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Abstract

Hypersequent calculi arise by generalizing standard sequent calculi to refer to whole contexts

of sequents instead of single sequents. We present a number of results using hypersequents

to obtain a Gentzen-style characterization for the family of Gödel logics. We first describe

analytic calculi for propositional finite and infinite-valued Gödel logics. We then show that

the framework of hypersequents allows one to move straightforwardly from the propositional

level to first-order as well as propositional quantification. A certain type of modalities,

enhancing the expressive power of Gödel logic, is also considered.

1 Introduction

In this paper we survey a number of results in proof theory for Gödel logics, that
have been scattered over several works of the authors. We also include some new
material. Our aim is to show that a particular type of calculus — based on so-called
hypersequents — is a simple but versatile tool for handling several important logics
in Gentzen’s spirit. Indeed, in his seminal paper on the concept of logical inference,
Gentzen [44, 45] achieved — among other things — a satisfactory characterization of
the relation between classical and intuitionistic proofs in terms of sequents as basic
objects of derivations. In particular, the sequent calculus LJ for intuitionistic logic
is defined by simply restricting the right hand side of all sequents to contain at most
one formula in the sequent calculus LK for classical logic.

In the presence of the cut rule it is almost trivial to define sound and complete
sequent calculi for all kinds of other logics for which a Hilbert style axiomatization
is known. One can, e.g., simply extend (a suitable version of) Gentzen’s calculi
with additional axioms. However, it should be clear that only cut-free and therefore
analytic Gentzen-style systems share the important proof theoretical properties of LJ
and LK. In particular, (some form of) analyticity is a pre-condition for efficient —
human or mechanized — proof search. Consequently, a main challenge in proof theory
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is to extend Gentzen’s celebrated results to other logics by defining appropriate calculi
which enjoy cut-elimination. I.e., one should be able to show how any given derivation
can be transformed into an equivalent one that does not contain applications of the
cut rule.

A large range of variants and extensions of Gentzen’s original sequent calculi
have been introduced in the last decades to provide analytic proof systems for many
types of non-classical logics. As an example, we just mention labeled systems [42] to
accommodate modalities and the generalization of the (binary) sequent arrow to an
n-ary relation (“many placed sequents”) in order to describe analytic deduction in
finite-valued logics in a uniform manner see, e.g., [60, 56, 25, 48, 19] as well as the
more recent survey article [18].

Here we deal with another natural extension of Gentzen’s calculi, called hyperse-
quent calculi. A hypersequent calculus is defined by incorporating Gentzen’s original
calculus (LJ, LK or a substructural version of it) as a sub-calculus and adding an
additional layer of information by considering a single sequent to live in the context
of finite multisets of sequents (called hypersequents). This opens the possibility to
define new rules that allow to “exchange information” between different sequents.
It is this type of rules which increases the expressive power of hypersequent calculi
compared to ordinary sequent calculi.

To illustrate the method of hypersequents we investigate the family of (proposi-
tional and quantified) Gödel logics that is of particular interest in its own.

Propositional finite-valued Gödel logics were introduced (implicitly) by Gödel [47]
to show that intuitionistic logic does not have a characteristic finite matrix. Dummett
[34] later generalized these to an infinite set of truth-values, and showed that the set
of its tautologies is axiomatized by intuitionistic logic extended by the linearity axiom
(A ⊃ B)∨(B ⊃ A). Hence infinite-valued Gödel logic G is also called Gödel-Dummett
logic or Dummett’s LC.

Gödel logics naturally turn up in a number of different areas of logic and computer
science. For instance, Dunn and Meyer [35] pointed out their relation to relevance
logics; Visser [68] employed G in investigations of the provability logic of Heyting
arithmetic; three-valued Gödel logic G3 has been used to model strong equivalence
between logic programs [53]; and more importantly, G was recognized as one of the
most important formalizations of fuzzy logic [49].

A hypersequent calculus for G was introduced in [4]. This calculus — which we
call HG — is defined by embedding Gentzen’s LJ-sequents into hypersequents and
by adding suitable structural rules to manipulate the additional layer of structure to
the basic objects of inferences. HG will be described in Section 3.

In Section 3.2 we will present hypersequent calculi HGk for the finite-valued Gödel
logics Gk with k truth-values (k ≥ 2). These calculi, introduced in [30], are simply
obtained by adding one more structural rule to HG. This is done in a uniform way
for all k. A new proof of the cut-elimination theorem for HGk is provided.

Section 3.3 contains new results on G∆, i.e., Gödel logic extended by the “projec-
tion modality” ∆ of [9] (see also [65, 64]). Indeed, by adding suitable rules to HG
one obtains a hypersequent calculus for G∆.

Finally, in Section 4 we will show that hypersequents allow to extend analytic cal-
culi for propositional Gödel logic to include quantifiers. In particular, we will consider
two different forms of quantification: first-order quantifiers (universal and existential
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quantification over object variables) and propositional or “fuzzy” quantifiers (universal
and existential quantification over propositions). Refining and restructuring the re-
sults contained in [20] and [24], we shall discuss analytic hypersequent calculi for both
first-order and quantified propositional Gödel logic. As we shall see, the first-order
calculus allows one to prove (a suitable version of) Gentzen’s mid-sequent theorem.

2 Hypersequent Calculi

Hypersequent calculi have been introduced in [2] and [54]. They are a natural gener-
alization of Gentzen’s sequent calculi.

We take sequents to be expressions of the form Γ ⇒ Π where Γ and Π are finite
multisets of formulas [44, 59]. Hypersequent calculi do not alter the definition of a
sequent at all, but just add an additional level of context to ordinary sequents.

Definition 1 A hypersequent is a multiset1, written as

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn

where, for all i = 1, . . . n, Γi ⇒ Πi is an ordinary sequent. Γi ⇒ Πi is called a
component of the hypersequent. A hypersequent is called single-conclusioned if, for
every i = 1, . . . , n, Πi consists of at most one formula.

The symbol “|” is intended to denote disjunction at the meta-level. (This will be
made precise in Definition 2, below.)

Just as ordinary sequent calculi, hypersequent calculi consist in initial hyperse-
quents (i.e., axioms) as well as logical and structural rules. The axioms and logical
rules are essentially the same as in sequent calculi. The only difference is the presence
of side hypersequents, denoted by G and G′, representing (possibly empty) hyperse-
quents.

The structural rules are divided into internal and external rules. The internal
structural rules deal with formulas within components. When present, they are the
same as in ordinary sequent calculi (weakening and contraction). The external struc-
tural rules manipulate whole components of a hypersequent. These are external weak-
ening (ew) and external contraction (ec) (see Table 1).

As an example, in Table 1 one can find a hypersequent calculus for intuitionistic
logic IL which we call HIL. The “hyperlevel” of this calculus is in fact redundant,
in the sense that a hypersequent Γ1 ⇒ Π1 | . . . | Γk ⇒ Πk is derivable if and only if
for some i ∈ {1, . . . , k}, already Γi ⇒ Πi is derivable.

In hypersequent calculi it is possible to define additional external structural rules
which simultaneously act on several components of one or more hypersequents. Below
are some examples of rules of this kind (see [2, 3, 5, 27, 30] for further examples).

