Investigating Z

MARTIN C. HENSON,Department of Computer Science, University of
Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
E-mail: hensm@essex.ac.uk

STEVE REEVESDepartment of Computer Science, University of Waikato,
Private Bag 3105, Hamilton, New Zealand.
E-mail: stever@cs.waikato.ac.nz

Abstract

In this paper we introduce and investigate an improved kernel Iggicfor the specification language Z. Unlike
standard accounts, this logic is consistent and is easily shown to be sound. We show how a complete schema
calculus can be derived within this logic and in doing so we reveal a high degree of logical organization within the
language. Finally, our approach eschews all non-standard concepts introduced in the standard approach, notably
object level notions of substitution and entities which share properties both of constants and variables. We show, in
addition, that these unusual notions are derivablginand are, therefore, unnecessary innovations.

Keywords Specification language Z, logic and semantics of specification languages.

1 Introduction

In this paper we introduce and investigate an improved kernel lBgiéor the specification
language Z, a logic in which, in particular, we can derive a schema calculus: a logic for the
entire range of schema expressions permitted in Z.

The work presented here builds and improves upon our earlier work [7, 8] in several ways.
Most importantly we have moved to a ‘Church-style’ from a ‘Curry-style’ presentation of
both the language and the logic. This gives a simpler and more elegant account of the logic
itself and of the technical development. The type coherence issues of [7], for example, are
entirely absent from the system we give here. It would be reasonable to say that our previous
approach made too many concessions to issues concerning the future implementation of the
logic, something we feel we have rectified here with a gain in clarity. Secondly, [7, 8] mount a
critique on Z, are openly revisionist and make several recommendatiocisfogingcertain
key aspects of Z, using the logical analysis as a tool. In this paper, in contrast, we have
kept close to Z as it is informally understoddrhe reader will now be able to compare, in
particular, our accounts of schema inclusiétierms andA-schemas from two perspectives.
Thirdly, some issues (such as schema composition and schema piping) are now treated in
much fuller detail than in the past. Fourthly, the syst&m given in this paper is much
smaller than that given in [7]: several key notions which were basic for that system become
derived in this paper (see especially Section 4). Finally, we spend some time showing how
one of the innovations of the standard account, the so-called ‘frogspawn’ operators, are also
analysable irZ- and we are able to make a case that they are technically unnecessary.

Currently, the formalization of Z is given in [16] (version 1.4). Surprisingly, and unlike its

1Though with a few purely notational differences.

J. Logic Computat.Vol. 10 No. 1, pp. 43—-73 2000 (© Oxford University Press

44 Investigating Z

predecessors, this draft of the Z Standard does not contain a logic at all. Consequently we are
unable to compare our work with it. The previous draft [12] (version 1.3) on the other hand
does contain a logic, due essentially to Martin, which appears as Annex K. Unfortunately, and
for reasons we do not know, this annex is not based on [9] (the most recent draft to appear
before the publication of [12]) but on a much earlier and incomplete draft which contains
many errors and notational inconsistencies. In view of this we take [9], rather than annex K
of [12], to be the current definitive account of the standard logic.

The report[9] is an attempt to improve upon the earlier logic contained in the previous draft
standard for Z [11] (version 1.2), [3] which suffered from a number of problems (inference
did not preserve typing [7] and it was, in fact, inconsistent [5]). However, all versions of
the standard logic, including the most recent, are very monolithic. [9] explicitly covers, or
attempts to covenll features of Z and does not reveal nor exploit any structure in the notions
which make up the language. It makes no attempt at proof-theoretic economy: very many
of the rules are redundant. Additionally, the system unexpectedly introdijestlevel
notions of substitution (supported by more than 70 equivalence axioms) and also unusual
entities which resemble both variables and constants; this being technically supported by
distinct notions of free variable and alphabet. This results in a large number of side-conditions
on many of the rules. There is a semantics for Z given in [12] which, again, covers the entire
language monolithically. There is no proof of soundness of the logic with respect to this
interpretation in either [12] or [9].

Our approach in this paper is quite different. It reveals and exploits the logical structure
of the language clearly. We first introduce a typed set-theélrywhich introduceschema
types and go on to show how the schema calculus of Z may be constructed as a series of
conservative extensions of this basic system. The soundness of the entire logic for Z then
reduces to the soundness of this simple, typed set-theory. This turns out to be trivial once we
demonstrate how to model its schema type&ihby means of a suitable dependent product
space.

Concerning a fundamental conceptual matter, we feel that the account of the relationship
between schema types and schema quantification we have given in this paper is a major
improvement over the complications employed in earlier attempts to develop a satisfactory
logic of Z. We believe that these complications have been largely responsible for problems
with these earlier attempts. In addition, it must be better to proceed with conventional
(and well understood) concepts of variable and constant than to introduce new entities with
extraordinary properties.

Our touchstone in this paper lisgical compositionality as we introduce new linguistic
constructs we ensure that they are defined in terms of the logical properties of theirimmediate
constituents. Compositionality has always been a feature in Z semantics (see [12, 16]) and
can be traced back to [13]. It has in our work, however, been raised to the logical level rather
than left at the semantic level. Proofs of properties which characterize each new construct
strictly adhere to the same principle: whenever a new construct is introduced, the proofs of
its characteristic logical properties use those of the constructs directly used in its definition.

The main outcome of this methodology is a logic for the schema calculus, though we are
also able to show that several non-standard ideas introduced in the standard approach are not
needed.

Investigating Z 45
2 The specification logicZ:

In this section we shall describe a simple specification logic which weZall This is a

typed set-theory based upon the notiorsolfiema type Our formulation in this paper will

be ‘Church-style’, in which types are carried explicitly by the variables (and hereditarily by
the terms). This contrasts with our earlier presentation [7] in whighs presented ‘Curry-
style’, with the types assigned by type assignment rules. There is, as a consequence of this
style of presentation, a significant simplification in the presentation of the logic, and then
consequent simplifications in the uses we make of it. One of the reasons why formalizations
of Z have in the past been presented in Curry-style (our own included) is over-attention to
mechanization: it is certainly true that an implementation of a logic for Z will require an
explicit inference system, or algorithm, for type-checking. But this is essentially only an
implementation and not a logical requirement. A logic must establish precisely its language,
and in the case of Z this is most simply achieved in the manner here presented. Similarly, an
implementation of a logic will have to determine syntactically well-formed expressions. In
the case of Z this requires some form of type-checking in accordance with the logic. But how
this is to be achieved is an entirely separate question.

2.1 The language of
Z¢ is atyped set theoryWe begin with the types:

Tu=U|PT | TxT]|[-1:T-].

Types of the formU are the names dfee types These may be given by equations of the
form:?

[U—>---\ Ci<<"'U1',j"'>>""

where any of theU;; may beU (permitting recursion). In particulaj, may be zero. An
important example is:

N — zero | succ((N).

This class of free types is quite simple, but has the virtues of covering many practical cases
and of ensuring the existence of set theoretic models. In particular, we do not permit mutual
recursion here, but the generalization is straightforward. More permissive notions of free type
are possible and have been extensively analysed in [15], [1] and [2]. That work could be used
to strengthen what we have given here if required, although we would insist on some proof-
theoretically determined class of consistent types in order to maintain the overall integrity of
the logic.

We will often permit the meta-variabl to range over sequences of type assignments such
as---l; : T;--- (the order is not important), also writing D], whenD is---[; : T; - -, for
the alphabet set (in the meta-language) of lakels/; - - -}. No label may occur more than
once in such a type.

