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Abstract

We present a method for authorship discrimination that is based on the
frequency of bigrams of syntactic labels that arise from partial parsing of the
text. We show that this method, alone or combined with other classification
features, achieves a high accuracy on discrimination of the work of Anne
and Charlotte Bronté, which is very difficult to do by traditional methods.
Moreover, high accuracies are achieved even on fragments of text little more than
200 words long.

1 Introduction

Methods for identifying or discriminating the
authorship of a text typically rely on both the
questioned text and the body of attested work of
the putative author being relatively large. In the
canonical case, a novel or play of uncertain or
disputed authorship is compared against attested
corpora that are several times as large or more.
The smaller the text or the comparison corpus,
the less certain the results are. Thus, methods
that could perform authorship tests with greater
reliability on smaller texts would be welcome both
in literary studies and in forensic analysis. In this
article, we show the potential for the use of
syntactic information in achieving this goal, and,
in particular, we show that the use of bigrams of
labels from a partial parser provides a good
compromise between part-of-speech tagging and a
complete parse.

1.1 Why short texts?

We are, of course, not the first to think about
attribution of authorship of small texts. For example,

Burrows (2002) tried his well-known Delta method
(which looks for differences between texts in the
distribution of frequent words) on poems of less than
500 words. He achieved an accuracy of 27% in iden-
tifying the correct author from a set of twenty-five
candidates, and concluded that while the procedure
is ‘effective enough’ on texts greater than 1,500
words, for shorter texts it is only ‘a basis for selecting
a likely group of candidates’ (Burrows, 2002, p. 276).
Zheng et al. (2006) used a variety of text and
vocabulary-richness features to identify authors of
short ‘for sale’ messages in a newsgroup. They
achieved an accuracy of 97.6% when they included
such features as ‘telephone number in signature” and
the presence of domain-specific words such as obo
and thx, and 90% with just function words,
vocabulary-richness, and superficial text features.”
Glover and Hirst (1996) and Graham et al
(2005) looked at a different version of the problem:
finding authorship boundaries in collaboratively
written text (with the ultimate aim of helping
the authors to harmonize their style better).
They therefore needed to discriminate the author-
ship of texts as short as several paragraphs or just
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a single paragraph. Glover and Hirst used conven-
tional authorship discrimination methods (Holmes,
1994) to see how well they could work on text of
just a few paragraphs, but found the results to be
mediocre. Graham et al. used a variety of neural-net
methods along with conventional features on text
that was tagged with the part of speech of each
word. They found that time-delay neural nets gave
results well above baseline, albeit not good enough
for practical use, when used with features such
as part-of-speech, punctuation, and function-
word frequencies, but not with vocabulary-related
features. (Graham et al. also tried simple letter
bigrams, but these failed for texts of less than about
500 words.)

Ultimately, the problem with small texts is that
they are small. They contain less information, and
hence fewer clues to authorship. It therefore
becomes more important to use as much informa-
tion as possible from what is given. An obvious
strategy to try is to make better use of the syntactic
properties of the text.

1.2 Why syntax?

Finding patterns in the way that an author uses
vocabulary, both content words and function words,
has been proven to be wuseful in authorship
attribution (Holmes, 1994). Less work has explicitly
considered the way that authors use syntactic
structure. Implicitly, however, the importance of
syntactic information is seen in the success, from
Mosteller and Wallace (1964) on, of using counts of
the most frequent function words, as these can be
viewed as some basic indicators of an author’s
syntactic usage. And, as noted earlier (Section 1.1),
Graham et al. (2005) found the use of frequencies
of part-of-speech tags to be helpful. But part-
of-speech tags, while syntactic in nature, do not
reflect syntactic structure per se. Among the research
that has explicitly looked at features of syntactic
structure in text, perhaps the most prominent is that
of Baayen et al. (1996), who worked with sections of
two English crime novels (around 20,000 words
each), and of Stamatatos et al. (2000; 2001), who
worked with 300 Greek newspaper articles
(an average of about 1,100 words each). Syntactic
patterns proved to be useful in both cases.
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Baayen et al. represented each sentence as the
sequence of re-write rules implied by its syntactic
structure, viewed every such rule (there were
about 4,200 kinds) as a pseudo-word, and then
applied standard vocabulary-based authorship-
discrimination measures to the ‘vocabulary’ of
this representation of the text. They used five
measures of vocabulary richness, which we denote
collectively as KDRSW: Yule’'s measure K and
Simpson’s measure D of the lexical repetition rate;
Honoré’s measure R and Sichel’s measure S of
hapax legomena and dislegomena, respectively; and
Brunet’s measure W based on the type/token ratio.
(See Baayen er al’s paper for definitions and
discussions of each.) Baayen et al. also directly
analyzed the use of the fifty most frequently used
rules and of low-frequency rules. The study found
that this method performed better and was more
uniform across texts than the same measures
applied directly to the vocabulary of the texts.
Baayen et al. suggest that the success of their
method compared to purely lexical measures is due
to syntactic processes being less manipulable
by authors and hence varying less across their
texts. They were skeptical, however, of the use
of fully automatic parsers—their work was based
on the Nijmegen corpus, which was
automatically annotated with syntactic structure
(Oostdijk, 1991).