• As shown in [31], by adding to HIL the following rule

G | Γ, Γ′ ⇒

G | Γ ⇒ | Γ′ ⇒
(lq)

1If one prefers sequences over multisets as basic objects of inference then a permutation rule has
to be added to the calculus.
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Axioms Cut Rule

A ⇒ A ⊥⇒ A

G | Γ′ ⇒ A G′ | A, Γ ⇒ C

G | G′ | Γ, Γ′ ⇒ C
(cut)

External Structural Rules

G

G | Γ ⇒ A
(ew)

G | Γ ⇒ A | Γ ⇒ A

G | Γ ⇒ A
(ec)

Internal Structural Rules

G | Γ ⇒ C

G | Γ, A ⇒ C
(w, l)

G | Γ ⇒

G | Γ ⇒ C
(w, r)

G | Γ, A,A ⇒ C

G | Γ, A ⇒ C
(c, l)

Logical Rules

G | Γ, A ⇒ B

G | Γ ⇒ A ⊃ B
(⊃, r)

G | Γ ⇒ A G′ | B, Γ ⇒ C

G | G′ | Γ, A ⊃ B ⇒ C
(⊃, l)

G | Γ ⇒ A G′ | Γ ⇒ B

G | G′ | Γ ⇒ A ∧ B
(∧, r)

G | Γ, Ai ⇒ C

G | Γ, A1 ∧ A2 ⇒ C
(∧i, l)i=1,2

G | Γ ⇒ Ai

G | Γ ⇒ A1 ∨ A2
(∨i, r)i=1,2

G | Γ, A ⇒ C G′ | Γ, B ⇒ C

G | G′ | Γ, A ∨ B ⇒ C
(∨, l)

Table 1: Hypersequent Calculus HIL for Intuitionistic Logic

one obtains a cut-free calculus for the intermediate logic LQ [51] whose ax-
iomatization is given by adding the weak law of excluded middle, i.e., (A ⊃
⊥) ∨ ((A ⊃ ⊥) ⊃ ⊥) to a Hilbert style calculus for intuitionistic propositional
logic (see, e.g., Table 2 below).

• Let us consider the hypersequent calculus for aMALL2, i.e. the calculus whose
rules are those of the sequent calculus for linear logic without exponential con-
nectives, augmented by side hypersequents and with in addition internal weak-
ening rules, (ew) and (ec). By adding to it either

G | Γ1, Γ2, Γ3 ⇒ Π1, Π2, Π3 G′ | Γ′
1, Γ

′
2, Γ

′
3 ⇒ Π′

1, Π
′
2, Π

′
3

G | G′ | Γ1, Γ
′
1 ⇒ Π1, Π

′
1 | Γ2, Γ

′
2 ⇒ Π2, Π

′
2 | Γ3, Γ

′
3 ⇒ Π3, Π

′
3

(M)
or

G | Σ, Γ1 ⇒ Π1, Π G′ | Σ, Γ2 ⇒ Π2, Π

G | G′ | Γ1, Γ2 ⇒ Π1, Π2 | Σ ⇒ Π
(3−weak)

one obtains a cut-free calculus for 3-valued  Lukasiewicz logic [4, 31].

2Multiplicative Additive fragment of Linear Logic [46] extended by weakening rules
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Note: Henceforth we will consider single-conclusioned hypersequent calculi, i.e. con-
taining only single-conclusioned hypersequents.

To assist a better understanding of hypersequents consider the following defini-
tions:

Definition 2 The generic interpretation of a sequent Γ ⇒ B, denoted by Int(Γ ⇒
B), is defined by (

∧

Γ ⊃ B∗), where
∧

Γ stands for the conjunction of the formulas in
Γ or > if Γ is empty, and B∗ is B or ⊥ if B is empty. The generic interpretation of a
hypersequent Γ1 ⇒ A1 | . . . | Γn ⇒ An is defined by Int(Γ1 ⇒ A1)∨ . . .∨ Int(Γn ⇒
An).

Definition 3 A (Hyper)sequent rule is sound for a Hilbert style system sL, if when-
ever sL derives the generic interpretations of its premises, sL derives the generic
interpretation of its conclusion too. A (hyper)sequent calculus HL is called sound for
sL if all the axioms and rules of HL are sound for sL. HL is called complete for sL
if for all formulas A derivable in sL, the (hyper)sequent ⇒ A is derivable in HL.

3 Hypersequent Calculi for Gödel logics

Gödel logics can be seen both as intermediate logics, i.e., logics including intuitionistic
and included in classical logic, and as many-valued logics. On the one hand, they are
characterized by the class of all rooted linearly ordered Kripke models (with at most
k worlds, k ≥ 1, in the case of (k + 1)-valued Gödel logic Gk+1), see, e.g., [41, 26].
On the other hand, their connectives can be interpreted as functions over either the
real interval [0, 1] (for G)3 or {0, 1

k
, . . . , k−1

k
, 1} (for Gk+1)4. More precisely, let vI be

a mapping of propositional variables into the set of truth-values. vI can be extended
to formulas of Gödel logics as follows:

vI(A ∧ B) = min{vI(A), vI(B)} vI(A ∨ B) = max{vI(A), vI(B)}

vI(A ⊃ B) =







1 if vI(A) ≤ vI(B)

vI(B) otherwise
vI(⊥) = 0

As usual, ¬A can be defined as A ⊃ ⊥. A formula A is a tautology iff for all vI ,
vI(A) = 1. Moreover A is a logical consequence of a set of formulas Γ iff, for all vI ,
min{vI(γ) | γ ∈ Γ} ≤ vI(A).

As mentioned above, a Hilbert style calculus sG for G is obtained by adding the
linearity axiom (Lin) (A ⊃ B) ∨ (B ⊃ A) to any Hilbert style calculus for IL.

For sake of concrete argumentation, we take IL to be axiomatized by the Hilbert
style system sIL presented in Table 2.

Avron’s calculus HG for G ([3], called HLC there) is defined by extending the
hypersequent calculus HIL for intuitionistic logic with the following communication
rule:

G | Γ, Γ′ ⇒ A G′ | Γ1, Γ
′
1 ⇒ A′

G | G′ | Γ, Γ′
1 ⇒ A | Γ′, Γ1 ⇒ A′

(com)

3Note that Dummett’s LC was originally defined in [34] using the set of truth-values {1}∪{1− 1
n

:
n ≥ 1}. However, at the propositional level any infinite set of truth-values gives rise to the same set
of tautologies in Gödel logic.

4In fact, one can take any set of k + 1 real numbers from [0, 1], that includes 0 and 1.
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Axioms

I1 A ⊃ (B ⊃ A) I8 (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]
I2 (A ∧ B) ⊃ A I9 [A ⊃ (C ⊃ B)] ⊃ [C ⊃ (A ⊃ B)]
I3 (A ∧ B) ⊃ B I10 (A ⊃ C) ∧ (B ⊃ C) ⊃ ((A ∨ B) ⊃ C)
I4 A ⊃ (B ⊃ (A ∧ B)) I11 ⊥ ⊃ A

I5 (C ⊃ A) ∧ (C ⊃ B) ⊃ (C ⊃ (A ∧ B)) I12 (A ⊃ (B ⊃ C)) ⊃ (A ∧ B ⊃ C)
I6 A ⊃ (A ∨ B) I13 [A ⊃ (A ⊃ B)] ⊃ (A ⊃ B)
I7 B ⊃ (A ∨ B)

Rule

(Modus Ponens)
A A ⊃ B

B

Table 2: Hilbert style calculus sIL for Intuitionistic Logic

Remark 4 Avron suggested that a hypersequent can be thought of as a multipro-
cess ([3]). Under this interpretation, (com) is intended to model the exchange of
information within multiprocesses.

Example 5 We display a proof of the linearity axiom (A ⊃ B) ∨ (B ⊃ A) in HG.
Recall that this axiom is not valid in intuitionistic logic.

A ⇒ A B ⇒ B
(com)

A ⇒ B | B ⇒ A
2x(⊃,r)

⇒ A ⊃ B | ⇒ B ⊃ A
2x(∨i,r)

⇒ (A ⊃ B) ∨ (B ⊃ A) | ⇒ (A ⊃ B) ∨ (B ⊃ A)
(ec)

⇒ (A ⊃ B) ∨ (B ⊃ A)

To prove the soundness of (propositional) hypersequent calculi we introduce the fol-
lowing notion:

Definition 6 The generic interpretation Int(r) of a (hyper)sequent rule

S1 . . . Sn

S0
(r)

with n ≥ 1

is defined as Int(S1) ⊃ (. . . (Int(Sn) ⊃ Int(S0)) . . .), where Int(Si), with i = 0, . . . , n
stands for the generic interpretation of the (hyper)sequent Si (see Definition 2).

