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Abstract 

It has sometimes been proposed that generic sentences make statements about prototypic 
members of a category. In this paper I will elaborate this view and develop an account 
where generic sentences express quantification about the normal exemplars in a category
here and in counterf.actual worlds sufficiendy similar to our own. 

Comparing the account to the currendy most widespread analysis which views generic 
sentences as universal quantifications in carefully chosen best-possible worlds, we find that 
an analysis that is based on the choice of normal objects does better justice to the data in 
question than an analysis that relies on a choice of normal worlds alone. 

A further conceptual advantage of an explicit separation of (a) a choice of best exemplars 
and (b) a modal component of generic quantification consists in the fact that it highlights 
that different generic sentences can rely on different kinds of choice of best exemplar. 
Comparing their logical behaviour, I will demonstrate that we should at least distinguish 
between normal-generic sentences and ideal-generic sentences. 

Finally, the paper proves that the account I propose is a modal variant of some recent 
purely extensional default logics, developed in AL 

I INTRODUCTION 

The main aim of my paper is to propose a semantics for the genenc 
operator GEN, widely used in the semantic investigation of generic 
sentences, a semantic account which moreover does justice to certain 
well known empirical observations about generic quantification: 

( I.I) Generic sentences allow for exceptions: 
Dogs bite postmen 
Dogs don't bite postman Otto. 

(1.2) Generic sentences involve a modal component: 
Rose handles mail from Antarctica. 

(I. 3) Generic sentences can be embedded in other modal constru~ons: 
If every postman got dog training, then dogs wouldn't bite postmen. 

( q.) Nested generic quantification: 
Dogs bite men wli.o are afraid of dogs. 

For a more general overview over the discussion of genericity, the reader is 
referred to the comprehensive survey article ofK.rifka, Pelletier, Carlson, ter 
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Meulen. Chierchia and Link (Krifka et aL 1995) as well as Pelletier and 
Asher (Pelletier & Asher I 997 ). Note that in the light of these surveys, the 
enterprise of the present paper is restricted to a sub-question in the 
investigation of genericity, the question about the nature of the GEN 
operator. Even if I might occasionally talk about the 'investigation of 
generic sentences' in the following. this is always meant in that limited 
sense. 

The account I propose will be based on two main ingredients. First, I 
will introduce a family of operators that select for eac:h domain p· the 
subset of · normal individuals in P. Second, I will use a notion of 
accessible counterfactUal worlds, the dispositional orbit of the world of 
evaluation. which will do justice to the modal nature of generic 
statements. Finally, the discussion will reveal the fact that we have to 
distinguish two types of generic sentences, normal-generic statements and 
ideal-generic statements. · · 

In proposing a new account, it is furthermore of interest to see in what 
respect this account can do better than previous theories. I will mainly 
concentrate on a comparison to a family of theories for GEN that I will call 
'Best World Theories'. I will raise two main criticisms. First, these accounts 
only allow for one-dimensional quantification. which causes problems in 
certain cases. Second, Best World Theories try to capture several interacting 
factors in generic quantification by one an-analysed operator, and I will 
argue that this obscures the facts under consideration. 

The paper is organized in the following way. In sections 2 and 3, Best 
World Theories of generic sentences and the Normality Based Theory of 
generic sentences will be introduced. Section 4 will examine the treatment 
of exceptions in either account. It will tum out that Best World Theories 
are forced to follow a strategy of 'stepwise quantification', which will be 
shown to be inappropriate upon closer investigation in section S· The 
Nonilality Based Theory can face exceptions without problems. Section 6 
investigates genericity in complex modal constructions. The remainder of 
the paper will argue in favour of a distinction between normal-generic 
sentences and ideal-generic sentences. In section 7, I will take the example 
of the zoo-year-old turtle as an intuitive starting point to introduce this 
distinction. Section 8 will elaborate on this point, arguing that different 
kinds of axiomatic restrictions are appropriate for either kind of statement. 
While 'normality' should be more. statistical in spirit, 'ideality' refers more 
to a conceptual ideal. Section 9 addresses the question of a sound conceptual 
basis for theories of GEN. An Appendix relates the approach to theories of 
default reasoning in AI literature. It turns out that the account can integrate 
widely used systems of nonmonotonic reasoning in a modal framework-a 
combination that already bore fruit in section 6. 
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2 B.EST WORLD THEORIES 

In this section, some reaSons to prefer a modal account for GEN over other 
proposals will briefly be reviewed, and one most recent such account, the 
theory of Pelletier & Asher (Pelletier & Asher 1997), will be introduced. 
This theory will provide a concrete object of comparison to the account to 
be developed in this paper. 

It has often been observed that generic sentences cannot be. analysed in a 
purely extensional manner. The most striking evidence in favour of this 
observation is generic sentences that express regularities that, in fact, have 
never so far been instantiated. Examples (2.1) and (2.2), taken from Kri£ka 
et al. {1995), illustrate this point 

(2.1) Rose handles mail from Antarctica. 
{ 2.2) This machine peels oranges. 

(2.1) might be true even if no letter from Antarctica has ever reached our 
office, and ( 2.2) can felicitously describe a machine that is brand new and 
has never before been set to work, and would still be true even if the 
machine got destroyed by an accident before it had seen its first orange.1 

The overview article by Kri£ka et al. {1995) sketches a modal treatment of 
the GEN operator in Section 1.2.6, which is based on the rich and elaborate 
modal accounts developed in Kratzer (1978) and Heim (1982). Apart from 
that proposal, Kri£ka et al. (1995) list a number of mod.al treatments of the 
GEN. operator that I will refer to with the cover term 'Best World Theory'. 
For concreteness, I compare my approach with the recent account proposed 
by Pelletier and Asher (Pelletier & Asher 1997) which, however, for the 
issues under discussion can be taken to represent a much larger class of 
similar approaches, some of them listed below. 

Best World accounts of a generic statement of the form 
GEN[x, ... I x,.J(~. w) elaborate the following paraphrase: take any a, go 
to those possible worlds which are most normal, or most undisturbed, or 
most ideal, with respect to matters in question-that is, the proposition 
~(a)-and see whether IJ1 holds true. If yes (for all a, for all normal-~(a)-
worlds), the generic statement is true. If no, it isn't. . 

Formally, Pelletier & Asher assume a function * which maps pairs of 
worlds and propositions onto the set of those worlds where the proposition 
holds true in the most normal way: 

. 
(2.3) *: W X P(W) _,. P(W) 

1 The sentences can also become fals~ under such circumswu:es. This is the more striking 
observation, as generic sentenceS tend to be regarded as universal quantifications of some kind. 



"'(w,p) = p' 
where p' = all the normal p worlds according to w, that is, all the worlds in 
which p, along with the typical consequences of p holds true. 

Next, a conditional operator > is defined on basis of the * function in the 
following way: 

(24) M, w,g F ~ > Ill iff*(w, [~]M,g) ~ [~]M•t, 
where [~]M,g ={we W: M, w,g f= ~} 

We can now translate the logical form of generic sentences, something of 
the form 

(z.s) GEN[x, ... , xn](~. \ll) 

into the logical expression 

(z.6) V'x1, ••• , x, {~ > '1') 

and will thus get exactly the semantics for (2.5) that was given in the 
paraphrase above. 

Further restrictions of * are discussed in Pelletier & Asher ( 1997 ), like 
PACTICITY and OR. I will give PACTICITY for illustration, an axiom that ensures 
that worlds that are normal for p also support p: 

(2.7) PACTICITY: *(w, p) ~ p 

Although such axioms, of course, influence the resulting logic of GEN, they 
will not be of primary importance in my criticisms of best world theories. I 
therefore refer the reader to the original source for more details, as well as a 
treatment of defeasible inferences on the basis of this logic. 

With respect to the issues to be discussed below, the theory of Pelletier & 
Asher can be seen as standing for a range of related accounts, ranging from 
Morreau (1996), Asher & Morreau {1995), back to classical papers like 
Delgrande (1987, 1988). 

3 NORMAL OBJECTS 

This section serves to introduce the basic notions of the account I want to 
propose as an alternative to Best World Theories. The most important 
ingredient will be the idea of distinguishing normal from not-so-normal 
objects in a category. 

If one starts out from a world w to look for those worlds ul in *(w,p) 
which are normal for p. one will in many cases immediately leave w. 
Formally speaking, w ~*(w,p) for most propositions p and worlds w, and 
this should be so, because otherwise default implication would come too 



close to classical implication, as demonstrated in Pelletier & Asher (I 997 ), or 
Morreau (1996). In face of this (quite informal) observation, one might ask 
how speakers can acquire this kind of sophisticated knowledge about 
counterfactual worlds. All they can look at is the real world around them. 
Generic beliefs should be the result of '[speakers'] desire to understand and 
characterise the world immediately surrounding them' (Pelletier & Asher 
1997: 1129), yet the 'normal case in the world immediately surrounding 
one' seems to be deeply hidden in Best World Theories. 

One could propose to define the set of objects a which are normal Ps, for 
every property P, in world w: 

(3.1) a is normal with respe~ toP in w iff 
wE *(w.''P(a)) 

Evidendy, the notion of 'real, normal Ps' is an indirect part of the Best 
World Theory. Yet it remains unclear how the global function * builds on 
such real cases which are intuitively fundamental for our generic beliefs 
about P. 

We could also turn things upside-down and introduce an explicit notion 
of 'normal object in P in order to analyse generic sentences. 2 The basic idea 
is to distinguish between all Ps and normal Ps. In order to do that, we 
introduce a family of functors 

(3.2) N,.: W X (De)"-+ W X (De)" 

These functors will map all n-ary properties P on to their normal parts 
N(P). For all worlds w, N,.(P)(w) is the set of all those tuples au ... ,a,. which 
are normal Ps in w. Evidendy, these a 1, • • • ,a, should also be Pin w, such 
that we sensibly require (3.3) to hold true.3 Assumption (3.3) will be 
repeated as (N 1) in section 8, where more axiomatic restrictions will be 
discussed. 

(3.3) For all w: N(P)(w) C P{w) 

On the basis of these operators, we can present a first try at analysing 
generic sentences. 

(34) FmST VERSION: 

GENx1 , •• • , x,. (~ ; llt) i£f 
Vxu ...• x,.(N,.(A.s..UH ... ,x .. ~)(xl, ... ,x,.) ...... w) 

1 In the survey pan of Pelletier & Asher (1997~ this strategy is discussed in section 2..3 on 
'Prototypes'. The theory to be developed here can actually be seen as a spell-out of that sketch. A 
similar sketch can also be found in Kri£b d aL (I99S~ 

' I will sometimes omit the ariry index ofN in the following when this is possible without cawing 
misunderstandings. 



(34.) reads as follows: 'Form the n-ary property <l>, and use it as an argument 
of the N functor. That will give you the normal <l>s. If all of them show 'l}f, 
the generic ~tatement holds true.' 

The analysis proposed in (34) captures the intuition nicely that generic 
statements are just talking about normal objects. However, it can easily be 
argued that the treatment in (34) is still too extensional. Many such 
universal sentences come out true by accident, or because of the finiteness 
of our world. Consider the following scenario where no choice, however 
sophisticated, of normal Ps can rescue the case. 

(3.s) • It is true that no pope ever had the name 'Bartholomew'. 
• Normal popes are a subset of the actual popes. 
• Thus, (3.4) renders the generic sentence 'Popes aren't called 

Bartholomew' true. 
• Actually, the sentence is-false. 

Similar examples arise whenever the set of Ps in a world w is small enough 
to fail to exemplify some property that, in and of itself, would be quite 
natural for some P to have. And interestingly, speakers can have quite dear 
feelings about whether some property isn't exemplified by accident or by 
principle. {Compare the generic statement: 'Popes aren't called Goofy'.) 
Another well-known problem for a purely extensional analysis are generic 
sentences about something that has not occurred yet. Let me repeat 
example (2.1) for illustration. 

(3.6) Rose handles letters &om Antarctica. 