Stamatatos et al., on the other hand, used fully
automatic (albeit imperfect) syntactic chunking—
that is, demarcating and labeling the non-
overlapping (non-recursive) phrases of the sentence
without determining the complete syntactic tree
structure (an example for English is shown in
Fig. 1). This allowed them to compute 22 stylistic
features such as the average number of words
per noun phrase and the ratio of noun phrases to
other chunks; they also used some highly artifactual
features, such as the fraction of words that remained
unanalyzed after each pass of their five-pass
chunker. (In fact, all of their stylistic features were
ratios and averages.) Stamatatos et al. found that
such features were more stable with respect to
reductions in text size and training-set size than
either lexical features alone or a combination of
both kinds of features.

semi-



NP [Mr. Heathcliff and I]
VP [to divide]

VP [are such]
NP [the desolation]

Bigrams of Syntactic Labels for Authorship Discrimination

NP [a suitable pair]
PP [between us].

Fig. 1 Example of text chunked at the non-recursive phrase level, similar to that used by Stamatatos et al. NP =noun

phrase, VP = verb phrase, PP = prepositional phrase

These two approaches have complementary
strengths and weaknesses. The method of
Baayen et al. captures a large amount of syntactic
information—essentially, the complete derivation
of each sentence. But the price for this is that the
space of rewrite-rules is very large, and so must be
reduced to a manageable number of features in
order to prevent data sparsity—in this case, by the
same methods as are used to reduce the space of
words in an author’s vocabulary to a set of features.
In particular, all notion of order is lost; a text is
treated as a bag of rewrite-rules, just as vocabulary-
based measures treat a text as a bag of words.
The method has been tried only on large texts, and
presumably, by its nature, is applicable only to
such texts. Moreover, as a practical matter, while
automatic parsers have improved notably in the
time since Baayen et al.’s work was published, they
still achieve lower accuracy than part-of-speech
taggers and chunkers. In contrast, the method
of Stamatatos et al. can be applied to relatively
short texts and takes advantage of an automatic
chunker, but it is highly dependent on artifacts of
the particular Greek chunker that is used; and in
reducing much of the other information that it
provides down to numerical quantities mostly con-
cerning phrase length, it discards all the information
about order and about the structure and derivation
of the text itself.

In this article, we will present a method that
aims to capture much of the strength of both
these approaches while avoiding some of the
weaknesses. It is based on partial parsing, and it
condenses rather than discards information
on syntactic structure and derivation by using
bigrams of syntactic labels, as we will explain
in Section 2.2. We treat these bigrams as
pseudo-words, much as Baayen et al. did with
their rewrite-rules, and consider their relative
frequencies.

1.3 Support vector machines in
authorship attribution

In the work to be described below, we use support
vector machines (SVMs) as our classification
method. SVMs have recently been shown to give
very good results in various kinds of text classifica-
tion tasks (Joachims, 2002). They use a supervised
learning algorithm. Given a set of data samples,
each labeled +1 or —1, an SVM finds a linear
separation, a hyperplane, between the differently
labeled datasets that maximizes the margin between
the two classes. Then it can classify unseen samples
by determining which side of the separating
line they are on. But as datasets aren’t always
linearly separable, SVMs employ a kernel function
to map all samples to higher-dimensional spaces,
which are then checked for linear separability.
A kernel function simplifies the non-linear mapping
to a space of different dimensionality; it defines the
dot product of the transformations of two vectors.
This is more efficient than defining the transforma-
tion function, computing it for every vector,
and taking the dot product of the result. The most
commonly used kernels are the dot kernel, the
polynomial kernels, and the radial-basis-function
kernel. If it is not possible to find a linear separation
for a set of data with a certain kernel, the SVM can
be allowed a certain misclassification rate.