Theorem 7 HIL is sound and complete for IL.

Proof The proof is relative to the Hilbert style calculus sIL for IL.
(Soundness) We prove the stronger claim that the generic interpretation of each

rule of HIL is derivable in sIL. The generic interpretation of the axioms of HIL has
the form A ⊃ A and ⊥ ⊃ A, while that of the rules (ec) and (ew) is (C ∨ A ∨ A) ⊃
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(C ∨ A) and (C ∨ A) ⊃ (C ∨ A ∨ B), respectively. The corresponding derivations in
sIL are straightforward. Observe that the derivability in sIL of A ⊃ B implies the
derivability of (A ∨ C) ⊃ (B ∨ C). Therefore we can disregard side hypersequents in
proving the soundness of the rules. The soundness of the remaining rules reduces to
the derivation in sIL of single formulas obtained according to Definition 2.

(Completeness) Observe that Modus Ponens — the only rule of sIL — corresponds
to the derivability of A, A ⊃ B ⇒ B and the cut rule. It thus suffices to show that
all the axioms of sIL are derivable in HIL. This is straightforward. ut

Theorem 8 HG is sound and complete for G.

Proof The proof is relative to the Hilbert style calculus sG for G.
(Soundness) In addition to Theorem 7 one has to prove that the (com) rule is sound

for sG. This amounts to showing, e.g., that sG derives the generic interpretation
Int−(com) of (com) without side hypersequents, i.e. the formula

(
∧

Γ∧
∧

Γ′ ⊃ A) ⊃ ((
∧

Γ1∧
∧

Γ′
1 ⊃ A′) ⊃ (

∧

Γ∧
∧

Γ′
1 ⊃ A)∨(

∧

Γ′∧
∧

Γ1 ⊃ A′))

where
∧

Σ stands for the conjunction of the formulas in Σ.
Using I8 and I9, together with I6 and I7 we obtain

(
∧

Γ′
1 ⊃

∧

Γ′) ⊃ ((
∧

Γ∧
∧

Γ′ ⊃ A) ⊃ (
∧

Γ∧
∧

Γ′
1 ⊃ A)∨(

∧

Γ′∧
∧

Γ1 ⊃ A′)) and

(
∧

Γ′ ⊃
∧

Γ′
1) ⊃ ((

∧

Γ1 ∧
∧

Γ′
1 ⊃ A′) ⊃ (

∧

Γ∧
∧

Γ′
1 ⊃ A)∨ (

∧

Γ′ ∧
∧

Γ1 ⊃ A′)).

Using I1, I8 and I9, we obtain (
∧

Γ′
1 ⊃

∧

Γ′) ⊃ Int−(com) and (
∧

Γ′ ⊃
∧

Γ′
1) ⊃

Int−(com). Finally, I10 allows us to derive Int−(com) from these formulas by “cut”
with axiom (Lin).

(Completeness) Directly follows from Theorem 7 and Example 5. ut

Remark 9 The rule (lq) characterizing the intermediate logic LQ (see Section 2)
can be easily derived in HG using (c, l) and (com).

Remark 10 As has been shown in [14, 29], the communication rule can be viewed as
a transfer principle mapping different versions of contraction-free intuitionistic logic
into their corresponding extensions containing axiom (Lin). This allowed us to define
hypersequent calculi5 for some basic (fuzzy) logics that can be considered as fragments
of contraction-free G. Two particular examples of such logics are Urquhart’s C — in-
troduced in §3 of his Handbook article on many-valued logics [66, 67] — and monoidal
t-norm based logic MTL [37], the logical counterpart of left-continuous t-norms6 and
their residua [52]. Hilbert style axiomatizations for C and MTL are obtained by
extending the Hilbert style system consisting of axioms {I1, . . . I3, I5, . . . , I11} of
Table 2 and a Hilbert style system for aMAILL7, respectively, with axiom (Lin).
In analogy to Avron’s work on Gödel logic, analytic hypersequent calculi for C and
MTL were defined in [28] and [15] by adding the communication rule to suitable
contraction-free versions of HIL.

5For contraction-free logics, the generic interpretation of a sequent Γ ⇒ B, with Γ = A1, . . . , Ak

should be changed into A1 ⊃ (. . . (Ak−1 ⊃ (Ak ⊃ B)) . . .).
6T-norms are the main tool in fuzzy logic to combine vague information.
7Multiplicative Additive fragment of Intuitionistic Linear Logic [46] extended by weakening rules.
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In [5], alternative cut-free hypersequent calculi for G were introduced. These calculi
are obtained by adding to HIL either the rule

G | Γ1, Γ2 ⇒ A G′ | Γ1, Γ2 ⇒ B

G | G′ | Γ1 ⇒ A | Γ2 ⇒ B
(com′)

or the combination of

G | Π, Γ ⇒ A

G | Π ⇒ A | Γ ⇒ A
(SI)

and

G | Γ1 ⇒ A G′ | Γ2 ⇒ B

G | G′ | Γ2 ⇒ A | Γ1 ⇒ B
(com′′)

We call the above calculi HG′ and HG′′, respectively. It is not hard to see that the
(com) rule is interderivable with the above rules. However, in contrast with (com),
(SI) and (com′) cannot be used to define analytic calculi for contraction-free logics
(see Remark 10). Indeed, as shown in [14], (internal) contraction is definable from
either rule (SI ) or rule (com′).

On the other hand, HG′ and HG′′ lend themselves to a more natural “computa-
tional interpretation” than HG. A first step in that direction was achieved in [11],
where HG′′-proofs have been translated into a special natural deduction format. A
different approach has been used in [38]. There, the authors show that any applica-
tion of (com′) corresponds to a merging of suitable parallel Lorenzen type dialogue
games.

3.1 Cut-elimination

Recall that the cut-elimination method of Gentzen ([44]) proceeds by eliminating the
uppermost cut by a double induction on the complexity of the cut formula and on
the sum of its left and right ranks; where the right (left) rank of a cut is the number
of consecutive (hyper)sequents containing the cut formula, counting upward from the
right (left) upper sequent of the cut.

In fact, in LJ, by the presence of the internal contraction rule one has to consider
a derivable generalization of the cut rule, namely, the multi-cut rule (see, e.g., [62])

Γ ⇒ A Γ′, An ⇒ B

Γ, Γ′ ⇒ B
(mcut)

where An stands for A, . . . , A (n times). A is called multi-cut formula.
Due to the presence of (ec), in hypersequent calculi (and, in particular, in HG)

one cannot directly apply Gentzen’s argument to show that

(∗) If G′ | Γ ⇒ A and H ′ | Γ′, An ⇒ B are cut-free provable in HG, so is
G′ | H ′ | Γ, Γ′ ⇒ B.

A simple way to overcome this problem, is to modify Gentzen’s original Hauptsatz al-
lowing to reduce certain cuts in parallel. In [3] Avron has used the following induction
hypothesis (“extended multi-cut rule”):

(∗∗) If G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and H ′ | Σ1, A
n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk are

cut-free provable in HG, so is H ′ | G′ | Γ, Σ1 ⇒ B1 | . . . |Γ, Σk ⇒ Bk, where
Γ = Γ1, . . . , Γn.

8



This formulation is easily seen to be equivalent to (∗).
We provide a version of Avron’s proof for further reference.

Theorem 11 (Cut-elimination) If a hypersequent S is derivable in HG then S is
derivable in HG without using the cut rule.

