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Abstract

Propositional modal provability logics like G and Grz have arithmetical inter-
pretations where Op can be read as “formula ¢ is provable in Peano Arith-
metic”. These logics are decidable but are characterised by classes of Kripke
frames which are not first-order definable. By abstracting the aspects common
to their characteristic axioms we define the notion of a formula generation map
F(p) in one propositional variable. We then focus our attention on the prop-
erly displayable subset of all (first-order definable) Sahlqvist modal logics. For
any logic L from this subset, we consider the (provability) logic LF obtained by
the addition of an axiom based upon a formula generation map F(p) so that
LF =L+ F(p). The class of such logics includes G and Grz. By appropriately
modifying the right introduction rules for O, we give (not necessarily cut-free)
display calculi for every such logic. We define the pseudo-displayable subset of
these logics as those whose display calculi enjoy cut-elimination for sequents
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of the form T F ¢ for any formula ¢. We then show that for any provability
logic LF having a conservative tense extension, there is a map f on formulae
such that LF is pseudo-displayable if and only if f maps theorems of LF to the-
orems of the underlying logic L and vice-versa. By using a standard renaming
technique we can guarantee that there is a polynomial-time translation from
LF into L. All proofs are purely syntactic and show the versatility of display
calculi since similar results using traditional Gentzen calculi are not possible
for as broad a range of logics and require further conditions. Our maps gen-
eralise previously known maps from G into K4. An application of our results
gives an O((n.log n)3) translation from the (“second order”) provability logic
Grz into a decidable subset of first-order logic. Since each of our logics L is a
Sahlqvist logic, it is first-order definable, and hence each L has a translation
into first-order logic. Our results therefore show that all pseudo-displayable
logics LF are “essentially first-order” even though their characteristic axiom
may not be first-order definable.

Key-words: provability modal logic, display logic, cut elimination,
many-one reduction

1 Introduction

Background. Display Logic (DL) is a proof-theoretical framework in-
troduced by Belnap [Bel82] that generalises the structural language of
Gentzen’s sequents in a rather abstract way by using multiple complex
structural connectives instead of Gentzen’s comma. The term “display”
comes from the nice property that any occurrence of a structure in a
sequent can be displayed either as the entire antecedent or as the en-
tire succedent of some sequent which is structurally equivalent to the
initial sequent. An important feature of the proof-theoretical frame-
work DL is the existence of a very general cut-elimination theorem
[Bel82]. Indeed, any display calculus satisfying the conditions (C1)-
(C8) [Bel82] enjoys cut-elimination. The generality of DL is witnessed
by the fact that cut-free display calculi have been defined for substruc-
tural logics [Bel82, Bel90, Res98, Gor98], for modal and polymodal logics
[Wan94, Kra96, Wan98a, Wan99, DG99a, DG00a], for intuitionistic and
subintuitionistic logics [Gor95, Wan97, Gor00] and for relation algebras
[Gor97]. Furthermore, numerous enriched versions of sequent calculi can
be easily encoded into display calculi; see e.g. [Min97, Wan98b].
Cut-elimination for a display calculus is established by simply check-



ing that it obeys Belnap’s conditions (C1)-(C8) [Bel82]. In [Wan98a],
such a result is strengthened by proving that any classical modal display
calculus admits a strong normalisation theorem. Another important gen-
eral result about DL is Kracht’s characterisation of properly displayable
tense logics [Kra96]. Roughly speaking, every properly displayable tense
logic is an extension of the polymodal version of tense logic K; obtained
from a Hilbert calculus for classical propositional logic by the addition of
primitive axioms, which are a particular subset of Sahlqvist tense formu-
lae [Sah75]. Conversely, every such extension of K; is properly displayable.
In [Kra96], it is shown that every properly displayable tense logic admits
a display calculus that obeys the conditions (C1)-(C8), and therefore
enjoys cut-elimination, and that every primitive axiom can be encoded
effectively by purely structural rules. In the paper, we restrict ourselves
to monomodal extensions of the modal logic K.

Since every primitive axiom is a Sahlqvist implication, it is first-order
definable; that is, the class of modal frames for which the primitive axiom
is valid is definable by first-order formulae. Consequently, a fortiori,
every modal logic characterized by a class of frames that is not first-
order definable, is not properly displayable. This includes the well-known
provability logics G! and Grz (for Grzegorczyk) which admit important
arithmetical interpretations as “logics of provability” [Sol76] (see also
[Boo93]). At first glance, this seems to contradict the fact that DL
generalizes Gentzen-style calculi since the well-known traditional sequent
and tableau calculi for these logics [SV80, Lei81, SV82, Val83, Fit83,
Avr84, Boo93, Gor99] do enjoy cut-elimination.

Our contribution By abstracting the aspects common to the char-
acteristic axioms for G and Grz, respectively, we define the notion of a
formula generation map F(p) in one propositional variable. Let ¢ be a
modal formula and F(¢) be a formula built from {¢} using =, A, V, =,
and O such that any subformula of the form 0t in F(¢) occurs positively
(when every ¢ = ¢o is written as —¢; V ¢2). Let L be a properly dis-
playable modal logic and LF be the logic obtained from L by adding the
axiom scheme O(F(¢) = ¢) = O¢. Here a logic is understood as a set of
formulae and therefore is exactly a (decision) problem in the usual sense
in complexity theory. That is, as a language viewed as a set of strings
built upon a given alphabet.

L Also called GL (for Gédel and Lb), KW, K4W, PrL.



For any logic LF, we define a display calculus dLF by slightly modifying
the display calculus L for L defined in [Kra96]. Indeed, we appropriately
modify the right introduction for O. When LF has a conservative tense
extension, the proof calculus JLF is sound and complete with respect to
LF and this is not very difficult to show using [Wan94, Kra96]. Since
LF is not necessarily properly displayable (e.g. when LF is G) and since
OLF does not necessarily obey Belnap’s condition C8, cut-elimination in
OLF is not a by-product of [Bel82, Kra96]. We show that (weak) cut-
elimination for JLF is equivalent to the theoremhood-preserving nature
of certain maps defined in the sequel. Since LF is not necessarily properly
displayable, this provides an alternative way to define display calculi for
modal logics: the encoding of the modal Hilbert axioms is done via the
logical introduction rules instead of via structural rules. In a sense, we
have dropped certain working hypotheses from [Kra96] in order to open
new possibilities to define display calculi.

A similar analysis for traditional sequent-style calculi is also given in
the paper. Finally, although our initial motivation is the proof-theoretical
problem of how to define display calculi for non properly displayable
modal logics, we also show that if JLF satisfies (weak) cut elimination,
then there is a polynomial-time transformation from LF into L. See e.g.
[Pap94] for a thorough introduction to complexity theory. Since L itself
can be (cleverly) translated into first-order logic in linear-time, this pro-
vides an alternative method to mechanise deduction in such an LF using
theorem provers for classical logic. Particular cases of our general results
apply to the provability logics G and Grz. Our results therefore show that
all pseudo-displayable logics LF are “essentially first-order” even though
their characteristic axiom may not be first-order definable.

Plan of the paper. In Section 2, we define the class of provability
modal logics studied in the paper. In Section 3, we define display calculi
for the provability logics and show their soundness and completeness. In
Section 4, we give necessary and sufficient conditions to establish that the
display calculi admit a (limited) cut-elimination theorem. Section 5 con-
tains a similar analysis for traditional sequent-style calculi. This paper
is an extended and corrected version of [DG99b].