Perhaps the first researchers to apply SVMs in
stylometry were Fung (2003) and Diederich et al.
(2003). Fung used an SVM feature-selection method
to correctly classify the disputed Federalist Papers
with just the frequencies of three words. Diederich
et al., whose work is probably the most similar to
ours, performed experiments with short to
medium-length German newspaper texts (average
length about 720 words, but some as short as
200 words) in which the SVM was trained to
distinguish between a target author and all
other authors. There were seven target authors in
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the experiment, with between 82 and 118 texts each,
in a set totalling 2,652 texts. The features used were
word frequencies in one experiment and bigrams
of part-of-speech tags and function words in
another, where the tags included very fine-grained
morphological information. The experiments
were couched in terms of a (simulated) test for
plagiarism in which it is to be determined whether
the target author is the genuine writer of a target
text, and so the margins of the hyperplane were
adjusted by a loss function that minimizes false
negatives at the price of true positives: missing an
instance of plagiarism was considered to be five
times more ‘expensive’ than a false accusation of
plagiarism (which was presumed to be happily
resolvable by additional evidence). Indeed, the
method achieved almost complete avoidance of
false negatives, but a recall (i.e. recognition of a
target author’s work as his or her own) of only 72%
when using word frequencies and 61% when using
bigrams of tags and function words. Because of the
loss-function adjustments and the one-against-
many classification, these results cannot be directly
compared with those that we will present below.

2 Partial Parsing

2.1 Overview of partial parsing

A partial parser (Abney, 1996) attempts to produce
a structural analysis that is more than mere
chunking but less than the parse tree of a fully
recursive grammar; it aims for speed and for
robustness in the face of noisy, unrestricted text.
By working from ‘islands of certainty’, rather than
top-down or bottom-up, it aims at the ‘contain-
ment’ of ambiguity rather than its complete
resolution.

A common problem with traditional parsers
is that correct low-level phrases are often

rejected because they do not fit into a global
parse, due to the unavoidable incompleteness
of the grammar. This type of fragility is
avoided when low-level phrases are judged on
their own merits. (Abney, 1996, p. 338)

Abney’s partial parser Cass (Abney, 1997), which
we use here, uses a cascade of finite-state automata
in place of a conventional grammar. It is thus
deterministic and nonrecursive.

The input to Cass is a text in which each word
has already been tagged with its part of speech.
This can be accomplished automatically with high
accuracy with a tagger such as that of Brill (1995).
The output, the partial parse, may be represented as
a tree or as the corresponding set of rewrite-rules
for each phrase. For example, consider the following
sentence (from chapter 42 of Villette by Charlotte
Bronté); observe that punctuation marks are treated
as separate words.

(1) Let it be theirs to conceive the delight of
joy born again fresh out of great terror , the
rapture of rescue from peril , the wondrous
reprieve from dread , the fruition of return .

Figure 2 shows this text after part-of-speech tagging
by the Brill tagger; the tags should be self-
explanatory, e.g. VB=base-form verb, PRP=
personal pronoun, NN =singular noun, VBN =
past-participle verb, RB=adverb, J]J=adjective,
IN = preposition. The result of subsequent partial
parsing by Cass is shown in tree format in Fig. 3 and
in phrase format in Fig. 4. Again, the tags should
be largely self-explanatory; most part-of-speech
tags pass through without change (except for
conversion to lower-case); tags for structures
include, e.g. nx = noun chunk, np = noun
phrase, ng = noun group, and analogously for
verbal and adjectival structures. In the tree
format, structure is shown by levels of bracketing,
with indentation and line breaks as a visual aid.

Let/VB it/PRP be/VB theirs/PRP to/TO conceive/VB the/DT delight/NN
of/IN joy/NN born/VBN again/RB fresh/JJ out/IN of/IN great/JJ

terror/NN ,/,

e
fruition/NN of/IN return/NN ./.

the/DT wondrous/JJ reprieve/NN from/IN dread/NN ,/,

the/DT rapture/NN of/IN rescue/NN from/IN peril/NN

the/DT

Fig. 2 Output of the Brill part-of-speech tagger for example (1)
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<sent_break> [ng
[vp [nx
[vx [dt the]
[vb Letl]] [nn rapturel]
[c [of of]
[cO [nx
[nx [nn rescuelll
[prp it]] [pp
[vx [in from]
[be belll [nx
[nx [nn peril]l]]
[prp theirsl]]] [cma ]
[infp [nx
[inf [dt thel
[to to] [jj wondrous]
[vb conceive]] [nn reprieve]]
[ng [pp
[nx [in from]
[dt the] [nx
[nn delight]] [nn dread]]]
[of of] [cma ]
[nx [ng
[nn joylll1l [nx
[vnp [dt thel
[vnx [nn fruition]]
[vbn born]] [of of]
[ax [nx
[rb again] [nn return]]]
[§j fresh]l] [per .]
[in out] <sent_breaks>
(pp
[of of]
[nx
[§] great]
[nn terror]ll]]
[cma ,]

Fig. 3 Output of Cass in tree format for example (1)

In the phrase-rule format, each line shows the
application of one rule, listing its category, starting

position in text, and children.