Proof Let γ and δ be the proofs of G := G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and H :=
H ′ | Σ1, A

n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk, respectively. We show (∗∗) by induction on
the pair [c, r], where c is the complexity of the multi-cut formula (A), and r is the
sum of the ranks of γ and δ. It suffices to consider the following cases according to
which inference rule is being applied just before the application of the multi-cut rule:

1. either G or H is an axiom;

2. either γ or δ ends in an application of a structural rule;

3. both γ and δ end in an application of a logical rule such that the principal
formula of both rules is just the multi-cut formula;

4. either γ or δ ends in an application of a logical rule whose principal formula is
not the multi-cut formula.

We will give here a proof for some relevant cases.
2. Suppose that γ ends in an application of (ec), e.g.,

··· γ1

G
′ | Γ1 ⇒ A | . . . | Γn ⇒ A | Γn ⇒ A

(ec)

G
′ | Γ1 ⇒ A | . . . | Γn ⇒ A

Applying the induction hypothesis to both δ and γ1 one obtains a proof of G′ | H ′ | Γ′,
Σ1 ⇒ B1 | . . . | Γ′, Σk ⇒ Bk, where Γ′ = Γ1, . . . , Γn, Γn. The desired result is
obtained by several applications of (c, l).

Suppose that δ ends in an application of (ec), e.g.,

··· δ1

H
′ | Σ1, A

n1 ⇒ B1 | . . . | Σk, A
nk ⇒ Bk | Σk, A

nk ⇒ Bk

(ec)

H
′ | Σ1, A

n1 ⇒ B1 | . . . | Σk, A
nk ⇒ Bk

Applying the induction hypothesis to both γ and δ1 one obtains a proof of H ′ | G′ | Γ,
Σ1 ⇒ B1 | . . . | Γ, Σk ⇒ Bk | Γ, Σk ⇒ Bk, where Γ = Γ1, . . . , Γn. Hence the claim
follows by applying the (ec) rule.

γ or δ ends in another structural inference: These cases are unproblematic applica-
tions of the induction hypothesis to the premises followed by applications of structural
inferences. E.g., suppose that δ ends in an application of (com), e.g.,

··· δ1

H1 | Σ′
1, Σ

′
2, A

n2 ⇒ B2

··· δ2

H2 | Σ1, Σ2, A
n1 ⇒ B1

(com)

H
′ | Σ1, Σ

′
1, A

n1 ⇒ B1 | Σ2, Σ
′
2, A

n2 ⇒ B2 | . . . | Σk, A
nk ⇒ Bk
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where H1 and H2 stand for H ′ | Σl+1, A
nl+1 ⇒ Bl+1 | . . . | Σk, Ank ⇒ Bk and

Σ3, A
n3 ⇒ B3 | . . . | Σl, A

nl ⇒ Bl, respectively. Applying the induction hypothesis
to γ and δ1 as well as to γ and δ2 one obtains G′ | H ′ | Σ′

1, Σ′
2, Γ ⇒ B2 | Σl+1, Γ ⇒

Bl+1 | . . . | Σk, Γ ⇒ Bk and G′ | Σ1, Σ2, Γ ⇒ B1 | Σ3, Γ ⇒ B3 | . . . | Σl, Γ ⇒ Bl,
respectively, where Γ is Γ1, . . . , Γn. The desired result, namely, H ′ | G′ | Σ1, Σ′

1, Γ ⇒
B1 | Σ2, Σ′

2, Γ ⇒ B2 | . . . | Σk, Γ ⇒ Bk is obtained by applying (com) and (ec).
3. We first apply the induction hypothesis to the premises (based on the reduced

r first, and on the reduced c then). The claim follows by applications of appropriate
logical and structural inferences. (See [3]).

4. This case is easily handled by appeal to the induction hypothesis and applica-
tions of appropriate logical and structural inferences. We outline the only non-trivial
case, i.e., when γ ends in an application of (∨, l), e.g.,

··· γ1

G
′
1 | Γ1, B ⇒ A | Γ2 ⇒ A | . . . | Γl ⇒ A

··· γ2

G
′
2 | Γ1, C ⇒ A | Γl+1 ⇒ A | . . . | Γn ⇒ A

(∨,l)

G
′ | Γ1, B ∨ C ⇒ A | . . . | Γn ⇒ A

Applying the induction hypothesis to both γ1 and δ as well as to γ2 and δ one obtains
the proofs of H ′ | G′

1 | Γ′, B, Σ1 ⇒ B1 | . . . | Γ′, B, Σk ⇒ Bk and H ′ | G′
1 | Γ′′, C, Σ1 ⇒

B1 | . . . | Γ′′, C, Σk ⇒ Bk, where Γ′ = Γ1, . . . , Γl and Γ′′ = Γ1, Γl+1, . . . , Γn. Hence
the desired hypersequent H ′ | G′ | Γ, B ∨ C, Σ1 ⇒ B1 | . . . | Γ, B ∨ C, Σk ⇒ Bk

follows by several applications of (w, l) and the following lemma. ut

Lemma 12 The following generalized rule

G | A,Γ1 ⇒ C1 | . . . | A, Γn ⇒ Cn G′ | B, Γ1 ⇒ C1 | . . . | B, Γn ⇒ Cn

G | G′ | A ∨ B, Γ1 ⇒ C1 | . . . | A ∨ B, Γn ⇒ Cn

(∨, l)∗

is cut-free derivable in HG.

Proof For n = 1, the claim follows by applying (∨, l). Otherwise, using only (ec)
and (com) one can derive G | G′ | A, Γ1 ⇒ C1 | B, Γ2 ⇒ C2 | . . . | B, Γn ⇒ Cn from
the premises of (∨, l). Hence by applying (∨, l) (together with (ec) as necessary) one
obtains (a) G | G′ | A ∨ B, Γ1 ⇒ C1 | B, Γ2 ⇒ C2 | . . . | B, Γn ⇒ Cn. Similarly one
can derive (b) G | G′ | A∨B, Γ1 ⇒ C1 | A, Γ2 ⇒ C2 | . . . | A, Γn ⇒ Cn. The desired
result follows by iteratively applying the above argument to (a) and (b).

Remark 13 Maehara’s lemma (see [62]) cannot be established for cut-free deriva-
tions in hypersequent calculi with (ec) and (com). It is however possible to construct
interpolants for G directly by the elimination of propositional quantifiers in quantified
propositional Gödel logic over [0, 1] (see Section 4.2).

3.2 Finite-valued Gödel logics

In this section we present cut-free hypersequent calculi for finite-valued Gödel log-
ics. These calculi are obtained by simply adding one more structural rule to the
hypersequent calculus for intuitionistic logic.

Recall that a Hilbert style axiomatization sGk+1 for Gk+1 is obtained by extend-
ing the one of G with the axiom (Link+1) A1∨(A1 ⊃ A2)∨. . .∨(A1∧. . .∧Ak ⊃ Ak+1).
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Let us consider the following rule

〈Gi,j | Γi, Γj ⇒ Ai〉1≤i≤k, i+1≤j≤k+1

G1,2 | . . . | Gk,k+1 | Γ1 ⇒ A1 | . . . | Γk ⇒ Ak | Γk+1 ⇒
(Bck+1)

In [30] it was shown that extending HIL with the above rule results in a cut-free
calculus for the intermediate logics Bck+1 (with k ≥ 1) which are semantically char-
acterized by Kripke models with at most k worlds. As mentioned above, Gk+1 can be
characterized also by linearly ordered Kripke models with at most k worlds. There-
fore, one way to define a hypersequent calculus for Gk+1 is simply to add the rule
(Bck+1) to the HG calculus for G.

An alternative cut-free calculus for Gk+1 (called HGk+1) was defined in [30] by adding
to HIL the following rule

G1 | Γ1, Γ2 ⇒ A1 G2 | Γ2, Γ3 ⇒ A2 . . . Gk | Γk, Γk+1 ⇒ Ak

G1 | . . . | Gk | Γ1 ⇒ A1 | . . . | Γk ⇒ Ak | Γk+1 ⇒
(Gk+1)

It is not hard to see that both rules (com) and (Bck+1) are derivable in HGk+1.