Types of the forn{D] are calledschema typesOther operations on schema types that we
will need: [Dy] C [D4] holds when the set of type assignment$ilp] is a subset of those

2We use a rightfacing arrow rather than the standard ‘::=" for the introduction of free types in order to prevent a
conflict with our (meta)-notation for the syntax of the system.

46 Investigating Z

of [D1]; [Do] U [D4] is the schema type comprising all the type assignments appearing in the
components. It is not defined, of course, if this union contains distinct type assignments for
duplicated labels[Dy] 1 [D;] is the schema type comprising all type assignments occurring
in both[Dy] and[D,]. Finally, [Do] —[D4] is the schema type comprising all type assignments

in [Do] which are notinD;].

All categories of the language &f> must be well-formed with respect to these types.

Next we have the category ¢érms we assume the existence of a denumerable set of
variables for each typd'. We uset as a meta-variable over terms of arbitrary type. In
addition, for notational clarity, we use the meta-variabléo range over sets (terms of type
P T) and S to range oveschemagthose sets for whicll” is a schema type). The syntax of
terms is then:

tT n= ol | {zetT| P}y | ¢ bTlp | ¢TxTiy | ¢ToxT 2
¢10] i= tT2 1 [D]

tU = Ci"'tU”"'

g Tl = i T)

gToxT = (gT0 4T

cPvY w= U*

crT = PtT

C]P’(TUX T1) - C]P’TU X C]P’ T

CPL-ET] .. [--leCPT..]

where[D] C Ts.

We pronounce the symbdl‘filter’ and the purpose of filtered terms is to permit the re-
striction of bindings to a given schema type. These are crucial for establishing the logic for
the schema calculus. We immediately introduce two notational conventions in order to avoid
the repeated use of filtering in the context of membership and equality propositions. Note
thattheT in¢ [T € C, for example, is unnecessary since it can always be recovered from
the type of C' (there is only oné€l” for which the proposition is type correct). So, we can
abbreviate the above restricted membership statement by leaving out the type, although we
must indicate the fact that a restriction takes place, if only in order to differentiate from a
non-well-typed membership statement. We, therefore, introduce the following definition.

DEFINITION 2.1

tTOéCPTl :dft[T1€ C (TlgT()).
A similar tactic can be employed with equality.
DEFINITION 2.2

tOTO = tlTl =df t() f(T0 [l Tl) = tl f(T0 M Tl) (T1 E TO or TQ E Tl)

As usual we can writé(z) to indicate a free variable of the tertn For terms of schema
type we shall need a more complex notational convention to indicate situations in which a
binding denotes a term at a particular label. Specifically, suppose tzest the schema type
[-+l: T;---]. Weshallwritet(- - - [; = t; - - -) toindicate that, in particular; - t.l, = t; - - -.

Sets, then, are formed from the free types by powerset, Cartesian product, schema sets
and separation (bounded comprehension). We will often write schema sgt$ @shere

Investigating Z 47

E ranges over sequences of the formi; € C;---) by analogy with schema types and
generalize the alphabet operator in the obvious manner. Among the sets eagrig¥s of
the types. These are formed by closing the carriers for the basic typesder the three
set-forming operations with corresponding operations in the type language. In the sequel we
will often write T as a set (the carrier of the tygg). In this regard we are following the
notational abuse described in [14] (p. 24); this is entirely harmless since only a type can
appear as a superscript, and only a set can follow the membership relation.

The formulee ofZ delineate a typed bounded predicate logic.

Pu= 1| tT=tT | tTcCPT | =P | PVP | 32T € CPT e P.

The logic of Z¢ is classical, so the remaining logical operations are available by definition.
We also, as usual, abbreviatg(t” € C¥*T)totT ¢ C¥'7T.

A crucial observation isunicity of types every term and set of o has a unique type.
We can make great use of this observation. It enables us to remove type decoration in most
circumstances and leads to a very elegant and simple presentation of the system and its ex-
tensions, much more so than in other approaches [7].

2.2 The logic o7

The judgements of the logic have the fofht-~ P wherel is a set of formulee.

The logic is presented as a natural deduction systesaquent formWhen, later, we need
to undertake derivations in the logic, we shall present thepuie natural deduction form,
in which a sequent of the form - P; - - - = P will be represented by:

p;

P
We shall omit all data (entailment symbol, contexts, type etc.) which remains unchanged by
arule. In the ruleq), the variabley may not occur inC, Py, P; nor any other assumption.
Py P, PyV P, PybPy, P+ Py

(v3) Vi) (vV7)
POVP1 POVP1 P2

Pr L
-P

(1) E (L) j (-7) i (L)
1 P P

Plz/t] teC 3zeCePy yeC Pyz/ylF Py

[34’ _
dze(CeP () Pl (3)

48 Investigating Z

=) =0)
(- L=t)bh=t <]...li3t.li...D:t['”liETz”']
— 05) ——mmm O ——— (03)
(to, tl).l =1t (to, tl).Q =1 (t.l, t.2) =1
Plz/t] teC te{zeC|P} te{seC|P}
—) —) Y {0
te{ze C|P} teC Plz/t]
z€ Co2ze O} N CoePCy te Gy
(™) F)
CoePCy te
the Cy t €y te Cyx Cy te Cyx Cy
x") — (xg) —— (x})
(t(), tl) e Cy x Cy t.le Gy t2e ¢y
"'ZijeUij"' "'zijeUij"' v zp € Uggeee
—— (U") (Ux)
Ci...zij...:ci ylj
,. w)
Zij = Yij

U-
2e€eUFP w7
where they,, are all those variables occurring in thg with typeU.
tieci tE[lZECZ]
")
qzlgtlbe[llecz] t.l, € G
=1t tT =t [--L:Ti--]CT
(ext) (I7)
t0:t1 (t[["'liETi"'])-li:ti

where
toztl:dezetoozetl/\Vzetlozeto.
The transitivity of equality and numeroegjuality congruenceules for the various term-

forming operations are all derivable in view of rule:). In particular, we can prove that
set-equality inZ¢ is extensional.

Investigating Z 49

As an example of the rules for free types we can give the following specializatiof¥ for
as defined in Section 2.1 above:

z €N n €N

zero € N succ z € N zero # succ n

Suce n — suce m Plz/zero] x €N, P[z/z] F P[z/succ z]
n=m zeNFP
PROPOSITION2.3
The following axiom is admissible faf¢:

(1)
tTerT

PROOF By induction on the structure of the tertmFor example:

Case:t = (tg, t;) ToxT1:

We have to show thdt, ;) € Ty x T; and we may assumex hypothesithatt; € T; (i €
2). This follows immediately by rulex ™). [|

This is such a fundamental relationship between the type theory and set thefyythudt we
shall, from now on, take&Z~ to incorporate this axiom. Similarly, the following weakening
rule is admissible and is incorporated within the system.

'epP

—— (wk)
T,PyF P

2.3 Partial terms

The language of Z permits terms which do not denote, in particular definite descriptions and
partial applications. The latter are subsumed by the former, so we will restrict our attention to
definite descriptions. Informal use of Z makes it clear that membership and equality are weak:
t € C does not imply that is defined. However, it remains an open question as to whether

a logic should be silent regarding definedness or incorporate a predicate for definedness of
terms.

For example the former position is taken in [18] where rules for definite descriptions in-
troduce a deliberate incompleteness into the logic for those terms which do not uniquely
characterize a value. Their rules, and as a consequence their treatment of partial application,
could be interpreted withid ¢ directly. We adopted a related approach to definite description
in [7].

The alternative is to introduce an atomic predicate of the fgtrasserting that is defined,
and a corresponding logic of weak membership and equality. This may, or may not, be a fruit-
ful approach to practical reasoning and, because it needs careful and extensive investigation,
we leave its exploration for the future.