2.2 Partial parsing for authorship

discrimination

Partial parsing offers a compromise between
complete parsing and chunking, and thus a
potential solution to the limitations of the methods
of both Baayen et al. and Stamatatos et al.
While it does not have the accuracy of a complete,
hand-assisted parser, it is possibly nonetheless
accurate enough for the task; and it has the
additional benefits of being fast and fully automatic.
It potentially allows the use of the kinds of features
used in each of these studies, and it allows the
use of a new kind of feature, syntactic-label bigrams,

Bigrams of Syntactic Labels for Authorship Discrimination

VX 0 vb

nx 1 prp

VX 2 be

nx 3 prp

inf 4 to vb

nx 6 dt nn

nx 9 nn

vnx 10 vbn

ax 11 rb jj

nx 15 jj nn

nx 18 dt nn

nx 21 nn

nx 23 nn

nx 25 dt jj nn
nx 29 nn

nx 31 dt nn

nx 34 nn

ng 6 nx: of nx:
ng 18 nx: of nx:
ng 31 nx: of nx:
joje] 14 of nx:

PP 22 in nx:

PP 28 in nx:
infp 4 inf: ng:
vnp 10 vnx: ax: in pp:
c0 1 nx: vx:
vp 0 VX:

c 1 cO0: nx:

Fig. 4 Output of Cass in phrase-rule format for example
(1). The columns show the category of each phrase, its
starting point in the text (where 0 is the point before the
first word), and the categories of its children. In the right-
hand column, colons indicate nonterminals

which we will describe below, that captures some
information about order as well.

First, following Baayen ef al., we can use the
KDRSW vocabulary-richness measures on the rules
that the partial parser uses, and we can use counts
of the most- and least-frequently used rules as
features for classification. There are, however,
far fewer rules in the default grammar for
Cass than in the grammar used in Baayen ef al’s

Literary and Linguistic Computing, 2007 5 of 13



G. Hirst and O. Feiguina

vp vx vb ¢ ¢c0 nx prp vx be nx prp infp inf to vb ng nx dt
nn of nx nn vnp vnx vb n ax rb jj in pp of nx jj nn cma ng
nx dt nn of nx nn pp in nx nn cma nx dt jj nn pp in nx nn

cma ng nx dt nn of nx nn per

Fig. 5 The stream of labels from the tree-format output of example (1) shown in Fig. 3

corpus; in our experiments to be described below,
we observed that 2,360 rules were used.

But second, in compensation for the loss of
fine-grainedness in the ‘vocabulary’ of rewrite-rules,
we observe that the sequence of labels of bracketed
substructures of the partial parse—in canonical
display format, the first label of each line or the ‘left
edge’ of the display—also contains a considerable
amount of information about the syntactic structure
of the sentence, and moreover does so very
concisely. We can take the stream of labels as a
partial representation of the syntactic structure
of the sentence (Fig. 5). Instead of just looking
at frequencies of these labels, as we might with
part-of-speech tags, we can gain additional informa-
tion about structure by regarding them as an
ordered stream and taking the bigrams in it as our
basic tokens whose frequencies we use. For example,
the stream in Fig. 5 contains the bigrams vp-vx,
vx-vb, vb-c, .. ..

The Cass default grammar contains 126 possible
syntactic labels. These comprise twenty-eight non-
terminal labels, thirty-six part-of-speech tags for
words, and ten tags for punctuation marks that are
passed through from the Brill part-of-speech tagger,
and fifty-two new part-of-speech tags for words.
(The fifty-two new tags, and several of the twenty-
eight non-terminal labels, are mostly for use with
very specific, easy-to-recognize situations, such as
dates, measure phrases (72 miles), U.S. city—state
pairs (Peoria, IIl.), and verbal auxiliaries, that help to
create ‘islands of certainty’.) Of course, not all of the
126* = 15,876 possible types of bigram are licensed
by the grammar; in our experiments, we observed
2,999 types, using 115 different syntactic labels.

3 Experiments
3.1 Texts

In a pilot study, we experimented with our
label-bigram frequency method, as described in
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Section 2.2, on discriminating Charles Dickens’s
David Copperfield from Jane Austen’s Sense and
Sensibility and Emma. We chose these for the pilot
study as these two authors are known to be easily
distinguishable; in fact, it can be done by a
method as simple as distributions of letter bigrams
(Graham et al. 2005) (which we verified for
these particular novels). Reassuringly, our method
performed well in this easy case, but, as will
be noted below, it also alerted us to some
classification features that were not worth further
consideration.