Theorem 14 ([30]) HGk+1 is sound and complete for Gk+1.

Proof The proof is relative to the Hilbert style calculus sGk+1. It is not difficult
to show that the rule (Gk+1) is sound for sGk+1 and that HGk+1 derives axiom
(Link+1). Therefore the claim follows from Theorem 8. ut

Remark 15 HG2 is a single-conclusioned hypersequent calculus for classical logic
(see [31, 6]).

Theorem 16 (Cut-elimination) If a hypersequent S is derivable in HGk+1 then
S is derivable in HGk+1 without using the cut rule.

Proof We show that if both the hypersequents G := G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and
H := H ′ | Σ1, A

n1 ⇒ B1 | . . . |Σs, A
ns ⇒ Bs are cut-free provable in HGk+1, then so

is H ′ | G′ | Γ, Σ1 ⇒ B1 | . . . |Γ, Σs ⇒ Bs where Γ = Γ1, . . . , Γn. Let γ and δ be the
proofs of G and H , respectively.

In addition to the proof of Theorem 11 we have to consider cases involving the
rule (Gk+1). We will give here a proof for some relevant cases. Suppose δ ends in an
application of such a rule, e.g.,

··· δ1

H1 | Σ1, Σ2, A
n1 , A

n2 ⇒ B1 . . .

··· δk

Hk | Σk, Σk+1, A
nk , A

nk+1 ⇒ Bk

H1 | . . . | Hk | Σ1, A
n1 ⇒ B1 | Σ2, A

n2 ⇒ B2 | . . . | Σk, A
nk ⇒ Bk | Σk+1, A

nk+1 ⇒

Applying the induction hypothesis to γ and δi (i = 1, . . . , k) one obtains a proof
δ′i of G′ | Hi | Σi, Σi+1, Γ ⇒ Bi, where Γ is Γ1, . . . , Γn. Hence the desired result
H1 | . . . | Hk | G′ | Σ1, Γ ⇒ B1 | . . . | Σk+1, Γ ⇒ can be obtained as follows

11



··· δ′1
G

′ | H1 | Σ1, Σ2, Γ ⇒ B1

(w,l)′s

G
′ | H1 | Σ1, Σ2, Γ, Γ ⇒ B1 . . .

··· δ′k
G

′ | Hk | Σk, Σk+1, Γ ⇒ Bk

(w,l)′s

G
′ | Hk | Σk, Σk+1, Γ, Γ ⇒ Bk

(Gk+1)

H1 | . . . | Hk | G
′ | . . . | G

′ | Σ1, Γ ⇒ B1 | . . . | Σk+1, Γ ⇒
(ec)′s

H1 | . . . | Hk | G
′ | Σ1, Γ ⇒ B1 | . . . | Σk+1, Γ ⇒

Suppose γ ends in an application of (Gk+1). We outline below the two cases: in
(Gk+1), more than one component of G is not a side hypersequent and only one
component of G is not a side hypersequent. In the former case, assume, e.g., γ ends
as follows

··· γ1

G1 | Γ1, Γ2 ⇒ A . . .

··· γk

Gk | Πk, Πk+1 ⇒ Ck

G1 | . . . | Gk | Γ1 ⇒ A | . . . | Γl ⇒ A | Πl+1 ⇒ Cl+1 | . . . | Πk+1 ⇒

Applying the induction hypothesis to δ and, e.g., γ1 one obtains a proof of H ′ | G1 | Σ1,
Γ1, Γ2 ⇒ B1 | . . . | Σs, Γ1, Γ2 ⇒ Bs. Hence the desired result H ′ | G1 | . . . | Gk | Σ1,
Γ ⇒ B1 | . . . | Σs, Γ ⇒ Bs, with Γ = Γ1, . . . , Γl follows by several applications of
(ew) and (w, l). In the latter case, suppose, e.g., γ ends as follows

··· γ1

G1 | Γ1, Π1 ⇒ A

··· γ2

G2 | Π1, Π2 ⇒ C1 . . .

··· γk

Gk | Πk−1, Πk ⇒ Ck−1

G1 | . . . | Gk | Γ1 ⇒ A | Π1 ⇒ C1 | . . . | Πk−1 ⇒ Ck−1 | Πk ⇒

Applying the induction hypothesis to δ and γ1 one obtains a proof of
G1 | H ′ | Σ1, Γ1, Π1 ⇒ B1 | . . . | Σs, Γ1, Π1 ⇒ Bs. Hence the desired result
H ′ | G1 | . . . | Gk | Σ1, Γ1 ⇒ B1 | . . . | Σs, Γ1 ⇒ Bs | Π1 ⇒ C1 | . . . | Πk ⇒
follows by s applications of (Gk+1) together with (ec) as necessary. ut

Remark 17 In [30] the above proof was formulated without using the “extended
multi-cut rule”. However, as pointed out by Avron, in hypersequent calculi, Gentzen’s
argument works only if one can suitably trace the cut formula over the proof. (See,
e.g., the “history technique” used in [2] or the notion of “decoration” of formulas
introduced in [10]).

3.3 Gödel logic with 0-1 projections

In [9], Gödel logic extended by the “projection modalities” 5 and ∆ has been inves-
tigated:

v(5A) =







1 if v(A) = 0

0 if v(A) 6= 0
v(∆A) =







1 if v(A) = 1

0 if v(A) 6= 1

Whereas 5A can be already defined in G as A ⊃ ⊥, the extension including ∆ —
called G∆ — is strictly more expressive.

12



Remark 18 The ∆ operator is called globalization (and denoted by ut) in [65, 64].

A Hilbert calculus sG∆ for G∆ was defined in [9], extending the calculus for G by

(∆ 1) : ∆A ⊃ A (∆ 2) : ∆A ⊃ ∆∆A (∆ 3) : ∆(A ⊃ B) ⊃ (∆A ⊃ ∆B)

as well as the following axioms

(∆ 4) : ∆A ∨ (∆A ⊃ ⊥) and (∆ 5) : ∆(A ∨ B) ⊃ ∆A ∨ ∆B

together with the rule
A

∆A
(∆ rule)

Note that axioms (∆ 1) − (∆ 3) and (∆ rule) are the modal axioms of the logic S4
and its necessitation rule, respectively.

To obtain a hypersequent calculus for G∆ we first extend HG with the following
rules for introducing ∆

G | Γ, A ⇒ C

G | Γ, ∆A ⇒ C
(∆, l)

G | ∆Γ ⇒ A

G | ∆Γ ⇒ ∆A
(∆, r)

where ∆Γ denotes any set of ∆-formulas, i.e. formulas of G∆ prefixed by ∆. The
above two rules correspond to the S4-rules for ∆ (see, e.g., [40]). However, they do
not suffice to establish that ∆-formulas behave like boolean formulas. In particular,
axiom (∆ 4) is not derivable. To this aim, we consider the additional rule

G | ∆Γ, Γ′ ⇒ A

G | ∆Γ ⇒ | Γ′ ⇒ A
(cl∆, l)

We call the resulting calculus HG∆.

Remark 19 By replacing ∆Γ with Γ in (cl∆, l), one obtains the rule (G2) defining a
single-conclusioned calculus for classical logic (see Remark 15).

Lemma 20 Let Γ be A1, . . . , An. (∆
∧

Γ ∨ ∆(
∧

Γ ⊃ ⊥)) ⊃ (
∧

∆Γ ∨ (
∧

∆Γ ⊃ ⊥)),
where

∧

∆Γ abbreviates ∆A1 ∧ . . . ∧ ∆An, is derivable in sG∆.

Theorem 21 HG∆ is sound and complete for G∆.