3 Amodelof Zo in ZF

In this section we provide an interpretation from the languaggéofnto ZF and prove the
soundness of thB¢ logic. The central idea is our interpretation of schema types as dependent

50 Investigating Z

products over a family of sets from a small (in ordinal terms) cumulative universe. In what
follows we suppose ourselves to working within any mod#l, €) of ZF. We begin with
free types. Recall the general scheme for a free tpe

U—.-- ‘ cill- Ui ---) ‘
First we define for each summand©fa function/;:
UT(Y) =df {CL} X X AL] Xoee

whered;; = Y whenU,; = U and[U,;] otherwise. Then we can associate vilith function
U defined so that

UY) =ar | J Us(Y).
Then the interpretation df in ZF' is given by:

o] = Juh).

The following definition inZF constructs a tiny (in ordinal terms) cumulative hierarchy.
DEFINITION 3.1

(1) F(0) = Uu
(1) Fla+1) = F(a)UPF(a)
(@) F(w) = Upcw Fla).

This function is guaranteed to exist by transfinite induction (in fact only transfinite induction
beloww.2 is required) and we then také(w + 1) to be the universe within which the type
system of Z may be interpreted. This universe sget

Let B(X) be anI-indexed family of sets oveF (w) (thatis,B(X) € I — F(w + 1)).
Then we can definedependent function spawegich is suitable for our purposes as follows:

Hixen B(X)={f el — Fw)|(Vie)(f(i) € B(i))}

This we can harness to interpret the schema sets (consequently also the schema gpes) of
We will write E* for the interpretation in the model ofa: entity E.

wherel = {---I;---} andB(l;) = C;. Each free typdJ is interpreted as follows:
U ={z € F(0) |z e [U]},

which is a set inF'(1). The remaining types of Z are mappedfoy] to ZF' in the obvious
way.

The labeld; can be modelled i F in any number of ways, for example as finite ordinals.
The only important point is that they be formally distinguishable from one another. We shall
write them inZF as we do inZ for simplicity.

With this in place we can easily interpret the binding projection terms of the farimy
application inZF, i.e. as:t* [. Finally, the bounded quantification i can be unpacked in
ZF in the standard manner.

Investigating Z 51

PrROPOSITION3.2 (Soundness df types)
For everyZs termt” we have-zp t* € T*.

PrROPOSITION3.3 (Soundness df logic)
If I'-¢ Pthenl™ Fzp P*.

4 Schema calculus fundamentals

In this section, and the sections which follow, we provide interpretations for a sequence of
extended languages. To simplify the presentation we shall adopt the convention of not stating
any clauses in such an interpretation which are merely homomaorphic. All interpretations are
indicated using heavy brackets (ife.]); each such interpretation maps an extended lan-
guage into the language of the previous extensiod®f(for example the interpretation of
Section 4.1 mapg s + Schemanto Z- and that of Section 4.3 magg: + SchemaExpres-
sionsinto Z¢ + Schema Thetd. Indeed, in the previous section we used the heavy brackets
to mapZ¢ to ZF.

To begin this we first demonstrate how a core schema calculus can be derived from the
kernel systen¥. Once this is in place we will be able to extend the calculus still further in
order to provide a logic for the entire range of schema expressions allowed in Z.

4.1 Introducing schemas

As we have already indicated, schemas are simply sets offtypevhen 7' is a schema
type; in other words, they aets of bindingsAs it stands, our only means for introducing
schemas is by means of schema sets of the f@hmWe now give an extended language of
terms to permit the conventional notation for schemas:

SPT = ... |[SPT | P).

As is usual, we will write schemas of the forfi’] | P] as[E | P] and we allow the obvious
generalization of our alphabet operator to schemds: | P] = «S. Note that the meta-
variableP, which occurs in the schema, can range over the proposiixtesded with labels

as terms We must explain precisely how ordinary substitution is to be extended here. The
only clauses of significance are

(0) (b=t = (L ul/t]-),
(i) t.hllo/t] = tlo/t].l,

for any labelly (includingl; andl;). We shall need to indicate multiple substitutions for
all labels in a given alphabet, writinig[D]/t.«[D]] to indicate the family of substitutions
< [l;/t.;] - - -whent is someterm and[D] = {-- - I, - - -}. Theright-hand-side s, of course,
syntactically valid inZ. The interpretation of schemas ify; is then given by

DEFINITION 4.1
Let Z be a fresh varible.

[[5]P]] =a {z € [S][PlaS/ 20811}

Given this definition we may provide the following rules using the schema notation.

52 Investigating Z

PROPOSITION4.2
The following rules are sound for the interpretation of schema&in

teS PlaS/t.aS] te[S|P] te[S|P]
(5 ——— (8 o ()
tel[S|P] tes PlaS/t.af]

PrRoOOF Trivial: these are all special cases of the three rules for bounded comprehension in
Ze. [|

4.2 (-expressions

In view of the extended language of terms we permit in schemas, we may make the usual
identification off-expressions witlcharacteristic bindings

9GPl b Tiw] =g - L)

It is, perhaps, worth explaining in detail how this definition interacts with the definition of
schemas we have given. Consider a schg$hpP] in which S occurs inP. This schema

is interpreted inZ¢ by the comprehensiofe € [S] | [P[aS/z.a.S]]}. An occurrence of

0S in P has, consequently, thé- interpretationy| ---I; = z.l;---)) in the Z¢ proposition
[PlaS/z.aS]]. In view of axiom &7), this means that, in this contextS has theZ.
interpretation.

There are well-known complications in Z concerning the ugerimhedschemas and the
operator. In other publications we have tried to explain that these result from a deep rooted
ambiguity regarding the nature of schemas [8]. Here, however, we adhere to the standard
informal understanding of Z to provide a point of comparison with that earlier work. Essen-
tially, the key point is that terms of the forfit” should be regarded as operations%and
not on S’. It might then be wiser to accept this explicitly as indicating a distinct operation
by writing such expressions &55. In any event, notational niceties notwithstanding, such
expressions are defined by:

HISP['"Z":T""] =4 <| s [Z’ |>

Consequently, occurrences®fs (or, equivalently#.S’) in the context of a scheni&’ | P],
itself interpreted a§z € [S'] | [PaS’/z.aS']]}, will be interpreted inZ¢ as{ --- 1, =
z.1!---) (which,nota beneis notequivalent toz).

4.3 Schema expressions

We may now introduce the schema expressions upon which the schema calculus is based.
First of all we extend our syntax of schemas with the basic operations of disjunction, negation,
and existential hiding.

S =] SVS | =S| 3leTes.

SWe are grateful to one of our referees for pointing out that, historically, the first schema calculus operation to
be introduced was conjunction, which corresponds to the product operator in relational databases. Further, the name
‘schema’ was taken from precisely this field. However, we have followed a treatment which is not uncommon in
logical presentations, which is to introduee, vV and3 as fundamental and then define the other logical operators
in terms of them.

Investigating Z 53

We first define three algebraic operationsZin which correspond to this extended language.
These are naturally polymorphic: the type of their instances being determined by the partic-
ular sets to which they are applied.

DEFINITION 4.3
Let Z be a fresh variable.

(i) -CPT =g {2€T|2¢&C}

@) Cyvel™ =y {zeToUT|2]Toe GV 2l TieC}

(ZZZ) dl e TOOCPTl =df {ZG Tl—[li TQ]|3£IZ€ T, e
reCAz=z](T1—[l:To])}

With these in place it is possible to interpret the new language of schema expressigns in

DEFINITION 4.4

(i) [~51 =4 —[9]
(i) [SoV Si] =ar [So] V [$1]
(i) [BleTeS] =4 3IleTe[].