For a serious test of the method, we turned to
the harder task of distinguishing the Bronté sisters,
Charlotte and Anne. The reason we looked at this
pair of authors is that they are, of course, of the
same era, same social and economic background,
and same gender; they had similar educations;
they strongly influenced one another in the devel-
opment of their writing; and their novels are similar
in genre. Any differences can be attributed only to
elements of individual style. In their authorship-
verification study of twenty-one novels by ten
Victorian authors, Koppel et al. (2004) found the
Bronté sisters to be the hardest to discriminate.
We used Charlotte’s Villette 1853 and Anne’s
Agnes Gray 1847 and The Tenant of Wildfell Hall
1848. These novels, we determined, can not
be discriminated just by the distributions of their
letter bigrams.

3.2 Preparation of the texts

We used approximately 250,000 words from each
author, downloaded from the Project Gutenberg
website. Our text pre-processing involved removing
chapter titles, finding sentence boundaries using
Perl’s Lingua module, and formatting the texts as
required for input to the part-of-speech tagger.
We used the Brill (1995) part-of-speech tagger,
followed by the Cass partial parser (Abney, 1997).
As a result, each text was represented in two ways:



Table 1 The Bronté datasets (approximately 250,000
words from each author)

Block size Number of blocks
1,000 480

500 942

200 2,232

as a stream of syntactic labels, extracted from the
tree-format output of Cass, and as a list of the
phrase-rules used in the process of partial parsing.

From copies of the processed texts, three datasets
were created, which varied by the size of the
blocks into which they were broken: roughly
1,000, 500, or 200 words of text. Because the break
was always made at the sentence boundary
following the required number of words, the average
size of each block was actually somewhat larger—
1024.8, 524.8, and 223.4 words, respectively—but
for simplicity, we will refer to the block sizes as
1,000, 500, and 200. Table 1 shows, for each block
size, the number of blocks in the datasets.

3.3 Syntactic features

Our primary features of interest were the frequen-
cies of bigrams of syntactic labels, the frequencies
of rewrite-rules, and the application of the
KDRSW vocabulary-richness measures to rewrite-
rules, as described in Section 2.2.

In looking at the frequencies of rewrite-rules,
whereas Baayen et al. considered only the fifty most-
frequently used rules, we experimented with values
as high as 150. While experimenting with our pilot
dataset (Dickens and Austen), we noticed, however,
that the performance of the frequently used rules
improves if the very frequent rules are not included;
this is perhaps analogous to the removal of high-
frequency words in some other kinds of text-
classification tasks.

Replicating Baayen et al’s use of rewrite-rule
frequencies at the lowest-frequency end gave
surprisingly bad results. This likely has to do with
the difference in grain-size between the partial
parser and the annotation of the Nijmegen
corpus. Having got nowhere with this feature
even with our easiest dataset (Dickens and Austen,

Bigrams of Syntactic Labels for Authorship Discrimination

Table 2 Lexical features from Graham et al. (2005)

. Average word length, frequency of i-letter words, 1 < i < 15.

. Average syllables/word, frequency of i-syllable words, 1 <i <6.

. Average words/sentence.

. Relative frequencies of 40 function words and 20 punctuation

marks (see Graham et al. (2005) for lists).

Lexical entropy H, Juola’s character-level entropy L.

. Normalized type/token ratio, Simpson’s index D, modified

Yule’s characteristic K, modified Honoré’s measure R.

. Ratio of hapax legomena and hapax dislegomena to vocabulary
size (the latter is S).

. First five terms of corrected Waring—Herdan distribution.

o]

1,000-word blocks), we stopped experimenting
with it.

3.4 Lexical features

We also experimented with a variety of additional
features that have been suggested by previous
researchers,  including  vocabulary  richness
(of words, not rewrite-rules), and average word
and sentence length. Specifically, we used the
same set of lexical features that Graham et al.
(2005) chose for their study of paragraph-level
authorship  discrimination, both those that
Graham et al. found useful and those whose
performance they found poor. A complete list is
given in Table 2; we refer to this set below as
the Graham feature set. In addition, we used
frequency of part-of-speech tags, a feature that
straddles (or blurs) the line between the lexical
and the syntactic; nonetheless, for convenience
we will refer to the Graham feature set and part-
of-speech tags collectively as lexical features to
distinguish them from our other, purely syntactic,
features.

3.5 Features that we did not use

Because Stamatatos et al. worked with relatively
small texts, and because they used a chunker, we had
hoped to use many of their features. In practice,
however, a significant portion of their more-
successful features could not be used because they
were specific to the chunker that they employed.
Cass doesn’t produce similar analysis-level informa-
tion; and even if it did so, we judged it preferable
not to use features that are highly software-specific,
as no general principles follow. Nor did we use
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the average length of each type of phrase, as
Stamatatos et al. themselves found this to have
little discriminatory power. We did try using the
relative frequencies of the most common phrase
labels, nx, vx, pp, rx, which closely mirror the
relative frequencies of NP, VP, PP, and ADVP
chunks. Stamatatos et al. found NP and PP chunk
frequencies to have good discriminatory power;
but we could not replicate this. On the contrary,
even on easy cases such as the Dickens and Austen
1,000-word blocks, these features had little power,
and so they were dropped from further experi-
ments. Two additional features that we considered
but discarded early on in the project were average
phrase length (across all types of phrase) and
average number of phrases per sentence; these
too did not perform well even on the Dickens and
Austen datasets.

