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Abstract

Up to now there was no interpretation available for A-calculi featuring overloading and late-binding, athough these
are two of the main principles of any object-oriented programming language. In this paper we provide a new
semantics for a stratified version of Castagna's At}, a A-calculus combining overloading with late-binding. The
model-construction is carried out in EETJ + (Tot) + (F-ly), asystem of explicit mathematics. We will prove the
soundness of our model with respect to subtyping, type-checking and reductions. Furthermore, we show that our
semantics yields a solution to the problem of loss of information in the context of type-dependent computations.
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1 Introduction

Polymorphism is one of the concepts to which the object-oriented paradigm owes its power.
Thedistinction is made between parametric (or universal) and ‘ad hoc’ polymorphism. Using
parametric polymorphismafunction can be defined which takes arguments of arange of types
and works uniformly on them. ‘Ad hoc’ polymorphism allows the writing of functions that
can take arguments of several different types which may not exhibit a common structure.
These functions may execute a different code depending on the types of the arguments. The
proof-theory and the semantics of parametric polymorphism have been investigated by many
researchers, while ‘ad hoc’ polymorphism has had little theoretical attention.

‘Ad hoc’ polymorphism denotes the possibility that two objects of different classes can
respond differently to the same message. Castagna, Ghelli and Longo [6] illustrate this by
the following example: the code executed when sending a message inverseto an object of
type matrix will be different from the code executed when the same message is sent to an
object representing a real number. Nevertheless the same message behaves uniformly on
al objects of a certain class. This behaviour is known as overloading since we overload
an operator (here inversg by different operations. We say the function consists of severa
branches and the selection of the actual operation depends on the types of the operands.

The real gain of power with overloading occurs only in programming languages which
compute with types. They must be computed during the execution of the program and this
computation must possibly affect the final result of the computation. Selecting the branch
to be executed of an overloaded function at compile-time, does not involve any computation
on types. Postponing the resolution of an overloaded function to run-time, would not have
any effect if types cannot change during the computation. Only if types can change do we
obtain the real power of overloading. Hence we need the concept of subtyping in order to
have types that are able to evolve during the execution of a program. In such languages an
expression of a certain type can be replaced by another one of a smaller type. Thus the type
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of an expression may decrease during the computation, which can affect the final result of a
computation, if we base the selection of the branch of an overloaded function on the types
at a given moment of the execution. We talk of early-binding if the selection of the branch
is based on the types at compile-time. If we use the types of the fully evaluated arguments
to decide which branch should be executed, then we call this discipline late-binding The
introduction of overloading with early binding does not significantly influence the underlying
language. However overloaded functions combined with subtyping and |ate-binding show the
real benefits of object-oriented programming.

Usually higher order lambda calculi are used to model parametric polymorphism. These
systems allow abstraction with respect to types and applications of terms to types. However
computationsin these systems do not truly depend on types, i.e. the semantics of an expres-
sion does not depend on the types appearing in it. This fact is nicely exposed in a forgetful
interpretation of these calculi. Hence parametricity allows us to define functions that work
on many different types, but always in the same way. Overloading on the other hand char-
acterizes the possibility of executing different codes for different types. Thus we have two
different kinds of polymorphism.

The subject of higher order lambda cal culus originates from the work of Girard [15] who
introduced his system F for aconsistency proof of analysis. For thisreason, system F ishighly
impredicative. Independently, Reynolds [22] rediscovered it later and used it for applications
in programming languages. Feferman [11] gives an interpretation of system F in atheory of
explicit mathematics and he discusses in detail the advantages of representing programsin
theories of explicit mathematics.

Until now there are only afew systems available featuring ‘ad hoc’ polymorphism. Ghelli
[14] first defined typed calculi with overloading and late-binding to model object-oriented
programming. This approach was further studied in Castagna, Ghelli and Longo [7]. In our
paper we will use A1} presented in Castagna [4, 5]. This calculusis designed for the study
of the main properties of programming languages with overloading and late-binding. It is
a minimal system in which there is a unique operation of abstraction and a unique form of
application. Hence we have only overloaded functions and consider ordinary functions as
overloaded with only one branch defined.

Castagna, Ghelli and Longo [6] present a category-theoretic semanticsfor A&—early which
is a calculus with overloading and early binding. In this calculus the types of the arguments
of an overloaded function are ‘frozen’; the same goes for compile-time and run-time. Fur-
thermorethe type system is stratified in order to avoid certain problems of impredicativity in
the definition of the semantics. We will present a semantics for a stratified subsystem of A{}
which can handle not only overloading but also late-binding. Our model-construction will be
carried out in EETJ + (Tot) + (F-In), a predicative theory of explicit mathematics.

Systems of explicit mathematics have been introduced by Feferman [8, 9] as a framework
for Bishop style constructive mathematics. More recently, Feferman’s systems were used
to develop a unitary axiomatic framework for representing programs, stating properties of
programs and proving properties of programs. Important references for the use of explicit
mathematics in this context are Feferman [11, 12, 13] and Jager [16, 17]. In systems of ex-
plicit mathematics types are represented by names, and those are first-order values. Hence
they can be used in computations and, as we have seen above, this allows us to model over-
loading and late-binding. Furthermore, we will show that our interpretation yields a solution
to the problem of loss of information in the context of type dependent computations.

This problem introduced in Cardelli [2] can be described as follows. when we apply for
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example the identity function Az.x of type T — T to an argument a of type S subtype of
T, then we can only derive that (A\xz.z)a hastype T. The information that a was of type S,
is logt, athough this will not be the case in our model. At this point we have to mention
that Castagna [4] is developing a second-order calculus with overloading and late-binding in
order to deal with the problem of loss of information and parametric polymorphism. Our
work is also afirst step towards a better understanding of that system and the integration of
parametric and ‘ad hoc’ polymorphism.