The most important observation is tbempositional/algebrainature of these definitions.
This is possible because the languageyjeedand the concrete structure which is necessary
to effect the interpretation is carried explicitly by these types.

What we callexistential hidings usually referred to either as schema existential quantifi-
cation or simply as hiding (with an alternative notation). The use of schema components as
variables in the context of quantifiers (such as the existential here) but as constants in, for
example, bindings has led to unusual complications: for example, in the sketch of a logic in
[11]. This leads to the suggestion that Z declarations introduce entities whicaables
of some new speciedhis is a trap that has dogged efforts to develop satisfactory formal
models of Z in the past. Our approach here, and elsewhere, introduces no such unwelcome
entities: declarations introducenstantand schemas are a special notation for sets of bind-
ings, this latter desideratum being entirely uncontested in the literature. We shall make further
comments about the use of quantification in the schema calculus in Section 4.6 below.

4.4 Renaming and priming

In addition to the three basic schema expressions, we have what is known in the literature as
renaming This permits a systematic substitution for labels. Ldde a fresh label.

tesS t € Sl — h]
(Cha — (50)
t[lo<—lﬂ€5[l0<-l1] t[11<—l0]€S

All occurrences of labels are systematically replaced, for example:

() Qb)lem) = (obll—m] S 6l m))
(i5) thollh — m] = t[l « m].lo[lh — m]

(@3) [l — m] = m

() ol — m] = I wheniy # ;.

54 Investigating Z

Priming can then, as usual, be understood as an instance of renaming.S\Whasrthe type
P[---1; : T; ---] we have:
S =g Sl 1.

It is worth highlighting that priming, in particular, sets upamical relationshipbetween

certain labels. This is not difficult to achieve in our approach because the labetsstants

In this regard consider the logically similar relationship between names and co-naff@&S in

[10]: again, these names are constants. This contrasts with the standard approaches in which
these entities areariables a technical decision which we discussed in the previous section.

4.5 The logic of the schema calculus

We now provide a sound logic for schema expressions. In most instances we will not give the
proofsin full, relying on an indication of the major rules involved for guidance. A few proofs
are given in full for illustration. Beginning, then, with negation:

PROPOSITION4.5
The following rules for schema negation are sound for the interpretatigp in

tgs te S
(1)
te S 1S

(52)

These rules are unexpectedly efficient: the fact that the language is typed ensures that a
judgement of the formt ¢ S (for example) requires at the very least to bpotentiallya
member ofS. As a consequence we may conclude immediatelyittatS.

PROOF. Using ((}) and (}7). ||

Moving on to disjunction.

PROPOSITION4.6

The following three rules are sound for the interpretation of schema disjunctiga:
tE So t€ S1

— (5)) —— (5))

te S VS ? te SV S '

tESo\/Sl téS()'_P téSll—P B
(5,)

Y

P
PrROOF These are justified by means of the following derivationgin

tT Ty € Sy

Vo ——— (I
t1ToeSoVit] T €5 te Tou Ty
{1

tG{ZGT0|_|T1|Z[T0€S()\/Z[T1651}

4Here, and in many other places we have omitted type information for simplicity of presentation. The (meta-)
types of the (meta-) variables occurring in the rules are uniquely determined by considering (all) of its constituent
sequents.

Investigating Z 55

A similar derivation justifies the remaining introduction rule, and for the elimination rule we
have:

trTQESO thlesl

() : :
t[ToéSo\/t[TleSl P P

tG{ZGTO|_|T1|Z[T0€SO\/Z[T1651}

V)

The following two rules are direct consequences of these schema operations.

COROLLARY 4.7

teS te-S
— (SceMm) —— (Scon)
teSvVv-S 1

Finally we have existential hiding.

PROPOSITION4.8
The following two rules are sound for the interpretation of schema existential hidifig:in

te S

— (5D
tedleTelS

tedleTeS yeS y=tF-P

o
- (53)

Wherey does not occur irf, P, t nor any other assumptions; in other words the usual side-
conditions for eigenvariables apply.

PrROOF. Using (} 1), (3") and @}7), (@) respectively. [|

4.6 Equational logic for the schema calculus

Itis now possible to show that the expected equational relationships to be found in the litera-
ture [18], and which are commonly useddefinethe schema expressions, are provabkbe
schema logiclt is important to note that the proofs which follow are all undertaken strictly in
the logic for schemas which we have just introduced. This ensures that the legledsiate
and demonstrates th#tie proofs are compositionalmembership in a compound expres-
sion is determined solely in terms of the membership conditions on the proper components.
This definitional and logical compositionality inherent in our approach should be contrasted
with the highly non-compositional approachdsfiningschema operations by means of these
equations [18].

In the proofs which follow we will make use of simple consequences of pure predicate
logic (such as De Morgan equivalences) without further comment.

56 Investigating Z
ProPOSITION4.9

—[D | Pl =[D[-P]
PROOF. (C): (SZ)and (V7). (2): (S7). [|
PrOPOSITION4.10

[Do | Po] V [Dy | P1] = [Do]U[Dy] | Py V Pyl.
PROOF (C): (S;) and (/") and (/). (2): (sjo), (sjl) and (/). [|

PropPoOsSITION4.11

JleTe[D|P|=[D]-[leT]|3z€ T e P[l/z]]
wherez is fresh.

PrRooF. We will write [D~!] for [D] — [l € T] and assume that its formjs -, € T ---].
We further writet’ for the binding{ ---I; = t.l;---,1 = v) and the three substitutions
[a[D~!/t.a[D7Y), [a[D]/t'.a[D]] and[a[D~!|/y | [D~Y.a[D~!]] asoq, o1 andos. Note,
in particular, thatPoy = Poyg[l/y]. The schem&D | P] we will write asS and, finally, the
equation in question will be writte§; = S,.. The result follows, by ruleedgt), from these
two derivations.

yes yes yes
y € [D] Poo[l/yl] yI[D=t yel[D]
y I [D~]e D] yl[D7]=t Poo[l/y.1] yleT
te DY dz € T e Poy[l/2]
te s tes,
(55)
te s,
and:
te Sy
te[D7Y
t.l € T;
t' € [D] Poy thi=tl [DC[DTY
t'e[D| P (t'1[D~).l; = t.4;
— (5D
tes, 1D Yes t1[D7Y =t
dz € T e Poy|l/z] tels
te s

Investigating Z 57

As we remarked earlier, what we call existential schema hiding is often written using an
explicit hiding notation:S \ (I € T). In this case the equation is expressed alternatively as:

[D|P|]\(leT)=[D]—[leT]|3z€ Te Pl

Although it is senseless to consider the quantifiebimling the constant, the equation
reveals that it effectivelyemoves the constant entirelyn other words the quantifidrides
the constant.

For each of these schema operations we have in addition a number of easily ppoved
gruence rules for equality

PROPOSITION4.12
The following rules are all derivable:

50251 SOZSI 51252
-8 =5 SoV S2 =58V S So VS =8 VS
So =51

dleTeSg=3dleTels

ProoF We illustrate with the first of these. In one direction we have:
So =51

VzeTezeSy<=zes treT

t e S teSytesS
t ¢ So m
t €S
teS

teaS=tes

In the other direction, a similar derivation provides us with —5; = t € —.55. Whence:

te-Sy=>tensS te=S=teS

te-Sy < teS

VzeTezeS5 & ze85

_‘SO = _‘Sl

5 Logical extensions to the schema calculus

With the basic schema calculus in place, and in the context of classical logic, it is possible to
extend the schema calculus with new logical operators in a straightforward manner. We now

58 Investigating Z
introduce schema conjunction, schema implication and schema universal hiding:
Su= | SAS| S=S|VieTeS.

The interpretations are unexceptional.
DEFINITION 5.1

(i) [So A 8] =ar ~(=[S] v ~[S])
(i) [So = 1] =ar —[S] Vv [51]
(i) V1€ TeS] =4 —(3leTe-[S].