3.6 Classification with support vector
machines

Representing each text as a vector of features,
we used support vector machines (see Section 1.3)
as a classification method.” We used the publicly
available software mySVM (Riping, 2000), and
found that the dot kernel resulted in better
performance than polynomial kernels. In each
experimental run, we used 10-fold cross-validation:
The datasets were randomly split into ten pieces,
and each piece in turn was held out as test data for
training on the other nine pieces; the accuracy over
all ten runs was then averaged. The data were scaled
before training.

4 Results

4.1 Variation within texts

Before the main experiments with our data, we
wanted to ensure that variations within a text
wouldn’t be taken for a difference in authorship.
Reassuringly, on all the datasets (Bronté sisters and
Dickens—Austen), our method gives baseline-level
accuracy—within five percentage points of 50%—
when trying to differentiate between two datasets
each containing random blocks from the same
novel or containing a mixture of texts from the two
authors. When we didn’t randomize the selection
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Table 3 Average accuracy (in percent) in 10-fold cross-
validation on Bronté data, by block size and features used.
Boldface indicates best results for each block size

Features Block size
1000 500 200
Syntactic features
Label bigram freqs 99.0 93.4 84.9
Rule fregs 93.2 93.4 83.8
KDRSW on rules 76.6 76.7 70.3
Bigram and rule freqs 98.4 95.8 87.4
All syntactic features 99.5 94.2 87.5
Lexical features
PoS fregs 93.8 93.4 82.7
Graham features 97.5 90.5 85.6
All lexical features 98.9 95.0 89.5
All features 99.2 96.8 92.4

of blocks of text and gave the method two halves
of a novel, the accuracy was a little further from
random—as far as fifteen percentage points from
50%. This tells us that our method is sensitive
to the internal stylistic variations within novels.
Nonetheless, the accuracy was low enough to show
that within-text variation is not a confound.

4.2 Main experiments

Table 3 presents the results of our main experi-
ments. The misclassification rates of the two authors
were never very different, so we report test-set
accuracy overall rather than per author, averaged
over 10-fold cross-validation; boldface denotes the
best result for each dataset. Confidence intervals for
these best values are given in Table 4.

Table 3 shows that label bigrams can achieve a
very high level of accuracy: high 90s with 1000-word
blocks and mid-90s with 500-word blocks, but only
mid-80s with 200-word blocks. Table 5 lists the label
bigrams that were most discriminating (had high
weights) across different block sizes and different
trials of the 10-fold cross-validation. For all block
sizes, the best accuracies were achieved using either
all syntactic features or all syntactic and lexical
features. This makes it very clear that features based
on fully automatic syntactic analysis are at least as
good as lexical features in performance. In fact, for
1,000-word blocks we see something of a ceiling



Table 4 Confidence intervals (CI) for best accuracies for
each block size in Table 3

Block Best Feature set .95 CI .99 CI

size accuracy

1000 99.5 All syntactic  [98.46, 100] [98.14, 100]
features

500 96.8 All features  [95.05, 98.59] [94.49, 99.15]

200 924 All features  [90.63, 94.11]  [90.08, 94.66]

Table 5 Label bigrams that were most discriminating
across different block sizes and different trials of the
10-fold cross-validation

Bigram Description

ccc Coordinating conjunction followed by clause

cma ¢ Comma followed by clause

prp cma Personal pronoun followed by comma

vb nx Verb followed by noun chunk

name nnp  Name starting with proper noun®

uh ¢ Interjection followed by clause

nx nn Noun chunk starting with common noun

dtp nn Determiner” followed by noun

cc vp Coordinating conjunction followed by verb phrase

?A ‘name’ in Cass’s grammar is a sequence of proper nouns and
initials that is not specifically recognized as a ‘person’ by virtue of
starting with a title such as Mr. or a first name that appears in
Cass’s lexicon. Thus Agnes Gray is a name (because Agnes is not
in the lexicon of first names), whereas Richard Wilson and
Mrs. Markham are persons.

From the list that, this, these, those, few, several, much, many,
last, next.

effect: the result from label bigrams alone, like the
result from all lexical features, comes within a
fraction of a percentage point, and well within the
0.95 confidence interval, of the result achieved by
using all features combined. Moreover, the only
truly lexical set of features, the Graham set, does
less well except when combined with PoS
frequency counts, which, as we noted earlier, is a
feature that straddles the lexical and syntactic
categories.