According to the translation suggested in (34.), we could only say that for all 
normal letters x &om Antarctica (arriving in our office), Rose handles x. In 
the Qikely) case that no letter &om Antarctica has ever reached us, we 
would quantify over an empty set, which does no harm in making the 
universal true-however, more things will spuriously be true, due to the fact 
that there are no letters form Antarctica: All generics in (3.7), for example, 
would be predicted to be true: 

(3.7) Rose eats letters from Antarctica. 
Rose answers letters &om Antarctica rudely. 
Joe handles letters from Antarctica. · 

This is, of course, unwelcome. We can avoid these kinds of accidental 
universal truths by evaluating (9) not only in ours, but also in a range of 
other possible counterfactual worlds. Thus, we arrive at an analysis like in 
(3~ . 



(3.8) SECOND VERSION: 

W F GENxu .. . , .X11(~ j "Ill) iff 
\lui (w ~ ul-+ 'VxJ, .. . • xii(NII(>.s~J •...• x~~~xxJ, .. . • Xn)(ul)-+ w(ul)) 

A paraphrase would be 'Go to any world ul that is related by :::::::: to w. Now, 
check for all objects a 1 , •• • , a.. that are normal ~ in ul whether they are also "Ill 
in u/. If this works, for all a 1, ••• , a_., in all ul, the generic statement is true.' 

Definition (3.8) makes use of the new binary relation :::::::: which singles out 
those counterfactual worlds that are relevant in the evaluation of the 
generic sentence. Formally, the relation ~ is an accessibility relation 
between possible worlds. Coming from some world w, all those other 
worlds are ~ -accessible that are like w with respect to causal and statistical 
dependencies and regularities, but may differ from w in isolated acciden~ 
facts. {3.9) is meant to capture the intuitive content of :::::::: : 

(3.9) w:::::::: ul stands for: ul is like w with respect to all dispositions, causal 
and statistical dependencies and regularities but may differ in other 
facts. 

We will call { w'lw~ w'} the dispositional orbit or briefly DO of w. Note that 
there is a crucial difference between the underlying content of world 
selection in Best World Theory, coded as * function, and accessibility :::::::: in 
(3.8). While* selects ·better worlds than ours,~ accesses those worlds which 
behave like our own. These need not be more normal in any way, but may 
differ with regard to facts that are relevant for our generic beliefs. In 
example (3.5) above we might reach worlds w' where some normal pope is 
called Bartholemew, where some unnormal pope has the name Goofy, 
where no normal pope is called John, but none where a normal pope is 
called Goofy. Having strong faith in normality operators N11 , one .might 
even think about not restricting the universal quantification at all. As long 
as N11 picks out the proper subsets in all words, might not the universal in 
(3.8) hold in all worlds w', not only in some carefully selected ones? It will 
become clear in sections 6 and 9 that dispositional orbits are indispensable, 
and their role will become more colourful Yet we will first look at some 
quite un-intensional cases in order to see the approach at work. 

4 NORMAL OBJECTS AND EXCEPTIONS 

In this section, I will show that Best World Theories are not very robust in 
dealing with exceptions. The orily way in which they can account for them 
will lead to further trouble in section S· The Normality Based Theory does 
not face comparable difficulties. 



Consider the two sentences in (4-1): 

(•P) a. Dogs bite postmen. . 
b. Dogs don't bite the postma.il Otto. 

The two sentences are not contradictory. In fact, they perfecdy illustrate 
that generic sentences allow for exceptions. Surprisingly, Best World 
Theories face some annoying difficulties when treating exceptions. A first 
natural representation of (4-u) in the Best World Theory introduced in 
section z could look like this, where the reasonable reference to occasions s 
when postmen and dogs meet is added: 

(4-Z) 'v'x'v'y'v's(DOG(x) & POSTMAN(y) & MEET(x, y,s) > BITE(x, y,s)) 

Formula (4-2.) is true in w., iff for all instantiations a, b, s for x, y and s the set 
of normal 'a is a dog and his a postman and they meet in s'-worlds is a 
subset of the set of worlds where a bites b in s. 

{4-3) *(w.,, DOG( a) & POSTMAN(b) & MEET( a, h, s)) ~ BITE( a, h, s) 

In particular, this should also hold true if b happens to be otto the brave: 

(4-4) *(w., DOG( a) & POSTMAN( otto) & MEET( a, otto, s)) 
~ BITE(a,otto,s) 

Sentence (4-Ih), on the other hand, will be represented as in (4.5): 

(4-5) 'v'x(DOG(x) & POSTMAN(OTTO) & MEET(x,OTTO,s) 
>-. BITE(x, OTTO,s)) 

Given that the constant name OTTO is interpreted as the individual otto, 
this amounts to the condition in (4-6): 

(4-6) For all a, s: 
*(w., DOG(a) & POSTMAN(otto) & MEET(a,b,s)) 

~ .., BITE(a,otto,s) 

We may faithfully assume that the set of worlds where a bites otto in s and 
where a does not bite otto in s are disjoint. Therefore, the conditions in 
(44) and (4-6) contradict each other. This is an unwelcome result,. because 
the consistency of (4-1) is a paradigm issue in genericity. 

The shortcoming was pointed out, among others, by lehman (I 989). 
Pelletier & Asher answer it by offering a different analysis of (4-za): 

(4-7) 'v'x(DOG(x) > 'v'y(POSTMAN(y) > 'v's(MEET(x,y,s) > BITE(x,y,s)))) 

Matters become quite intricate at this point, which is why we will take the 
time to spell out (4-7) in detail: 
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(4-8} For all a: 
*(w0 , DOG{ a}) s;;; 

{w'l for all b: *(w', POSTMAN(b)) s;;; 
{ w'l for all s: *( w", MEET( a, b, s)) s;;; BITE( a, b, s)}}} 

This reads as follows: we pick an a. We proceed, starting from W0 , to all 
those worlds where a is a normal dog. There we are. Now we pick up some 
b. We proceed, s~ from ul, to those further worlds ul' where b is a 
normal postman. In ul • we pick some s and proceed to those worlds ul" 
where s is a normal meeting of a and b. Now, a should bite b in s. 

Example (4-rb) receives the corresponding representation given in (4-9): 

(4-9) 'v'x(DOG(x) > . 
'v's(POSTMAN(OTIO) & MEET(x,OTIO,s) > 
..., BITE(x,OITO, s) )) ) 

In this case, we choose an a and proceed from W 0 first to all worlds which 
are normal for a being a dog. In those, we c~oose some s and go further to 
worlds ul' which are normal for s being a meeting of a and the postman 
otto. As the world need not be normal for Otto being a postman, Pelletier 
& Asher would argue: the meeting can be such that otto does not get 
bitten, although he would be if we were in one of those worlds where he is 
a normal postman. So far, so good. 

We see· that if the Best World Theory wants to account for examples like 
(4-1), it needs to adopt the strategy of 'stepwise quantification' where only 
one variable is bound at a time. For instance in (4-7), we have one default 
implication for variable x, one. for y, and one for z. Treating them all in one 
step, like in formula (4-2), was fatal. · 

At this place, it is necessary to remember what all that walking around in 
possible worlds was good for. When we had picked some individual a, in 
(4-8), we moved to worlds· ul where a was a normal DOG. Next, we picked 
some b and went from ul to somewhere else, u/', where b was a normal 
POSTMAN. The problem seems to be that a might cease to be a normal 
DOG (or worse, cease to be a dog at all) once we have reached u/'. After all, 
the global function * in ul cannot take care of some odd chosen dogs when 
looking for further worlds where b conforms to the typical POSTMAN. Let 
me put it even more dramatically. if * indeed could care for such things, 

• Actually,l am not swe whether they would defend this claim. In the example they present. they 
can alford to keep their twin of postman Otto, the zookeeper Joe, out of all anteeedents of default 
impliQtions. We QD!lOt represent Otto in the consequent of>, because Otto is part of the event 
description in the anteCedent. Thus, it might be that PeUetier & &her Uil at this eumple, but let us 
act as if they didn't. 



then the first step from w~ to ul where a is a normal dog must have already 
preserved. without us noticing. all those normal cats, normal mice, normal 
sausages etc. which we might want to use in the next sentence about the 
normal dog a. Evidently, the star operator * has to perform a much more 
tedious task than authors in Best World Theories acknowledge. 

A normal-operator analysis of{4-1) is unproblematic, because we have 
the explicit means of specifying which variables refer to normal individuals, 
and which do not. We chose which things should be normal, we form the 
property with respect to which they should be normal, we can now apply 
the normality operator of an appropriate arity, and get the antecedent for 
the implication as a result. The representations for (4-1a) and (4-1b) are given 
in (4-10) and (4-1 1), respectively: 

(4-10) '1:/u/ (w~ ~ ul -+ 

'1:/xys(N_,(.XWAXYS.DOGw(X) & POSTMANw{Y) & 
MEET w(X. Y JlD(x, y, s)( ul) 

-+ BITE(x,y,s)(ul)) 
(4-11) '1:/ul(w~ ~ ul -+ 

'1:/xs(Nz{.XWAXS.(POGw(X) & POSTMANw(otto) & 
MEET w(X.ottoJ)))(x,s)(ul) · 

-+ ~BITE(x,otto,s)(ul)) 

Some remarks about notation: in order to make things more readable, I 
have underlined the arguments of N3 and N r The possible world parameter 
of properties is notated, somewhat inconsistently, sometimes as an subscript 
of the predicate in question {DOG..,(x) ~ sometimes as an extra argument 
(DOG(x, w)). I hope that this is not too disturbing. I moreover adopt the 
convention to use capitalleners for the lambda-bound variables X and .XX 
in the argument M~{X) of N in order to facilitate reading. 

Formula (.po) says that in all ul in the dispositional orbit of w., we find that 
all triples of normal dogs, postmen and their meeting are such that the dog 
will bite the postman. In contrast, formula { 4-I I) says that in all worlds in the 
dispositional orbit of w., we find that the normal meetings of normal dogs 
with postman Otto are such that Otto doesn't get bitten. In particular, Otto 
can stay an unnormal postman throughout all of the DO of w.,. This is, as we 
shall see in section 6, one of the explicit functions of the dispositional orbit. 

s NORMAL PAIRS AND PAIRS OF NORMALS 

In this section, it will be shown that Best World Theories cannot account 
for situations where normal pairs over A and B are not the same as pairs of 



normal A and normal B. Moreover, other perspectival issues in generic 
statements will be addressed. 

The strategy of stepwise quantification becomes more problematic in 
cases where normal encounters of A and B are usually not encounters of 
normal A and normal B. I will use the Wolves-and-Men example for 
illustration. The following generic sentence refleCts traditional wisdom 
about wolves and men. Picturesque tales to that end can already be found in 
general survey articles on lupus lupus as in Brehm (I 876) and, more recendy, 
Grzimek (1987). 

(5.1) Wolves kill men. 

However, modem descriptions of wolves tend to stress the fact that the 
generic sentence (s.I) is not, strictly speaking, true. In fact, normal wolves 
tend to avoid encounters with normal (healthy, adult) humans altogether. In 
the rare case that a normal wolf meets a normal man, so these treatises 
report, it is usually easy for the human to frighten the wolf away. 

Yet these faets are compatible with the assumption that the generaliza
tion expressed in (s.I) is talking about what normally happens under those 
circumstances when wolf and man meet at all: Such meetings most 
probably take place at times when the wolves are unusually hungry, and 
where the human is of a special kind, namely looking helpless and easy-to
attack: a sick or wounded person or a child. Although the generic sentence 
does not talk about normal wolf and normal man, its content is still 
important enough for humans. We are equally interested in sick and 
healthy, young and old, when it comes to the question who should be killed 
and eaten by wolves: nobody should. Therefore, even regularities about 
normal encounters of a rare kind are worth reporting, if they have such far
reaching consequenc~ 

Stepwise quantification cannot handle such examples properly. Sentence 
(5.1) will acquire a representation as in (s.z): 

(5.2) 'v'x(WOLF(x) > 'v'y{MAN(r) > 'v's(MEET(x,y,s) > KILL(x,y,s)))) 

As in previous examples, we select an object a and go where a is a normal 
wolf, we pick a man b and make it a normal man, and now we look for 
normal encounters of these. Either we shall find that such encounters 
usually end with the man successfully chasing away the wolf, and will deny 
the truth of (s.z) on these grounds. Or we can claim that none of these 
encounters is like what we had in mind (our expectations being shaped by 
the things that immediately surround us), such that there are none. In this 
case, (s.z) becomes true, as do many other generic sentences about wolves 
and men, because vacuous universal quantification is a powerful truth 
maker. 