2 Provability Logics

Given a set PRP = {py,p2,...} of atomic formulae, the formulae ¢ €
FML are inductively defined as follows for p; € PRP:

¢ =L T pi| diAga | 1V | 70 | ¢1= ¢ | O¢.

Standard abbreviations include <, ©: for instance, O¢ = —O-¢. An
occurrence of the subformula v in ¢ is positive (resp. negative) & it is
in the scope of an even [resp. odd] number of negations, where as usual,
every occurrence of ¢ = ¢ is treated as an occurrence of —¢; V ¢s.

The standard Hilbert-style axiomatic calculus K is composed of the
tautologies of the Propositional Calculus (PC), the axiom schema O(p =
q) = (Op = Oq), and the inference rules below:

Modus Ponens: from ¢ and ¢ = 9 infer v
Necessitation: from ¢ infer O¢.
We write ¢ € K to mean that ¢ is a theorem? of K. Similarly, when L is
an extension of K, we write ¢ € L to denote that ¢ is a theorem of L. In
the paper, we refer to the following well-known extensions L of K:

- T is defined as K plus the axiom schema Op = p

- K4 is defined as K plus the axiom schema Op = OOp

- 54 is defined as K4 plus the axiom schema Op = p

- G is defined as K4 plus the axiom schema O(Op = p) = Op

- Grz is defined as S4 plus the axiom schema O(O(p = Op) = p) =

Up.

The logic Grz can also be axiomatised as S4 plus the axiom schema
O(O(p = Op) = p) = p [GHHI7] which came to light in investigations
of the connection between intuitionistic and modal logic (see e.g. [Gol78]).

We write LT [resp. LTF] to denote the extension of L [resp. LF] obtained
by adding the axiom schemata

D°(p=q= (0 p=0q) q=00"q q=0 <q

2That is, there is a finite sequence (@1, ...,d,) such that ¢, = ¢ and for any
i € {1,...,n}, either ¢; is an instance of an axiom schema or ¢; is obtained by
application of a rule of inference to formulae in {¢1,....¢;i—1}.



and the necessitation rule: from ¢ infer O~ ¢. The language is extended
by adding O, and defining &~ ¢ as =0~ —¢. The traditional Kripke se-
mantics for modal logics interpret the modalities O and < using a binary
accessibility relation R, and interpret O~ and &~ using the converse R~1
of R. Thus the modality ¢~ is the “backward existential” modality.

We say that LF has a conservative tense extension E for any for-
mula ¢ € FML which is free of occurrences of 07, ¢ € LF iff ¢ € L*F.
The logics K4, S4, G and Grz are (cofinal subframe) logics that have a
conservative tense extension (see e.g. [Wol99, Chapter 4]).

Following [Kra96], a formula is said to be primitive (for the monomo-
dal language) £ it is of the form ¢ = 1 where both ¢ and 1 are built
using members of PRP U {T} with the help of A, Vv, ¢, and where ¢
contains each atomic proposition at most once. Primitive formulae are a
subset of the class of Sahlqvist formulae [Kra96, Sah75]. In the paper, by
a primitive modal logic, we mean a (mono)modal logic defined from
the modal logic K by adding primitive formulae as axioms.

Example 1 Neither Op = p and Op = OOp are primitive, but their
logically equivalent forms p = ¢p and OCp = Op are both primitive.

Let 0K be the display calculus for the modal logic K defined in [Kra96]
under the name DLM (see Figures 1-4 for its definition). As a conse-
quence of [Kra96, Theorem 16], every primitive modal logic has a sound
and complete display calculus 6L obtained by adding structural rules to
0K that preserve Belnap’s properties (C1)-(C8). We therefore refer to
primitive modal logics as properly displayable modal logics.

By Example 1, the logics T, K4 and S4 are properly displayable. The
traditional axioms for many well-known modal logics are not primitive,
but most have a primitive equivalent [Kra96]. Every properly displayable
modal logic is known to have a display calculus satisfying conditions (C1)-
(C8) [Bel82] and therefore enjoying cut-elimination [Kra96]. In what
follows, we write JL to denote the display calculus for L defined in [Kra96).

A formula generation map F : FML — FML is a function such that

1. there is a formula ¢ containing only one atomic proposition, say p,
and no logical constants, such that for ¢ € FML, F(¢) is obtained
from v by replacing every occurrence of p by ¢

2. no subformula of the form Oy occurs negatively in .

F is also written A\p.E.



The definition of a formula generation map is actually a restricted
form of maps defined in [Avr84]. For instance, no restriction on the
polarity of the occurrences of O is assumed in [Avr84]. For any properly
displayable logic L and for any formula generation map F, we write LF to
denote the logic obtained from L by addition of the schema

O(F(p) = p) = Op (1)

Observe that O(F(q) = q) = Ogq is not a Sahlqvist implication (see e.g.
[BRVO01, Definition 3.51]). Indeed, O(F(q) = q) = Oq can be rewritten
into O(—F(q) V q) = Oq. Recall that ¢; = ¢» is a Sahlqvist formula iff
¢9 is positive (all the occurrences of the atomic propositions occur posi-
tively) and ¢ is built up from negative formulae (all the occurrences of
the atomic propositions occur negatively), formulae without occurrences
of atomic propositions and formulae of the form op with o a (possibly
empty) sequence of Os, and p € PRP using only A, V and —=O-. However,
the formula O(=F(q) V q) is not negative and —F(q) V q is not an atomic
proposition. So, O(=F(q)Vq) = Ogq is not a Sahlqvist formula. Of course
it may be possible to find a Sahlqvist formula logically equivalent (in the
basic modal logic X) to it. For instance, this is the case when F(q) = =q
since then, O(F(q) = q)) = Oq is equivalent Oq = Oq, and this has
an equivalent primitive form T = T. However, in numerous cases LF
is not properly displayable. For instance, let F¢ and Fg., be Ap.Op and
Ap.O(p = Op), respectively. Then, by definition G = K4F; and Grz =
S4Fq.,. Since Fg and Fgp, are modal axioms that correspond to essential
second-order conditions on frames (see e.g. [Bo0o93]), the logics G and Grz
are not primitive.

3 Display Calculi for Provability Logics

In the rest of this section, L is a properly displayable modal logic, F is
a formula generation map and LF is the corresponding extension of L by
the axiom schema (1).

Let us first briefly recall the main features of the modal display cal-
culus 0L as defined in [Wan94, Kra96]. On the structural side, we have
structural connectives * (unary), o (binary), / (nullary) and e (unary). A
structure X € struc(dL) is defined using the BNF grammar below where
¢ € FML:

Xu=¢ | «X | Xj0Xy | I | X
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Figure 1: Fundamental logical axioms and cut rule

XoYHFZ XoYF2Z XFYoZ XFYoZ

XFZoxY YH*XoZ XoxZFY xYoXF Z

*XFY X F %Y *xXFY XFE*xx*xY X+ oY

*xY - X Y F %X XFY XFY XY

Figure 2: Display postulates

We use formula variables like ¢, 1, ¢ to stand for formulae, and use
structure variables like X, Y and Z to stand for arbitrary structures from
struc(dL).

