ± ε for a certain ε that depends on the accuracy of the sensor. On the
other hand, the spread of the intervals ut handles the tolerance of the sensors
and also the effects of the unknown inputs to the model and the possible lack
of flexibility of the parametric family of the models; z̃t(θ, {ut}) must be wide
enough to compensate for the systematic error of the model. The spreads of yt
and ut are, therefore, design parameters that depend on the tolerance of the
particular sensors being used in the BMS and the properties of the parametric
family of the dynamical model.

4 Empirical study and discussion

The experimentation in this section is designed to find out whether the proposed
data-driven method is competitive with state-of-the-art battery models. The
experiments were conducted on three different batteries: Battery #1 is a 42Ah
pouch battery from European Batteries, and Batteries #2 and #3 are cylindrical
commercial LFP cells manufactured by A123 Systems, with 2.3 Ah name plate
capacity. The following conditions are analysed:

1. Influence of the current. Battery #1 was used for this purpose, and was
charged at 42, 21, 14, 8.4 and 1.68 Amps (these currents are named C1, C2,
C3, C5 and C25). It is expected that the model accuracy is best for C25 and
degrades for the higher currents.

2. Influence of the ageing of the battery. Batteries #2 and #3 were subjected to
6000 charge/discharge cycles and different experiments were programmed at
the beginning of their lives, at half life (3000 cycles) and at the end of their
useful life (6000 cycles). Battery #3 had an abnormal deterioration (elec-
trodeposition). Battery #2 had a normal ageing with a gradual reduction of
the capacity until the end of its life.

3. Influence of the technology. Battery #1 is a pouch battery; #2 and #3 are
cylindrical, and the capacities are also different; Battery #1 is a large cell
(42Ah, used for instance in battery-electric buses) and the other cells are



much smaller (2.3Ah, used for instance in BMW ActiveHybrid 3 HEVs or
the Chevrolet Spark EV).

The LiFePO4 (LFP) pouch battery from European Batteries has a rated ca-
pacity of 42Ah when discharged at 8.4 Amps. The average operating voltage is
3.2 V. The discharge and charge cut-off voltages are 2.5 V and 3.65 V respec-
tively. The dimensions in mm. are 275×166.5×13.3. The cell weights 1010 g.
The cylindrical battery from A123 Systems has a rated capacity of 2.3 Ah when
discharged at 2.3 Amps. The average operating voltage is 3.3 V. The discharge
and charge cut-off voltages are 2 V and 3.6 V respectively. The dimensions in
mm are φ26×65. The cell weights 76g.

Tests are conducted in a SBT 10050 battery test system from PEC and
an ICP 750 climate chamber from Memmert. The ambient temperature was
23◦C. The OCVs of the three batteries have been measured through the “voltage
relaxation” method [18]. This method consists in charging the battery in small
steps (10% of the capacity) and then applying a constant voltage until the current
is smaller than a threshold to ensure a full charge (or discharge). Each of these
steps is followed by a rest period of some hours, after which the OCV voltage is
measured. It is remarked that train and test datasets are not obtained with cross
validation. The learning algorithm uses on-vehicle data (charge and discharge at
different currents). A neural network is trained to maximise the rank correlation
between (a) the sum of its output and the actual charge of the battery and (b)
the measured voltage of the battery at the vehicle. Once the neural network is
trained, the function f is obtained by isotonic regression between the sequences
(a) and (b). This function f is subsequently compared to the actual OCV curve of
the battery, that has been independently obtained at the laboratory by means
of a relaxation experiment, as mentioned before. The ECMs tabulated in the
forthcoming tables are the mean squared differences between the values of f and
the true OCV curve.

Three different setups of the proposed model were used:

1. ESN-τ : Combination of an ESN (reservoir of size 1000, linear output layter)
with the extension of Kendall Tau to interval valued data, as defined in Ref.
[11].

2. ESN-x: Combination of the same ESN with the isotonic regression-based
measure of comonotonicity. This is the variance of the residual of an isotonic
regression with zero tolerance for the output variable and 10% tolerance for
the input variables.

3. ESN-xy: The same as before, but the tolerance is 10% for the inputs and 1%
for the outputs.

Apart from the three proposed model setups, the following eight models are
included in the study:

1. Abu-Sharkh’s method [19]. State-of-the-art method for determining the OCV
of a battery from operational data, based on a first-principles model of the
battery.



