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Les coupures par pliage-dépliage et les coupures modulo

Résumé : On montre que ’élimination des coupures en déduction modulo généralise
I’élimination des coupures avec des régles de pliage et de dépliage.

Mots-clés : Elimination des coupures, déduction modulo, pliage, dépliage.



About folding-unfolding cuts and cuts modulo 3

In first-order natural deduction, a cut is a sequence formed with an introduction rule
followed by an elimination rule. This notion can be extended to deal with the axioms of some
theories, e.g. type theory, set theory, the Stratified Foundations, ... Prawitz [10] proposes
a rather uniform way to extend the notion of cut by first extending first-order natural
deduction with two rules: folding and unfolding (called A-introduction and \-elimination
by Prawitz) and then considering a sequence of such rules as a new form of cut (see also
[2,9, 1, 3, 8]). We have recently proposed another way to extend deduction called deduction
modulo [5, 7] where propositions equivalent modulo a congruence are identified. Identifying
propositions this way extends the notion of cut. We show in this note that deduction modulo
subsumes deduction with the folding and unfolding rules.

1 Deduction with the folding and unfolding rules
In this note, we consider a fixed theory 7 formed with axioms
Vi ... Vo, (P; < Q)

where the P;’s are atomic propositions and the @);’s arbitrary propositions.

We say that a proposition B folds to an atomic proposition A (resp. that A unfolds to B)
if A=0P; and B = 0Q); for some axiom Vz; ... Vx, (P; < @;) of T and some substitution
0. We assume that 7 is such that an atomic proposition unfolds to at most one proposition.

The axioms of T can be replaced by the deduction rules

T+ 6Q;
T 0P

'+ éP
r't+0Q;

and it is easy to check that a sequent 7, F A can be proved in first-order natural deduction
if and only if the sequent I' A can be proved in deduction with the folding and unfolding
rules. Indeed, any instance of the folding and unfolding rules can be simulated using an
axiom of 7 and the axioms of 7 can be proved in deduction with the folding and unfolding
rules.

Since an atomic proposition unfolds to at most one proposition, a sequence formed with
a folding and an unfolding rule has the form

folding

unfolding

F'__Bfoldmg
—F FA unfoldin
TFB 9

and can be reduced to
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4 Gilles Dowek

Such a sequence is thus called a folding-unfolding cut.
Cut elimination terminates for some theories 7, but it does not for others.

2 Deduction modulo

In deduction modulo, a theory is formed with a set of axioms I'" and a congruence = on
propositions. Here, the congruence is the smallest congruence identifying P; and @; for each
i.

The deduction rules take this congruence into account. For instance, the modus ponens

is not stated as usual
IT'FA=B THFA

I'+B

as the first premise need not be exactly A = B but may be only congruent to this proposi-

tion, hence it is stated
'rC THA

TEB ifC=A=B

All the rules of intuitionistic natural deduction may be stated in a similar way (figure 1).

A cut in deduction modulo is, like in first-order logic, a sequence formed with a intro-
duction and an elimination rule. Cut elimination terminates for some congruences, but it
does not for others.

3 Proof-terms

We use a functional notation for proofs. To each proof of a sequent A,,..., A, - B in first-
order natural deduction, we associate a proof-term whose free variables are among oy, ..., ay,.
Proofs built with the axiom rules using the axiom A; are written «;, proofs built with the
introduction and elimination rules of the implication are written Aa 7 and (7 '), proofs built
with the introduction and elimination rules of the conjunction are written (r,7'), fst(x) and
snd(w), proofs built with the introduction and elimination rules of the disjunction are written
i(n), j(m) and (§ m amy B7s), proofs built with the elimination rule of the contradiction are
written (botelim ) proofs built with the introduction and elimination rules of the universal
quantifier are written Az m and (7 t) and proofs built with the introduction and elimination
rules of the existential quantifier are written (¢,7) and (exelim m zax'). Reduction on
proof-terms is defined by the following rules that eliminate cuts step by step.

(A mp mo) > [m2/a]m

fst({m,ma)) > m
snd({my,T2)) > my

((5 i(7T1) QT ﬂﬂ'g) > [71'1/05]71’2

INRIA



About folding-unfolding cuts and cuts modulo 5

axiomif AeT"and A= B

TFB
A+FB . . _
Wﬁ-lnﬁro 1fC=(A=>B)
'HC THA RS
W =-elim if C = (A = B)
'rA T'FB . . _
T/\-lntro lfC:(A/\B)
r+c
m/\ehmlfc (AAB)
r+c PR
1_‘l_B/\—ehmlfC’:(A/\B)
'+ A
metroﬂC (AV B)
I'HB
P|_CV1ntr01fC (AV B)
T+D T,AFC T,BFC . .. _
TFe V-elim if D = (AV B)
e 1-elim if 1
TFA elim if B =
1ﬂFA(ac,A) V-intro if B = (Vz A) and z € FV (T)
'+B
'+B —
Pl_C(acht)‘v’-ellmlfB (Vz A) and C = [t/z]A
r+c . e — —
m(x,A,t) F-intro if B = (3z A) and C = [t/z]A
W(;p,m Jeelim if C = (3z A) and = ¢ FV(TB)

Figure 1: Natural deduction modulo
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6 Gilles Dowek

(6 j(m1) ams Brs) > [m1/B]ms
Az 7 t) D> [t/x]m
(exelim (t,m) axms) > [t/z, 1 [0]ms

Proofs in deduction modulo, are written as in first-order natural deduction, and the proof
reduction rules are the same.