We could uy and make all three, wolf a. man b and encounter s normal 
at once: a world that is most normal for the proposition 'a is a wolf and b is 
a man and s is a meeting of a and b' need not support the normality of 
either conjunct in isolation. Hungry wolves can meet weak men and kill 
them in such worlds, without changing our standards of a normal man. 

(5.3) Vx'Vy't/s(WOLF(x) & MAN(r) & MEET(x~y.s) > KILL(x,y,s)) 

However, the structure of this formula corresponds to (.p). The same 
argument as above will show that sentence (5.1), in the representation 
suggested in (s.J), will contradict sentence (54) which states that Waldo the 
Wolf is an exceptio~ case. (Waldo might be a tame wol£) Again, this 
prediction does not fit in with our intuitions: 

(54) Waldo the Wolf doesn't kill men. 

An analysis in terms of normality operators will properly distinguish 
between (5.1) where we quantify over wolves, men and their meetings, 
and make a statement about the normal triples of that kind, and example 
(54) where we only quantify over normal encounters of Waldo with men. 

(s.s) Vu/ (w., ~ u! -
Vxy.r(N_,(AWAXYS(MANw(X) & WOLFw(Y) & 

MEET w(X. Y ,S) )Xx. y, s)( u!) 
- KILL(x,y,sXw')) · 

(s.6) Vu/ (w., ~ u! -
'tfxs(N.,(AWAXS'(MANw(X) & WOLFw(waldo) & 

MEET w(X.waldo,S)))(x,s)(w') 
- ~ KILL(x,waldo,s)(u/)) 

Let me briefly discuss a further constellation in which normal encounters 
with A are not the same as encounters with normal A. These highlight the 
fact that 'Normality' is a subjective notion. 

(5.7) Bees are busy. 

The generic statement in (5.7) is a variant of the proverbial 'Bienenfleill' 
('busy as a bee'). However, on closer investigation it was found that the 
normal bee most of the time is dozing hidden in the hive, and that (5.7) is 
but an unimportant generalization about the normal-bee-we-see and what 
it does on normal-occasions-when-we-see-it. When we see a bee, we see it 
working. but this does not mean that most bees work most of the time. (It 
means that there are many bees in hives, though.) 

Example (5.7) is thus based on some selection of occasions wheri we meet 
bees. Similar generalizations arise when we meet only a special subset of a 
set of A (what would we think about bees if all we knew were the drones?). 



~49 

Real world examples of that kind. howeve~ •. already. have the nasty smell of 
a prejudice, which becomes even more stinging if the generic statement 
reflects what some special person x thinks is true about members of a class 
A. Yet one should be aware of the fact that 'being a normal A' in many cases 
amounts to a characterization of 'the kind of A I meet with highest 
frequency'. If those A that I meet are the same as those everyone else meets, 
the arising subjective notion of 'normal A' is accepted by the whole 
community. If we can be sure, moreover, that the 'normal A we meet' is 
also the most common A there is, our generalizations about 'the normal A' 
become trustworthy observations of reality. 

One can capture these three stages of subjectivity by adding a further 
hidden.parameter to the normality operators: N(x,P) yields normal Ps seen 
from the perspective of x.. N(A, P) yields normal Ps seen from the 
perspective of the community A, something like a weighted generalization 
of the single subjective normalities N(a, P) of members a of A. In fact, such 
N(A, . ) is all we ever can get, taking larger and larger communities A, but 
in some cases one might want to express that we have good reason to expect 
that these subjective normalities will not be shaken by any further 
community, in which case we could use an unparametrized notion N(P). 

Note that a subjective notion of normality can not help us to safe 
example (s.I). It is not that we only see a special selection of meetings 
between wolves and men. And even the wolf might realize that the men he 
would be apt to meet (in order to kill) are not those that are most common. 
Sentence (s.I) is a generalization about normal encounters of wolves and 
men, and not a statement about normal men and normal wolves, from 
whatever perspective. 

6 NORMAL HERE AND NORMAL ELSEWHERE 

This section discu.sses the normality based theory and its predictions in 
modal embeddings. 

Let us come back to example (4-1)a, repeated here as. (6.1). The 
corresponding semantic representation is given in ( 6.2 ). 

(6.1) Dogs bite postmen. 
{6.2) Vu/ (we~~ ul -

'v'xys(N,(AWAXYS(DOGw(X) & POSTMANw(Y) & 
MEET w(X. Y J1))(x,y,s)(ul) 

- BITE(x,y,s)(ul)) 

What should worlds look like which we look at in the evaluation of (6.2)? 
Certainly both; dogs and postmen should generally look like they do in our 



world. For example, we should not reach a world ul' where postmen 
generally get special dog training in order to impress dogs. If that was the 
caSe, the normal postman in such a world would probably not be bitten by 
dogs. and thus the universal in (6.2) would become false. Therefore, such a 
ul' should not be element in the dispositional orbit DO of w.,. 

However, it makes sense to argue that, if we look for triples of a dog, a 
postman and a meeting of these which are like those that we see in our 
everyday surroundings. then the postman of the triple should be like the 
postmen here in such triples, and in particular he should not have special 
dog training. The worlds in DO are there to provide counterexamples to 
accidental universal truths in our world, and to give examples for concepts 
which happen to be empty, but they are not there to change dispositions. 

Things are different in counterfactual embeddings of generic sentences. 
Sentence (6.3) provides an example where the antecedent of the counter
facrual already carries us into counterfactual worlds which have disposi
tional orbits quite different from ours. In such a world, different generic 
statements can hold true. The representation is given in {6.4).5 

(6.3) If every postman got dog training, then dogs would not bite postmen 
(64) w., F Aw{Vx(POSTMANw(x)- DOGTRAINEDw(x)) D-+ 

Aul(ul :::=w-VyVz(N(AWAYAZDOGw(Y) & 
POSTMAN w(Z) )(y, z, ul) 

- -, BITE(y, z, ul) )) 

Formula (6.4) can be paraphrased as: 'For all "nearby" worlds w where all 
postmen get dog training, it holds true that in all worlds w' in the 
dispositional orbit of w, all pairs of normal dogs and postmen you find 
are such that the dog will not bite the postman in ul. >6 The closest worlds 
where the antecedent is true are beyond the DO of the actual world. In the 
DOs reached from that remote starting point, all postmen get dog training 
and dogs remain sane enough not to bite them. That is, the notion of closest 
worlds in the sense of Lewis is used in counterfactual reasoning with 
generic sentences to ensure that everything else stays as normal as it was in 

5 I will suppress reference to m.eetitigs between postmen and dogs in (6~). The arguments in the 
following will mainly be concerned wich che looks of normal dogs and postmen and not wich the 
exact nature of their regular meetings. I use ccplic:it quanti6cation over worlds here, following the 
analysis of counterf:acnul Statements proposed by Lewis (Lewis 1973a,b} The box-arrow is to be read 
as qualifying che universal quantification over possible worlds in the sense defined by Lewis. 

6 The shortcut 'nearby' in che parapbnse abbreviates che Lewisian quantification in counterUctual 
implication: 

W 0 I= 11¢ D-+ 11
'1/J iff 

for all worlds w where if> is true. there is a world w' which is equally or more similar to W 0 such wt 
for all funher wodds w'' of equal or.greater similarity to W 0 where¢ holds true, '1/J will be aue also. 
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the world we started from. In particular, even in worlds where postmen get 
dog training, normal dogs should remain as they are in the actual world. 
Dogs should not, for example, change their character and all act like pitbull 
terriers who would fiercely attack even the best-trained postman. In fact. all 
schemes of improving the chances of postmen against dogs are based on the 
expectation that dogs will remain like they are while postmen get better 
equipped for their job. · 

Let us also have a look at nested generic quantifications, which tum out 
to· be another case of modality in genericity, for example in relative clause 
constructions as in ( 6. s ): 

(6.s} Dogs bite men who are afraid of dogs. 

The representation in (6.6 d) explicates that we make a generic statement 
about people with certain dispositions, that is for whom other generic 
statements are true. I give some intermediate steps of the derivation in 
(6.6a-c). The parts in boldface are those that are new, respectively. 

(6.6} a. >.w>.yVul(ul ~ w-+ Vx(N(>.WAX.DOGw{X})(x, ul)-+ 
FEAR(y. x, ul)) 

= the property of being someone who is afraid of dogs 
(6.6} b. >.w>.y (MAN..,(y) 8c 

Vul (ul ~ w-+ Vx(N(>.W>.XDOGw(X} )(x, ul)-+ FEAR(y,x, ul))} 
= be a man who is afraid of dogs 

( 6.6) c. N[>. W>.x>. Y{DOGw(X) 8c 
MANw(Y) & Vu/(ul ~s 

-+ Vx(N(>.W' >.X'DOGw (X') )(x, ul)-+ FEAR(y. x, w'))))] 
· . =property of being a normal dog-man-pai.r such that the man is 

afraid of dogs 
(6.6} d. vw• (w., ~ .,. -+ 

VxVy(N[>.W>.X>. Y(DOGw(X) 
& (MANw(Y) & Vul(ul ~ W-+ Vx(N(>.W'>.X'DOGw(X'))(x, ul) 
-+ FEAR(y,x,ul}))))(~y~wi-+ BITE(~y~wj) 

In ( 6.6)b, we collect all pairs of men and worlds such that 'man a is afraid of 
normal dogs. in w'. This might be the case because a is a shy person in w 
and has had bad experience with dogs. which behave like our dogs do 
otherwise. However, it also might be the case that normal dogs in w are 
very fierce animals; they might be 2 metres high, very aggressive, and a 
needs no special characteristics in order to be afraid of them. It even might 
be that a is a lunatic and dogs are all very small. peaceful and friendly 
animals but he fears them nevertheless. Qt might even be that all men show 
this kind oflunacy in some world, such that even the normal ones are afraid 
of friendly dogs.) The operator N in (6.6c) takes an argument that is the 



conjunction of DOGS and MEN who are afraid of dogs in any sense. Only 
in ( 6.6d) do we restrict our attention to those worlds that are in the 
dispositional orbit of w.,. the world of evaluation. In doing this, we get rid of 
worlds where a normal peaceful. small. friendly dog meets the normal 
lunatic who is afraid of dogs-and does not bite him. Formula (6.6d) states 
that in ~ worlds that are dispositionally like our own, ·a normal pair 
comprising a man who is afraid of a normal dog (in our sense) is such that 
the dog will bite the man. 

7 NORM AND IDEAL: THE roo-YEAR-OLD TURTLE 

I propose to distinguish between nonn.al-generic statements and ideal
generic statements. In this section, the distinction will be motivated in 
terms of plausibility arguments. 

The following (true) generic sentence is known from the literature as a 
puzzling case? 

(7.1) Turtles live to be a hundred years or more old. 

Sentences like (7.1) were used in the first place to argue that generic 
quantification does not amount to a quantifier like 'most' or 'the most 
common'. We know that the vast majority of runles die very young and 
only the strongest, happiest exemplars live to a biblical age. It is simply false 
to claim that (7.1) is true because most turtles live to 100 years. 

However, sentence (7.1) is problematic even for more sophisticated 
theories, as Pelletier & Asher (1997) demonstrate. Those Best World 
Theories that imply the existence of absolutely best worlds (e.g. Delgrande 
1987) will have to assume a world where in fact all turtles do live for 100 

years. It is easy to imagine that such a world would not be the absolutely 
best world in many ecological respects. 