Schema conjunction enables us, as usual, to dé&fisehemas as a notational variant:
AS =g SAS

PROPOSITIONS.2
The following rules are sound for the interpretation of conjunction schemas:

téSy tES N te Sy NSy B te Sy NSt B
—— 5 — &) ————)
te Sy NSy te Sy ? te s '

PrROOF Consider the following derivations:

t Ty €Sy tI Ty €85
(=57) (=57)
trTOESO tho%SQ t[T1651 trT1¢51
te S VS 1 1 B
n (5y)
t &Sy VS

t e (=S V =51)

and:
t € (=8 V ~81) C5) t 1 To €S (51
t &Sy VS t €S VS °
1
t] To &S0
tT To € Sy
The other elimination rule is similar. [|

PROPOSITIONS.3
The following rules are sound for the interpretation of implication schemas:

tE Sy Ftes teSo=5 tES

teSy=95 téSl

Investigating Z 59
PROOF. (S.,). (S). (S). (Szear) and (7). (Scon): o

PROPOSITIONS.4
The following rules are sound for the interpretation of universally quantified schemas:

t(l=2T)ec §PTe . to(l=>x)EVIET, oS8T
. (59) (5y)
tevVieT,eS to(létl)eS

whereT =4 T, — [l € Tp] and where, in the introduction rule, is not free inS, any
(other) subterm of nor any assumption in the context.

PROOF: (S5), (v"), (57) and (51), (57). n
We are now in a position to extend the equational logic to cover these new operators.

PROPOSITIONS.5

[D() | P()] AN [Dl | Pl] = [Do] (] [Dl] | Py A Pl]

PROOEF This is straightforward in the presence of the equational logic for disjunction and
negation schemas:(—=[Dy | Po] V =[Dy | P1]) = =([Do | =Po] V [D1 | =P1]) = =[Dp] U
[Dl] | =Py Vv —‘Pl] = [Do] L [Dl] | —‘(—|P0 \Y —‘Pl)] = [Do] L [Dl] | Py N Pl] l

PROPOSITIONS.6

[D0|PQ]:>[D1|P1]:[D0]|_|[D1]|PQ:>P1]
PrROOF Similar to Proposition 5.5. [|

PROPOSITIONS.7

VieTe[D|P|=[D]-[leT]||Vze TeP[l/z]
wherez is fresh.
PrROOF Similar to Proposition 5.5. [|

This last equation establishes the universal quantifier as another mechanism in the schema
calculus by which hiding of labels may be effected. Usually this schema operation is called
universal quantificatiorwhereas the dual operation is often knownhéding. It might be
more appropriate, in view of our logical analysis, to call themversal hidingandexistential
hiding respectively, thereby preserving the duality in the terminology.

As expected, there are equality congruence rules for these operators. We will not state
or prove them, and when we introduce further operations below we will not even trouble to
mention them.

6 Schema level restriction and quantification

In this section we further extend our syntax of schemas to include schema level restriction
and existential hiding at the schema level:

S = ... | 50[51 | 350051.

60 Investigating Z

We can also write expressions of the fofin§, e S; as$; \ So.
In order to define the first of these, schema restriction, we begin by extending filtering from
terms to sets.
DEFINITION 6.1
Let Ty C Ty. Let z be a fresh variable.

CPTl[]P’Tozdf{zeT0|3$€T10$€C/\z=$[TO}.

LEMMA 6.2
The following rules are then derivable:

te CPT To T Ty " tGC[T Z‘GC,(L‘it'—P
: (R cn)
te Cl T P

The usual sideconditions apply to the eigenvariable

ProoOF These follow immediately from the rules for comprehensions and the existential
quantifier. []

We now define schema restriction as follows:
DEFINITION 6.3

[S017] =ar 1011 T A [S1]

PROPOSITIONG.4
The following rules are sound for the interpretation of schema restriction:

teSy t€S o tE€SIS | weSaéS,z=ikP

) (57) (S7)
te Sy S P

The usual sideconditions apply to the eigenvariable
PrROOF. (S)), (C]) and (9;0), (S5 (€Y. [|
Next we turn to existential hiding at the schema level.

DEFINITION 6.5
Let Tp C T7.

|[3 ST o 51“”“]] —ar [So A Si] T (Ty — To).

PROPOSITIONG.6
The following rules are sound for the interpretation of schema level existential hiding:

tes ™ tes, " T,CT

: 3@sh)
te 35y e 5]

tedS)e S xGSl,xéSo,xitl—P

357)
P

The usual sideconditions apply to the eigenvariable

Investigating Z 61
PROOF. (S)), (C]) and 620 (5. (C)). [|
Now we can introduce a notation for schema level universal quantification.
S = VS, e85

with the following interpretation:

DEFINITION 6.7
Let T T T7.

[™ 0 57 ™] =ar ~ 31800 @ ~ 11

PROPOSITIONG.8
The following rules are sound for the interpretation of schema level universal quantification:

cem € T]m"'7<|"'mjExj"'DTOGS(]?TO'_t("'mjng"')TlGS]IPTl

té VS()Osl

for fresh variables: - «; - - -.

t(my Sz)EVS e S 1t e s,

PROOF (357), (Scon) and B5+), (Scon). n

There are equational laws for these three schema calculus operations.

PROPOSITIONG.9
Let [Dl] C [Do]

[Do | Po] I [D1 | P1] = [D1 | (3([Do] — [D1])o @ Poo) A P

whereo is the substitution - - ;/z; - - -] for freshz; and wherex([Do] — [D1]) = {--- ;- - - }.

PROOF (): (S7), @")- (2): (57), @) n
PROPOSITION6.10
Let [Do] C [D1], wherea[Dy] = {---m;---}ando = [---m;---/--- 2z ---] where thez;

are fresh variables.
H[DQ | P()] [] [Dl | Pl] = [[Dl] — [Do] | HD()O' [] (PQ N Pl)O'].

PROOF (C): (3S7), 3%). @): 3S5T), @"). |

PROPOSITIONG.11
Let [Do] C [D4], wherea[Dy] = {---I;---} ando be the substitutioft - - [; - -+ / -+ z; - -]
where thez; are fresh variables.

V[Do | Po] e [D1 | Py] = [[D1] — [Do] | ¥ Doo » (P1 = Pp)o].

PrROOF V[DQ | Po] ° [Dl | Pl] = _\H[DO | Po] . —\[Dl | Pl] = _\E[DO | Po] [[Dl |
_\Pl] = _\[Do] - [Dl] | EDla L] (P() A\ _\Pl)O'] = [Do] - [Dl] | _\HDl(T ° (PQ A _\Pl)U] =
[D()] - [Dl] | _|E|D10' L] —\(_|P0 \Y Pl)O'] = [Do] - [Dl] | VDla [] (P() = Pl)O'] l

62 Investigating Z

7 Schema calculus for operations

In this section we examine three schema operators which are designed to apply to opera-
tion schemas. Schema composition and piping provide mechanisms for structuring operation
schemas. They are similar in the sense that they both involve connections via complemen-
tary labels. In the case of composition these are the before and after states, and in the case
of piping they are the inputs and outputs. Schema precondition offers a means by which an
operation schema induces a state schema: its domain of definition.