Proofs built with the folding rule are written 7 1 and proofs built with the unfolding rule
are written 7 J. The corresponding reduction rule is

ey

4 Translations

As already said, a sequent I' A is provable in deduction with the folding and unfolding
rules if and only if the sequent 7,T F A is provable in first-order natural deduction. The
sequent I' - A is also provable in deduction modulo if and only if the sequent 7,T - A is
provable in first-order natural deduction. Hence the sequent T' - A is provable in deduction
with the folding and unfolding rules if and only if it is provable in deduction modulo.

This can also be proved directly. If 7 is a proof of I' - A in deduction with the folding
and unfolding rules, then the proof 7~ obtained by erasing the folding and unfolding steps
in 7 yields a proof in deduction modulo. The converse is a little bit more difficult. Indeed,
if the proposition B unfolds to B’ then the proposition A A B and A A B' are congruent
and hence the sequent AA B+ A A B’ has a trivial proof in deduction modulo, using only
the aziom rule. But the unfolding rule does not apply to the proposition A A B, but only to
the proposition B. Hence the proof of A A B’ must be written (fst(a), snd(a) J) where the
variable « is n-expanded so that the unfolding rule can apply to the proposition B. This
justifies the need of the following lemma.

Lemma 4.1 If the proposition A converts to B in one step (we write this A <! B), then
there are proofs of A = B and B = A in deduction with the folding and unfolding rules.
These proofs are called conversion steps.

Proof. By induction over the structure of A.
e If A is atomic, then A unfolds to B and we take the proofs Aa a | and Aa a 1.

o If A=A, = A; then B = B; = B,. We have either 4; = B; and Ay, ! By or
A; ! By and Ay = B,. By induction hypothesis we have in both cases proofs p;
and p] of Ay = By and By = A; and p2 and p), of A2 = B> and By = A;. We take

Ao A8 (p2 (a (py B))) and Ao AB (p (a (p1 B)))-

o If A = A; A Ay then B = By A By,. We have either A; = By and Ay <! By or
A; &' By and Ay, = B,. By induction hypothesis we have in both cases proofs p;
and p] of Ay = B; and B; = A; and p» and p) of Ay = By and By = A;. We take
Aa ((p1 fst(a)),(p2 snd(@))) and Aa ((p} fst(@)), (py snd(a))).

INRIA



About folding-unfolding cuts and cuts modulo 7

o If A = A, V Ay then B = B; V By. We have either A; = By and Ay <! By or
A; &' By and Ay, = B,. By induction hypothesis we have in both cases proofs p;
and p] of A; = B; and B; = A; and p» and p) of Ay = By and By = A;. We take
Aa (6 a Bi(p1B) vi(p2 7)) and Ae (6 a Bi(p1B) vi(ps 7))-

e Since A is reducible, it cannot be L

o If A =Vx A; then B = Vz B; and we have 4; &' B;. By induction hypothesis we
have proofs p; and pj of A4 = B; and By = A;. We take Aa Az (p1 (a z)) and
Aa Az (p) (a x)).

o If A =3z A; then B = Iz B; and we have 4; &' B;. By induction hypothesis we
have proofs p; and p} of Ay = By and By = A;. We take Aa (exelim a z5{z, (p1 B)))
and \a (ezelim a z6{z,(p} B)))-

O

Corollary 4.1 If A = A’ and 7 is a proof of T' = A, then there is a proof of ' - A’ of
the form (pn ... (p1 ™)...) where p1,...,pn are conversion steps. Such a proof is called a
transformation of 7.

Proposition 4.1 The propositions provable in deduction with the folding and unfolding
rules and the propositions provable in deduction modulo are the same.

Proof. Erasing the folding and unfolding steps transforms any proof 7 in deduction
with the folding and unfolding rules into a proof 7~ in deduction modulo. Converselly, if a
sequent has a proof 7 in deduction modulo, then we can build a proof 7+ in deduction with
the folding and unfolding rules inserting sequences of conversion steps when needed. O

5 Folding-unfolding cuts and cuts modulo

We now prove that cut elimination terminates in deduction with the folding and unfolding
rules if and only if cut elimination terminates in deduction modulo.

Lemma 5.1 Let A and A' be two propositions such that A = A' and A and A' are ei-
ther two implications, two conjunctions, two disjunctions, two contradictions, two universal
quantifications or two existential quantifications. Let m be a proof of T = A and 7' a proof
of T'+ A’ that is a transformation of w.