A sequent is defined as a pair of structures of the form X - Y with
X the antecedent and Y the succedent. The rules of dL are presented in
Figures 1-4. Additional structural rules satisfying the conditions (C1)-
(C8) are also needed but their presentation is omitted here since they
depend on the primitive axioms upon which L is defined (see [Kra96] for
details). For instance, the structural rule corresponding to the primitive
formula (Op A ©q) = O(p A <q) V<O(qA Op) V<O(p Aqg) known as .3 is
the following [Kra96]:

xox(XoxexY)-Z xex(YoxexX)FZ xex(XoY)FZ
xexXoxexY Z

Observe that a primitive formula can generate more than one structural
rule [Kra96]. In all proofs that follow we omit the cases for the structural
rules obtained from the primitive axioms of L since they pose no difficulty.

The display postulates (reversible rules) in Figure 2 deal with the
manipulation of structural connectives.

In any structure Z, the structure X occurs negatively [resp. positively]
£ X occurs in the scope of an odd number [resp. an even number] of
occurrences of * [Bel82]. In a sequent X - Y, an occurrence of Z is an
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xF=¢ "7 Sgrx OF) xovrgne O gagrx M0

M("V) M( )

XFE ¢V SV XoY
pFX XF oo
agFex 0 xrmg O

Figure 3: Operational rules

antecedent part [resp. succedent part] E it occurs positively in X [resp.
negatively in Y] or it occurs negatively in Y [resp. positively in X| [Bel82].
Two sequents X - Y and X' F Y’ are said to be structurally equivalent &
there is derivation of the first sequent from the second (and vice-versa)
using only the display postulates defined in Figure 2.

Theorem 2 (Display Theorem [Bel82]) For every sequent X + Y and
every antecedent [resp. succedent| part Z of X - Y, there is a structurally
equivalent sequent Z - Y’ [resp. X’ F Z] that has Z (alone) as its antecedent
[resp. succedent]. Z is said to be displayed in Z - Y’ [resp. X' F Z].

Theorem 3 (Soundness and Completeness [Kra96]) For all ¢ € FML,
I F ¢ has a cut-free derivation in 0L iff ¢ € L.

We shall now define the calculus JLF. Before we give the formal
definition of JLF, we need to introduce an additional notion. Let m
be a map m : FML x {0,1} — struc(dL) that transforms certain logical
connectives into structural connectives, inductively defined as follows (i €

{0,1}):
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LY (contry)

I-X

orF x (nec)

XH1T
XE %]

XFHZ

Xov iz (Weak)

Zl_XIO(XQOX?,)

(assoc,)

Zl_(X10X2)OX3

Figure 4: Other basic structural rules
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m(p,i) = p for any p € PRP

m(T,i) =T m(L,i) = L

m(g1V 2, 1) = m(¢r, 1) om(da, 1) m(drV ¢2,0) = ¢ V ¢

m(ér A ¢a,1) = = O1 N\ po m(¢p1 A ¢2,0) = m(¢1,0) o m(¢s,0)

m(¢1 = ¢a,1) = *m(¢1,0) om(pz, 1)m(p1 = ¢2,0) = = b1 = 02
m(0¢,i) = O¢ m(=¢,i) = xm(p,1—1i).

The second argument of m merely indicates whether to read the first
argument of m as an antecedent part (i = 0) or as a succedent part
(i = 1). The calculus dLF has the same structures as dL, so struc(dLF) =
struc(JL), and OLF is obtained from 0L by replacing the (- O )-rule from
Figure 3 by the (F Opf) rule below:

X+ o(xm(F(¢),0) 0 ¢)
X+ O¢p

(F Owr)

The (- Ogp)-rules for 6Grz and 0G are respectively:

X o(xO(¢p = Og) o ¢) XF o(xdgo o)
XFO¢ X+0¢

(F Derz) (F Oe)
Observe that at the present stage, there is no need to define m(T,) and
m(L,i) since in (F Og), m(.,0) is applied to F(¢) and F = Ap.¢g is
a formula generation map in which neither L nor T occurs. However,
m(T,i) and m(L,7) are needed for Lemma 12.

The calculus JLF satisfies conditions (C2)-(C7). In particular, 4G
satisfies the conditions (C1)-(C7). The (F Og)-rule in 6G is similar to
the GLR rule in [SV82] and to the G-rule in [Rau83] (see also [Avr84]).
Analogously, the (F Ogp,)-rule in 6Grz is similar to the (GRZc) rule in
[BG86] and to the (= 0O) rule in [Avr84]. An intuitively obvious way
to understand the (F Opp)-rule is to recall the double nature of the O-
formulae in LF as illustrated by the LF-theorem below:

D¢ < O(F(¢) = ¢).
The rule below would highlight this double nature even more clearly:

X o(F(¢) = ¢)
XF O¢

(F 0’

But when F(¢) & {¢,0¢}, the above rule never satisfies Belnap’s condi-
tion (C1) recalled below, without even mentioning condition (C8):

11



(C1) Each formula which occurs in the premiss of an inference 7 is a
subformula of some formula that occurs in the conclusion of Z.

Instead of the (F O')-rule, we have designed a rule that may satisfy
(C1). Actually, the (- O')-rule can be shown to be admissible (but not
derivable without cut) in JLF thanks to Lemma 4 below:

Lemma 4 The following rules are admissible in JLF:

X ¢V . X ¢ = oo P1 NP EX .
XF d100s "% XFxprog, 24m) GopTx F)
¢ X XF ¢ F(qﬁ)l—X

— ———————— (adm2
worx P X O mEe),0rx mY
Moreover, for each of these rules, if the premiss has a cut-free derivation
in OLF, then the conclusion also has a cut-free derivation in JLF.

Proof The proof of admissibility of the rules (- o), (adml), (o F), (x F)
and (F ) is similar to [Kra96, Lemma 9]%. Admissibility of (adm2) is a
mere consequence of the admissibility of the above rules.

As usual in DL, two formula occurrences in an inference Z are con-
gruent & they occupy similar positions in occurrences of structures
assigned to the same structure variable [Bel82]. Observe that in any
inference of the (F Og)-rule in 4G, the two instances of the occurrences
of O¢ are not congruent since they are not obtained by instantiating a
structure variable but a formula variable, namely ¢.

In what follows, we write

= (dp)
to denote that the sequent s’ is obtained from the sequent s by some
finite number (possibly zero) of applications of display postulates from
Figure 2. The (- Og)-rule from 0L is derivable in JLF as shown below:

XF ep
Xt ¢ (dp) (weak)
m(F(¢),0) 0o eX F ¢ (dp)

X+ o(xm(F(¢),0) 0 ¢)
XFDOg¢

(F Owr)

3Note that these rules are derivable using cut, as shown in [Gor96], but we cannot
use this technique here because we do not know if JLF enjoys cut-elimination.

12



Lemma 5 Sequent ¢ - ¢ is cut-free derivable in JLF for any formula ¢.

The proof of Lemma 5 is by induction on the formation of ¢.
To prove soundness of JLF with respect to LF-theoremhood, we use
the mappings a : struc(dL) — FML and s : struc(0L) — FML below:

a(p) = s(¢) = ¢ for any ¢ € FML

a(I) =7 s(1) = 1

a(*X) £ s(X) s(*X) = a(X)
a(XoY) = a(X)Aa(Y) s(XoY) = s(X)Vs(Y)
a(eX) = OmaX) s(eX) = Os(X)

Theorem 6 If X F Y is derivable in 0LF, then a(X) = s(Y) € L*F.