Proof The proof is relative to the Hilbert style calculus sG∆.
(Soundness) Proceeds as in Theorem 8. Proving the soundness of the rules (∆, l)

and (∆, r) is straightforward. To show that (cl∆, l) is sound for sG∆ one can prove
that sG∆ derives the generic interpretation Int−(∆, r) of (∆, r) without side hyper-
sequents, i.e. the formula

(
∧

∆Γ ∧
∧

Γ′ ⊃ A) ⊃ ((
∧

∆Γ ⊃ ⊥) ∨ (
∧

Γ′ ⊃ A))

where
∧

∆Γ stands for ∆A1 ∧ . . . ∧ ∆An. This follows by the derivability in sG∆ of

(
∧

∆Γ ∨ (
∧

∆Γ ⊃ ⊥)) ⊃ Int−(∆, r)

together with Lemma 20 and axiom (∆ 4).
(Completeness) (∆ rule) is a particular case of the rule (∆, r). By Theorem 8 it

suffices to prove that HG∆ derives (∆ i) with i = 1, . . . , 5. We display the proofs of
axioms (∆ 4) and (∆ 5) in HG∆:
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∆A ⇒ ∆A
(cl∆,l)

⇒ ∆A | ∆A ⇒
(w,r)

⇒ ∆A | ∆A ⇒ ⊥
(⊃,r)

⇒ ∆A | ⇒ ∆A ⊃ ⊥
2x(∨,r)

⇒ ∆A ∨ (∆A ⊃ ⊥) | ⇒ ∆A ∨ (∆A ⊃ ⊥)
(ec)

⇒ ∆A ∨ (∆A ⊃ ⊥)

and

A ⇒ A

A ⇒ A B ⇒ B
(com)

B ⇒ A | A ⇒ B B ⇒ B
2x(∨,l)

A ∨ B ⇒ A | A ∨ B ⇒ B
(∆,l)

∆(A ∨ B) ⇒ A | ∆(A ∨ B) ⇒ B
(∆,r)

∆(A ∨ B) ⇒ ∆A | ∆(A ∨ B) ⇒ ∆B
2x(∨i,r)

∆(A ∨ B) ⇒ ∆A ∨ ∆B | ∆(A ∨ B) ⇒ ∆A ∨ ∆B
(ec)

∆(A ∨ B) ⇒ ∆A ∨ ∆B
(⊃,r)

⇒ ∆(A ∨ B) ⊃ ∆A ∨ ∆B
ut

Before proving the cut-elimination theorem for HG∆, observe that one cannot directly
shift the (cut) rule upward over (cl∆, l), e.g., in the case below:

H
′ | ∆A,∆Σ, Σ′ ⇒ B

(cl∆,l)

H
′ | ∆A,∆Σ ⇒ | Σ′ ⇒ B G

′ | Γ ⇒ ∆A
(cut)

G
′ | H

′ | ∆Σ, Γ ⇒ | Σ′ ⇒ B

A way to solve this problem is to consider the following cut rule over ∆-formulas as
cut formulas

G | Γ ⇒ ∆A G′ | Γ′, (∆A)n ⇒ B

G | G′ | Γ ⇒ | Γ′ ⇒ B
(cut∆)

Lemma 22 The rules (cut∆) and (cut) with a ∆-formula as cut formula are inter-
derivable in HG∆.

Proof On the one hand, (cut∆) allows one to derive (cut). The derivation proceeds
as follows

G | Γ ⇒ ∆A G
′ | Γ′

, ∆A ⇒ B
(cut∆)

G | G
′ | Γ ⇒ | Γ′ ⇒ B

(w,l)′s (w,r)

G | G
′ | Γ, Γ′ ⇒ B | Γ, Γ′ ⇒ B

(ec)

G | G
′ | Γ, Γ′ ⇒ B

14



On the other hand, (cut∆) is derivable in HG∆ using (cut):

H
′ | Γ′

, ∆A ⇒ B
(cl∆,l)

H
′ | ∆A ⇒ | Γ′ ⇒ B G

′ | Γ ⇒ ∆A
(cut)

G
′ | H

′ | Γ ⇒ | Γ′ ⇒ B
ut

Let HG′
∆ be the calculus obtained from HG∆ by replacing the (cut) rule with both

(cut∆) and
G | Γ′ ⇒ X G′ | X, Γ ⇒ C

G | G′ | Γ, Γ′ ⇒ C
(cut′)

where X is not a ∆-formula.

Corollary 23 A hypersequent H is derivable in HG′
∆ if and only if H is derivable

in HG∆.

Lemma 24 In HG′
∆ Non-atomic axioms can be derived from atomic axioms.

Theorem 25 (Cut-elimination) If a hypersequent S is derivable in HG∆ then S
is derivable in HG∆ without using the cut rule.

Proof Let π be a proof of a hypersequent H in HG∆. By Corollary 23 one can get
a proof π′ of H in HG′

∆. The proof of the elimination of both types of cuts in HG′
∆

((cut′) and (cut∆)) is similar to the proof of Theorem 11. Indeed, we will show that
if both the hypersequents G := G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and H := H ′ | Σ1, A

n1 ⇒
B1 | . . . |Σk, Ank ⇒ Bk are cut-free provable in HG′

∆, so is

(?) H ′ | G′ | Σ1, Γ ⇒ B1 | . . . |Σk, Γ ⇒ Bk, where Γ is Γ1, . . . , Γn, if A is not a
∆-formula

(??) H ′ | G′ | Σ1 ⇒ B1 | . . . |Σk ⇒ Bk | Γ1 ⇒ | . . . | Γn ⇒, otherwise.

It is easy to see that (?) and (??) are derivable generalizations of the rules (cut′) and
(cut∆), respectively.

The proof proceeds by induction on the pair [c, r] according to the 4 cases indicated
in the proof of Theorem 11. We will give here a proof for some relevant cases. Let γ
and δ be the proofs of G and H , respectively.

1. If H (resp. G) is an axiom, by Lemma 24 the desired hypersequent is just G
(resp. H).

We will present here some examples for cases 2 and 3 involving ∆-formulas (or
formulas with ∆-subformulas) as multi-cut formulas.

2. Suppose that γ ends in an application of (cl∆, l), e.g.,

··· γ1

H
′ | ∆A, ∆Σ, Σ′ ⇒ B

(cl∆,l)

H
′ | ∆A, ∆Σ ⇒ | Σ′ ⇒ B
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and G is G′ | Γ ⇒ ∆A. By applying the induction hypothesis to δ and γ1 one gets
G′ | H ′ | Γ ⇒ | ∆Σ, Σ′ ⇒ B, hence the desired result H ′ | G′ | Γ ⇒ | ∆Σ ⇒ | Σ′ ⇒ B
is obtained by applying (cl∆, l).

3. Suppose that δ and γ end as follows

··· δ1

H1 | Σ ⇒ ∆A

··· δ2

H2 | Σ, B ⇒ C
(⊃,l)

H1 | H2 | Σ, ∆A ⊃ B ⇒ C

··· γ1

G
′ | Γ, ∆A ⇒ B

(⊃,r)

G
′ | Γ ⇒ ∆A ⊃ B

Applying the induction hypothesis to γ1 and δ2 one obtains a proof γ ′
1 of G′ | H2 | Γ, Σ,

∆A ⇒ C. Applying the induction hypothesis again, based on the reduced complexity
of the multi-cut formula, to γ ′

1 and δ1, one obtains a proof of G′ | H1 | H2 | Γ, Σ ⇒
C | Σ ⇒. The desired result G′ | H1 | H2 | Γ, Σ ⇒ C follows by several applications
of (w, l) and (ec).