Pelletier & Asher represent sentence (7.1) as in (7.2): 

(7.2) V'x('IURTI.E(x) > LIVE-TO-roo-YEARS(x)) 

Thus, we take any b, move to a world that is normal for b being a turtle, 
and see b become very old. As we can check for each turtle separately, 
Pelletier & Asher would argue. there is no need for worlds where all turtles 
get old at once, and ecological disasters are avoided. • 

1 Quoted &om Pelletier & Asher (1997- 1164). 
' ~member, however, our observ.uion in section -4 tlat stc~ quantification requires that 

objects once made normal remain normal in the next sup. Therefore the question whether Pelletier 
& Asher can avoid suc:h ccologiol disasters is not 6nally settled yet. 



In principle, we can easily mimic the analysis in (7.z) by the representa
tion in (7.3). Yet I will argue that (7.3) offers a hint that there is more to the 
xoo-year-old turtle than that captured in (7.z)/(7·3)· 

(7.3) 'v'w(w ~ W 0 -+ 'v'x(N{.XWAX.TURTI..Ew{X)) (x, w) -+ 
LIVE-TO-100-YEARS(x, w)} 

Taking (7.3) seriously, we have to acknowledge that not many turtles are 
· normal in our world. Even if we ignore the many little baby turtles that get 
eaten soon after birth and argue on the basis of turtles-we-meet (compare 
section s), we have to face the fact that (7.3) requites that the turtle we 
normally meet is not a normal turtle. In the extreme, it would even be 
possible that there was but one known turtle that was observed to be that old. 
Given the biological background we have, we would still accept (7.1) to be 
true. This amounts to the claim that there was but one known normal 
turtle. 

It is certainly obscure to claim that all the generic knowledge we have 
about turtles has come about from the observation of this one single 
exemplar. The Methuselah Turtle might have many accidental features. We 
perhaps acquired our knowledge about interbreeding behaviour from quite 
different turtles, and gourmets' expectations about the taste of turtle meat 
were certainly shaped by younger exemplars. 

The standard reply to that kind of worry would be that generic 
generalizations are something more sophisticated than talking about 'the 
average Q': generic sentences need not always talk about the average Q. Yet 
there is a certain tension between the standard reply and the equally 
plausible claim that 'people notice regularities in nature, and form .. . folk
laws to codify these regularities and to predict what the future will bring' 
(Pelletier & Asher 1997: II.2.9). The quotation offers a sane conceptual basis 
for generic quantification. The position underlying the standard reply, on 
the other hand, can only say that there might be some basic cases in which 
'generic' means 'normal' but that, in an undescribed process of holistic 
integration of all kinds of bits of folk-law, the * operator, or N functor, 
emerges which selects worlds/objects due to laws quite different from those 
of statistics. 

I propose that we should treat (7.1) as a different kind of generic 
sentence, and we should do that because it actually is different from 
statements like (6.1). (7.1) states something about the potential age of turtles, 
but matters are such that the normal course of the world rather inhibits 
turtles from exemplifying this potential. A turtle that is 'normal' in the 
sense of(7.1) is one where, quite un-norm.ally, all those incidents that cause 
an early end for most turtles did not take place. The 'normal' turtle in (7.1) 
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and the 'normal' course of events are in conflict. Therefore, I propose to 
analyse (7.1) in terms of ideal rather than normal turtles. 

Generalizations like (6.1), on the other hand, are such that the normal Q 
(dogs, postmen, etc.) talked about are those Q which are the product of the 
normal course of the world. A normal world does not prevent dogs from 
developing an infelicitous sportive interest in postmen's trousers. And it is 
not the case that only those postmen who are spared the experience of the 
everyday postman show dog-incensing timidity: normal postmen are those 
we find in the normal world. We thus need to distinguish normal from ideal 
generic sentences: 

• Normal Qs are those produced by the normal course of events. Ideal Qs 
might be rare, because the normal course of events inhibits them. Thus, 
we select normal and ideal Qs by different criteria. 

• Generic sentences about normal Qs can be falsi£ed by pointing out a 
large number of counterexamples. Generic sentences about ideal Qs are 
immune to such an argument. 

• Many properties that we observe with 'normal Qs', and that are not 
supported by any kind of theory, are-perhaps accidentally-never 
exhibited by one of the rare ideal Qs. If our generic beliefs about Qs 
were based on ideal exemplars, the corresponding generic ·sentences 
should be judged false. This is an intuitively wrong prediction. 

Let me give another example. It is well known that books on mushroom 
with drawn pictures are more reliable guides for the mushroom-hunting 
gourmet than books with photographs. The reason is that it seems to be 
almost impossible to take a picture of an exemplar that has escaped all 
damage to its ideal shape. The painter can develop a picture of an ideal 
exemplar, relying on other, normal-generic sentences: 'Normally, we £nd a 
bite like that when a snail h.as eaten from a mushroom. Thus, a snail has 
damaged this mushroom. If the mushroom had escaped this damage, the 
bite would be missing.' We know what an ideal undamaged mushroom 
looks like because we know what features are the result of damage. And, 
even if there was not a single undamaged toadstool in the world, we would 
still be sure that the undamaged ideal fly agaric was poisonous, because we 
know that all normal ones are. 

In formal terms, we will assume a fUrther family of functors (In)n N of the 
same type as the 'normal' functors we have used so far. We can replace Nby 
I throughout all definitions and will get a semantic account for ideal,. 
generic sentences analogous to the account for normal-generic sentences. 
For now, the difference between a representation in terms of N and a 
representation in terms of I is barely a conceptual one. The points at which 
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this conceptual difference yields quite concrete consequences will be 
pointed out in the next section. 

Clearly, Best World Theory would have the parallel option to add a 
second * operator which selects for ~-ideal rather than ~-normal worlds. 
Yet it is symptomatic of the conceptual vagueness of the approach that the 
necessity of such a move for the treatment of the 1oo-year-old turtle was 
never noticed. 

A first empirical observation in favour of a separation of normal-generic 
sentences and ideal-generic sentences is that both (7~} and (b) apply 
correctly, in some sense., to some unnamed scientific journals: 

(74) a. Papers get reviewed in about 8 weeks. 
b. Papers get reviewed in about 8 months. 

A more far-reaching observation in favour of separating ideal-generic and 
normal-generic sentences concerns the desirable link to theories of speakers' 
reasoning about new objects introduced in discourse. Formal investigations 
of speakers' understanding of longer texts have revealed that, in order to 
'make sense' of a given piece of text, they have to rely substantially on 
default inferences in order to conjecture plausible anaphoric links, interpret 
definite descriptions and to form hypotheses about temporal and causal 
relations between the facts and events reported. It is natural to assume that 
the contents of generic sentences form, so to speak, the database in such 
everyday reasoning and that nonmonotonic logic investigates the inference 
patterns that speakers apply. Finally, speakers can apply generic laws to the 
special case if they assume that, unless told otherwise, the individuals they 
talk about are as normal as can be in the categories as members of which 
they were introduced in the discourse. This is indeed the intuitive core of 
several attempts to offer a formal spell-out of this link (see Delgrande 1988; 
Asher & Morreau 1995; Pelletier & Asher 1997~ 

Once more it turns out that normal-generic sentences play a different 
role in this kind of reasoning from ideal-generic sentences. Assume that we 
are engaged in a discourse about the turtle Agatha. While we can safely 
hypothesize that Agatha is a normal turtle who lives under water, moves 
slowly, is dark-greenish. etc.. we will be more hesitant with respect to the 
assumption that Agatha will live to be 100 years old. (One might compare 
one's own expectations about the age one will reach with the generic 
statement that humans live to be 90 years or more.) We have argued that the 
ideal is not usually what· we meet every day. In a normal world, Agatha will 
most probably not be an ideal turtle. Accounts of generic sentences that do 
not make this distinction will, however, predict that we expect Agatha to 
become a Methuselah Turtle as naturally as we expect her to live in water. 



8 NORM AND IDEAL: 
SOME LOGICAL CONSIDERATIONS 

In this section, the distinction between normal-generic and ideal-generic 
sentences will be further defended looking at the different logical 
consequences speakers draw from either kind of statement. 

The present section discusses some axiomatic restrictions on the 
behaviour of normality and ideality operators. In testing our intuitions 
about appropriate axiomatic restrictions and their logical consequences, we 
find further support for the distinction between ideal-generic statements 
and normal-generic statements. 'While I will propose axioms for the 
normality operators N that tum normality into a quasi-statistical notion, 
the ideality operators I behave differently. The relation between N and 
certain similar proposals made in the AI literature (which elaborate the 
statistical origin of the definitions in more depth than I can do here) will be 
discussed in the Appendix. 

The first requirement that is reasonable for both normality and the ideal 
is that normal <}'s mUst be ~·s, and equally, ideal ~·s m~t be ~·s. This is 
reflected in (8.1) and (8.2). The appropriate first-order axioms are given 
together with the respective set-theoretic clauses in order to facilitate 
reading. 

(8.1) (N I): 'Vx(N(>.WAX ~w(X} )(x, w)--. ~(x, w)} 
(8.1a) N(A} C A 
(8.2) (I x): 'Vx(I(>.W>.X~w(X))(x,w)-. ~(x,w)) 
(8.2a) I(A) C A 

If something is, for example, a normal cup, it must in particular be a cup, or 
if someone is an ideal postman, then he must also be a postman. Not only 
are these assumptions intuitively plausible, but similar requirements are also 
made in Best World Theories, under the label of FAcnciTY (see section 2). 

The next point is already more problematic. If there are Ps, should there 
also be normal/ideal Pi? Intuitions diverge at this point. With respect to 
normal Ps, it can reasonably be argued that no natural class of objects 
consists entirely of exceptions. Perhaps the class falls into objects of varied 
shapes and properties which we all encounter with equal frequency, but 
then this rather means that all of them are equally normal. and not that all 
of them are equally abnormal. Elaborating this thought (N(P) = P} amounts 
to the prediction that normal-generic statements about the class in question 
amount to, at least in the world under discussion, universal statements 
about P. This seems a fairly innocent conclusion. 

Matters are evidently different for ideal objects. In stressing that ideal 
objects in p might arise only under quite non-normal circumstances, we 
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already allowed for the possibility that some quite normal worlds (among 
them the real one) could be without any ideal P objectS, for some categories 
P. Even if there are Ps, I(P) might be empty. Therefore, I propose the 
following non-emptiness condition only for N, but not for 1.9 

(8.3) (N 2): ~(x, w)-+ 3xN(.AW>.X.~w(X) )(x, w) 
(8.3a) A :f: 0-+ N(A) # 0 

The lack of an analogous axiom (I 2) will lead to different predictions about 
the logical strength of normal-generic and ideal-generic sentences which 
are empirically justified_ We will come to these in a moment. 

The £in.a:l restriction will relate normal/ideal Ps to normal/ideal Ps that 
are Q. Axiom (84)/(8.5) are motivated by more intricate considerations than 
(8.xH8.J). Basically, they will allow one to maintain the global perspective 
that everyday default reasoning is reasoning in terms of generic sentences. 
(84) is the weakest way of restricting the range of possible N functors in a 
way such that N will support the default inference patterns discussed 
below: RATIONAL MONOTONICITY, CAtmOVS MONOTONIC11Y and WE.AX 

CONTRAPOSmON.10 

(84) (N 3): 3x(N(>.WAX.~w(X}}(x, w) 1\ 'll(x, w)}-+ 
'v'x(N(.AW.AX.~w(X} 1\ 'llw(X)}(x, w) +--+ 
N( >.WAX. ~w(X) )(x, w) 1\ 'll(x, w)) 

(8~) N(A)nB :/; 0 -+N(AnB) = N(A)nB 
(8.s) (I 3): 3x(I(.AW>.x. ~w(X))(x, w) 1\ 'l!(x, w))-+ 

'v'x(I(.AW.AX. (l)w{X) 1\ 'l1 s(X) )(x, w) -+ 
I(.AW.AX.~w(X) )(x, w) 1\ 'll(x, w)) 

(8.sa) I(A)nB :/; 0 -+I(AnB} C I(A)nB 

(84) requires that if there are normal Ps that are Q at all, then the normal . 
P-and-Q's should be those normal Ps which are Q. It predicts, for example, 
that if we find normal postmen who have a beard then the normal
postmen-who-wear-beards are those normal postmen who wear beards 
anyway. No different standards of normality should apply as a result of 
further known circumstances. 