Proof By induction on the length of the given derivation of X - Y.

By way of example, assume that the bottom-most rule application in
the given derivation is the (- Op) rule. Thus Y is O¢ and the premiss
X - o(xm(F(¢),0) o ¢) of this rule instance has a derivation in JLF. We
therefore have to show that a(X) = O¢ € L*F.

By the induction hypothesis, a(X) = s(e(xm(F(¢),0) o ¢)) € L*F.
That is, a(X) = O(-a(m(F(¢),0)) V ¢) € L*F, which is just a(X) =
O(a(m(F(¢),0)) = ¢) € L*F.

By induction on the size of ¢, one can show that a(m(F(¢),0)) <
F(¢) € K and s(m(F(¢),1)) < F(¢) € K. So, a(X) = O(F(¢) = ¢) € L*F.
Since O(F(¢) = ¢) = Q¢ € LTF, then a(X) = O¢ € LTF.

The maps a and s (for antecedent and succedent) can be found for
instance in [Wan94, Kra96] where they are called 7 and 7. The interest
of a and s is not only in the soundness proof but also in the way the
structural connectives should be interpreted depending on the polarity
of their occurrence (either as antecedent part or as succedent part).

Corollary 7 and Theorem 8 below are the DL versions of Theorem 1
in [Avr84] for Gentzen-style calculi.

Corollary 7 If LF admits a conservative tense extension and I F ¢ is
derivable in JLF, then ¢ € LF.

Theorem 8 If a formula ¢ € LF, then I I ¢ is derivable in JLF.

13



Proof The proof is by induction on the length of the derivation in LF.
Actually, most of the cases have been already proved in [Wan94, Kra96,
Wan98a]. Since O(F(¢) = ¢) = O¢ € LF, it remains to show that

I'+D0(F(¢) = ¢) = B

has a derivation in dLF which is done below.

() R g
m(F(),0) - F(0) oF ¢
F(9) = o1 +m(F(9),0) 0 &
O(F(9) = 0) - o(m(F(6).0) 2 9)
OF@) > 900
L0 =06 )
TFO(F() = 0) = 0

By Lemma 5, F(¢) - F(¢) and ¢ - ¢ are derivable in JLF.

(adm?2)

The proof of Theorem 8 requires uses of the cut rule to simulate appli-
cations of the modus ponens rule in LF. A very important feature of the
proof-theoretical framework DL is the existence of a very general cut-
elimination theorem [Bel82]. Indeed, any display calculus satisfying the
conditions (C2)-(C8) from [Bel82] admits cut-elimination. In [Wan98al,
such a result is strengthened by proving that any classical modal dis-
play calculus defined from [Kra96] for a properly displayable classical
modal logic admits a strong normalisation theorem; that is, the process
of cut-elimination terminates for any sequence of eligible reductions. Un-
fortunately JLF does not satisfy (C8) recalled below (see e.g. [Wan98al):

(C8) If there are inferences Z; and Z, with respective conclusions X F ¢
and ¢ - Y with ¢ principal in both inferences, and if cut is applied
to obtain X - Y, then

— either X Y is identical to one of X - ¢ and ¢ - Y;

— or there is a derivation of X F Y from the premisses of Z; and
75> in which every cut-formula of any application of cut is a
proper subformula of ¢.

14



Specifically, the cut instance shown below does not obey (C8):

X i o(xm(F($).0) 0 9)
XF O¢

'_ !
Fow) ey (0D

X+ oY (cut)

when some formula 1) in m(F(¢), 0) is not a subformula of ¢. For instance,
such cases are easy to find with the display calculi G and 6Grz. Fur-
thermore, to infer X - oY’ from X - e(xm(F(¢),0) o ¢) and ¢ - Y/, no cut
can be used on ® if (C8) has to be satisfied. In the display calculus JLF,
for all the derivations of the sequent X" F Y” from X - e (xm(F(¢),0) 0 ¢),
if a cut with a cut-formula that is not a subformula of ¢ is forbidden in
the derivation, then either X" I Y” contains 1) as the subformula of some
formula/structure?, or X” F Y” contains O¢ as the subformula of some
formula/structure®. So, there is no way to derive X - oY’ in the general
case since neither ¢ nor O¢ are required to occur in it.

In the sequel, we say that LF is pseudo displayable E for any ¢ €
FML, I I ¢ has a derivation in JLF iff I - ¢ has a cut-free derivation in
OLF. “Pseudo” because strong cut-elimination is couched using arbitrary
sequents X F Y rather than sequents of the form I - ¢. For mechanisation,
“pseudo” is sufficient for our needs since we want to check whether ¢ €
LF. The next sections provide a characterization of a class of pseudo
displayable logics and shows that both G and Grz are pseudo displayable.

4 Pseudo Displayable Logics

In this section, L is a properly displayable logic and F is a formula gen-
eration map. Let f : FML x {0,1} — FML be the following map for

f(p,0)=p flp,1) =

T, )ET f(L,d) EL

f(=¢,0) = ~f(0,1) f(=0,1) = ~f(0,0)

F(d1 A2y i) = f(pr i) A f(do,i)  f(d1V d2,i) = fr, i) V f(2,1)
F(d1 = ¢2,1) = f(¢1,0) = f(d2,1) fd1 = ¢2.0) = f(¢p1,1) = f(6h2,0)
£(0.1) = D(£(F(¢),0) = f(¢.1)) f(D¢,0) = Of(¢,0)

4See the introduction rules different from (F Og).
5See the (F Ogp)-rule.
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In f(¢, 1), the index i should be seen as information about the polarity
of ¢ in the translation process as done in [BH94]. The map f is well-
defined because no O occurs negatively in F(p). The definition of the
map f also generalizes the definition of one of the maps from G into K4
defined in [BH94|. The forthcoming Lemma 9 and Lemma 10 state that
the map f belongs to a class of maps that have interesting properties
with respect to LF-theoremhood and L-theoremhood.

Lemma 9 Let f': FML x {0,1} — FML be a map defined as f except
that the clause for defining f(0¢, 1) is replaced by
F'(8¢,1) = B(ws = (1))

where 1)4 is a formula possibly defined from ¢ such that for any ¢ €
FML, ¢, < F(¢) € KF. Then, for any ¢ € FML and any i € {0,1}:

¢ < f'(¢,1) € KF.

The proof of Lemma 9 is quite straightforward via the rule of replace-
ment of equivalents, which is admissible in KF. Remember that KF C LF.
A similar proof using simultaneous induction instead allows us to show
that for any ¢ € FML and for any i € {0,1}, ¢ < f(¢,i) € LF.

Lemma 10 Let f': FML x {0,1} — FML be a map defined as f except
that the clause for defining f(O¢, 1) is replaced by

fl<|:|¢v 1) = D(%& = fl(@la 1))
where 1, is a formula possibly defined from ¢. Then, for any ¢ € FML,
1. o= f'(4,1) €K 2. f'(¢,0) = ¢ €XK.