2 The AU-calculus

In this section we introduce Castagna's A\}-calculus. This minimal system, implementing
overloading and late-binding, has been first presented in [4, 5]. The goa was to use as
few operators as possible. Terms are built up from variables by abstraction and application.
Typesare generated from a set of basic types by a constructor for overloaded types. Ordinary
functions (\-abstraction) are considered as overloaded functions with just one branch.
Pretypes. First we define the set of pretypes. Later we will select the types from among
the pretypes, meaning, a pretypewill be atype, if it satisfies certain conditions on good type
formation. We start with a set of atomic types4;. Now the pretypes are inductively defined
by:

1. Every atomic typeisa pretype.

2.1f $,T1,...,S,, T, are pretypes, then the finite set {S; — T1,...,S, — T,}isa

pretype.

Subtyping: we define a subtyping relation < on the pretypes. This relation will be used to

define the types. We start with a predefined partial order < on the atomic (pre)types and
extend it to apreorder on all pretypes by the following subtyping rule:

Vi€ 1.3j € J(Ui < S; and Ty < V)
{Sj = Titjes <A{Ui = Vitier

If the subtyping relation < is decidable on the atomic types, then it is decidable on al pre-
types. Note that < isjust a preorder and not an order. For instance, U <V andV < U do
notimply U = V. Asan example, assume S’ < S, thenwehave {S — T} < {S' —» T},
andthusboth{S - T} <{S—>T,5' - T}and{S - T,5" — T} < {S — T} hold.
Types: although the selection of the branch is based on run-time types, the static typing must
ensure that no type-errors will occur during a computation. We define the set of types as
follows: we call a pretype S minimal elemenbf a set U of pretypes, if S is an element of
U and if there does not exist a pretype T # S in U such that T < S. The set of A1} types
contains all atomic types of At} aswell asall pretypesof theform {S; — T;};c; that satisfy
the following three consistency conditions concerning good type formation:

1. S;,T; aretypesforal i,j € I,

2.5; < S;impliesT; < Tjforali,jeland

3. if thereexistsi € I and a pretype S such that S < S;, then there existsa unique z € T
suchthat S, isaminimal elementof {S; | S < S; Aj € I}.

Thefirst condition simply states that every overloaded typeis built up by making use of other
types. The second condition is a consistency condition which ensures that a type may only
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decrease during acomputation. If we have an overloaded function f of type {U; — V1,Us —
Va2 } with U; < U, and we apply it to an argument n with type U» at compile-time, then the
expression f(n) will have type V> at compile-time; but if the run-time type of n is Uy, then
the run-time type of f(n) will be V;. Therefore V; < V, must hold. The third condition
concerns the selection of the correct branch. It assures the existence and uniqueness of a
branch to be executed. If, for example, we apply afunction of type {S; — T;}ics to aterm
of type U, then condition (3) states that there existsaunique z € I such that S, isaminimal
element of the set {S; | U < S;}, i.e. S, best approximates U and the zt" branch will be
chosen. Hence, this condition deals with the problem of multiple inheritance. It assures that
there will be no ambiguity in the selection of the branch.

Terms: termsare built up from variables by an operator of abstraction and one of application:

M = z|Xe(My:S1=>T,...,My:S, =T,) | Mi M-,

wheren > 1and S,,T,...,S,,T, aretypes. Variables are not indexed by types, because
in aterm for an overloaded function such as

)\.Z'(Ml 1Sy :>T1,...,MnZSnZ>Tn),

the variable = should be indexed by different types. Thus indexing is avoided and in the
typing rules typing contexts are introduced. A contextl is afinite set of typing assumptions

x1:Th,...,x, : T, with no variable appearing twice.
Type system: the following rules define the typing-relation between terms and types.
x:Tkrax:T
rz:Sv+M:U, --- Ie:S,+-M,:U,

rk )\x(MZ 0 S = Ti)ie{l,...,n} : {Sl — Ti}ie{l,...,n}
whereU; < T; holdsforal i € {1,...,n}, and

TFMN:T;

WhereSj = minieI{Si | S < Sz} holds.

Reduction: when we apply an overloaded function to an argument, the argument type selects
the branch of the overloaded function which will be executed. This has to be formally ex-
pressed by the reduction rules of the system. Since the argument of an application may be an
open term, reduction will depend on atyping context I'. With induction on the term structure
we simultaneously define the notion of reductiorand the termsin normal form

1. We have the following notion of reduction
(C) Let T + )\x(]\/[l 2 S = Ti)ie{l,...,n} : {Sl — Ti}ie{l,...,n} andT" - N : S,
where S; = min;er{S; | S < S;}. If N isin closed normal form with respect to T" or
{Sl | 1e€1,5; < Sj} = {Sj},then

Ax(M; : S; = T;)icr N vp MJ[.Z’ = NJ,

where M [z := N|] denotesthe substitution of = in M; by N. Then therearerulesfor the
context closure: letT' = M : {S; — T;}ier, T N : S and if thereexistsani € T with
S < 5;, then
M > M’ Nop N’
MNv> M'N MNv>p MN'



A Semantics for \} : a Calculus with Overloading and Late-binding 531

str-

LetT F Ax(M; : S; = Ty)ier : {Si = Ts}ier, then

M; >r g5, M

2. A term M isin normal formwith respect to T', if there does not exist aterm IV such that
M >r N.
In the sequel, we will consider only the stratified subsystem AL} of A{}. This calculus
emerges from At} by restricting the subtype relation on the types. First, we introduce the
function ranky on the pretypes by:

1. ranky(4;) =0,
2. ranky ({S; — T;}icr) = max{rankx(S;) + 1,rankx(T;) | i € I}.