In the case ofidealness, the weaker requirement (8.5) can be paraphrased 
as 'if some ideal Ps are Q, then the ideal P-and-Q's should at least be a 

. • We will see reasoDS that allow I to be a partial function. We seem to have st4listie4l folle 
kMwWgr about any kind of category. but not all categories need to have something like a 'prototype'. 

'0 The list docs not cdaust dte range of'prominent' patterns in nonmonotonic reasoning but will 
serve to exemplify the usefulnc:ss of (8-4)/(8.;~ For a fuller discussion of the starus of: and logical 
relatioDS among such inference patterns. see Chellas ( 197 4), Ginsberg ( T 994), Kraus/Lehmann/Magidor 
(1990~ Rott (r9¢)/(to appear). to name but a few. The Appendix shows how our approach ties in with 
this kind of licerarure. 



subset of the ideal Ps that are Q.' Once more, this reflects the fact that the 
logic of ideal objects is different. The ideal objects in a large arid 
undifferentiated class can be less specific than the ideal of a more narrow 
class. Consider the following example: 

{8.6) Cups are (ideally) made of porcelain 
Porcelain cups (ideally) have a gold rim 
But: Do cups indeed (ideally) have a gold rim? 

Although the notion of a cup evokes the material 'porcelain', the idea we 
have of a spitting image of a porcelain cup is even more specific than the 
ordinary cup-of-porcelain. This is captured by (8.5) while retaining the 
intuition that even ideal P-that-are-Q should not lie far beyond the ideal P, 
as long as Q in and of itself is not an entirely un-ideal property of P. 

Note that if the latter should actUally be the case, that is, if Q is a 
somehow odd property, normal/ ideal P-and-Q are free to have any 
appearance. This is illustrated by the following example: 

(8.7) Dogs (normally/ ideally) don't suffer from cancer. 
Dogs who suffer from cancer may have quite different properties 

from dogs in general. 

Before moving on to such cases where· statements about atypical exemplars 
are made, I shall list some simple consequences of (NtHNJ) and (h) and 
(I3). Unless stated otherwise, the laws hold for both, normal-generic and 
ideal-generic statement. 

RATIONAL MONOTONICriY: 

If As are ~ and it is not the case that As ·are non-B, then As that are B are C. 

Proof. Assume N(A) ~ C, and not N(A) £;-.B. Then N(A)nB :F 0. and 
therefore N(A n B)= N(A) ()B. Thus N(A n B) C N{A) ~C. This holds in 
all possible worlds. For J, we must argue in some more detail. If 
I(A)# 0. the conclusion follows as in the above case. However, we 
might be in a world w where I(A) = 0 . Yet there must be worlds in the 
DO of w where J(A) :F 0. as otherwise the second, negated ideal-generic 
sentence would not be true. (If we had no ideal As anywhere, anything 
could be claimed to hold true about ideal As.) In all those worlds, 
I(A) #0 and moreover I(A) ~ C, as otherwise the first ideal-generic 
sentence would not hold true. As before, we can deduce that I(A n B) ~ C 
in all these worlds. 

RATIONAL MONOTONICITY is one of the most widely accepted requirements 
to generic implication, and default reasoning in general (see Pelletier & 



Asher 1997, as well as the sources quoted therein). AJJ. example is given 
below: 

(8.8) If dogs have hair, and it is not the case that dogs are generally not 
brown. then brown dogs have hair, too. 

CAUDOUS MONOTONICITY: 

If As are normally B, and As are normally G then As that are B should normally 
be C 

Suppose that there are ideal As. Then, if As are ideally B, and As are ideally G 
then ideal As that are B should ideally be G too. 

Proof Assume that N(A) ~ B, and N{A) ~CAs N{A) n B is thus nonempty, 
N(A n B) = N(A) n B, and therefore is a subset of N(A). Therefore 
N(A n ,B) ~C. 

In the case of ideal-generic statements, we have to make the assumption 
that there are worlds in the DO of ours such that these contain ideal As. As 
before, the conclusion follows ~ these worlds. in the same way as in the proof 
for the normality case. Given that generic sentences make necessity claims 
about all worlds in DO, the claim about ideal-generic statements follows. 

(8.9) If dogs have four legs, and dogs love sausage, then dogs that have four 
legs love sausage. 

Note that Pelletier & Asher doubt the validity of inferences like (8.9). I 
propose that this is the case be<;ause we tend to give causal force to the more 
narrow description of dogs in the consequent of (8.9): not only do dogs that 
have four legs love sausage, but they do so somehow because they have four 
legs. The sentence 'dogs love sausage', in contrast, suggests that dogs m 
general love sausage, not only when or because they have four legs. 
However, if we strip off these further implicit assumptions of the sentence, 
the result is a convincing deduction. 

(8.10) Dogs have four legs. 
Dogs love sausage. 
Dogs that have four legs love sausage. 

A final property that can be proved for normal-generic sentences, yet not 
for ideal-generic sentences, is the principle of WEAK coNTRA.PosmoN: 

WEAK CONI'RAPOSmON: 

If normal As are B, then 

(i) either normal ~ B's are ..., A, 
(ilj or else ..., B is an un-normal case altogether. 



I will first give examples for both cases of the disjunct Example (8.1 I) looks 
like a case where something like a principle of concraposition would be 
quite welcome. Example (8.1.2.), in contrast, illustrates a case where general 
contraposition would yield absurd consequences, and which exactly fits the 
second case of the above disjunction. This discussion is adopted from 
Ginsberg (I 994~ 11 

(8.11) Koala bears live on eucalyptus. 
-+ Animals who don't live on eucalyptus are normally not Koala 
bears. 

(8.1.2.) Men (normally) do not suffer from diabetes. 
f+ People who suffer from diabetes are nonmlly female. 

Formally, the relation between both pairs of sentences in (8.11) and (8.12) 
conforms to the pattern known as contraposition. The implication in (8.II) 
looks sound. Something like it might actually be in use when a biologist, 
knowing not much more about Koala bears than (8.u ), looks out for Koala 
bears in the jungle: If the putative Koala bear is seen regularly eating 
coconuts, the biologist will adopt the hypothesis that the animal is probably 
not a Koala bear after all. 

Yet example · (8.1.2) would clearly be an undesired implication. The 
reason seems to be that suffering from diabetes is uncommon both for men 
and their complement (in context), women. Therefore, if normal men do 
not suffer from that disease, normal women may not suffer from it either. 

These two ~ are exactly what is allowed by WEAK CONTRAPosmoN. 
The proof that it holds true for N is not so simple as the properties we 
checked so far. In particular, it relies on (Nx) to (N3) in full strength and 
therefore will not carry over to ideal-generic sentences. However, this 
might even be desirable. 

We argued in section 7 that normal-generic sentences and ideal-generic 
sentences should be kept separate. Ideal-generic statements say something 
about how a· member in P will look like under maximally undisturbed 
circumstances, while . normal-generic statements say something about 
members of P under 'normally disturbed' circumstances. Being confronted 
with some new, so far unknown, P object in converution, one will assume 
that it most likely is a normal P, but probably not an ideal P. Therefore, 
default conclusions on the basis of normal-generic sentences, but not ideal
generic sentences, will be drawn. Another facet of the same observation is 
that contrapositions of ideal-generic sentences like the one in (8.1 3) are 

11 Note that we. following Ginsberg and similar discussions by von Fintel (1998~ talk as if the 
enrl!e universe were, for these matters, resaicted to anim.W or humans, respeaively. 



intuitively wrong. (8.14) offers the general pattern which is used in the 
discussion below. 

(8.1 3) Turtles live to be 100 years old. 
f+ Animals who don't get to be 100 years old are not turtles. 

(8.14) As are ideally B. 
f+ non-B's are non-A. (in whatever reading) 

In (8.13). it is not the case that the negated consequent • B, 'not living to be 
100 years old', is generally a marked (non-normal or non-ideal) property 
in the animal kingdQm. like 'suffering from diabetes' was for humans 
Therefore, the failure of (8.13) would not be captured by something like 
case (ii) of weak contraposition. The deeper reason is that no version of 
contraposition makes any sense for ideal-generic sentences. Knowing that 
the ideal A has property B, we will not conclude anything about • B's, 
normal or ideal, and for various reasons. 

If we read (8.14) as talking about nomul •B, we have to take into 
account that we were talking about ideal As and may therefore not be 
surprised if quite normal, but simply un-ideal As already show • B. 
Therefore, • B in the normal case should not lead us to conclude anything 
about being A. (If an animal dies at the age of So, it may still be a turtle 
without being anything extraordinary otherwise.) 

If we read (8.14) as taking about ideal • B, we will very often make the 
observation that the complement of a category, which is such that we have a 
notion of an ideal exemplar in that category, is not such that a similar 
'prototypical•B' would exist (see fn. 9). Consider the above example: what 
should an ideal animal-which-doesn't-reach-1oo-years look like? Would it 
rather be furry or skinny? Does it have four legs or more? These questions 
seem hard to answer. · 

Thus, the implication in (8.14) in such cases does not hold true for 
reasons beyond those captured in weak contraposition: the second sentence 
in (8.14) is, first of all, a generic sentence. If we read it as ~normal-generic 
sentence, the implication becomes false because nomul ..., Bs may be A in 
spite of ideal As being ..., B. If we read it as an ideal-generic sentence, it is 
probably not even interpretable because the antecedent 'animals of age less 
than 100 years' is not an appropriate argument of the I functor. We will 
capture this by assuming that I are partial functors. 12 

However, sometimes matters are such that the complement • B in 
context is a category that is an eligible argument for I (that is, is the kind of 

12 As>. equally satisfying assumption. conceptually. might be that I(-. B)= 0 in such cases. 
However, this would lead to evident complications, bec:ause th.e respective generic sentences would 
then be predicted to be, 6m of all. aue (empty universal quantification~ and funher assumptions 
would be necessary to explain why that makes them unac«ptable. 



category where it makes sense to ask about ideal exemplars). One of the 
most prominent constellations is, of course, that we are in a context where 
our attention is restricted to humans, such that B and ..., B correspond to 
males and females. I am aware of the difEculty of producing any inofrensive 
generic statements involving gender, but let me, for this one occasion, 
nevertheless try. 13 

(8.15) Ideal gynaecologists are women. 
Ideal men are not gynaecologists. 

Intuitively, the two sentences are logically independent Or, more bluntly, 
why should our image of the ideal gynaecologist have any influence on our 
ideas about ideal men? · 

To summarize, intuitions with respect to contraposition provide further 
evidence in favour of a distinction between normal-generic and ideal
generic sentences. It remains to be shown that weak contraposition for 
normal generic-sentences follows from (N1)-(N3). This will require some 
more technical considerations. 

It can be shown that axioms (N1}-(N3) induce a global ordering of all 
objects in the universe of the model, according to their degree of normality. 
Formally, we can derive for each possible world w a family of functions 
(R,)n E w and ordered sets ~ such that 

(i) R, maps D" into !ln. 
(ii) for each subset A of D" which is definable in the logical language L we 

use N,.(A) ={a EA IR,.(a) is minimal in A} in w. 

Intuitively, the mapping R, transfers the ordering of !ln on to D", the set of 
all n-ruples over the unive~ D. The ordering of 1Y' is to be read as a 
ranking according to degrees of abnormality, such that the elements of lowest 
rank are the .most normal ones while the ones with higher ranks are the more 
and more unnormal ones.14 Figure I illustrates this correlation. The proof 
that this is the case will be given in the Appendix. 

The use of such ranking functions, based on ordinal numbers n, was 
proposed by Spohn (1988). Its generalization to sets of individuals was first 
suggested independently by Brafinan (1996) and Weydert (1997). The latter 
two approaches, however, are explicitly set up in purely extensional terms, 
and it is not· immediately evident how a modal dimension is to be 

u I can adopt at least the lim sentence among my personal ideals-but tcmember chat 'idcal',likc 
'no=!', in the end is a notion that reflcca a pcnonal perspective on the world .. . 