Proof The proof is by simultaneous induction on the size of ¢. The
base case when ¢ € PRP is immediate. By way of example, let us treat
the cases below in the induction step:

(1) d1 Ao = f'(¢1 A2, 1) €K (ii) O¢y = f'(O¢1,1) €K
(iii) f'(=¢y,0) = —¢y €K (iv) f'(O¢1,0) = O¢y €K

(i) By induction hypothesis, ¢1 = f'(¢1,1) € K and ¢o = (¢, 1) €
K. By easy manipulations in propositional logic, ¢;A¢as = f'(d1, 1)A
f'(¢2,1) € K. By definition of f', ¢1 A o = f'(¢1 A 2, 1) € K.
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(ii) By induction hypothesis, ¢; = f'(¢1,1) € K. By easy manipulation
at the propositional level, ¢1 = (¢4, = f'(¢1,1)) € K. It is known
that the reqular rule, from 11 = 1)y infer Oy = Oy, is admissible
in K. So, O¢y = O(¢y, = f'(¢1,1)) € K. By definition of f’,
D¢y = f/(O¢1,1) €K

(iii) By induction hypothesis, ¢ = f'(¢1,1) € K. By easy manipulation
at the propositional level, = f'(¢1,1) = —¢; € K. By definition of
fla fl(ﬂfyblao) = _'le ek

(iv) By induction hypothesis, f'(¢1,0) = ¢; € K. Since the regular
rule is admissible in K, Of'(¢1,0) = O¢; € K. By definition of f’,
f(O¢q,0) = O¢y €K.

As a corollary of Lemma 10, for any ¢ € FML:
f(9.0)=¢ €L ¢ = f(¢,1) €L f(9,0) = f(¢,1) €L

All the maps from G into K4 defined in [BH94] satisfy the hypothesis of
Lemma 9 (and a fortiori also the hypothesis of Lemma 10).

Lemma 11 Every positive [resp. negative] occurrence of

1. Oty in f(¢, 1) is of the form O(f(F(p),0) = f(p, 1)) [resp. Of (¢, 0)]
for some subformula ¢ of ¢;

2. = in f(¢,1) is of the form —f(p,0) [resp. —f(p,1)] for some
subformula ¢ of ¢;

3. 1 = Yo in f(¢,1) is of the form f(p1,0) = f(p2,1) [resp. f(¢1,1)
= f(p2,0)] for some subformulae o1, s of ¢;

4 @4 (@ € {A,V}) in f(,1) is of the form f(p1,1) & f(ps,1)
[resp. f(p1,0) @ f(p2,0)] for some subformulae ¢y, @5 of ¢;

The proof of Lemma 11 is by an easy verification. We extend the
map f to structures in the following way (i € {0,1}):

f(IaZ)d:efI f(*xvi)d:ef*f(xvl_i)

f(RoY,i) = f(X,4) 0 f(Y,) f(oX,i) = o f(X,4)

17



Lemma 12 The following rules are admissible in JL:

XE f(m(¢,1),1) f(m(¢,0),0) - X
Xt fg,1) f(¢,0)FX

(adm3) (adm4)

Proof By induction on the size of ¢. The base case when ¢ € PRP is
obvious. By way of example, we treat here the cases ¢ = ¢1 A ¢o. Since
m(¢, 1) = ¢, the proof of this case for (adm3) is trivial. For (adm4) the
derivation below suffices, remember f(¢1,0) A f(p2,0) = f(d1 A ¢2,0):

f(m(¢1,0),0) o f(m(e2,0),0) =X
f(m(¢2,0),0) F xf(m(¢1,0),0) o X
f(¢2,0) = xf(m(¢1,0),0) o X
f(m(¢1,0),0) F Xoxf(p,0)
f(¢1,0) = Xoxf(¢2,0)
f(¢1,0) 0 f(¢2,0) - X
f(61,0) A f(#2,0) - X

Let us also treat the case ¢ = O¢y. Since m(O¢y,i) = O¢y for i € {0, 1},
the proof is trivial.

(dp)
(admd), I H
(dp)

(adm4), ITH
(dp)

(AF)

In order to prove the next theorem, we define a partial function f=!:
struc(dL) x {0,1} — struc(oL) in Figure 5.

Lemma 13 For any ¢ € FML,

L fH(f(¢,1),1) = ¢ and f1(f(,0),0) = ¢

2. for any positive [resp. negative| occurrence of ¥ in f(¢, 1), f~1 (1), 1)
is defined [resp. f~1(¢,0) is defined].

Proof By induction on the size of the formula ¢.

Theorem 14 below is maybe the most surprising result of the paper.
Indeed, (weak) cut-elimination of JLF is equivalent to the theoremhood
preserving nature of f from LF into L. Its proof is purely syntactic and
therefore does not depend on the class of modal frames that possibly
characterises LF.
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UL FUTET LD 2L
fH(XoY z) & F(X, i) o f71(Y,4) or undefined

fl(eX,i) = Of L(X,4) or undefined

fHX, 1 —4) S f 1(X,4) or undefined

f~Y(p,i) = p for any p € PRP

for @ € {A,V}, fFHO DY, 1) = fYo,i) @ f1(1, i) or undefined

fF Yo =v,1)= f4p,0) = f'(1, 1) or undefined

f Yo =1,0)= f ¢, 1) = f1(1,0) or undefined

f U =¢p, 1 —i) E —=f(¢,i) or undefined

=4O, 0) “of- L(¢,0) or undefined

a1yl B Yo, 1) if ¢ = (¢1 = ¢2) and f~' (¢, 1) is defined

undefined otherwise

where “z = y or undefined” means:

ar | y if all components of y are defined
~ | undefined otherwise

Figure 5: Definition of f~!(.) for i € {0,1}.

Theorem 14 Let L be a primitive modal logic (properly displayable), F
be a formula generation map such that LF admits a conservative tense
extension. Then the statements below are equivalent:

1. For all ¢ € FML, ¢ € LF iff f(¢,1) € L.
2. LF is pseudo displayable.

Proof (2) implies (1): Since LF is an extension of L, if f(¢,1) € L,
then a fortiori f(¢,1) € LF. By Lemma9, ¢ < f(¢,1) € LF and therefore
¢ € LF.

Now assume ¢ € LF. So I F ¢ has a derivation in §LF. Since LF is
pseudo displayable, I = ¢ has a cut-free derivation in JLF. We show that:

(%) in the given cut-free derivation of I ¢, for every sequent X F Y
with cut-free derivation II, the sequent f(X,0) F f(Y,1) admits a
cut-free derivation, say f(II), in OL.

From (x), we can conclude that I F f(¢, 1) is derivable in 0L and therefore
f(¢,1) € L (see Theorem 3).
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The proof of () is by induction on the structure of the given deriva-
tion. All the structural rules (those involving only structure variables)
pose no difficulties because f is homomorphic for the structural connec-
tives. By way of example, the derivation step in JLF

Xt o(xm(F(¢),0) o ¢)
XF Oy

(F Owr)

is transformed into the derivation steps in JL

f(X,0) F o(xf(m(F(¢),0),0) o f(¢, 1)
) b xf(m(F(¢),0),0) 0 f(¢,1)
) F f(¥.1) o xf(m(F(¢),0),0)
1),0),0) F x e f(X,0) 0

$),0) -+ e f(X,0)0 f(¢,1)

¢f(X,0
e f(X,0
f(m(F(

(F(

m
f

of(X,0)0 f(F (w),o

of(X,0) F f(F(¢
f(X,0) - o(f(F(¥
S 0) FB(f(F(¥

The other cases are quite straightforward. For instance, the derivation

step in OLF shown below left is transformed into the derivation step in
0L shown below right:

¢1O¢2|_X(/\|_) f(#1,0) 0 f(¢2,0) - f(X, 1)
¢1/\¢2|_X f((bl,O)/\f(gbg,O)'_f(X,l)

since f(¢1 A ¢2,0) = f(¢1,0) A f(¢2,0) and f(¢1 0 ¢2,0) = f(¢1,0) o
f(¢27 0)

(1) implies (2): Assume that / F ¢ has a derivation in JLF. Since
LF has a conservative tense extension, by Corollary 7, ¢ € LF and by
assumption (1), f(¢,1) € L. Thus I + f(¢,1) has a cut-free derivation
in 0L. Let us show that I F ¢ has a cut-free derivation in JLF. We show
that

(AF)

(%) in the given cut-free derivation of I = f(¢, 1) in JL, for every sequent
X Y with cut-free derivation II, the sequent f~'(X,0) = f=1(Y,1)
admits a cut-free derivation, say f~*(II), in LF.