If 7 is an introduction, then @' reduces to an introduction @' and the subproofs of @' are
transformations of subproofs of .

Proof. By induction on the length of the transformation from 7 to 7’. The result is
obvious if 7' = 7. Otherwise, the proof 7’ has the form (p,41 (pn-..(p17)...)). The proof
(pn---(p17)...) is a proof of a proposition A" that is either atomic or has the same head
symbol as A.

RR n° 4004
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If A" is atomic then n # 0 and (pp—1...(p17)...) is a proof of A', p, = Aa a 1 and
Pnt1 = Aa a ). By induction hypothesis, (pp—1...(p17)...) reduces to an introduction 7"
and the subproofs of 7' are transformations of the subproofs of w. The proof n' reduces to
" 4 and then to «".

Otherwise A” has the same head symbol as A. By induction hypothesis, the proof
(pn...(p17)...) reduces to Aa «{ (resp. (7}, wy), i(x}), j(x{), Az «{, (t,n{})), the subproofs
are transformations of the subproofs of 7 and p,+1 has the form

Aa AB (72 (a (1] B)))
(resp.
Aa (11 fst(a)), (12 snd(a)))
Aa (6 a Bi(TiB) vi(T2 v))
Aa (6 a Bi(TiB) vi(T2 v))
Aa Az (11 (o x))
Aa (exelim a z6{z,(m1 B)))

)
)

). Thus, the proof 7' reduces to an introduction 7" and the subproofs of 7" are transfor-
mations of subproofs of 7. O

Proposition 5.1 Cut elimination terminates in deduction with folding and unfolding rule
if and only of cut elimination modulo terminates.

Proof. Assume that cut elimination modulo terminates and consider a cut elimination
sequence 7, ma, ... in deduction with the folding and unfolding rules. Each m;41 is obtained
from 7; either by reducing a logical cut or a folding-unfolding cut and only a finite number
folding-unfolding cut reductions can be performed consecutively (as the size of proofs reduces
when we reduce such a cut). When ;1 is obtained by reducing a logical cut in 7; then
m;,1 is obtained by reducing a cut in m; and when ;4 is obtained by reducing a folding-
unfolding cut in m; then m;, , = m; . Hence in the sequence m; ,m, , ... in deduction modulo
each proof is either obtained by reducing a cut in the previous, or is equal to the previous
and only a finite number of consecutive proofs can be equal. As cut elimination terminates
in deduction modulo, this sequence is finite and so is the sequence 71, 72, ....

Converselly, assume that cut elimination terminates in deduction with the folding and
unfolding rules and consider a proof-reduction sequence 71, 72, ... in deduction modulo. The
proof 7, contains a redex. In 7] a conversion steps may have been inserted between the
introduction rule and the elimination rule of this redex. But, by lemma 5.1, reducing the
conversion steps applied to the introduction permutes the introduction and the conversion
steps. Thus, 7 reduces to 7 in at least one step. Hence the sequence 77,73, ... is finite
and so is the sequence my, 73, ... O
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About folding-unfolding cuts and cuts modulo 9

6 Comparing deduction modulo and deduction with the
folding and unfolding rules

In [7] we have shown that a theory modulo had the cut elimination property if it had some
kind of many-valued model (whose truth values are sets of proofs) called a pre-model and we
have shown that large classes of theories modulo had the cut elimination property. As cut
elimination is equivalent in deduction with the folding and unfolding rules and in deduction
modulo, these tools can be adapted to prove cut elimination in deduction with the folding
and unfolding rules.

Alternatively, theories usually presented in deduction with the folding and unfolding rules
can equivalently be presented in deduction modulo.

Proofs in deduction modulo are more compact than proofs in deduction with the folding
and unfolding rules. First, because the folding and unfolding steps are left implicit in
deduction modulo, but also because in deduction with the folding and unfolding rules, as
show above, proofs need to be n-expanded so that the folding and unfolding rules may be
applied. This n-expansion could be avoided if we extended the folding and unfolding rules

to a conversion rule rE A
TFB conversion if A= B

with arbitrary propositions A and B. But, then lemma 5.1 would not hold anymore and a
conversion step inserted between a introduction and an elimination could block a cut, as in
the proof (with B = B')
A B+-A ABFB
A, B+-AAB .
m com{erswn
m A-elim

A-intro

We would then need to extend the notion of cut and define a cut as a sequence formed
with an introduction rule, a sequence of conversion rules and an elimination rule [4], i.e.
essentially as a cut modulo.

At last, deduction modulo is more general than deduction with the folding and unfolding
rules, as it does not require that an atomic proposition unfolds to at most one proposition.
This permits in particular to include, besides equivalences between propositions such as
zxy=0=z=0Vy =0, equivalence between terms such as  +0 = xz. Then a proposition
such as (z+0) x (y +0) = 0 may be equivalent to many propositions such as z x (y +0) = 0,
(z+0)xy=0,z2+0=0Vy+0=0,2 =0Vy =0, ... while this is not possible in deduction
with the folding and unfolding rules.
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