Our next extension to our language of schemas is, therefore:

S o= | Sog81 | So>=> 51 | preS.

Our logic enables us to give elegant definitions of these new operations. In earlier work [8]
we gave an account based on [4] and [18] that leads to a considerably more cumbersome
analysis.

There are a number of new notions which greatly simplify the presentation. First, we
treat the diacriticals of priming, shrieking and querying as bijecijperationson labels (and
mutatis mutandisn bindings and schema types). Heite= [and so on.

Secondly, we introduce a generalised notion of restricted equality.

DEFINITION 7.1
LetT C T, andT C Tj.
o =p t =gt | T=1] T.

PROPOSITION7.2
Let Tp C T7.

ty o=t oty =1, t1.

7.1 Schema composition

In what follows we shall assume that an operation schéimaas the type:T; =4 T U
I U T" U O}. This decomposition isolates the before state tfpethe after state type
T', the type of inputd; and the type of output®;. We will also write 7* for the type
TUI;UL;UT UOsU O, Vofor TUIE L OfandVy for T/ L I U OF.

DEFINITION 7.3
Let z be a fresh variable.
Upg Ur =qr

{zeT"|T3nelUpoenclUeoen=v,2N21=v, 2 N2, =1 21}
The rules are then easy to derive.

PROPOSITION7.4
The following rules are derivable for schema composition:

toelo el o=y, t h=vt tHg=7h

tergU1

Investigating Z 63

and:
teUos U yo € Uo,yn € Uuyo=v, t,y1 =v, Lyg=rpn b P
P
The usual sideconditions apply to the eigenvariapfesndy; . [|

7.2 Schema piping

Now we turn to schema piping. In what follows we shall assume that the operation schema
Uy has the typeWW, U I U WU Oj U Y, and Uy the typeW; U T U Y7 LU W/ L Of where
the typeY expresses the overlap between the output label$ @fhd the inputs ol/;.
We will also write 7* for the type Wo LI Wy U WU WY U I U I U Of U Of, V, for
WoU Wy U I§ U O and Vy for Wy U W{ L Of U .

DEFINITION 7.5
Let 2z be a fresh variable.
Up > U; =df

{zeT"|FonelUyez € Ul.Z():VOZ/\levlZ/\Z(!):yzl?}.
The rules are then easy to derive.

PROPOSITION7.6
The following rules are derivable for schema:

toelUyp el to=v,t =y t th=yt

te Uy> Uy
and:
teUp> U1 yo€Upyi € Ur,yo=v, tin =v, L,y =y yi - P
P
The usual sideconditions apply to the eigenvariabjesndy; . [|

This version of piping is the most general formulation, capturing the informal description
given in [14] (p. 78). Often the state spaces of the two component schemas will be identical,
and the two schemas will match aloalyjthe inputs and outputs. However, all the complexity
here is carried by the types concerned, so the rules are not more complicated in this most
general case.

7.3 Schema precondition

Again, our logic leads to a great simplification. We begin by defining the notion of precondi-
tion as apredicateon bindings rather than directly as a state schema.

DEFINITION 77? _
Let UP(T"UT™) pe an operation schema wheFé&" is the type of the input state and inputs,
andI°“ is the type of the output state and outputs.

Pre U z™" =qr 3z € U o z=2.

64 Investigating Z

As expectedy is in the precondition of/ when there is an output for which it is the input.

PROPOSITION7.8
The following rules are derivable for preconditions:

2e U z=zT" PreUz yeU,y=z+ P
Pre U x P
The usual sideconditions apply to the eigenvariable [|

Given this we can easily construct the conventional notion of a preconditltama
DEFINITION 7.9
Let z be a fresh variable.

pre U =4 {z € T™ | Pre U z}

This leads immediately to the following rules.

PROPOSITION7.10
The following rules are derivable for operation schema precondition:

e U z=gT" reprelU yeU,y=zFP
reprelU P
The usual sideconditions apply to the eigenvariable [|

8 Schema inclusion

There is very little to say about schema inclusion. This becomes a notion which is easily
subsumed by the existing analysis. Recall that the basic notion of a schema is given by:

S = [D]] S| P

where we would normally writ¢{D] | P] as[D | P]. Given schema conjunction we can
simply take the following simple generalization:

This is understood as follows:

(oS | P =ar [e ASiA | PIL.

9 Relating Z. to the standard logic of Z

The standard approach to the logic for Z is contained in the two most recent versions of
the draft standard [11, 12] and an associated technical report [9], the last of these being the
most complete and mature. There are two features of the standard approach which are rather
striking. First, schema components are treated as a species of variable with unusual status,
hovering between the conventional notions of free and bound variable. Secondly, there is no
meta-linguistic notion of substitution. Since this fact has a huge influence on the standard
accounts of Z we shall devote the next section of the paper to it.

Investigating Z 65

9.1 The ‘frogspawn’ substitutions

In place of the usual meta-linguistic notion of substitution that appears in most formal theo-
ries, in the standard accounts of Z there are two object language substitutions, both indicating
the substitution of a binding: one into propositions and the other into expressions. These are
written, respectively:

(i) boP

(i) boe.

In [9] there is a guarded suggestion that these can be defined in terms of existential quantifi-
cation and definite description. Specificatly:

(i) boP =4 HbleP
(ZZ) boe =df u{b}oe.

This suggestion cannot be made good within the framework of the standard logic for two re-
lated reasons. First, the rules for the existential quantifier and definite description make direct
use of the frogspawn operators, so the putative definitions are proof-theoretically circular. For

example?
'FboP THbES

'-3S5eP

(ExistsI).

Secondly, there is no prospect of eliminating the use of these operators in the these rules be-
cause the standard logic for Z provides no alternative, meta-linguistic, notion of substitution
with which the frogspawn might be replaced.

Given this, and having little alternative, it seems, the standard accounts characterize the
frogspawn operators by a very large number of axioms and a small number of rules. There
has been little or no discussion in the literature which explains why the logic should have
been developed in this unusual way.

The approach seems to date back to [17] in which the prefix notation for substitution was
introduced, along with the idea that substitutions could be represented by bindings. However,
it is not obvious that the authors, at that time at least, were advocating an object level notion
of substitution. Matters are not helped by the fact that the rules and axioms for substitution in
the current standard accounts are enormously redundant: many of the axioms can be derived
from the rules, andice versa We illustrate this with one example.

PROPOSITIONS.1
The following axiom is derivable from the remainder of the logic:

FrF{z=2u)o(aa=ea)e((z2>u)@e =e)

(wherel - z ¢ ¢ey).8

5In fact these are expressedrawrritesin the technical report. As a consequence they do not establish a definition
at all. We assume that what follows is what was intended.

6All references to rules and axioms refer to [9].

"The meta-level prefix notation is, arguably, extremely elegant. Had it not been for our desire to examine the
current formulation obbjectlevel substitution, we might have writtent” (or evenzotT) in preference to the
less elegant T [a T/ z.a. T).

8The notation (from [9])¢e stands for the set of free-variables in the expressionNote that the obvious
extension to bindings of the alphabet operatawe have been using is also used later.

66 Investigating Z

PROOF We obtain, fronT'F (2 = u) ® (e1 = e2), using rule UseBind), ', AX (= =
u) ENDF eg = eo. Thenwe havel' - ((z = u) © e1) = ez using rule EquBind)
providing thatz ¢ ¢e,. This argument reverses, using rulés;¢Bind’) and (/ se Bind). il

We can also show that the ruleBquBind) and (EquBind’) are derivable from the ax-
ioms. First, however, we need a generalization of the axiom derived in the proposition above.