With this function we define a new subtyping relation <~ by adding the condition
rankx ({S; — T;}jes) < rankx({U; — V;}icr) to the subtyping rule. We call S a strict
subtypeof T'if S <~ T holds. Now, !} isdefined by replacing < with <~ in thetyping and

reduction rules of A1}, Furthermore, in the consistency conditions for good type formation
we have to add

2. S; < SjimpliesT; <™ Tjforadli,jel.

3 Semantics

According to Castagna [5] the construction of amodel for AU} poses the following problems:
preorder, type dependent computation, late binding and impredicativity.

e Preorder as we have seen, the subtyping relation of At} is a preorder but not an order
relation. If S < S holds, thenwehave {S —» T} < {S —» 7,5 —» T} aswell as
{S=>1T,5" - T} <{S — T}. Thesetwo types are completely interchangeable from
a semantic point of view. Therefore, both types should have the same interpretation, and
the subtyping relation hasto be modelled by an order relation on the interpretations of the
types.

Type-dependent computatiotie types of the terms determine the result of a computa-
tion. For this reason the interpretation of an overloaded function must not only take the
interpretation of the value of its argument as input but also the interpretation of its argu-
ment type. Therefore the semantics of an overloaded function type must take into account
the interpretations of the argument types of the functionsit consists of. Because we work
in a calculus with subtyping, equally all the interpretations of subtypes of the argument
types have to be regarded.

Late binding the choice of the branch to be executed of an overloaded function depends
on the run-time types of its arguments and not on the types at compile time. Hence the
branch to be executed cannot be chosen at compile time, meaning in the translation of the
terms. To determine the value of an overloaded application, first the interpretation of its
argument needs to be evaluated in order to know its run-time type.

o Impredicativity the type system of At} isnot stratified. This can be seen in the following
example: we know that {{T" - T} — T,T — T} isasubtypeof {T" — T}, but
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{T — T} isastrict occurrenceof {{T' - T} — T,T — T'}. Henceaterm M of the
type {{T - T} - T,T — T} may be applied to any term which is of a subtype of
{T — T}, and therefore M may be applied to itself, as M is of asubtypeof {T" — T'}.
The consequenceis that it is not possible to give a semantics for the types by induction
on the type-structure, as, in order to give the interpretation of an overloaded type, we
need to know the interpretations of the subtypes of its argument types. Therefore the
interpretation of thetype {{T' —» T} —» T, T — T} refersto itself.

In Castagna [4] and Castagna, Ghelli and Longo [6] the calculus A& — early is introduced.
It is a A-calculus with overloading and subtyping, but without late-binding. For stratified
subsystems of this calculus a category-theoretical semantics is presented which focuses on
the problems stemming from the preorder on the types and the type-depended computation.

The problem of the preorder on the types is solved by a syntactic construction called
type completion. Intuitively, the completion of an overloaded type is formed by adding
al subsumed types. Hence two equivalent types will be transformed by completion to es-
sentially the same type. For example the completion of {S — T'} will be something like
{S—=T,5 - T,S —=T,...},whereS;, S, ...aredl (infinitely many) subtypesof S.

The problem of type depended computation is handled by interpreting overloaded types
as product types. If A isatype and for every € A we know that B, is atype, then the
product typeIl,c 4 B, consists of al functions f which map an element = of A to an element
f(z) of B,. Now semantic codes for types are introduced to define the interpretation of an
overloaded type asindexed product. Theinterpretation of thetype {S; — 71, Ss — T>} will
be the product type consisting of functions f mapping a code d for a subtype U of S; or S,
toafunction f(d) : S, — Ty, if U sdlectsthe n-th branch of {S; — T1,S> — T>}. Hence
an overloaded function Az(M; : S; = Ty, My : Sy = Ts) of type {S; — T1,S2 — T»}
will be interpreted by afunction f which is defined for every code d for atype U subtype of
Sy or S, in the following way:

£(d) = Az.[M;] if U selectsthe first branch,
| Az.[M:] if U selectsthe second branch.

In A& — early an overloaded application demands an explicit coercion of its arguments.
Hence the types of the arguments of overloaded functions are ‘frozen’, and the same goes
for compile-time and run-time. Therefore, the problems of late-binding are avoided. Since
only stratified subsystems of A& —early are modelled, thereis no problem of impredicativity,
either. No type occurs strictly in itself, hence the definition of the semantics of atypeis not
self-referential; and the interpretation of the types can be defined by induction on the type
structure.

In the sequel we will present a model construction for )\gfr. Our model is not based on
category-theory; but the construction is performed in atheory of explicit mathematics. Such
systems were first presented by Feferman in [8] and [9]. Systems of explicit mathematics
deal with functions and classes where functions are given by rules for mechanical computing
and classes or types are successively defined or generated from previousones. To handlelate-
binding, it is essential that there are first-order values acting for types. It is one of the main
features of explicit mathematics that types are represented by names. These are first-order
values and hence, we can apply functionsto them. In this sense, computing with typesis pos-
sible in such systems and therefore they are an adequate framework to deal with overloading
and late-binding.
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In our model we also define semantic codes for types, i.e. every type T' of Ag’r is repre-
sented by a natural number 7* in our theory of types and names. T* is called symbol for
the typeT'. In the language of explicit mathematics, we find aterm sub deciding the subtype
relation on the type symbols. Using these constructionswe can solve the problems mentioned

by Castagnain the following way:

e Castagna[4] indicatesthat the key to model late-binding probably consists of interpreting
terms as pairs (interpretation of the computation, symbol for the type). Then the compu-
tational part of the interpretation [A/N] of an application would be something of the
form