It is worth observing that thanks to Lemma 13, and to the fact that
L satisfies (C1)-(C8), f~1(X,0) and f~1(Y, 1) are always defined. If ()
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holds, then I F f~(f(4,1),1) has a cut-free derivation in JLF: that is
I F ¢ has a cut-free derivation in JLF.

As expected, the proof of (xx) is by induction on the structure of the
given 0L derivation. The base cases when X - Yis of the formp Fp, I - T
or L I are immediate. For every rule of 0L except (cut) with premisses
X1 F Yy, ..., X F Yy, and conclusion X F Y, we must now show that: if
each of the sequents f~1(X;,0) - f~ (Y17 ), vy FHXR, 0) F fE (YR, 1)
is cut-free provable in 6LF, then f~}(X,0) F f~(Y,1) is also cut-free
provable in JLF.

This poses no difficulty when the rule is a basic structural rule (from
Figure 2 and Figure 4) or a structural rule obtained from the axioms for
L or an operational rule introducing a Boolean connective of the form
A,V because f~! is homomorphic for these connectives and because each
rule satisfies Belnap’s condition (C4), recalled shortly.

By Lemma 11, the O-formulae occurring as succedent parts in the JL-
derivation of I - f(¢,1) have a particular form. Therefore, all instances
of the rule (F Op) in the given dL-derivation must be of the form shown
below left, and these are replaced by the JLF rule applications shown
below right:

XF o(f(F(¥),0) = f(¥,1))
X 0O(f(F(4),0) = f(y,1)

(FOp)

fHX0) F o(F(y) = ) (dp)
of (X,0) FF(y) = (adm1)
of ' (X,0) F (xF(1)) 0 > (dp)
F(ih) F 4o x e f71(X,0) (adm?)
m(F(1),0) F o xe f71(X,0) ()
S X, 0) F e(xm(F(¢),0) 0 ) (+ Oup)
S7HX,0) F Oy .
FHfW1),1) =9
FHFEW),0) = f(1,1),1) =F(¢) = ¢
and

O EW), 0 = f(v,1),1) = Op.
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If the 0L rule application is as shown below left, then it is transformed
into the JLF rule application shown below right:

f(¥,0) FX @h) P E XD
Of(¢,0) - eX Oy Fef~1(X,1)

since f1(£(10,0),0) = ¥,
Similarly, the derivation step in JL shown below left is transformed
into the derivation step in JLF shown below right

X F *f(,0) FHX,0) F
XF = f(,0) FX0)F =

since f~1(—f(¢,0),1) = —p and f~1(xf(1,0),1) = ).
The other cases for the Boolean connectives are left to the reader.
Lemma 11 is of course used.

(OF)

(k=) (k=)

Remark 15 In both subproofs, it is crucial that 0L and JLF satisfy Bel-
nap’s condition (C4), and that the given initial derivation of I F ¢ in JLF
and I F f(¢,1) in OL is cut-free. The condition (C4) is recalled below:

(C4) Congruent parameters are either all antecedent or all succedent
parts of their respective sequent.

The parameters are substructures of some structure obtained by instan-
tiating some structural variable [Bel82].

For instance, in the induction step, the JLF derivation step shown
below left does not guarantee that the corresponding JL derivation step
below right is a correct application of (cut)

Xk qu(cut) fX0)F f(, 1) f(,0) F f(Y,1) )
XY f(X,O)I—f(Y,l) '

since, in general, f(¢,1) # f(¢,0).
Similarly, if 0LF and 0L contained the rule (r) shown below left, which

breaks (C4), then the step below right is not generally a correct applica-
tion of (r) in JL:

—~

XOYl—Y(r) f(X,O)OfY,O)I—f(Y,l)

XFY o fony
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The proof of Theorem 14 shows once more that DL is particularly
well-designed to reason about polarity, succedent and antecedent parts.
One of the translations from G into K4 defined in [BH94] is exactly the
map f when L is K4 and F is Fg. Consequently, by Theorem 14 we obtain

Corollary 16 G is pseudo displayable.

Under reasonable hypotheses, there exist polynomial-time reductions
from LF into L.

Theorem 17 Let L be a primitive modal logic, F be a formula generation
map such that LF is a pseudo displayable logic that has a conservative
tense extension. There exists a polynomial-time transformation® ¢ such
that for any ¢ € FML, ¢ € LF iff g(¢) € L.

Proof The right-hand side of the definition of f(0,1) may require
several calls to f(1,0) and f(¢,1), so f is not necessarily computable in
polynomial-time (unless F contains a unique occurrence of a propositional
variable). However, we can use a variant of f using a standard renaming
technique (see e.g. [Min88]). Let md(¢) denote the modal depth of ¢, let

def

0% = ¢ and OFtle = OOk for k € N. Then for any extension L of X,
. md
6 € Liff (NG 0 (Puew & ) = ¢f €L

where ¢’ is obtained by replacing every occurrence of ¥ in ¢ by prew, @
new propositional variable not occurring in ¢.

The key point to define g is to observe that there is a map F :
FML x FML — FML and a formula v containing at most fwo atomic
propositions, say p and g, such that

- F'(p1,p2) is obtained from 1 by simultaneously replacing every
occurrence of p [resp. q] by ¢; [resp. @a];

- for any o € FML, f(F(y),0) = F'(f(,0), f(,1)).

For instance, if F = Ap.p A —p then F/ = A\pq.p A —q.

Let ¢ be a modal formula we wish to translate from LF into L. Let
&1, - .., Om be an enumeration (without repetition) of all the subformulae
of ¢ in increasing order with respect to the size. We shall build a formula

6Also called a “many-one reduction”, see e.g. [Pap94].
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Form of ¢; i

T (/\Zf(()(p) Ok (pin & T)AOF(pip & T))
1 (/\Zfé@ 0k (i &L) AOF(pip &1))
P (AS? O (pio & pit))
~¢; (Aps” O (pi1 & —pj0) A 0¥ (pio & —pja))
6 N | (Nre” OF(pin © (piy1 APina)) A D (pio (B0 A Pino))
6 Vi, | (Nrs” OF(pin & (pi1 V Pina)) A DF(pio & (Piro V Pino))
i = biy | (N OF (i1 & (Pir.0 = Pit)) A TF(pig & (Pint = Pia)))
06; | (A” 0% (pia & O(F (pj0. pja) = i) A OF(pio < Opjo))

Figure 6: Definition of 1);

g(¢) using the set {p;; : 1 <i < m, j € {0,1}} of atomic propositions’
such that g(¢) € Liff f(¢,1) € L.