Table 1. Influence of the charging current. Average quadratic error of OCV, obtained
from RNN, LSTM, ESN, γ-ESN, ANFIS, and ARIMAX

C25 C5 C3 C2 C1

Abu-Sharkh 0.0003 0.0094 0.0080 0.0084 0.0110
Xu 0.0006 0.0086 0.0146 0.0153 0.0073

LSTM 0.0077 0.0301 0.0070 0.0066 0.0064
LSTM-dropout 0.0100 0.0295 0.0067 0.0083 0.0093

ESN 0.0056 0.0326 0.0083 0.0106 0.0083
γ-ESN 0.1553 0.0854 0.0279 0.0132 0.0212
ANFIS 0.2026 0.2016 0.0731 0.0595 0.0334

ARIMAX(2,1) 0.0127 0.0391 1.0153 0.0165 0.0202

ESN–τ 0.0003 0.0002 0.0004 0.0004 0.0013
ESN–x 0.0003 0.0003 0.0007 0.0007 0.0018
ESN–xy 0.0003 0.0003 0.0007 0.0007 0.0018

2. Xu’s method [20]. Another specialised method that is based on Randles’
equivalent circuit.

3. LSTM [21]. A LSTM recurrent neural network with 20 hidden nodes with
recurrent connections followed by a linear layer. The net is primed with two
sequences of inputs: the current and the charge.

4. LSTM-dropout [22]. A regularised LSTM network where randomly chosen
network units are masked during training.

5. ESN [23]. Echo State Network, with a reservoir of size 1000, and a linear
feed-forward layer trained with ridge regression.

6. ϕ-ESN [24] An ESN with an additional nonlinear feed-forward layer, where
the non-recurrent layers are trained with the Adam algorithm [25].

7. ANFIS (Adaptive-Network-Based Fuzzy Inference System)[26] in a NARX
configuration.

8. ARIMAX(2,1): Auto Regressive Integrated Moving Average with Explana-
tory Variable time series, with orders AR=2, MA=1.

The results of the study are displayed in Tables 1, 2 and 3. The influence
of the charge/discharge rate in the accuracy of the sensor is studied in Table 1.
Observe that the accuracy of all methods degrades for high currents. Remarkably,
the presented method was able to improve over battery specific algorithms, and
keep the C25 accuracy for discharges at high currents. In addition to this, the
performance of the new approach is better by an order of magnitude than any
of the other methods for currents C3 and C2. However, none of the methods
achieved satisfactory results for C1.

Table 2 measures the accuracy of the model when the batteries are at the
beginning, middle and end of their lives and the ageing process has been uniform
(without abnormal deterioration). In all cases the charging current is C25. In
these experiments, Abu-Sharkh and Xu’s methods were only evaluated in their



Table 2. Influence of the number of cycles without electrodeposition. Average
quadratic error of OCV, obtained from RNN, LSTM, ESN, γ-ESN, ANFIS, and ARI-
MAX

New battery Middle life End of Life

Abu-Sharkh 0.0003 0.0008 0.0009
Xu 0.0008 0.0016 0.0015

LSTM 0.0016 0.0027 0.0069
LSTM-dropout 0.0015 0.0035 0.0033

ESN 0.0060 0.0131 0.0125
γ-ESN 0.0132 0.0120 0.1972
ANFIS 0.0573 0.0913 0.0808

ARIMAX(2,1) 0.0494 0.0619 0.0603

ESN–τ 0.0010 0.0012 0.0014
ESN–x 0.0002 0.0006 0.0003
ESN–xy 0.0003 0.0005 0.0004

Table 3. Influence of the number of cycles with electrodeposition. Average quadratic
error of OCV, obtained from RNN, LSTM, ESN, γ-ESN, ANFIS, and ARIMAX

New battery Middle life End of Life

Abu-Sharkh 0.0002 0.0008 0.0010
Xu 0.0007 0.0016 0.0018

LSTM 0.0026 0.0026 0.0031
LSTM-dropout 0.0022 0.0019 0.0029

ESN 0.0054 0.0212 0.0639
γ-ESN 0.0062 0.1506 0.0343
ANFIS 0.0639 0.1709 0.1549

ARIMAX(2,1) 0.0620 0.0447 0.0828

ESN–τ 0.0002 0.0011 0.0004
ESN–x 0.0003 0.0004 0.0005
ESN–xy 0.0002 0.0003 0.0002



most favourable configuration, i.e. for charges lower than 80% of the capacity
of the battery. The accuracy of the new method is always comparable or better
than that of the specific methods, showing also that the presented method is not
negatively influenced by the battery age.