(AX.(Po[MD[XD) (P2 [N])(Po[N])- 3.1

This remark is the starting point for our construction. We show that interpreting terms
as pairsreadly give asemantics for late-binding. When aterm, interpreted as such a pair,
is used as an argument in an application, its type is explicitly shown and can be used to
compute the final result. Hence this representation enables us to manage late-binding.
We investigate how something of the form of (3.1) can be expressed in theories for types
and names in order to model overloaded functions. As types are represented by names
in explicit mathematics, we do not need a second-order quantifier asin (3.1) and we can
directly employ the symbol p, [ V] for the type of the argument to select the best matching
branch.

e In our model, types will be interpreted as classes. Using join types (digoint unions) we
can perform a kind of completion process on the types, so that the subtype relation can
be interpreted by the standard subclass relation. Since classes in explicit mathematics are
extensional in the usual set theoretic sense, this relation is really an order and not just a
preorder.

An overloaded function typeisinterpreted as the class of functionsthat map an element of
the domain of a branch into the range of that branch, for every branch of the overloaded
function type. As the subtype relation is decidable and since an overloaded function
consists only of finitely many branches, there exists a function typap such that for two

types {S; — T;}icr and S of AL with S; = min;c;{S; | S <~ S;} we have

str

typap({S; = Ti}icr, S™) = (5]

J?

T;).
This means that typap yields symbols for the domain and the range of the branch to be

selected. With this term we define the computational part f of the interpretation of a/\it}r
function M := A\z(M; : S; = T, Ms : Sy = T») such that:

_ J [Mi[z:= NJ] if typap(p1[M],p1[N]) = (ST, T7),
FIND = { (Mol = N]) if typap(pa [M]. p1[N]) = (S5, T5).

By means of the remark about late-binding, we know that p; [M] and p1[V] are symbols
for the types of M, N respectively. This demonstrates how types will affect the result of
computations.

We are not able to deal with the problem of impredicativity. For that reason we consider
only the stratified version AU of AL}, The stratification of the type systems allows us to

str

define the semantics of the types by induction on the type structure.



534 A Semanticsfor A} : a Calculus with Overloadi ng and L ate-binding

str-

4 Thetheory EETJ + (Tot) + (F-Iy)

In this section we present the theory EETJ + (Tot) + (F-Iy) of explicit mathematics with
elementary comprehension and join as basic type existence axioms. Furthermore, in this
system, term application istotal and we have full induction on the natural numbers.

We will not employ Feferman’s original formalization of EETJ + (Tot) + (F-ly); but we
will treat it asatheory of typesand names as developedin Jager [16]. Thelanguage L£; istwo-
sorted with individual variablesa, b, ¢, f,g,m, x,y, z, ... and type variablesA, B, C, X,
Y, Z,.... Additionaly, £; includes the following individual constantsk, s (combinators),
P, Po, P1 (pairing), O (zero), sy (successor), pn (predecessor), dy (definition by cases on
natural numbers), for every natural number e a constant c. (elementary comprehension) and
j (join). L; has the binary function symbol - for term application. In £; we have the unary
relation symbol N (natural number) aswell as binary relation symbols =, € and i (naming).

Theindividual termsr, s, ¢, . . . of £; areinductively defined by closing individual variables
and constants against application. We will drop - and only write (st) or st instead of (s - t)
and we usually omit parenthesis with the implicit assumption that - associates to the left,
i.e. rst stands for ((r - s) - t). We use (to,t1) for ptot;. The atomic formulas of £, are
the formulas N (s), (s = t), (s € A), (A = B) and (s, A), where N(s) saysthat s isa
natural number and the formula R(s, A) is used to express that the individual s represents
thetype A orisanameof A. TheformulasF, G, H, . .. of L; are generated from the atomic
formulas by closing under negations, digunctions, conjunctions and quantification in both
sorts. A formula F' of £; is caled elementaryif the relation symbol $ does not occur in F’
and F' does not contain bound type variables. The following table contains a useful list of
abbreviations:

te N = N(b),
Jze AF = dz.(zre ANF),
Vee AF = Ve(x€e A F),
(f:A—>B) = VeeAfzeB,
ACB = VrxeAzxeB,
s€t = JY.R(t,Y)AseY),
sCt = AX,Y R, X)ARELY)AX CY),
R(s) = IX.R(s,X).

Now we are ready to state the axioms of the theory EETJ + (Tot) + (F-ly). The underlying
logicis classical first-order logic with equality. Hence, the remaining logical connectivesare
defined as usual. The non-logical axioms can be divided into the following four groups.

I. Applicative axioms. These axioms formalize that the individuals form a combinatory al-
gebra, that we have pairing and projection and the usual closure conditions on the natural
numbers as well as definition by numerical cases. This first-order part corresponds to the
theory TON of Jager and Strahm [19].

Combinatory algebra

(D) kzy = =x.
(2) szyz = zz2(yz).
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Pairing and projection
) po(z,y) =z Api(z,y) =y.
Natural numbers

(4 0€ NAVz € Nsyz € N.
(5) Vz € N.(syz Z0ApN(sSnz) = z).
6)Vz € N(z #0 — pn(snz) € N Asn(pNT) = ).

Definition by cases on natural numbers

(MNMue NAveENANu=v—dyzyuv = .
B ue NAveENAu#v—dyzyuv =y.

It is standard work in combinatory logic that with the axioms (1) and (2) lambda abstraction
can be defined and a recursion theorem can be proven (cf. [1, 8, 18]).

DEFINITION 4.1

We define \ abstraction by:
Ar.x = skk,
Azt = ki, if ¢ € FV(t),
Ax.(rs) = s(\x.r)(Ax.s), otherwise.