Not surprisingly, accuracy declines with block
size. Label bigrams show the steepest decline with
block size, a drop of more than fourteen percentage
points from 1,000-word blocks to 200-word blocks.
Nonetheless, the combination of all features
maintains an accuracy well above 90% even for
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200-word blocks, even though no single feature or
smaller combination achieves 90%.

4.3 Reducing the size of
the feature space

Having established the best level of accuracy of
our method and of various feature sets that include
it, we next wanted to see if all of these features
are really necessary. While having a large number
of features isn’t an issue for the SVM algorithm,
in addition to automatic authorship attribution,
we want to learn about style and what differentiates
authors. In this respect, it is useful to determine
precisely what features are required to tell
them apart.

Looking at Table 3, we see that a number of
combinations of feature sets achieve similar
accuracies. For example, for 500-word blocks, we
get 95-97% accuracy using syntactic-label bigrams
and rule frequencies combined, using both sets
of lexical features combined, and using all the
features together. On the other hand, the KDRSW
set of features does poorly on its own for all block
sizes, and it brings little improvement (the converse,
in fact, for 500-word blocks) when combined with
the other two syntactic features (compare the
‘Bigrams and rules’ row with the ‘All syntax’ row).
Our next task, therefore, was to determine which
features deserve closer examination, and whether
any of them can be done without.

We first decided that, from the observations
above, the KDRSW feature set is not worth further
attention. It’s worth noting, however, that this set
of features is most helpful on the 1,000-word
block size, which points to the possibility of its
importance in the analysis of larger texts.

Next, we turned our attention to the other
syntactic features. The accuracy achieved by rule
frequency counts alone is consistently less than or,
at best, equal to that achieved by the label bigrams
feature set. Comparing the accuracy achieved by
label bigrams and rule frequencies together to that
achieved by label bigrams alone, we see minor
variations (down 0.6 point, up 2.4-2.5 points).
Although this feature set seems to have potential for
modest increases in accuracy, especially with smaller
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Table 6 Accuracy (in percent) on Bronté sisters with

reduced feature sets

Features Block size

1,000 500 200
Label bigrams plus lexical features 99.0 96.3 90.7
Label bigrams (top seventy-five) 96.9 94.2 85.7
Label bigrams (top seventy-five) 98.4 96.6 91.5

plus lexical features

text samples, we concluded that syntactic-label
bigrams is the most valuable syntactic feature set.

Turning to the lexical features, we see that the
combination of PoS frequency counts with the
Graham feature set consistently performs better
than either set independently. Therefore, we retain
both as valuable.

The accuracy achieved by using all features
together was very good for all datasets, but having
now dismissed some features as not apparently
useful, we wanted to find out if using just those
that we identified as most valuable, label bigrams
and the lexical features, will suffice. Using a
combination of only these features resulted in
the performance summarized in the first row of
Table 6. These results are within a fraction of a
percentage point of those achieved with the full set
of features for the two larger block sizes, but
1.7 points less for 200-word blocks. However, all are
within the 0.95 confidence intervals of the best
results with all features (Table 4), confirming that
it is safe to discard the KDRSW measures and the
rule-frequency feature sets.

Our next question was whether we need
frequency counts for all 150 most-frequent label
bigrams or whether a smaller number would suffice
without significant loss of accuracy. (Since our focus
is on label bigrams, we didn’t experiment with
omitting any lexical features.) Our experiments
determined that discarding the last seventy-five
label bigram counts caused accuracy to drop 2.1
percentage points on 1,000-word blocks while
actually increasing slightly on the smaller blocks
(see the second row of Table 6 and compare the
first row of Table 3). Discarding the last 100 counts,
however, caused greater accuracy losses (about
4-5 percentage points), as did our attempt to
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Fig. 6 Accuracy (in percent) of classification by reduced
feature sets with respect to size of training set on Bronté
sisters, 1000-word blocks

discard the first twenty-five counts (decrease of
about 3-4 percentage points)—in contrast to
our earlier results on discarding the twenty-five
most-frequent rewrite-rules. We then looked at the
performance of the first seventy-five label
bigrams combined with the lexical features
(see the third row of Table 6). A comparison with
the best results in Table 3 shows that the reduction
in accuracy compared to much larger feature sets
is quite small—1.1 percentage points or less for
all block sizes.