•• The direction of this ordering is a heritage of the statistical origins of this kind of modelling. I 
keep it in order to facilitate the form.t! comparisons to be zmdc in section 9- I apologize for the c:xtta 
effort 'thereby caused for the reader. It takes some time to get accustomed to the inverse correlation 
that the mo" no=! an object. the W~Wr its rank. 
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introduced. We have argued at various places (and follow .the general 
discussion on generic sentences in that respect) that a purely extensional 
treatment of generic sentences is inadequate. In this sense, our treatment 
extends these approaches in a way necessary for reasonable application in 
natural language semantics, even if (as will be shown) our treatment of 
normality, extensionally speaking. is equivalent to the proposals by Brafman 
and W eydert. 

With this ordering at hand, we can now prove WEAK coNTRAPosmoN for 
N,.. Let me repeat the claim in a more formal manner: 

WEAK CONTlW'OsmoN: Let M be a model of a language L that includes a 
family of normality operators (NJn e .., as introduced above. Assume that (N 
1) to (N 3) hold true in M. Let A and B beL-definable subsets of D" such 
that N(A) ~B. Then 

(i) N(-.B) ~-.A or 
(ii) N(B U .:.,B) ~B 

Proof. Assume that (i) does not hold true. This means that N(..., B) n A ::f: 0, 
and we now have to show that N(D)~B. If N(-,B)nA :f: 0. then we 
know that an element x in the intersection must have higher rank R,.(x), 
that is, be less normal, than all elements in N(A), because the latter-most 
normal ones in A -are all in B. The normal elements b in .fJ in tum are 
either in part among those in N(A), or else are all outside A and have thus 
even lower rank(= are even more normal). In any case, R,(x) ~ R,(b), which 
means that the most normal objects in D are in B. This is exactly what (ii) 
states. 

Before concluding this section, I will offer some more sample constella
tions of global ordering according to normality. The flrst constellation, 
depicted in Figure 2 is one where we have A and B intersecting, and where 
some, but not all normal A are normal B. · 
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We could, for example, instantiate A as male and Bas parent. The above 
picture would then say that some, but not all, normal males have children. 
(Or, in other words, neither sentence 'men have children', nor 'men don't 
have children', is a true normal-generic sentence in our world-which I take 
is a valid assumption.) Given this, the global notion of normality encoded 
by (N1)-(N3) will predict that the normal male parent is simply a normal 
male who happens to have children. In particular, this has the consequence 
that all normal-generic sentences about males carry over to males with 
children, which is a reasonable prediction. 

The diagram in Figure 3 offers a graphical summary of the diabetes 
example. Normal males do not suffer from diabetes. Nor do normal 
females. Suffering from diabetes is just an extraordinary property. 

Finally, figure 4 illustrates the widely discussed Quaker/Republican 
example. We can have two properties A and B where N(A) does not 
intersect with B, and N (B) does not intersect with A either. No further 
implications follow. This is exemplified (quoting generic statements about 

A=males B • females 

C • diabetes 
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political interests from the literature) by the observation that Republicans 
normally are not Quakers, and Quakers normally are not Republicans. 
Logically speaking, this leaves all options open for those persons who are 
both a Quaker and a Republican. They are just not coveJ;"ed by the normal
generic knowledge expressed in the sentences 'Quakers normally are not 
Republicans' and 'Republicans normally are not Quakers;. 

To summarize, the proposed set of three axioms turn out to restrict the 
logic of N, the normality operators, in a strong way. I will argue in the next 
section that such a strong version of normality is necessary for general 
reasons. Yet notice that one advantage of the account is its flexibility. The 
precise nature of axiomatic restrictions we want to adopt for normal
generic, or for ideal-generic statements, can easily be adjusted according to 
further considerations. while the underlying intended content of the 
operator remains stable. This distinguishes our account from proof 
theoretic approaches to default reasoning. where new sets of derivation 
rules lead to entirely new logical systems without making it clear in what 
sense all are competing spell-outs of a uniform underlying idea. 

9 SOME CONSIDERATIONS ABOUT 
THEORY ARCHITECTURE 

In this section, I will discuss potential circularities luring in Best World 
Theory and Normality Based Theory. I will argue that the distinction 
between normal-generic and ideal-generic statements is a first step towards 
avoiding such circularities. 

How do generic sentences relate to the more basic facts in the world? It 
seems reasonable to assume that generic faets, or at least some of them, are 
something like rough generalizations over simple facts (i.e. facts ahQut single 
objects and their properties). We have already seen some statements to this 
end in the literature on Best World Theory. 
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However, Best World Theory ultimately does not reflect much of this 
insighL In section 3, it was shown that 'normal objects in P can be defined 
only indirectly, and that the *-operator does not systematically build on 
'everyday objects in our world'. In section 4. we saw that the choice of 
worlds in *(w,p) has to respect the properties of previously chosen 
individuals a which were ideal in w for some property~- (Of course, the 
more choices have to be made in stepwise quantification. the more 
individuals the *-operator will have to keep in mind.) In section 7 I 
showed that worlds win *(w.,.p) are sometimes selected rather for idealness 
than the non:nW.ty of the matters in question. Thus, it is not cleu whether 
the 'meaning' of* can be characterized in independent terms, and for now 
the only safe thing that can be said about * is the somewhat uncharitable 
(9.1): 

(9.1). Let A be the set of all desirably true generic sentences GENx("Y ; 6) 
about "Y in w.,. 
A world w is nonnal for proposition "Y(a) {that is,. w E *(wDt "Y(a))) 
if and only if w f= c(a) for all 6 such that GENx{"Y; 6) is in A. 

What (9.1) states is this: you want to know what generically holds true for 
"'f's? Look into all those worlds that are normal for "Y· How do I know what 
worlds are normal for "'(? First of all, they have to fulfil all generic 
implications for "Y • • • • 15 

Now, (9.1) would be innocent if any independent criteria were in sight to 
characterize *(w.,. "'f). Yet we have seen that the shape of object a is not 
enough for a world to be normal for "Y(a), that even the idea that generally 
everything should be as normal as possible for "Y was not enough, and that in 
the end *(w0, "Y) was the holistic integration of various complex steps of 
generalisation. Therefore, (9.1) for now is all Best World Theory can offer 
when it comes to characterising the star operator *.16 

Naturally, a different set-up does not automatically prevent such 
obscurities. An uncharitable characterization (9.2) of normality N can 
make the same point against Normality Based Theory, as (9.1) does for 
Best World Theory: · 

(9.2) An object a is normal in"'(, a E N('Y), only if for all generic implications 
6 we want io hold true for "'('s, 6(a) holds true. 

Yet, as normality N is something we first and most simply evaluate in our 
own real world, it can also be understood differently. We have consistently 

15 I omitted univenal ')lWltification and instantiation in the paraphrase. for the sake of brevity. 
16 It might not be an accident that Pelletier & Asher even use a similar formulation in their 

definition that was quoted here in (z.J~ They do not seem to find this a problem. 



presented normality as a kind of folk -statistical notion. This led to the more 
specific observations that 

• Normal encounters of participants of different kinds need not be the 
same asencounters of normal panjcipants of these kinds 

• Normality involves a perspective 
• Normality is not the same as the ideal 
• Normality is restricted by axioms (N1}-(N3) 

Therefore the first important building block of the theory, normality, can 
be taken to be an independent notion. 

The second building block in the interpretation of (normal-)generic 
statements was the choice of the dispositional orbit DO of the world of 
evaluation. What is the status of this accessibility relation? In order to 
answer this question, it .is helpful to remembe; why the dispositional orbit 
was intrOduced. The worlds in DO are needed to exemplify cases that 
by accident are not instantiated in the real world: the pope called 
'Bartholomew', or the first letter from Antarctica. They should not provide 
counterexamples to generalizations that we actually want to become true 
(like the normal pope called 'Goofy'). 

On the one hand, such worlds can exemplify cases where a real accident 
seems ·co have played a role, and I assume freely at this place that we have a 
notion of'accident' available. Yet it might well he that such cases are not of 
overwhelming importance because upon closer investigation it turns out 
that the notion of an 'accident' is itself based on knowledge of many similar 
cases which ended differently, and thus knowledge about the general limits 
to the possibilities available. · 

This leads us to a second, and perhaps more important, function of the 
DO. There are cases wnere the DO actually does reflect modal knowledge 
that lies at the basis of generic sentences. Consider one last time the 
example 'Rose handles mail from Antarctica'. This scenario certainly does 
not say ~ything about the normal case in a statistical sense, because there is 
no meaningful statistics over the empty set of events. In contrast, it is 
natural to assume that the sentence reports some kind of intentional (and 
thereby intensional) planning in Rose's office. Discussing various counter
factual scenarios of what might happen, the employees of that office decide 
that the counterfactual .scenario of mail arriving from Antarctica should 
end so that Rose is the person to take care of it.17 DO is shaped by our plans 
and intentions. This second function of DO is in concord with a distinction 
drawn by Carlson (1995: 233£), the distinction between generic sentences 

17 Again. under generally unchanged circumstances. which prob:lbly include something like the 
expecution thu not much oWl from Antarctia will ever amve. Otherwise the office might 
decide to employ :l further secretary in chuge of the fans u Antarctica. 
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which have an inductive flavour and generic sentences which seem to call 
for a 'rules and regulations' approach.18 One function of the DO is to take 
care of the 'rules and regulations' aspect of genericity. Yet the DO is 
combined with the (more) inductive notion of normality, such that the 
overall theory allows to capture mixed cases, like the pope example: 
certainly, there are no explicit laws about names for popes, but there are 
some general expectations and guidelines about how to behave when you 
are to be God's representative on earth. These will exclude worlds in the 
DO where popes eagerly chose the name 'Goofy', while other papal names 
are allowed even without an explicit list of eligible names hidden in the safe 
of the Vatican. 

In summary, the analysis of normal-generic sentences is built on the 
independent notions of normality and dispositional orbit. This is, however, 
only a partial answer to the question whether the overall theory is free from 
circular definitions, because I cannot, at present, offer a similar justification 
for ideal-generic sentences. My hope would be that, as sketched in section 7, 
at least part of our notion of an ideal is rooted in our knowl~dge about what 
usually happens when all disturbing factors can be excluded. It is likely, 
however, that for instance perceptual notions of ideal Gestalt involve 
cognitive processes that are beyond the reach of this paper. 
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APPENDIX: RELATIONS TO SOME OTHER 
NORMALITY -BASED ACCOUNTS 

In this appendix. I will prove the fact that (N1}-{N3) turn nonnality N into a global 
notion. Our treatment of normal-generic statements on the basis of N, restricted by these 
axioms. is equivalent to certain statistically committed default logics developed in Al 

I first give some ddin.itions on which the following results are based. Note that, 
throughout this section. I adopt the convention that boldface variables abbreviate tuples of 
variables: x stands for x 1,x10 • • • , x,.ln the same way, holcl&ce !etten rrt, n ... will stand for 
tuples of elements of the model domains under discussion. 

Operator-based normality 

Let L be a logical language with ~-abstraction for variables that range over individuals. We 
can thus, c:ven without intr~ucing an entire hierarchy of types. define what it means for a 
term to be of type ( e", t }. Moreover, we will ~e that L contains a family of functor 
symbols (N;);e.., where for each term 4> of type (e', t} the term N; (4>} is also of type (e', t} 
The functor symbols will be interpreted by functions that map the pow~r set over D; into 
itsel£ They are to be thought of as functions that map each relation on to its normal 
subpart. The interpretation of N; is restricted by axiom scheme (Nt} that states that a 
normal P should always also be a P, and by (Nz) which requires that we should always be 
able to find some normal P. These axioms correspond to (N 1) and (N z) in the previous 
section. The restrictions will come in different shape, depending on whether the language 
L provides quantification over relations or not. The second-order analogues are listed in 
{NI~ and (Nz~. (Second-order versions will generally be marked with a supencript 2 in 
the following.) 