Thisdefinition of A-abstraction is compatiblewith substitution, but the totality of the applica-
tionis needed to makeit work. Inapartia setting a more complex definition of \ abstraction
would be required and it would behave very badly as far as substitution in \ expressionsis
concerned (cf. [23]).

THEOREM 4.2
(Recursion theorem) Thereis a closed term rec of £; such that:

Vfrecf = f(recf).

Il. Explicit representation and extensionality. The relation & acts as a naming relation be-
tween objects and types, i.e. (s, A) saysthat s isaname of thetype A. While the represen-
tation of types by their namesisintensional, the types themselves are extensional in the usual
set-theoretical sense.

Extensionality
(EXT) Vz.(r€ A+ 2x€B)—> A=B.

The axioms about explicit representation state that every type has a name (E.1) and that
there are no homonyms (E.2).

Explicit representation
(E.1) Fz.R(z,A).
(E2) R(a,B)AR(a,C) - B=C.
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I1I. Basic type existence axioms. [norder to build types, there exists the principle of elemen-
tary comprehension. Let F'[z, i, Z] be an elementary formulaof £, with Gddelnumber e for
any fixed Godelnumbering, then we have the following axioms:

Elementary comprehension
(ECA.1) 3IXVa.(z € X < Flz,d, B)).

(ECA.2) R(b,B) AVz.(x € A & Flz,d,B]) = R(c.(@,b), A).

Besides elementary comprehension, we can also make use of the type building axiom for
join. Let uswrite A = X(B, f) for the statement

Ve.(x € A & x = (pox,p1z) A pox € B A AX.(R(f(poz), X) A p1z € X)),

i.e. Aisthedigoint sumover al z € B of thetypesnamed by fx. Now the (uniform) axiom
of join hastheform

Join
(J) R(a,A) AVx € AFYR(fz,Y) — IZ.(R((a, f),Z) NZ = Z(A, [)).

IV. Formula induction on the natural numbers. Our theory enjoys full induction on the
natural numbers:

Formula inductionon N
(F-Iy) F(0) AVz € N.(F(z) —» F(syz)) = Yz € N.F(x),

where F' isan arbitrary formulaof L;.

This induction principle allows us to represent every primitive recursive function and re-
lation as a closed term of £;. 1 stands for the term s 0 and we let < denote the usua
‘less than’ relation on the natural numbers. We will need to code finite sequences of natu-

ral numbers. Let (z4,...,z,) be the natural number which codes the sequence =, ..., z,
in any fixed coding. () is the empty sequence. There exists a projection function = so
that wi(zy,...,zi,...,z,) = z; for al natural numbers z,,...,z;,...,x,. We suppose

that our coding satisfies the following property: if a; < a;, then (a1,...,a},...,a,) <
(a1,-..,a;,-..,a,) holds.

Since the totality of the application adds nothing to the proof-theoretic strength of our sys-
tem, EETJ + (Tot) + (F-In) is proof-theoretically equivalent to Martin-Lof’s type theory
with one universe ML; and D, the theory of non-iterated positive arithmetical inductive
definitions where only the fixed-point property is asserted [10]. There are simple models of
EETJ + (Tot) + (F-In). The applicative part can be interpreted in a standard way by a for-
malized total term model of TON [19]. For the basic type existence axioms, codes for classes
can be inductively generated and simultaneously a membership relation can be generated to
satisfy elementary comprehension and join (actually one generates the element relation and
its complement simultaneously). Only the fixed point property of this inductive definition
is needed to establish a model, whereas minimality is not necessary [21]. Formalizing this
procedurein ID, yieldsamodel for EETJ + (Tot) + (F-In). More on inductive model con-
structions for systems of explicit mathematics can be found in [20].
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5 Embedding A into explicit mathematics

str

In this section we carry out the embedding of Ag} into the theory EETJ + (Tot) + (F-In)
of explicit mathematics. First, we represent each pretype T of )\gr by a natural number T,
which will be called symbol for the pretyp&'. We presume that there exists a term asub
deciding the subtype relation on the symbols for atomic pretypes. Using this term we can
define terms ptyp, sub and sub™— as such that ptyp decides whether a natural number is a
symbol for a pretype and sub, sub— model the subtyperelations < and <, respectively, on
the pretype symbols.

We define the class OTS of al symbols for types of Ait}r with a well-ordering < on it.
Since we consider only a stratified type system, this can be done to such an extent that if a
representsthe type {S; — T }ier and b isasymbol for a strict subtype of any S; or T3, then
b < a holds. Therefore, it is possible to define by recursion aterm type in such away that

applying this term to the symbol of any Ait}r type T yields aname for its corresponding type
in the system of explicit mathematics. Thistypewill contain all the computational aspects of
the interpretations of Al termswith type T'. Then we can define the semantics for atype T’

str
of Ait}r asthe disjoint union of all classes type(S*) for strict subtypes S of T'.

The interpretation of a Ag} term M is a pair in £, consisting of the interpretation of
the computational aspect of M and the symbol for its type. Hence, the type information is
explicitly shown and can be used to model overloading and late-binding. To do so, we define
aterm typap which computes out of the symbolsa, b for types{S; — T;};cr and S theterm
(S7,T7)suchthat S; = min;er{S;|S <~ S;} holds. Inother words typap can be employed
to select the best matching branch of an overloaded function. Hence, it allows usto give the
semantics for overloaded function terms of /\it}r using definition by cases on natural numbers.
We prove the soundness of our interpretation with respect to subtyping, type-checking and
reductions.