Finally, we examined the performance of
this feature set with respect to the size of the
training set. Lack of training data is a burning
issue in many applications of stylometry, especially
in the field of collaborative writing. We therefore
prefer methods that can do well with as little
training data as possible. For each dataset in this
experiment, we varied the size of the training set to
see how much it would affect the accuracy. Figs 6-8
show the relationship between the size of the
training data (the x axis) and the accuracy of each
feature set on the test data (the y axis).* The
accuracies of label bigrams alone are denoted
by open diamonds; those of the lexical features by
closed diamonds; and those of both combined
by open squares. It’s clear from the figures that label
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bigrams and the lexical features perform about
equally well over all; the former dominates for
all sizes of the training set with large block sizes
(Fig. 6), the latter with medium block sizes (Fig. 7),
and neither with small block sizes (Fig. 8). But the
combination of both feature sets gives a notably
superior performance to either set alone in almost
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all cases; it is only with larger amounts of training
data and the larger block sizes that the individual
sets begin to rival it. It’s also clear from Fig. 6
that the lexical features are more sensitive to
variations in the training set size, especially for
smaller sizes. Both the label bigrams alone and the
combination of features are more stable with
respect to size variations. This affirms the finding
of Stamatatos et al. that syntactic features are
more stable in this respect. For smaller blocks
(Figs 7 and 8), the difference in sensitivity is smaller,
but still apparent.

5 Conclusion

We have presented bigrams of syntactic labels
from a partial parser as a new classification feature
for authorship discrimination, and have showed
that it can achieve high accuracy in discriminating
the work of Anne and Charlotte Bronté, which
previous methods have found to be particularly
difficult to distinguish. Moreover, high accuracies
are achieved even with relatively small fragments
of text (little more than 200 words), though the
smaller the fragment, the greater the accuracy is
boosted by the use of additional lexical features,
including (unigram) part-of-speech frequencies.
Of course, the method requires testing on many
other authors and genres of text before its generality
can be assured. It should also be tested for
discrimination of multiple authors (using multi-
class SVMs), and for authorship identification. In
addition, future research should attempt further
development of the features. For example, perhaps
unigrams of syntactic labels (i.e. PoS tags plus
the additional chunk labels) would be more
effective than PoS tags alone. In addition, the set
of Graham features should be investigated to
see which of its elements are really necessary.
Because of its ability to work with relatively
small segments of text, we anticipate that the
method will also be applicable in the related
task of determining authorship of the individual
fragments of a collaboratively written work,
including the problem of finding the boundaries
of each author’s contributions (Graham et al. 2005).
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The method bears comparison to contempora-
neous work by Gamon and by Chaski. Like
us, Gamon (2004) also chose the Bronté sisters
and SVMs in his investigation of syntax and
semantics for authorship classification in small
texts. Gamon’s segments were twenty sentences
long, which would be an average of roughly 500-600
words per segment. The syntactic features used
were much deeper than in the present work: the
productions from a complete parse of the text
whose frequencies were above an experimentally
varied threshold; and at a more superficial syntactic
level, part-of-speech trigrams were also used.
In addition, Gamon used semantic features such
as tense, aspect, and verb subcategorization, and
semantic modification relations, such as ‘Noun
Locn Noun’ (a nominal node with a nominal
modifier indicating location) whose frequency
was above a threshold. He achieved accuracies up
to 97.6%.

Like the present work, that of Chaski (2005)
also makes use of novel syntactic features to
discriminate the authorship of short texts. Her
primary features are the markedness/unmarkedness
property of each type of syntactic phrase, along
with a count of clause-, phrase-, and morpheme-
delimiting punctuation in the text. Her method,
intended for use in forensic investigations, was
tested on sixty-nine texts, averaging 290 words each,
written by ten different authors who were asked
to write short texts on a variety of topics. Using
linear discriminant function analysis as a classifier
and leave-one-out cross-validation testing, she
achieved an overall accuracy of 95% in
discriminating pairs of authors—a result similar to
our own. It will be interesting to determine
the relative performance of each method when
tested on the same data.
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Notes

1 This work was carried out while the author was with
the Department of Computer Science, University of
Toronto.

2 Although Zheng et al. describe some of their features as
‘syntactic’, these are actually just frequencies of
function words and punctuation. We refer to such
features in this article as ‘lexical’. Similarly, Zheng
et al.’s ‘structural’ features are features of the layout and
formatting of the message, not its syntactic or semantic
structure.

3 We also followed the example of many stylometric
studies, including that of Baayen et al, in using
principal component analysis (Binongo and Smith,
1999), and we tried using SVMs after dimensionality
reduction by PCA. However, our results using SVMs
directly were superior to those involving PCA—PCA
didn’t help uncover any underlying patterns in the data
that couldn’t be learned by the SVM directly—so we
report only the former.

4 Because these experiments used different random splits
of training and test data from the earlier experiments,
the results in these graphs for the complete datasets
differ slightly from those in the Tables above.
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