Moreover, g(¢) can be computed in time O(|¢[®.log |#|). For i €
{1,...,m}, we associate a formula 1); as shown in Figure 6 and let

d)) d:ef (/\d%) = pm,l-

i=1

Each |¢;] is in O(|¢|* x log |$|) since . (¢)2 is in O(|¢|?). So |g(¢)) is
in O(|¢| x (|¢|* xlog |#])). As usual in complex1ty theory, the extra log ||
factor in the size of ¢ is because we need an index of size O(log |¢|) for
these different atomic propositions. That is, these indices are represented
in binary writing.

Similarly, one can show that if LF is pseudo-displayable and LF has
a conservative tense extension, then there is a polynomial-time transfor-
mation ¢’ such that for any ¢ € FML, —¢ & LF iff —=¢'(¢) € L. So, if
both L and LF are characterized by classes of modal frames, LF is pseudo
displayable and LF has a conservative tense extension, then there is a
polynomial-time map from LF-satisfiability into L-satisfiability. But note

"We could also just consider the set {p; : i € N} of atomic propositions and
use a 1-1 mapping from N?> — N but for simplicity, the present option is the most
convenient.
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(initial sequents) P 1LkE ET
oA kA ¢
N F—gra"h
Fl_Aagbl Fl_Avng F7¢17¢2|_A
TFAgiAg DaAdra ")
Fad)ll_AaqSZ Fl_Avgbl Fa¢2|_A

TFA =g )

Toisdba 7

Figure 7: Standard rules

once again that none of the proofs in this paper hinge on semantical
notions since all proofs are syntactic.

Remark 18 One of the maps from G into K4 from [BH94] is in polyno-
mial time and does not use the renaming technique (which allows us to
treat the general case). We are currently investigating if their map can be
generalised by considering the map f’ : FML x {0,1} — FML inductively
defined as f except that f/(0¢,1) = O(F(¢) = f'(¢,1)). Another map
in polynomial time from G into K4 is given in [Fit83, Chapter 5]. Kracht

[Kra99] notes that such maps exist for nearly all “classical” logics.

5 Pseudo Gentzenisable Logics

Theorem 14 admits a natural counterpart when LF has a traditional
Gentzen-style calculus, see forthcoming Theorem 23. However, the DL
framework appears to be much more flexible. Typically, dLF is sound and
complete as soon as LF admits a conservative tense extension. The as-
sumptions in Definition 19 below illustrate that the sequent-style formu-
lation of Theorem 14 require more restrictions. That is why the present
section is designed to allow a comparison with DL but our main technical
contribution is in Section 4.

In the rest of this section, L is a properly displayable modal logic and
F is a formula generation map.
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Definition 19 Let L be a primitive modal logic such that L admits a
traditional Gentzen-style calculus GenL in which:

1. GenL is an extension of a standard Gentzen calculus with contrac-
tion, weakening, exchange and cut (see the standard introduction
rules in Figure 7), with GenL satisfying the cut-elimination theorem;

2. Any sequent I' b A is derivable in GenL iff (A, @) = (Vyen @) €
L;

3. The (O F)-rule (if any) and the (F O)-rule (possibly augmented
with a side condition) have the form

T,k A
T,06F A

SF ¢
srog P

(OF)

where there is a map A : FML — FML such that
hE) =% h(f(2,0)) = f(Z',0)

for any sequence X to which the (- O)-rule is applicable. Both
h and f (defined via F) are naturally extended to sequences of
formulae. Moreover, f(3,0) satisfies the side conditions on the
(F O)-rule iff 3 does too.

4. Sequents are understood as pairs of sequences of formulae and “.”
is the concatenation operator.

Then, LF is pseudo Gentzenisable E the Gentzen-style calculus GenLF
obtained from GenL by replacing the (- O)-rule by the one below enjoys

cut-elimination )
F(¢),Y'F ¢

srog (0w

For instance, when h is the identity function, the condition 3. in
Definition 19 is satisfied. Although it is interesting in its own sake that
LF is pseudo Gentzenisable, we shall use this property to establish that
LF is pseudo displayable.

In [Avr84], it is shown that when L is among K, K4, S4, GenLF is sound
and complete for LF.

Condition 3 in Definition 19 ensures in some sense that Belnap’s con-
dition (C4) is satisfied when the structures are simply sequences of for-
mulae.
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Example 20 Two particular Gentzen calculi which obey Definition 19
are the traditional calculi Genk4 and GenS4 containing the modal rules:

6. TFA O F ¢ Or, T+ ¢

Caih) ggrra TP arrog P Grrog

These are known to enjoy cut-elimination; see [Gor99].

Here, f is extended to sets of formulae in the natural way: for ¢ €

{0,1}, f(P1y--- s Pumsyt) = f(é1,7),..., f(¢m,i). Lemma 21 below is used
in the forthcoming Theorem 23.

Lemma 21 Let I' F A be a sequent and II be a derivation of f(I",0) F
f(A,1) in GenL. Then, for any sequent IV = A’ in II, I [resp. A'] is of
the form f(¢1,0),..., f(¢m,0) [resp. of the form f(é1,1),..., f(Pm,1)]

Proof For any sequent IV F A’ in II, we write d(I" F A’) to denote
the length of the path between the root sequent f(I',0) - f(A,1) and
I+ A’. The proof is by induction on d(IV - A’). Lemma 11 is used
together with the fact that (O, 1) = O(f(F(¢) = ,1)).

Here is another (standard) property about GenL and GenLF we need :

Lemma 22 Let I' - A be a sequent and ¢, ¢ be formulae. Then, I', ¢ -
¥, A has a cut-free derivation in GenL [resp. in GenLF] iff I' - ¢ = ¢, A
has a cut-free derivation in GenL [resp. in GenLF]

Proof The proof for the direction from left to right is obvious by using
the (F=)-rule. To prove the other direction, from a cut-free derivation
of ' F ¢ = 1, A one can build a cut-free derivation of I', ¢ + 1, A by
analysing how ¢ = 1 was introduced (by an initial sequent, by weakening
or by the (F=)-rule) and appropriately blocking such introductions.

Here is the sequent counterpart of Theorem 14.

Theorem 23 Let L be a primitive modal logic and F a formula genera-
tion map. If L satisfies the assumptions 1-4 from Definition 19 and GenLF
is sound and complete for LF, then the statements below are equivalent:

1. For all ¢ € FML, ¢ € LF iff f(¢,1) € L.

2. LF is pseudo Gentzenisable.
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Proof (2) implies (1): By Lemma 9, ¢ < f(¢,1) € LF. So, if
f(#,1) € L, then a fortiori f(¢,1) € LF and therefore ¢ € LF.

Now assume ¢ € LF, hence the sequent |- ¢ has a cut-free derivation in
GenLF. We can show that in the given cut-free derivation of - ¢, for every
sequent I' = A with cut-free derivation II'; the sequent f(I',0) F f(A,1)
admits a cut-free derivation in GenL. So, we shall conclude that - f(¢,1)
is derivable in GenL and therefore f(¢,1) € L. The proof is by induction
on the structure of the derivations.

Base case: When I' F A is an initial sequent ¢ F 1, it is imme-
diate that f(¢,0) F f(¢,1), has a cut-free derivation in GenL since
F(,0) = f(,1) € L.