First, we introduce a trandation * from pretypes of Ait}r to £, terms. If T is a pretype,

then its type symbol™ is defined as follows: let Ay, A,, ... beany fixed enumeration of all
atomic types of AL} then we set Ay = (0,4) and

str

(St = Th,... S = T} = (1,(S5, T}, ..., (S5, T5)).

There exists a closed individual term rank of £;, so that if 1" is a pretype of Ait}r, then
EETJ + (Tot) + (F-Iy) F rank(T*) =n <= rankx(T) =n.

We assume that thereis aclosed individual term asub available, which adequately represents
the subtype relation on the atomic type symbols, i.e.

1. EETJ + (Tot) + (F-In) - Vz,y € N.(asub(z,y) = 0V asub(z,y) = 1).

2.1f S, T are pretypesof A}, then EETJ + (Tot) + (F-Iy) F asub(S*,T*) = 1 if and only

if S <TandS, T areatomic.

3. EETJ + (Tot) + (F-Iy) F Va,y,2z € N.(asub(z,y) = 1 Aasub(y,z) =1 —
asub(z, z) = 1).

We find aclosed individual term ptyp which decides, whether anatural number n isasymbol
for a pretype. If n is of the form (0, 7), then ptyp(n) is simply asub(n,n). Otherwise
ptyp(n) isevaluated using primitive recursion according to the definition of the * trandlation.
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Using the terms asub, ptyp and rank we define by primitive recursion two closed individ-
ua terms sub and sub—, so that these terms properly represent the subtype relations < and
<, respectively, on the symbolsfor pretypes.

LEMMA 5.1
Let S, T be pretypes of Am

1.Vx,y € N.(sub(z,y) = 0Vsub(z,y) = 1),

2.Vz,y € N.(sub™(z,y) =0V sub™(z,y) = 1),

3. EETJ + (Tot) + (F-In) F sub(S*,T*) = 1if and only if S < T isderivablein )\m,

4. EETJ + (Tot) + (F-ly) - sub=(S*,T*) = 1if and only if S <~ T isderivablein AL} .

Thereis an elementary £, formula F'(a) expressing the fact that the type represented by the
symbol a satisfies the consistency conditions on good type formation. Hence, we can define
aclass OTS consisting of al symbols for Am types. Since elementary comprehension is
uniform, there are closed individual £; terms domain and range satisfying the following
property: assume {S; — T;}cs is an overloaded function type of Am and a isits symbol.
Then domain(a) is a name for the class containing all symbolsz € OTS for which there
isani € I such that sub—(x,S}) = 1 holds. The term range(a) represents the class
consisting of the symbolsz € OTS where z isasymbol of atypeV <~ T; forani € I.
That isz € domain(a) denotes a strict subtype of an S; and = € range(a) is a symbol for
a strict subtype of a T; for i € I. Using the rank function, we find a primitive recursive
well-ordering < on the type symbols so that the next lemma holds.

LEMMA 5.2
EETJ + (Tot) + (F-In) proves:

1.a € OTS Ab € domain(a) = b < a,
2.a € OTSAb € range(a) = b < a,

3.Vz € OTS.(Vy € OTS.(y < z — F(y)) — F(x)) — Vo € OTS.F(x), for arbitrary
formulas F' of L;.

Since the subtype relation on the type symbolsis decidable, i.e. we havethe £; term sub™ at
our disposal, wefind aclosed individual term typap of £; selecting the best matching branch

in an application. Assume {S; — T;}icr and S aretypes of AL Thenwe have

str*

typap({S; = Ti}ie;, S™) = (57, T7),

if S; = min;er{S; | S <™ Si}. Weset typap({S; — Ti}jc;,S*) = 0, if suchan S; does
not exist. Hence, typap({S; — Ti}jc;, S*) = (S5, T;) means, thatif ax!} term M of type

Jjrg str
{S; = T;}icrisappliedto a)\gr term NV of type S, then the ;" branch of M will be applied

to V. Asaresult of this S is best approximated by S;.

We assume that there is term tg which assigns to each symbol for an atomic type of Am
the name of its corresponding type in explicit mathematics. If, for example, we have just one

atomic typein /\it},, consisting exactly of the natural numbers, then its symbol is (0, 1) and its

assigned typeis {a | N(a)}. If t isaname for this type, then we can choose tg := Az.t. If
there are two symbols a, b with wla = 0 and 7w1b = 0 and sub(a, b) = 1 (e.g. symbolsfor
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atomictypes S, T of Ait}r with S < T), thentg hasto satisfy tg(a) C tg(b). Thismeansthat
tg hasto respect the subtype hierarchy on the type symbols given by sub. With reference to

the recursion theorem we define a closed individual term type of £; satisfying

tg m, if lm =0,

typem = { to typem, ifwlm=1,

wheretg type m isanamefor

{f | Va € domain(m).Vz € type(a).
(p1(f(w,a)) € range(m) A po(f(z,a)) € p1(f(z,a)) A
sub™ (py(f(z,)), m2(typap(m, a))) = 1)}.

Thistype depends on the terms type and m. Sincein explicit mathematics the representation
of types by namesis uniform in the parameters of the types, there exists aterm to such that
to type m isaname for the abovetype.

Hence, if A isan atomic type, then type(A*) isaname for its corresponding type defined
by tg. If we are given an overloaded type {S; — T }icr, then type({S; — T3} ;) contains
al functions f to such an extent that for every type S of Ag’r, every i € I and every term
z of £y with S < S; and z € type(S*) we obtain po(f(z,S5*)) € p1(f(z,S*)) and
p1(f(z,S*)) denotes a strict subtype of T, where T = w2(typap({S; — Ti}ics, S*)),
i.e Sj = miniE]{Si | S <~ Sl}

In this definition of type, there is a kind of type completion built in. Assume m is a
symbol for an overloaded function type {S — T'} and f € type(m). Then f(z,a) is
defined for al a € domain(m) and for al = € type(a). Since domain(m) contains all
symbols Sy, S5, ... for strict subtypes of .S, the term type(m) representsin a sense the type
{§=>T,5 - T,5 —T,...}. Inthisway, we make use of aform of type completion to
handle the problem of the preorder on the types.