Lastly, Table 3 measures the accuracy of the model at the beginning, middle
and end of life when an abnormal deterioration takes place (an electrodeposition
happened at some point between the middle and the end of the life). There are
not appreciable differences between the accuracy of the soft sensor in this case
and the results in the preceding Table 2.

5 Concluding remarks

A monotonic transformation model is used for obtaining the OCV curve of a
battery while it is not at equilibrium. This model comprises a recurrent neural
network and a monotonic function that is obtained via isotonic regression. The
neural network is trained by minimising the lower bound of a statistical rank
test for coarse data, according to a novel interval-valued characterisation of the
tolerances of the sensors and the systematic errors inherent to the parametric
definition of the dynamical model. Apart from the improvement in the accuracy
of the model shown in the results, the new characterisation simplifies the opti-
misation problem by removing the noise-related terms. The size reduction allows
to implement the method in devices with reduced computational power.

The results were validated with two different types of LFP batteries for au-
tomotive applications, for different states of health and charge rates. Two first-
principle models, five recurrent neural networks and statistical time series were
compared to the presented method. It was concluded that transformation mod-
els for coarse data improve existing methods by a large margin when the charge
current is high, without a significant influence of the state of health of the bat-
tery.

In future works it is planned that the Monte-Carlo implementation of the
regression-based rank test is improved by means of an interval-valued imple-
mentation of the PAVA algorithm for isotonic regression. Although the com-
putational demand of the current algorithm is lower than that of the previous
intelligent models, the power of current BMS still may be insufficient for per-
forming the learning online.
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8. Sánchez, L., Couso, I., González, M.: A design methodology for semi-physical fuzzy
models applied to the dynamic characterization of LiFePO4 batteries. Applied Soft
Computing 14 (January 2014) 269–288

9. Echevarŕıa, Y., Sánchez, L., Blanco, C.: Assessment of multi-objective optimization
algorithms for parametric identification of a li-ion battery model. In: International
Conference on Hybrid Artificial Intelligence Systems, Springer (2016) 250–260

10. Belle, V.V., Pelckmans, K., Suykens, J.A.K., Huffel, S.V.: Learning Transformation
Models for Ranking and Survival Analysis. Journal of Machine Learning Research
12(Mar) (2011) 819–862

11. Couso, I., Strauss, O., Saulnier, H.: Kendall’s rank correlation on quantized data:
An interval-valued approach. Fuzzy Sets and Systems (2017)

12. Schetzen, M.: Nonlinear System Modelling and Analysis from the Volterra and
Wiener Perspective. In: Block-oriented Nonlinear System Identification. Springer
London, London (2010) 13–24

13. Pelckmans, K.: MINLIP for the identification of monotone Wiener systems. Au-
tomatica 47(10) (2011) 2298–2305

14. Couso, I., Sánchez, L.: Machine learning models, epistemic set-valued data and
generalized loss functions: An encompassing approach. Information Sciences 358
(2016) 129–150

15. Gallagher, K.G., Dees, D.W., Jansen, A.N., Abraham, D.P., Kang, S.H.: A volume
averaged approach to the numerical modeling of phase-transition intercalation elec-
trodes presented for lixc6. Journal of The Electrochemical Society 159(12) (2012)
A2029–A2037

16. Verstraeten, D., Schrauwen, B., Haene, M., Stroobandt, D.: An experimental uni-
fication of reservoir computing methods. Neural networks 20(3) (2007) 391–403

17. Lukoševičius, M.: A practical guide to applying echo state networks. In: Neural
networks: Tricks of the trade. Springer (2012) 659–686

18. Pei, L., Lu, R., Zhu, C.: Relaxation model of the open-circuit voltage for state-of-
charge estimation in lithium-ion batteries. IET Electrical Systems in Transporta-
tion 3(4) (2013) 112–117



19. Abu-Sharkh, S., Doerffel, D.: Rapid test and non-linear model characterisation of
solid-state lithium-ion batteries. Journal of Power Sources 130(1-2) (2004) 266–274

20. Xu, J., Cao, B., Chen, Z., Zou, Z.: An online state of charge estimation method
with reduced prior battery testing information. International Journal of Electrical
Power & Energy Systems 63 (2014) 178–184

21. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02) (1998) 107–116

22. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in re-
current neural networks. In: Advances in Neural Information Processing Systems.
(2016) 1019–1027
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