For ∆-formulas, case 3 can only occur when both γ and δ end in an application
of a introduction rule for ∆. Suppose, e.g., that γ and δ end as follows

··· γ1

G
′ | ∆Γ ⇒ A

(∆,r)

G
′ | ∆Γ ⇒ ∆A

··· δ1

H
′ | Σ, A ⇒ B

(∆,l)

H
′ | Σ, ∆A ⇒ B

By applying the inductive hypothesis to δ1 and γ1 one obtains a proof of the hyper-
sequent H ′ | G′ | Σ, ∆Γ ⇒ B. Hence the desired result H ′ | G′ | Σ ⇒ B | ∆Γ ⇒
follows by applying the rule (cl∆, l). ut

4. It is easy to check that the claim is true when either γ or δ ends in an application
of a logical rule whose principal formula is not the multi-cut formula.

Remark 26 In order to eliminate cuts in proofs containing non atomic axioms (e.g.,
in the case in which H is the axiom ∆A ⇒ ∆A and G is G′ | Γ ⇒ ∆A) one would
need in HG∆ the following additional rule, which is sound for G∆:

G | Γ, Γ′ ⇒ ∆A

G | Γ′ ⇒ ∆A | Γ ⇒
(cl∆, r)

4 Quantifiers in Gödel Logic

In [20, 24] extensions of analytic calculi for propositional Gödel logic with quantifiers
were presented. In particular, two different forms of quantification have been inves-
tigated: first-order quantifiers (universal and existential quantification over object
variables) and propositional or “fuzzy” quantifiers (universal and existential quantifi-
cation over propositions).

As already mentioned before, if we consider the set of tautologies, there is only
one8 infinite-valued propositional Gödel logic. In contrast, different first-order and
quantified propositional Gödel logics are induced by different infinite subsets of truth-
values over [0, 1] (closed under infima and suprema) [22]. As an example, consider
the first-order Gödel logics based on the truth-value sets: V∞ = [0, 1], V↓ = {0}∪{ 1

n
:

n ≥ 1} and V↑ = {1} ∪ {1 − 1
n

: n ≥ 1}, respectively. The one based on V∞ (i.e. the

8This is no longer true for the entailment relation, as shown in [23].
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“standard” Gödel logic when viewed as a fuzzy logic [49]) is axiomatizable, while those
based on V↑ and V↓ are not [55]. Moreover, the first-order Gödel logic based on V↑

turns out to be the intersection of all finite-valued first-order Gödel logics [22]. (See
[32, 33] for alternative axiomatizable first-order extensions of G which are defined
not via their many-valued semantics but as the class of formulas valid in all linearly
ordered Kripke models.)

A similar situation holds for propositionally quantified Gödel logics as shown in
[22, 16].

Another feature that makes quantified Gödel logics conceptually interesting is the
role of the so-called Takeuti-Titani “density rule”,

Γ ⇒ C ∨ (A ⊃ p) ∨ (p ⊃ B)

Γ ⇒ C ∨ (A ⊃ B)

where p is a propositional eigenvariable (i.e., it does not occur in the conclusion).
This rule, expressing the density of the ordered set of truth-values, was used in [63]
to axiomatize first-order Gödel logic based on the set of truth-values [0, 1] (called
“intuitionistic fuzzy logic” IF there). Takano [61] has later shown that this rule is in
fact redundant in the calculus by referring to semantical arguments already present
in Horn [50]. The situation for Gödel logic with propositional quantifiers is different.
Here, in contrast to IF, an instance of the Takeuti-Titani rule is essential to obtain a
complete (Hilbert style) axiomatization for quantified propositional Gödel logic based
on [0, 1], as was shown in [22]. (The reason is that whereas first-order Gödel logic
based on [0, 1] turns out to be the intersection of all first-order Gödel logics, the
intersection of all quantified propositional Gödel logics is not even a Gödel logic at
all, see [22, 55].)

Henceforth we only deal with Gödel logic in which the full real interval [0, 1] serves
as set of truth-values.

Based on results from [24], in Section 4.1 below we show that Avron’s HG calculus
can be suitably extended to a cut-free hypersequent calculus for first-order Gödel
logic for which applications of the Takeuti-Titani rule are (syntactically) eliminable
from all derivations. Moreover, for this calculus the mid-hypersequent theorem holds.
Along the lines of [20] we present, in Section 4.2, a cut-free hypersequent calculus for
quantified propositional Gödel logic and characterize a non-trivial fragment for which
the Takeuti-Titani rule is eliminable.

4.1 First-order Gödel logic

The language of first-order Gödel logic is identical to that of classical logic (or intu-
itionistic logic, for that matter). Free and bound (object) variables are distinguished
syntactically using a as meta-variable for the former and x for the latter. Proposi-
tional variables are identified with predicate symbols of arity 0 and are denoted with
p. Generalizing the many-valued semantics of G to the first-order level is straight-
forward: An interpretation I consists of a non-empty domain D and a valuation
function vI that maps constants and object variables to elements of D and n-ary
function symbols to functions from Dn into D. vI thus extends in the usual way to
a function mapping all terms of the language to an element of the domain. More-
over, vI maps every n-ary predicate symbol P to a function from Dn into [0, 1]. The
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truth-value of an atomic formula A := P (t1, . . . , tn) is defined as

vI(A) = vI(P )(vI(t1), . . . , vI(tn)).

The semantics of propositional connectives remains unchanged. We call distribution
of A(x), the set DistrI(A(x)) = {vI(A(p)) | p ∈ D}. The quantifiers are, as usual,
defined as infimum and supremum of their distributions, i.e.

vI((∀x)A(x)) = inf DistrI(A(x)) vI((∃x)A(x)) = sup DistrI(A(x))

I satisfies a formula A iff vI(A) = 1. A is valid iff it is satisfied by every interpretation.
First-order Gödel logic is also characterized by the class of all rooted linearly

ordered Kripke models with constant domains.
A Hilbert style calculus for first-order Gödel logic – which we call sIF – is obtained

by extending the one for first-order IL by axioms (Lin) and the “law of quantifiers
shifting” (∨∀) ∀x(A(x) ∨ B) ⊃ (∀xA(x) ∨ B), where x does not occur in B (see
[50, 61]).

In [24] a hypersequent calculus HIF9 for first-order Gödel logic was defined. It
amounts to HG extended by the following quantifier rules:

G | A(t),Γ ⇒ B

G | (∀x)A(x),Γ ⇒ B
(∀, l)

G | Γ ⇒ A(a)

G | Γ ⇒ (∀x)A(x)
(∀, r)

G | A(a),Γ ⇒ B

G | (∃x)A(x),Γ ⇒ B
(∃, l)

G | Γ ⇒ A(t)

G | Γ ⇒ (∃x)A(x)
(∃, r)

The rules (∀, r), (∃, l) must obey the eigenvariable condition: the free variable a must
not occur in the lower hypersequent.

Theorem 27 ([24]) HIF is sound and complete for first-order Gödel logic.

Proof The proof is relative to the Hilbert style calculus sIF.
(Soundness) By Theorem 8 we only have to show the soundness of quantifier

rules. This is easy in the case of (∀, l) and (∃, r). For (∀, r) we may argue as follows:
If Int(G) ∨ (

∧

Γ ⊃ A(a)) is derivable in sIF, so is ∀x(Int(G) ∨ (
∧

Γ ⊃ A(x))). Since
a did not occur in G or in

∧

Γ ⊃ A(a), we may now assume that x does not either.
Using axiom (∨∀) we obtain Int(G) ∨ ∀x(

∧

Γ ⊃ A(x)). The result follows since
∀x(

∧

Γ ⊃ A(x)) ⊃ (
∧

Γ ⊃ ∀xA(x)) is derivable in sIF. The soundness of (∃, l) can
be proved in a similar way.