{N1) For all terms P of type (t"' t}, 
Vx(N,.(P}(x)-+ P(x)) 

(Nz) For all terms P of type (t', t) 
3xP(x)-+ 3xN,.(P)(x) 

(NI~ Where Pis a variable nnging over properties of arity n, we have 

VPVx(N,.(P)(x)-+ P(x)) 
(Nz~ Where Pis a variable nnging over properties of arity n, we have 

VP(3xP(x)-+ 3xN,.(PXx)) 

The difference between the first-order schemata and the second-order axioms is that the 
latter restrict the behaviour of N; with respect to all arguments while the former only 
make claims about definable subsets. 

Normality based on ranking 

The logic languages that are at the basis of normality with ranking do not refer explicitly 
to any normal objects. Instead. they provide univenal quantification that is restricted to the 
normal subpart to the res_pt(;tive domain of quantification. in a way much similar to the 
default implication used in Best World Theories. The following ddin.itions are based on 
work by Weydert (1997) and Bra£in.an (1996), which is rooted in research in nonmonotonic 
logic (see Kraus tt aL 1990), and also on the work on ordinal conditional functions by 
Spohn (1988). 



Ddinition: Let L be a first order logical language which is augmented by the following kind 
of formulae: for all formulae tP, VJ in L, and vambles x., ... , Xft the following is also a 
formula in L: 

tP- "'· . . . . """' 
The language L is interpreted in structures (M, R) where M is an L~model in the usual 
sense and R is a family of ranking functions of the following shape: 

(i) R=(Rn)new . 
(ii) For each n E w, Rn is a function of IY; into an ordered set 0. 

(iii) For all formulae tP and t/J 

(M,R) I= ·tP -,., .. . I K i "'iff 
there is an m E {k I (M, R) I= tP(k)} such that for all 

n E {k I (M, R) I= ¢(k)} with R;(n) :s;.R;(m) we find th2t (M, R) I= t/J(n). 

Further possible restrictions on R are discussed both in Brafm.an and W eydert. While 
W eydert attempts to fix the ranking so as to come close to a probability measure on the 
domain D, Brafman keeps his models more flexible. Both authors give a sound and 
complete axiomatization for their respective versions of L The following axiom (WI) was 
suggested by Weydert (p.c.) in order to ensure that each L ~efinahle subset A s;;;a; 
contains one or more elements of minimal rank. These models are called 'smooth models' 
in the literature. 

where 1 does not share any variable with x. 
Intuitively, (WI) asserts that for all sets A, there are a E A such that for all c E A, 

R(c)~R(a). AXJ. analogous effect would he achieved by requiring that the ordered set n in 
bet has to he an ordinal (this approach is explored in Spohn 1988). This even ensures that 
each set contains elements of minimal rank, not only definable subsets. However, the 
resulting models can no longer be characterized by a recursive set of axioms, which is why 
I refrain from this move. 

Ranked models can be mimicked with normality operaton 

Let (M,R) he an L~model with ranking. Let us further assume that (M,R) validates axiom 
(W 1 ), such that aU L ~definable subsets in D; h2ve minimal elements. We can now 
construct an L,..,-~model M which simulates (M,R): 

Let L"""" be the language with normality functors which equals L in its standard part. 
We will augment M to yield an L,..,,.,~model M by the following definition: 

Nn(A) := {mE A I \1'11 E A (Rn(m) :::; R"(n))} 

for all definable subsets A of D; and 

Nn(A) :=A otherwise. 

Now define a mapping " of L,an~t·-formulae into Ln.,.,~formulae in the obvious way: 

For all atomic formulae ip, let ¢" := ¢. 

For ¢ =...., t/1, t/J" e. ,p v e let ¢ • = -. .,p~ t/J" "e~ t/J" v o•. 



For ¢ .. 3xfp, let ¢* := 3xf/J* 

For t/J=t/1-+.8, let ¢• := Vx(N(~t/J"Xx)-+ 8j 

Using this definition, we can prove the following equivalence to hold true: 

(M,R} F ¢ ¢;} M' F ¢* 

Proof By induction on the complexity of formulae. The crucial step is to show that: 

(M,R} f: t/1-+.8 ¢;} M' f: Vx(N(>.x..tJ;"Xx)-+ 8j 

This, however, is ensured by the definition of N, and the obvious observation that all sets 
involved are definable. 0 

The observation that rmking should give rise to a notion of normality is not surprising. 
We can, however, prove the stronger proposition that (N r)-(N 3), or their corresponding 
axiom schemes, are sufficient to restrict L_,.-models to those which have an equivalent 
L,.,..-counterpart. It is this stronger proposition that we used in section 8 when discussing 
WEAlt CON11lAPOSmON. 

Certain normality models can be mimicked by ranked models 

The central property of ranked models is that intersections of sets inherit their normal 
parts from the respective supersets if the intersections are nonempty. While we get a strong 
equivalence between ranking and normality functors if we allow ourselves second-order 
quantification, we can at least tranSlate the default implication part of the L,.,""·model 
with ranking. without second-order quantification. The latter is expressed more precisely 
in Theorem 1

1
, while the former is formulated in Theorem 1

2
• 

Theorem I 1
: Let L,.,,. be a language with noml4lity operators and Lron/c bt the corresponding 

language with dtfault implic4ticm, as Jefi~J above. (That is, both languages share the sa~ classical 
cort: the sa~ constant symbols, rtlation symbols, Junctions.) Ltt M bt an L_,.-m~l in which 
satisfies (N1) and (Nz) abovt, and whtrt mortover (NJ) holds trut,for all terms A, B of typt (e",t} 
and aritits n. 

(N3) M f: 3.¥(N,.(A)(x)AB(x))-+'v'x(N,(~yA(y)AB(y))(x) +-+ N,{A)(x)AB(x)) 

Thm Ult can dtflnt a mapping from a substt of L,,., on to L,.nJt such that the following holds true: 

M F ¢ ilf(M,R) F ¢# 

The proof is given below. 

Theorem 12
: Ltt L_.... be a language with normality operators that moreover prot1Jts 

quantifltiJlion 011tr rtlafions, anJ. Lrattlc again bt tlrt corresponding language with thfoult implication. 
Ltt M bt an L_-modtl which satisfos {N12) and (Nz2), and in which for variables A, B of typt 
(t", t} the following (Nl) lw/J true (for 11U 11rilics n): 

(N3~ M F VAVB:lT (N,.{A)(x) A (B (x)) 
-+ Vx(N,(~yA (y) 1\ B(y) )(x) +-+ N,(A){x) A B(x)} 

Thm M can bt tumtd inw a modtl M for Lranlc which remains idtntical with resped to the classical 
part of L and whtrt, for each J,-jinablt Stt A 

N(A} = {miVkeA(R"(m) :S R,(k))}. 



We will start with the proof of the weaker Theorem 1
2
. The argument corresponds closely 

to a similar· construction in (Spohn 1988). Having accomplished this, we will proceed to 
prove the more intricate Theorem 1 

1
• 

Proof of 12
: We define a partition on the Cartesian products U: of the domain D~ of 

individuals: 

m0 := N, (0:} and m: := "'• 

m1 := N,. (0:\m~) and m; := m~ U m, 

m~r. 1 := N,.{U:\mZ) and mZ+ 
1 

:= mZ U m~r .. , for successor ordinals 

mo~. := N, (0:\U;< Am; and m). := U;<Am; U mA for limit ordinals. 

Let IC be the ~mallest ordinal number such that m,. = 0. We can now define a mapping 
.R, from U: into IC, with the intention that (R,.), E .., will be the ranking for L,.,... for each 
m in U: let (R,.Xm) := Jl if and only if me m,.. R,. is thus a mapping of D; into an ordered 
set, that is, an appropriate ranking function. We interpret the language L,.,u, on the 
basis of this ranking function. It remains to be shown th2t for each set 

A ~0:, N,.(A) = {m I VIe eA{R..(m) ~ .R,(Ie))}. Take an arbitrary subset A of a;. We 
can now reason as in step (i) to (iv): 

(i) There is a smallest ordinal number Jl such that An m,.-:/: 0. According to 
construction, { m I VIr E A(R,(m) ~ .R,(Ie))} = A n m,.. 

(ii) According to construction, there is a set P ~ U: such that m,. = N,. (P). We can even 
give P more precisely: P = .0:\(U;<,.m;~ 

(iii} As m,. is the first set in the partition to have nonempty intersection with A, we know 
thatA~P. that is,AnP=A. 

(iv) As A n N,.(P) -:/: 0, it follows that 

M f: Vx(N, (.Xy.P(y) 1\ A (y) )(x) +-+ N, (P)(x) 1\ A (x)) 

Therefore N,(A) =(iii) N,(An.P) = (iv) N,(f?nA =(ii) m,.nA 

=(i) {'" I v~ E A(R, (m) ~ R, (k))} as desired. 0 

Note that the proof of r2 even validates the stronger claim that each model with functor
based normality will be equivalent to a model rankeQ on the basis of an ordiMl n. This class 
of ranked models cannot be characterised with a recursive set of first order axioms. We 
therefore know that the second order quantification which we allowed ourselves in the 
axiom schemes above were not only a convenient shortcut, but restricted the model class in 
a nontrivial way. It is mainly for this reason that the more general statement in (1) becomes 
interesting: We can show that not only a very limited class of operator-based models for 
normality are equivalent to (a su~ o£) ranked models but that the equivalence holds in 
general Clearly, we will have to revise the original proo( because the construction made 
substantial use of the &ct that the crucial property (N 3) held for all subsets of 0:. 

In the following lemmas, we are always using models M of ~ language L,_ without 
second order quantification. 1 will use the abbrevi2tion A n B for .xx..A (x) 1\ B (x~ I will also 
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occasionally omit the arity index" in the function N,.. All models are assumed to validate 
axiom schemes (Nr)'-(N3)1

• 

The overall strategy of the proof is this: we show that N induces a linear ordering on 
the definable power set over u;. This is done in Lemma 1-9; the linear ordering is given 
in Pefinition .2.. Using this ordering. we then construct an L,..,.-model (M.R~ 

Lemma 1: Let M bt as tkscribttl. It follows that for all A, B ~ U: ~ haw that 

(i) N{A UB) n B = 0 arul N(A UB) = N(A) or 
(ii) N(A UB) n A= 0 and N(A UB) = N(B) or 
(iii) both intmections art nontmpty arul N(A «B)= N(A) U N{B~ 

Proof IfN(AUB)nB ¥0. then (N3) will yield N((A UB)nB)=N(B)=N(A UB)nB. 
In the same way, if N(AUB)nA¥0. it follows from (N3) that N((AUB)nA)= 
N(A)=N(AUB)nA. Finally, we know that N(AUB)~AUB and therefore 
N{AUB)={N(AUB}nA]U[N(AU~}nB]. Thus, the three constellations listed above 
are the only possible ones. 0 

Lemma .2.: IfN(B)~A arul N(AUB}=N(A)UN(B) thm N(B)~N(A). 

Proof We assumed that N(A UB)=N{A)UN(B) (*). Therefore,N(A UB} nA ¥0. due 
to Lemma r. Thus, N(A U B) n A = N(A) (again from leD:!JD,a I~ Yet, as N(B) ~A, we 
know moreover, due to ( *) and N(B) ~A , that N(A U B) n A = N(A) U N{B). Thus, 
N(A) = N(A) U N{B) and therefore N(B) ~ N(A). 0 

Lemma 3: IfN(AUB)~A, thm N(AUB)=N(A). 

Proof In case that N(AUB)nB=0. the claim follows from Lemma I. Else 
N(A U B) n B ¥ 0. and therefore N(B) ~ N(A U B)~ A. The claim then follows from 
Lenima .2.. 0 

Definition I: Wt dtfine N(A} < N(B) to bt art abbrtvi4tion for 

N(AUB) ~A arul N(AUB)nN(B)=0 

Retna!k: It follows easily that N(A) < N(B) if and only if N(A U B) n B = 0. 

Lemma 4= The rti4tu'" < is traruitivt. 

Proof Assume that for nonempty sets A, B, C. 