LEMMA 9.2
The following generalized axiom is derivable:

FFbO (=€) (bOe)=-e

(wherel' - ab N ges = {}).

PrRoOOF The result follows immediately by induction on the length of the bindifigpm the
axiom we derived in Proposition 9.1 above, and the axiom:

'{bz=>e)OoP=sboO((z=>e)OP).

We then have:

PROPOSITION9.3
The rules EquBind) and (EquBind’) are derivable from the remainder of the logic:

TAX {b}) ENDFu=¢ Thab=1; T ¢u=1

R (Y1 Napa = {})

F'tfu=boe TFHab=1y; TFou=n1ym
(1 N2 ={})
T AX {b} ENDF u— e .

PROOF Suppose thaf® AX {b} END + u = e then, by rule Use Bind), we haveI - b ®
(u = e). By Lemma 9.2 we obtainf' - v = b ©® e. This establishes ruleFgu Bind); its
side-conditions arise as a consequence of the appeal to Lemma 9.2. The argument reverses,
thus deriving the rulefquBind’).? [|

The fact that such redundancies exist (and there are very many more) is surprising enough.
However, as we shall show below, it turns out that the frogspawn constructions can be shown
to follow from much simpler and more straightforward ideas. There are, in fact, two ap-
proaches which we can explore. The first employshimeling restriction operatiorwhich

we have introduced in our earlier work [6]; the second builds on the suggestion mentioned
above, i.e. the use of existential quantification.

9Note that Proposition 9.1 generalizes to an arbitrary bindirigr which ab N ¢e2 = {}. Consequently, we
have established that the (generalized) axiom is, in the context of the remainder of thedagiaelentto the rules
(EquBind) and (EquBind’).

Investigating Z 67

9.2 The relationship between and restricted membership
DEFINITION 9.4

tTOQCPTl :dft[T1€ C (TlgT()).

We then have:

PROPOSITION9.5
The following rule is derivable:

rcoeo-85

PROOF Notethal' - b @ - SisTHb [Ty e - SandT'F-b0 SisTH- (b Ty € 9).
Then consider the following derivation i

'F-=b0S8

THOL[T &S
—— (=5
TFbe~ 8

[|

Note that in the standard accounts there is no restriction on the typesnfS, whereas for
us the restriction associated with the definition of frogspawn carries through.
Here is another example of how frogspawn interacts with the schema calculus.

PROPOSITION9.6

bO(S1V &)= bOS VIS,
PROOF =1 (57)), (Vg), (V})- <1 (57), (57), (V7). |

Strictly speaking, we have, in the two examples above, reinterpreted the standard use of
frogspawn over schemaredicatesas instances of restricted membership over schemas as
sets For the more general application of frogspawn over predicates we introdrarae-

tion process, which forms a (schema) set from an arbitrary proposition.

DEFINITION 9.7

Let P be a predicate containing labels as terms. Gbmpletion ofP (written P*) is the
schemd.--1I; : T;--- | P] where thel; comprise all labels occurring (at their corresponding
typesT;) in P. Then we further define:

bOP =4 boP".
The overloading of the frogspawn relation introduces no notational ambiguity.

Note that, having done all this, we have a special case of the definition?® =4+ b [T €
P*=0b¢€ P* sinceb [T =b.
PROPOSITION9.8
This rule is derivable:
TFbeSALOP

T'HbelS| P

68 Investigating Z

PrROOFR
'FbeSADOP

'FbeSADOP I'be P*
I'FbesS 'k PlaS/b.aS]

F'Fbe[S| P
|

Part of the derivation above, it turns out, is so commonly used within much of our work on
this topic, and indeed makes clear exactly whaheans when applied to a predicate, that we
extract it as a lemma (which we use in the sequel without comment).

LEMMA 9.9
I'bT @ PifandonlyifT' - PlaT/b.aT).
PROOF
I'tbe P
(57)
'k PlaT/b.aT)
and:
— (2.3)
'k PlaT/baT] THbeT
(5%
'kbe P
|
Returning to the other direction &fchemaMem we have:
PROPOSITION9.10
This rule is derivable:
TFbel[S|P]
'beSAbBOP
PROOF
P'belSPT | P
(57)
F'FbelS|P] 'k PlaT/b.aT]
2 === SO_
'kbes (%) r-oopP
(A"
'beSAbBOP
|

SchBindMem andSchBindMem' follow directly from our definition of> and the fact that
the provisos on those rules, that the alphabetsarid S are the same, mean thiat 7' and
S : P T for some typeT'.

Turning to rules involving quantifiers (p. 19 of [9]), consider the tdléF. Firstwe have to
interpretv S7 o P, and we can do this straightforwardly by usivig € S e P[aT/z.aT).
We then have

Investigating Z 69

PROPOSITION9.11
The following rule is derivable:

'vzeSeP THOTES

(AllE)
r-ooP
PROOF
'-vzeSeP THbI €S
v
'k PlaT/b.aT)
'tboP
|
PROPOSITION9.12
The following rule is derivable:
r-boP TFbT S
(ExistsI)
Jze SePlaT/z.aT)|
PROOF
'boP
I'+PlaT/b.aT] TFHT €8 N
3
dze SePlaT/z.aT)|
[|

9.3 Following the standard approach

As we saw in Section 9.1, the suggestion in [9] that the frogspawn operators can be defined
in terms of existential quantification and definite description cannot work dnhowever,
it is entirely possible to develop the standard logic of frogspawn by employing the suggested
definitions.

To begin with we must revise some of the infrastructural developmekitofAs we have
seen before, quantification over a schema can be represented by means of

DEFINITION 9.13

(i) 3S*TeP =4 3Jz€SePlaT/z.aT)

(ii) pS*Tee =4 pzeSeelal/zaT)l.
Recall (see Section 4.2) that we take theperations of Z to be notation for the explicit
characteristic bindings; so these definitions suffice to handle those notions too. In fact, an

occurrence oflS in P (for example) will be equal to the value of the bound variable
Consequently, the definitions of frogspawn in our framework amount to

DEFINITION 9.14

(i) bToP =4 3Fze{b}ePlaT/z.aT]
(ii) bToe =4 pze{bleelaT/zaT).

70 Investigating Z

We can immediately illustrate the definitions with an example. One of the equations given
for frogspawn is the subject of the following proposition.

PROPOSITION9.15
The following equation holds i¥¢:

b® P& —(boP).
PROOF = (37) twice, (L), (=1). <: (31) twice, (LT), (=). [|

Once again, as we did in our first formulation in Lemma 9.9, we can do much better than this
via the following lemma, whose proof one can detect explicitly in the full proof of Proposition
9.15.

LEMMA 9.16
I'bT @ PifandonlyifT' - PlaT/b.aT).

ProOF Consider the following derivations:

b=1b
PlaT/b.aT] be{b}

Jz e {b} e PlaT/z.aT]

and:

y € {b}
y=b PlaT/y.aT]

Jze€{b} e PlaT/z.aT] PlaT/b.aT]

PlaT/b.aT]
i

Of course, we have now shown, via Lemmas 9.9 and 9.16, that our two formulatiops for
on predicates are equivalent. However, to illuminate this topic from a second perspective
is useful, so we will continue a little further with the development based on this second
formulation.

With Lemma 9.16 in place Proposition 9.15 becomes entirely trivial, recording nothing
beyond the fact that substitution commutes with negation.

Similarly the standard rules for existential introduction and universal elimination are im-
mediately derivable irZ~ using this lemma.