Induction step: The structural rules pose no difficulties because by defini-
tion f is homomorphic with respect to the comma. By way of example,
the derivation step in GenLF shown below left is transformed into the
derivation steps in GenL shown below right

g BF(2,0)). F(F($),0) F £, 1)
F) MO F o B (2,0)) - F(E(4).0) = (0. 1)
srop I S0 F O EWY).0) = f(4.1))

By the assumption about GenL,

h(f(%,0)) = f(h(%),0)

(F=)
(FO).

and
f(2,0) EO(f(F(¥),0) = f(4.1))

satisfy the condition to apply the (- O)p-rule. The derivation in GenLF
shown below left is transformed into the derivation in GenL shown below
right

F(T.0), F(1.0) F F(A1)
F(0.0).0/(6,0) F f(A1)

Indeed, f(O,0) = Of(1),0). The other cases are not difficult to obtain
and they are omitted here.

(1) implies (2): We define a map f~! : Seq x {0,1} — Seq as
in Figure 5 where Seq denotes the set of sequents (pair of sequences

LA
T,O0yF A

(@) (OF)
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of formulae) except that f~'(¢1,...,¢m,i) = fFHP1,0), -, [ (Dm, ).
Here f~! is just a simplified form of the reverse map defined in Figure 5.

Assume that - ¢ has a derivation in GenLF. By soundness of GenLF
with respect to LF, ¢ € LF and by assumption (1), f(¢,1) € L. Thus
F f(¢,1) has a cut-free derivation in GenL. Let us show that - ¢ has a
cut-free derivation in GenLF. We show that

(x*x %) in the given cut-free derivation of - f(¢,1) in GenL, for every
sequent I' = A with cut-free derivation II, the sequent f=(T',0)
f7Y(A, 1) admits a cut-free derivation, say f~'(II), in GenLF.

It is worth observing that thanks to Lemma 11, and finally thanks to
Lemma 21, f~Y(T',0) and f~!(A, 1) are always defined. If (x x %) holds,
then = f=1(f(¢,1),1) has a cut-free derivation in GenLF: that is - ¢ has
a cut-free derivation in GenLF.

The proof of (x x %) is by induction on the structure of the given
derivation. The base case when I' F A is of the form v - 1 are immediate.
For every rule of GenL except (cut) with premisses I'y = Ay, ..., Iy B Ay
and conclusion I' F A, we must now show that: if each of the sequents
FHUTL0) F f (ALY, ooy T, 0) = fY(Ag, 1) is cut-free derivable
in GenLF, then f~1(T",0) F f~}(A, 1) is also cut-free derivable in GenLF.

This poses no difficulty when the rule is a structural rule (contraction,
weakening and exchange) or an operational rule introducing a Boolean
connective.

By Lemma 11, the O-formulae occurring as succedent parts in the
GenL-derivation of F f(¢,1) have a particular form. Therefore, all in-
stances of the rule (- Op) in the given GenL-derivation must be of the
form shown below:

h(f(w(ho)v c 7f(¢m70)) - f(F(¢)70) = f(wa 1)
f('L/}Ov 0)7 T f(wma 0) - D(f(F(w)J 0) = f(¢, 1))

These are replaced by the GenLF rule applications shown below:

h(w07 s 77pm)7F(¢) - ¢

(FOp)

v oo Fop (5w
where
- A FEW@),0) = f(,1)),1) = Oy
- f_l(f(wmo)u"'7f(wm70)70) :¢07-~~7¢m;
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- [N (0, 0), - - f (1, 0)),0) = f7H(f (R(tbo), 0), - .
F(h().0)) = h(¥), ... B,

Of course the conditions on the rule (- O.) are used to permute h and
f and to allow the application of the (F Opf) inference. By the in-
duction hypothesis, f~!(h(f(¢0,0),..., f(1n,0)),0) F fH(f(F(¢),0) =
f(1,1),1) has a cut-free derivation in GenLF.

So, by Lemma 22, h(vyg, ..., ¥n),F(¢) F ¢ has a cut-free derivation
in GenLF. So, vy, ..., %, F Ot has a cut-free derivation in GenLF

If the GenL rule application is as shown below left, then it is trans-
formed into the GenLF rule application shown below right:

I f(®,00FA (=18 fHT0), 0 F fHAT)
I,0f(y,0)FA fHTL0), 00 F fHA D)

since f~'(f(2,0),0) = 1.

Finally, we can partially summarize the situation as follows.

(OF)

Corollary 24 Let L be a primitive modal logic satisfying the assump-
tions 1-4. from Definition 19. Let F be a formula generation map such
that GenLF is sound and complete for LF and LF admits a conservative
tense extension. Then,

1. The statements I-III below are equivalent:
(I) LF is pseudo Gentzenisable.
(

(III) For all ¢ € FML, ¢ € LF iff f(¢,1) € L (f is defined via F).

IT) LF is pseudo displayable.

2. When (I) above holds, there is a polynomial time transformation
from LF into L (f is not necessarily such a transformation).

By [Avr84, Corollary 3.1], Grz is pseudo Gentzenisable and therefore

Corollary 25 Grz is pseudo displayable and for any ¢ € FML, ¢ € Grz
iff f(¢,1) € S4 where f is defined with F = Fg,,.

An alternative proof of Corollary 16 can be given from Theorem 23.
Indeed, from Example 20, it is easy to see that G is pseudo Gentzenisable
(see e.g. [Val83, Avr84]). Hence for all ¢ € FML, ¢ € G iff f(¢,1) € K4
where f is defined via F = Fg. By Theorem 14, G is pseudo displayable.
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6 Concluding Remarks

For any logic LF, we have defined a display calculus JLF by slightly mod-
ifying the display calculus JL for L defined in [Kra96]. When LF has a
conservative tense extension, the calculus JLF is shown to be sound and
complete with respect to LF. Although LF is not necessarily properly
displayable, we have shown that (weak) cut-elimination for JLF is equiv-
alent to the theoremhood-preserving nature of the map f. Using this
fact, we have defined cut-free display calculi for the provability logics G
and Grz satisfying Belnap’s conditions (C2)-(C7). The calculus for G also
satisfies (C1). As a side-effect, we have defined theoremhood-preserving
mappings from Grz into S4, and these in turn can be used to translate
Grz into a decidable fragment of first-order logic; see [DGO0b]. We have
also provided a proof for mapping G into K4 which is different from the
one in [BH94], although the translation itself is identical. Although none
of the calculi OLF satisfies the conditions (C1)-(C8), we have character-
ized the classes of such calculi for which cut-elimination holds (condition
on translations).

Because our base logic L can be any properly displayable modal
logic with a conservative tense extension, our results provide a means to
show that the logics G.3 and Grz.3 (and some others) could be pseudo-
displayable, using the methodology provided by Corollary 24. A natural
question is: What extensions are required to handle other “second-order”
logics like S4.3.1 [Gor99] ? But Wolter has shown that the tense exten-
sion of S4.3.1 is not conservative, so our display methodology is unlikely
to answer this question.

There is one caveat: our display calculi enjoy cut-elimination only for
sequents of the form I F ¢, not for sequents of the general form X F Y.

Acknowledgments: We would like to thank Andreas Herzig for the
(electronic) discussions about translations from G into K4. We wish to
express our gratitude to one anonymous referee who found two errors and
refuted a conjecture in an earlier version and to two other anonymous
referees of the current version for their remarks and suggestions.
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