Using Lemma 5.2 we can prove that for every type symbol m € OTS the term type(m)
represents a type in explicit mathematics, meaning Vm € OTS.R(type(m)). These types
satisfy the following subtype property.

LEMMA 5.3
EETJ + (Tot) + (F-In) proves:

a,b € OTS Asub™(a,b) =1 — type(a) C type(b).

Now, we define a closed individual term type, of £;, so that for al a € OTS we have
R(typez(a)) and

(f,m) € typea(a) <> m € OTS Asub™(m,a) = 1 A f € type(m).

The following lemma about subtyping is just a corollary of the definition of the £; term
types.

LEMMA 5.4
EETJ + (Tot) + (F-In) proves:

a,b € OTS Asub™(a,b) = 1 — typea(a) C typez(b).

With the £, term type; we define the interpretation of Ag’r types as follows.
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DEFINITION 5.5 ({Interpretation [T] of aAit}T typeT)
If Tisatypeof A }  then [T isthe type represented by typea (7).

str1

As an immediate consequence of this definition and the previous lemmas about subtyping,
we obtain the soundness of our interpretation with respect to subtyping.

THEOREM 5.6
Let S, T betypesof Ait}r with S <~ T, then

EETJ + (Tot) + (F-In) - [S] C [T].
Terms of )\it}r will be interpreted as ordered pairs, where the first component models the
computational aspect of the term and the second component is a symbol for the type of
the term. To define the semantics for AL} terms we need an injective trandation” from the

str
variables of Ait}r to the individual variables of £;. Then the computational part of a A'}

str

term Az.(M; : S; = T;):ec1 can beinterpreted by a function f as such that if typap({S; —
Ti}ier,p1y) = (S7,T7) holds, then f satisfies

fly) = (A&.[M;])y.

Such a function exists, because an overloaded function is composed only of finitely many
branches and we have the £; term typap available, which selects the best matching branch.
An application of two £, terms M N is simply modelled by applying the function po[M] to
[N].

DEFINITION 5.7 (Interpretation [A/] of axll term M)

str

We define [M] by induction on the term structure:
1. M=z [M]:=3.

2.M = )\x(]\/[l 1S = Ti)ie{l,...,n}: [[M]] = (f, {Sl — Ti}:e{l,...,n})’ Wheref is
defined as follows:

(Az.[M1])y, typap({Si = Ti}ic(y .y P1y) = (ST, TT),

fly):=4q
(Az.[Mn])y, typap({Si = Ti}icr  nyoP1y) = (S5, 1)

3. M = M, M,: [M] is defined as po[ M, ][ M-].

Employing definition by cases on natural numberswe can combine the interpretations of the
branches of a/\it}r term M defined by A abstraction to one overloaded function which serves
astheinterpretation of M. Thisdefinition by casesis evaluated using the typap function and
the type information which is shown in M for each branch.

Before we can prove two of our main results, soundness of our interpretation with respect
to type-checking and with respect to reductions, we haveto mention the following preparatory

lemma
LEMMA 5.8

If M, N areterms of Al and P[z := ()] denotes the substitution of x in P by @ for both

str
Ag’r termsand £, terms, then EETJ + (Tot) + (F-Iy) proves:

[M][z := [N]] = [M[z := N]].
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ProoF. The proof proceeds by induction on the term structure of M. The only critical case
iswhen M is defined by A abstraction. There, totality in our system of explicit mathematics
isessential since it guaranteesthat substitution is compatible with \ abstraction. [ |

We define the interpretation [T'] of acontext zy : T, ..., 2, : T, @
[z1] € [TA] A .- A zn] € [Th]-

Our interpretation is sound with respect to type checking.
THEOREM 5.9
IfT'F M : T holdsin )\g’r, thenin EETJ + (Tot) + (F-ly) one can prove:
[T]— [M] e [T].
PROOF. The proof proceedsby inductiononT' - M : T,
1. M = z: trivid.

2.M = )\JZ(Ml S = Ti)iEI: let f = po[[M]]. T is of the form {Sl — Ti}iEI-
Therefore, we haveto show (f, T) € typey(T*). Thatis f € type(T*),i.e.

Va € domain(T*).Vy € type(a).
(P1(f(y,a)) € range(T™) Apo(f(y,a)) € P1(f(y,a)) A (5.1)
sub™ (p1(f(y, a)), m2(typap(T™,a))) = 1).

Choose @ € domain(T*), y € type(a) and let the natural number j be such that
typap(T™,a) = (S7,T7), thenwe obtain f(y,a) = (A&.[M;])(y,a) by the definition

1277
of f. With the induction hypothesiswe get

[CIA [2] € [S5] = [M;] € [Vi],

for atype V; <~ T;. From Lemma 5.4 we infer typex(V;") C typex(7}). Our
choice of a, y and j yields (y,a) € [S;] and we conclude f(y,a) € typex(T}).
That is po(f(y,a)) € type(pi(f(y,a))) and pi(f(y,a)) € OTS as well as
sub™(p1(f(y,a)),T;) = 1. Therefore, we conclude that (5.1) holds.