PROPOSITION9.17
The following rules are derivable:

'FboP THbeS 'vSeP THbES
(ExistsI) (ForallE)
'3SeP r-ooP

Investigating Z 71
ProoOF Consider the following derivations:

I'3ze€{b}ePlaT/z.aT)|

't PlaT/b.aT) besS
C
I'F3ze€SePlaT/zaT)
and:
VzeSePlaT/z.aT] besS
PlaT/b.aT
(V)

Jz e {b} e PlaT/z.aT)|
i

The standard logic contains two ruldsde Bind) which characterize the frogspawn operator
in terms of assumptions. Specifically these are:

I'-boP I AX {b} END} P

I AX {b} END+ P THboP

These, or a formalization of them, are derivable from our definitioddn First, we must
interpret the use of the binding sgt} as an assumption. To this end we define, for any bind-
ing b of the form:{ ---I; = tiT' .-+)}, the set of equalities* with the form:---2; = b.; - - -

(the variables;; must, of course, be fresh). Then we can prove the following encodings of
the rules UseBind).

PROPOSITION9.18
The following rules are derivable id¢:

rcooP N O A
b b Pl /2] THboP
PROOF. (37) and @"), (v"), (v"), (=), (="). n

Next we turn to the standard rules known &gl{emaM em). In view of Lemma 9.16 these
are simple notational variations of the schema introduction and elimination rul&s. of

PROPOSITIONS.19
The following rules are derivable:

rbesS THboP THbE[S|P]
T'HbelS| P TFboP

PrRoOF Consider the following derivations:

Jz e {b} e PlaT/z.aT)|

beS PlaT/b.aT]

belS| P

72 Investigating Z

and:
bel[S|P]

PlaT/b.aT]

Jz e {b} e PlaT/z.aT]

9.4 Conclusions about frogspawn

We have not shown that all the rules in [9] and [11] which mentioare interpretable and
then derivable using our definitions af, but we have, we feel, given enough instances to
show that our first interpretation serves to explairn a more familiar way, i.e. as a form

of restricted membership in sets. The second serves to show that we canZysitigat®

via an alternative definition (suggested in [9] but not implementable in the logic given there)
which allows a better understanding of this unusual formal device.

As for the substitution into expressions that appears in [9], this seems to be definable just
as ordinary substitution into expressions, i.e. what we have, all along, been writing conven-
tionally using[-- -z /e - - -].

We have shown that an unusual and non-standard invention of the Z Standard is not actually
necessary and serves only to complicate what is really a quite straightforward language.

10 Conclusions and future work

In this paper we have provided a new core logic for the specification language Z. It differs
from the logic presented in the draft Z standard [12] in several respects, all to clear advantage.

We have also shown how, from the simple kernel logig, there emerges a calculus for
manipulating the main, and deservedly acclaimed, innovations of Z: the notion of the schema
and the associated language of schema expressions. Rather than presenting a calculus for
these expressions as a syntactic extension of Z (the methodology of the standard approach),
we have shown that this calculus is derivable in a well-structured hierarchy of layers. As a
result, the set-theoretic model is kept very simple, and the soundness of our logic, including
the entire schema calculus, is easily demonstrated.

In addition, we have also shown that the unusual use of object-level substitution, used in
the standard account, is expressible, to a large extent, in our framework in terms of much
simpler and more familiar notions, and is, as a consequence, an unnecessary innovation.

What we have achieved in this paper is, in the end, very simple: by taking ordi#fy
and interpreting within it jusbnenew construction, that of schematypes and the bindings that
inhabit them, we have shown that a semantics and logic for Z can be constructed. Given the
contortions that others have gone through to try to achieve the same end, this is a remarkable
discovery.

Acknowledgements

We would like to thank the Department of Computer Science at the University of Waikato,
New Zealand; the Centre for Discrete Mathematics and Theoretical Computer Science, New

100f course very little set-theory is actually required for the analysis of Z.

Investigating Z 73

Zealand; the Royal Society and the EPSRC (grant number GR/L57913) for financial assis-
tance which has supported the development of this research. We are grateful to Rob Arthan,
Jonathan Bowen, Stephen Brien, Ricardo Calderon-Cruz, John Derrick, Doug Goldson, Lind-
say Groves, Thomas Santen, Susan Stepney, Bernard Sufrin, lan Toyn, Ray Turner, Mark Ut-
ting, Sam Valentine, Norbert&Ker, Jim Woodcock, and most particularly, Andrew Martin,
for many useful discussions concerning Z and its formalization, and for comments on drafts
of this paper.

A summary of this work was presented at ZUM'986and we would like to thank mem-
bers of the audience for useful comments.

Finally, we also wish to thank the referees of this paper for their diligent work, and also for
relating some interesting historical facts about Z to us.

References

[1] R. D. Arthan. On free type definitions in Z. I User Workshop, 1991. E. Nicholls, ed. pp. 40-58. Springer-
Verlag, 1992.

[2] R. D. Arthan. Recursive definitions in Z. Ihlth Int. Conf. ZUM'98: the Z Formal Specification Notatidn P.
Bowen, A. Fett and M. G. Hinchey, eds. pp. 154-171. LNCS 1493, Springer-Verlag, 1998.

[3] S. M. Brien and A. P. MartinA Tutorial on Proof in Standard ZTechnical monograph PRG-120, Programming
Research Group, Oxford University Computing Laboratory, Oxford, UK, 1996.

[4] A. Diller. Z: An Introduction to Formal Methods (2nd ednJ) Wiley, 1994.

[5] M. C. Henson. The standard logic for Z is inconsisteRdbrmal Aspects of Computing Journdl0, 243-247,
1998.

[6] M. C. Henson and S. Reeves. A logic for the schema calculusl1th Int. Conf. ZUM ‘98. TheZ Formal
Specification NotationJ. P. Bowen, A. Fett and M. G. Hinchey, eds. pp. 172-191. LNCS 1493, Springer-
Verlag, 1998.

[7] M. C. Henson and S. Reeves. Revising Z: Part | - logic and semaifiicmal Aspects of Computing Journal
11, 1999. .

[8] M. C. Henson and S. Reeves. Revising Z: Part |l - logical developnientmal Aspects of Computing Journal
11, 1999. Accepted for publication.

[9] A. P. Martin. A Revised Deductive System for Z. Technical report TR98-21, Software Verification Research
Centre, University of Queensland, February 1998.

Available fromhttp://svrc.it.uq.edu.au/~apm/logic/logictr.ps.

[10] R. Milner. Communication and Concurrencfrentice-Hall International, 1989.

[11] J. Nicholls, ed.Z Notation: Version 1.2Z Standards Panel, 1995.

[12] J. Nicholls, ed.Z Notation: Version 1.3Z Standards Panel, 1998.

[13] J. M. Spivey. Understanding Z: A Specification Language and its Formal Semamidsme 3 ofCambridge
Tracts in Theoretical Computer Sciend@ambridge University Press, 1988.

[14] J. M. Spivey.The Z Notation: A Reference Manudrentice Hall, 1992.

[15] J. M. Spivey. The consistency theorem for free type definitions FoEmal Aspects of Computing, 369-376,
1996.

[16] I. Toyn, ed. Z Notation: Version 1.4Z Standards Panel, 1998.

[17] J. Woodcock and S. Brien/V: A logic for Z. In Z User Workshop, York 1991. E. Nicholls, ed. pp. 77-96.
Springer Verlag, 1992.

[18] J. Woodcock and J. Davieblsing Z: Specification, Refinement and Prd@fentice Hall, 1996.

Received 12 October 1998

11Although thepublishedproceedings contain a version of the schema calculus in the spirit of [7, 8] rather than
that presented in this paper.