(r} N(A U-B) ~A and N(A UB)nN(B)= 0 and 
(.2.} N{BUC}~B and N(BUC)nN(C)= 0. 

We have to show that N{AUC}~A and N(I1UC)nN(C)=0. We do this by 
contraposition: assume that N(AUC)nC¥0. We will now compute N(AUBUC). 
According to Lemma t, we know that N(A UB U C)= N(A UB) or N(A UB U C)= N(C) 
or N(A U B U C)= N(A U B). UN( C). Due to our assumption, we can conclude that in any 

(*) N(B}iN(AUBUC} 

We will now distinguish two cases: N(A)n C;C 0 or N(A}n C= 0-



In the case wt N{A)n Ci: 0. we can immediately infer tbatN{A UB)n {BU C) i: 0. 
as well According to lemma I, we know for arbitrary definable sets X. Y that 
N(X) n Y i: 0 implies N(Y} ~ N(X U Y). Take now X to be A U B and Y to be B U C. 
We thus get wt N{BUC} ~ N({AUB}U(BUC}). Due to assumption (z~ we can 
conclude that N(B) ~ N(A U B U C). This contradicts ( *). 

If it was such that N{A)n C= 0. we would get that N{AUC}=N{C} (by lemma z). 
In that case, however, we can show that neither N{A} nor N{B} nor N(C} are in 
N{A UBU C), thus coming to a contradiction: we know that N(AU{BU C})=N{A) 
or N{A U (B U C)}= N(B U C} or N(A U {B U C))= N{A) U N(B U C). Because 
N(BUC)nN(C)= 0. we know that N(C)~ N(AU(BUC)). Analogously, we can 
argue that N(B)¢N((AUB)UC) and that N(C)~N({AUC}UB). This means that 
N(A U B U C)= 0. which is only possible if A, B and Care= 0. 

We have shown that N(A U C) n C = 0. Thus, N(A) < N(C) which completes the 
proo£ 0 

Lemma s: IfN(Jl) <N(B) am{N(C} ~N(B), wt infer th4t N(A) <N(C). 

Lemma 6: If N(B) ~ N(A} and N(B} < N{C~ we can infer that N(A} < N(C). 
In order to prove lemma s and 6, we first have to cover a number of intermediate 

observations. 

Lemma 7: IfN(B)~N(AUBUC} and N(B)~N(A), 

then N(A} ~ N{A UBU C). 

Proof: N(B)~N{AUBUC} implies that N(A)nN{AUBUC)#0. Hence, 
AnN(AUBUC)#0. We infer that N(AUBUC)nA=N(A} and therefore (by 
Lemma z) N(A}~N{A UBUC). 

Lemma 8: IfN(B)<N(C) then N(C}nN(AUBUC)=0. 

Proof. We know that N(BUC)=N(B) and N(BUC)nN(C}=0. Assume that 
N(C)nN(AUBUC}i:0. Because we generally know that N(C)~C~(BUC), we 
can conclude that (BUC)nN{AUBUC)#0. If this is the case, we know 
by (N3) that we can .conclude that N(BUC}=N((AUBUC)n(BUC)}= 
N{AUBUC}n(BUC). We assumed that N(C)nN(AUBUC)i:0. We therefore 
know that N(C}nN(AUBUC}~(BUC}nN(AUBUC} where N(BUC)=(BUC)n 
N(AUBUC} (because N(C)~ (BUC}). Therefore N(C)nN(BUC)i:0 which 
contradicts our assumptions. Therefore N(C) n N(A U B U C} = 0. 

Proof of Lemma s: 

(i) N{A UBU C}=N(A UB) or N (C) or N(A UB)UN(C}. (Lemma z) 
(ii) Due to Lemma 8, we know that N(B)nN{AUBUC}=0, because 

N{A)<N(B). 

(iii} Therefore, N(C}nN(AUBUC)=0, as N(C}~N(B} (due to assumption). 
(iv) However,= N( (A U C) U B)= N{A U C) or N(B) or N{A U C) UN (B). 
(v} From (ii), we can infer that N( (A U C) U B)= N(A U C). 



{vi) Assume now that N (A U C)() C :F 0. It follows that 

N((AUB}UC}nC:f;0 and thus N{{AUB)UC}f'lC=N{C). This means that 
N{AUBUC)nN{C):f;0. in contradiction with (iii). Thus. N(AUC)nC=0, 
and thus N{A) < N{C~ as required. 

Proof of Lemma 6: 

{i) N(AU{BUC}}=N(A) or=N(B.UC) or=N(A)UN{BUC). 
{ii) N{B} = N(B U C) and N{B} ~ N(A). Therefore, N{B) ~ N(A U B U C). 

{iii) Due to assumption and Lemma 7, N(A) ~ N(A U B U C). 
{iv) As N{B) = N(B U C) and N{B) ~ N(A~ we know that N(A U B U C)= N{A). 
(v) N{(AUC}UB)=N(AUC} or =N(B) or=N(AUC)UN{B). 

{vi) N(A)~A~AUC and N{A)~N(AUBUC}, thus. N(AUBUC)n{AUC)#0. 
and therefore N(A U B U C) n (4 U C)= N(A U C). With Lemma 1, we know that 
N(A U C)~ N(A U B U C). Thus, N(A) = N(A U C)= N(A U B U C) {using (iv) ). 

(vii) If N(AUC)nC was #0; we'd get that N(AUBUC}nC:f;0. that is 
CnN{{AUB)UC)#0 and thus N{C)~N{AUBUC). 

(viii) However, with Lemma 8: N{ C) n N(A U B U C)= 0. in contradiction to (vii). Thus, 
N(A U C) n C)= 0. that is N{A) < N(C~ as required. 

Detlnition 2.: For aU A,B ~ M kt A ~ B iff N(A U B)~ A . 

Wt say that A"' B iff A ~ B and B ~ A . 

Lemma 9: 1k rtlatUm ~ is transiti~ and rtjkxi~. 

Proof We assumed that N{A) ~A for all A. This shows reflexivity. 
~ume that A ~ B and B ~ C. We have to show that A $ C. Let us spell out what this 

means. If A~ B, this means that N(A UB} ~A and either N(B)nN{A UB);;;: 0 (that is. 
N(A)<N(B)) or else N{B)nN{AUB)#0. which means that N(B)~N(A). The same 
holds true for B $ C. Thus. we have four subcases to consider: 

Case 1: N(A) < N{B) and N{B) < N(C). This implies N(A) < N(C) which means that 
N(AUB}=N(A) and CnN(AUC)= 0. Especially, N(AUC)~A and 
therefore A ~ C 

Case 2: N{A} < N(B) and N(C) ~ N(B). We conclude that N{A) < N{C) by LemJlU S· As 
in case I, we infer from N(A) < N(C) that A~ C. 

Case 3: N{B) ~ N(A) and N{B) < N{C). We conclude with Lemma 6 that N{A) < N{C) 
and thus A ~ C. 

Case 4= N(B} ~ ~) and N{C) ~ N(B). This implies N(C) ~ N{A) and so A ~ C. 

Lemma 9 shows that even in the weaker 6nt-order variant, axiom (N3) is strong enough to 
considerably limit the shape of the normality function. It ensures that the normality 
function implicidy introduces an ordering at least on all L-definable sets in the model. 
This suffices to show that the normality function corresponds to a suitable nnking on the 
definable subsets of the mod~l-which are all sets we can talk about. anyway. We can now 
proceed to prove Theorem I 

1
, which I repeat here for the sake of convenience: 

Theorem I I: Ltt L be a logic langUJJ~ and LIU!,.,. its txtnJsion to a languagt with normality 
functors. Ltt L,..,, its txtmsion to a lanF~ with dtfoult implication bast:d on ranking. Wt will~ 



2.76 

t/J1 to denok the inverse mapping to • which .w d#ntd abovt. Evidtntly, #dots not map the tntirt 
of L,_ into L,..,.lt but cmly the rangt of ~ This shows that L"""" is richtr than ranlud languages 
b«ause txplicit rf'jerma to normality can ~ madt. Wt can now provt: tht following: for tach 
L_,-modtl M which satisfies N(J) to N(J), ~ can defint an L,d.~r-model (M, R) such that 

M I= t/J iff(M,R.) I= t/J# 

Proof. Let M be an L,.,,-model which satisfies (Nr) to (N3~ Let me use P.~(D;) to denote 
the definable pan of the poWer set over V:. We adopt definition .2. to get a preorder on 
PJ(D;): For all A, B P4(D;) let 

A $BiffN(AUB)~A 
A-BiffA $BandB$A 

Now we take the set of equivalence classes of sets: For all A EP.~(n:) define 

{AJ :={X/X eP,(l>;) & X "'A} 
e := {{(A] /A E P.i {_o:)}, $) 

where the relation $ is lifted to the set of equivalence classes in the evident way. The 
resulting relation is a linear ordering relation (reflexive, transitive, antisymmetric, and any 
two elements are mutually comparable) on e. We are now in the position to be able to 
map all definable sets into the ordered set e in a way which respects the normality 
relations: If A is a definable subset of D;.let R,.(A) :=[A]. However, this is not enough: n 
order to come to a ranking, we have to map all tlements in n: into an ordered set. As the 
singleton sets in V: need not be definable, this mapping is not yet immediate. Let (n; $) 
denote the Dedekind completion of the linear ordering e = {{[A] /A E P, (n:)}; $). 
Thus for each meD;. the supremum sup{[A)/A EPc~(n:)meA} exists in e. Define 
R..(m) :=sup{ (A] /A e Pc1 (.0:) 1\ me A}. The rationale behind this defiilition is quite 
simple: if m is in A, it can't have lower rank than A as a whole, because the normality of A 
is meas!Ued by the normality of its most normal dements. 

Clearly, R = (R..),. E.., is a ranking function. Thus, (M, R.) is a model of L,,.. . We will 
show the equivalence of the two models by induction on the complexity of formulae. As 
the models are equal in their atomic part, the interesting step is the inductive step from 
formulae t/J', t/J and 1/J11

, 1{; to formulae of the shape Vx(N(t/J)(x) --t1/J(x)) and t/J# --t,. 1{;# 
respectively. 

Let A be a definable subset of V:. We ~ow that for any B definable in {D:) the 
following holds true: If [A)< (B), then N(A) ~An -,B. Therefore 

N(A) ~Ann B tkjiMbk. (A)< (B) -.B 

Assume that a E A and a E N{A~ It follows that a is in no set B such that {A] <[B). 
Thus, R.,.(a) =(A), according to definition. We therefore know that 

N(A) ~ {a/VbeA:R.(b)~R(a)} 

For this reason 

(M,R) I= t/J# -,. 1{;# inlplies M I= Vx(N(t/JXx) ..-.1/J(x)) 

Generally, the set Ann B J# .... bk. (AJ < (8) --. B might contain more elements than N{A). 
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However, we can show that this does not make any difference with respect to what can 
be expressed in J:....u. We will show this by conttaposition. Assuple that (j held true: 

(j M F "'" (N(t/>)(x) - "'~ but (M,R) F -, (4>* - .. w*) 
This would mean that there is an a in 4> such that a¢ N(t/>~ a¢ 1/J , and R(a) = [</>], 
which means that ae<J>nnBtltft .... bk.[~J<[BJ -.B. But N(t/>)~1/J and therefore N(t/>)= 
N({<J>n-.,P}U{t/>n,P})=N(f/>n,P~ That is, N{¢1n,P) <N(rpn-.,p~ As ae(<J>n-.,p) and 
R(a) =sup{[X] IX Jtjiru~bk, 41 ex}. we can conclude that R(a) js not minimal in ¢1, in 
contradiction to the assumption that R(a) = [¢11. Therefore, there can not be an element a 
of minima) rank in 4> which falsi6es rp# - ... ,pfl in (M,R) while Vx(N(r/J)(x) -1/J(x)) holds 
true in M. This shows the converse direction of the main claim: 

M F= Vx{N(<J>Xx) -1/J(x)) implies that (M,R) F= 4>* -.w* 
Which finishes the proo£ 
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