3. M = M;M,: in this case there are types {S; — T;}icr and S of Ag} andj € I,

such that in Ag’r onecan derivel’ - My : {S; = T;}licrand T - M, : S, where
S; =min;er{S; | S <~ S;} and T = T. By the induction hypothesis we know

[T] = [Mi] € [{Si = Ti}tierl, (5.2

[T] — [M-] € [S] (5.3
From (5.3) weinfer po[M-] € type(p1[M-]) aswell as

sub™ (pl[[Mg]],S*) =1. (54)
Let & besuch that typap({S: — Ti}cr, p1[Mz]) = (Si, T};). Using (5.2) we get
Po(po[M:1][M2]) € p1(po[Mi][M-])

and sub~ (p1(po[M1][M-]), T}) = 1. From (5.4) and the consistency conditions on
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good type formation we obtain sub™ (7", 7}"). Therefore, we conclude by Lemma 5.4
that po[M;][M-] € [T}] holds. ||

In the sequel we will prove the soundness of our model construction with respect to reduc-
tions. In contrast to the semantics for A& — early presented in Castagna, Ghelli and Longo
[6], our interpretation of aterm does not change, when the term is reduced. We can show that

if aterm M reducesin A} toaterm N, then the interpretations of A and N are equal.

str

THEOREM 5.10
If P,Q are well-typed AL} terms and P o1 , then the following is provable in EETJ +
(TOt) + (F-|N):

[T] = [P] = [Q].

PROOF. By induction on>. Thecritical caseis:

P := M- N, wherewehave M = \e(M; : S; = Ti)ier, I' W N : S aswell as
S; =min;er{S;| S <~ S;}. Furthermore, {S;|i € I,S; <~ S;} = {S,} or N isinclosed
normal form. Assuming that [I'] holds, then we obtain in both cases

typap({Si = Ti}ier, PIN]) = (S7,T7).
Therefore, we conclude

[P] = po[M][N] = (Az.[M;]IN] = [M;][z := [N]) = [M;[2 := N]] = [Q]-

6 Lossof information

Castagna[4] indicated arelationship between modelling late-binding and the problem of loss
of information. Thisis a problem in type-theoretic research on object-oriented programming
introduced in [2]. It can be described in the following way. We assume we are given a /\it},,
function Az(z : T = T) of type {T — T}, i.e. the identity function on the type T'. If we
apply thisfunctionto aterm N of type S, where S isadtrict subtype of 7', then we can only
infer that Az(x : T = T)N hastype T (rather than S). Thus, in the application we have
lost some information. For this reason, we no longer know that NV is of type S, after having
applied the identity function to it.

Usually, the solution to this problem isto use a second-order calculuswhich was originally
proposed in Cardelli and Wegner [3]. Theidentity functionis no longer considered to take an
argument of type smaller than or equal to 7" and to return aresult of type T'. Instead, itisa
function which takes any argument smaller than or equal to 7" and returns aresult of the same
type as that of the argument, i.e. it takes an argument of type X <~ T and returnsaresult of
type X . In asecond-order calculus we can write the type of this function as

VX < T.(X - X).

Recalling Castagna's proposal how a semantics for late-binding might work, we note the
second order quantifier in the expression (3.1). This shows the connection between late-
binding and the problem of loss of information. In semantics for late-binding we have to
deal with functions which take types as arguments. The sameis the casein order to solvethe
problem of loss of information.



A Semantics for \} : a Calculus with Overloadi ng and Late-binding 543

str-

This interplay of late-binding and the loss of information also appears in our semantics.
Let M bethe At} term Ax(z: T = T)oftype{T — T} and N beatermof typeS <~ T.

str

Thenwe still can provein EETJ + (Tot) + (F-ly) that [M N] € [S]. Thus, thereisno loss
of information in our interpretation of AL After having applied the identity function M to

str*

N, wedtill can provethat the interpretation of the result is an element of the interpretation of
thetype S.

We have no loss of information in our semantics because the types of the terms are explic-

itly shown. Hence, in an application the types of the arguments can be employed to derive

the type of the result. First, the type information of the argument types is used to select the
best matching branch. Then, in ALY the type of the result isfixed by the type of this branch.

str

The information of the argument types is lost. Whereas in our model, once the branch to
be executed is chosen, the result type depends only on the types of the arguments and the
computational aspect of the function. Accordingly, the type of the function will not be used
in the computational process except for selecting the branch to be executed. Therefore, al
theinformation is till available.

Of course we do not have appropriate types in our model to expressthat a certain function
has no loss of information. Castagna [4] presents atype system for late-bound overloadingin
which this can be expressed. Our work also is astep towards a better understanding of calculi

combining parametric polymorphism and type dependent computations

7 Conclusion

Overloading, subtyping and late-binding are important features of many object-oriented pro-
gramming languages. Still, there was no interpretation available for A calculi including these

principles. In this paper we presented a semantics for Ait}r, a calculus combining these three
features. Castagna [4] proposed to interpret terms as pairs (computation, type-symbol) in
order to handle late-binding, but he did not give an actual model. Our construction is based
on thisidea and provides an interpretation for overloading, subtyping and late-binding.

The model construction is carried out in a system of explicit mathematics. Types are
represented by names in these theories and names are first-order values. Hence, they can
be used in computations, which is the key to model overloading and late-binding. This paper
provides afirst study on how this feature of explicit mathematics can be used to investigate
principles of object-oriented programming.

Our work shows that theories of types and names are well suited to examine principlesthat
involve computationswith types such as overloading and | ate-binding. We proposeto develop
a system of explicit mathematics which directly supports overloading. This theory should
be proof-theoretically weak, but should also have strong expressive power, [12, 13]. As
noticed in the previous section, there is a strong connection between loss of information and
parametric polymorphism. Since we obtained a solution to the problem of loss of information
for free in our model, we think that explicit mathematicsis also an appropriate framework to
explore parametric polymorphism in the context of late-bound overloading.
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