(Completeness) Proceeds as in Theorem 8. We just show a derivation in HIF of

9
HIF stands for Hypersequent calculus for Intuitionistic Fuzzy logic.
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axiom (∨∀):

A(a) ⇒ A(a)

A(a) ⇒ A(a) B ⇒ B
(com)

B ⇒ A(a) | A(a) ⇒ B B ⇒ B
2x(∨,l)

A(a) ∨ B ⇒ A(a) | A(a) ∨ B ⇒ B
2x(∀,l)

∀x(A(x)∨ B) ⇒ A(a) | ∀x(A(x)∨ B) ⇒ B
(∀,r)

∀x(A(x)∨ B) ⇒ ∀xA(x) | ∀x(A(x)∨ B) ⇒ B
2x(∨,r)

∀x(A(x)∨ B) ⇒ ∀xA(x)∨ B | ∀x(A(x)∨ B) ⇒ ∀xA(x) ∨ B
(ec)

∀x(A(x)∨ B) ⇒ ∀xA(x) ∨ B
(⊃,r)

⇒ ∀x(A(x)∨ B) ⊃ (∀xA(x)∨ B)

ut

As already mentioned before, the Takeuti-Titani rule is redundant in an appropriate
calculus for first-order Gödel logic. In [61], Takano posed the question whether a
syntactical elimination of this rule is also possible. HIF allows one to give a positive
answer to this question. Indeed, let us consider the following version of Takeuti and
Titani’s density rule

G | Π ⇒ p | p, Γ ⇒ C

G | Π, Γ ⇒ C
(tt)

where the propositional variable p must not occur in the lower hypersequent.

Theorem 28 ([24]) Any derivation of a hypersequent S in HIF augmented by (tt)
can be transformed into a derivation of S in HIF.

This follows by induction on the number of applications of (tt) using the following
lemma.

Lemma 29 If π is an HIF-derivation of

G | Φ1 ⇒ p | . . . | Φn ⇒ p | Π1, Ψ1 ⇒ A1 | . . . | Πm, Ψm ⇒ Am

where p does not occur in G, Φi and Ψj and if
⋃

Πj ⊆ {p} (for i = 1, . . . , n and j =
1, . . . , m), then there is an HIF-derivation of G | Φ1, . . . , Φn, Ψ1 ⇒ A1 | . . . | Φ1, . . . ,
Φn, Ψm ⇒ Am.

Proof By induction on the length of π. We distinguish cases according to the last
inference I in π. As an example, consider the case in which I is (⊃, l) and its premises
are, say,

G′ | Φ1 ⇒ p | . . . | Φn ⇒ p | p, Ψ1 ⇒ A1 | . . . | p, Ψm ⇒ Am | Γ ⇒ A and

G′′ | Φ1 ⇒ p | . . . | Φn ⇒ p | p, Ψ1 ⇒ A1 | . . . | p, Ψm ⇒ Am | B, Γ ⇒ p.

Let Φ = Φ1, . . . , Φn. The induction hypothesis provides us with

G′ | Φ, Ψ1 ⇒ A1 | . . . | Φ, Ψm ⇒ Am | Γ ⇒ A and

G′′ | B, Γ, Φ, Ψ1 ⇒ A1 | . . . | B, Γ, Φ, Ψm ⇒ Am.

We obtain the desired hypersequent by applying (⊃, l) successively m times, together
with some applications of (w, l) and (ec). ut
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Lemma 30 The following generalized rule

G | A(a),Γ1 ⇒ C1 | . . . | A(a),Γn ⇒ Cn

G | ∃xA(x),Γ1 ⇒ C1 | . . . | ∃xA(x),Γn ⇒ Cn

(∃, l)∗

is cut-free derivable in HIF.

Proof For n = 1, the claim follows by applying the (∃, l) rule. Otherwise, us-
ing only (∃, l), (com) and (ec), we can derive (∗) G | ∃xA(x), Γ1 ⇒ C1 | H ,
where H stands for A(a), Γ2 ⇒ C2 | . . . | A(a), Γn ⇒ Cn. Indeed, let (b) be
G | A(b), Γ1 ⇒ C1 | . . . | A(b), Γn ⇒ Cn, where b is a new variable. The deriva-
tion of the hypersequent (∗) is then as follows (we omit contexts that are not involved
in the derivation)

(a) A(a),Γ1 ⇒ C1 | . . . | A(a),Γn ⇒ Cn (b)
(com)

A(b), Γ1 ⇒ C1 | A(b),Γ1 ⇒ C1 | A(a),Γ2 ⇒ C2 | A(b),Γi ⇒ Ci | H
2x(ec)

A(b), Γ1 ⇒ C1 | A(b),Γ3 ⇒ C3 | . . . | A(b),Γn ⇒ Cn | H (a)

...
...

(com)

A(b), Γ1 ⇒ C1 | A(b),Γ1 ⇒ C1 | A(a),Γn ⇒ Cn | H
2x(ec)

A(b), Γ1 ⇒ C1 | H
(∃,l)

∃xA(x),Γ1 ⇒ C1 | H

with i = 3, . . . , k. The desired result follows by iteratively applying the above argu-
ment to (∗). ut

As shown in [10], using the above lemma one can prove

Theorem 31 (Cut-elimination) If a hypersequent S is derivable in HIF then S
is derivable in HIF without using the cut rule.

Proof We show that if both the hypersequents G := G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and
H := H ′ | Σ1, A

n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk are cut-free provable in HIF, then so is
H ′ | G′ | Γ, Σ1 ⇒ B1 | . . . |Γ, Σk ⇒ Bk where Γ = Γ1, . . . , Γn.

In addition to the proof of Theorem 11 we have to consider the cases involving
quantifiers. More precisely, let γ and δ be the proofs of G and H , respectively. We
consider the following cases:

1. both γ and δ end in applications of rules for quantifiers such that the principal
formula of both rules is just the multi-cut formula;

2. either γ or δ ends in an application of a rule for quantifiers whose principal
formula is not the multi-cut formula.

1. Suppose that both γ and δ end in an application of a rule for ∀ and the principal
formulas of both rules are the cut formulas. For instance, δ is

··· δ1

H
′ | Σ1, A(a), (∀xA(x))n1−1 ⇒ B1 | . . . | Σk, (∀xA(x))nk ⇒ Bk

(∀,l)

H
′ | Σ1, (∀xA(x))n1 ⇒ B1 | . . . | Σk, (∀xA(x))nk ⇒ Bk

and γ is
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··· γ1

G
′ | Γ1 ⇒ A(a) | . . . | Γn ⇒ ∀xA(x)

(∀,r)

G
′ | Γ1 ⇒ ∀xA(x) | . . . | Γn ⇒ ∀xA(x)

Applying the induction hypothesis to both γ and δ1 one obtains a proof δ′ of
H ′ | G′ | Σ1, Γ, A(a) ⇒ B1 | . . . | Σk, Γ ⇒ Bk, where Γ = Γ1, . . . , Γn, while applying
the induction hypothesis to γ1 and δ one obtains a proof γ ′ of H ′ | G′ | Γ1 ⇒
A(a) | Σ1, Γ2, . . . , Γn ⇒ B1 | . . . | Σk, Γ2, . . . , Γn ⇒ Bk. We now apply again the
induction hypothesis, based on the reduced complexity of the multi-cut formula, to γ ′

and δ′. The desired result is obtained by several applications of (c, l), (w, l) and (ec).
2. This case is easily handled by appeal to the induction hypothesis and applica-

tions of appropriate logical and structural inferences. We outline the only non-trivial
case, i.e., when δ ends as follows

··· δ1

G
′ | Γ1, B(a) ⇒ A | . . . | Γn ⇒ A

(∃,l)

G
′ | Γ1, ∃xB(x) ⇒ A | . . . | Γn ⇒ A

Applying the induction hypothesis to γ and δ1 one obtains a proof of H ′ | G′ | Σ1, Γ,
B(a) ⇒ B1 | . . . | Σk, Γ, B(a) ⇒ Bk, where Γ = Γ1, . . . , Γn. Hence the desired result
follows from Lemma 30. ut

Remark 32 The above proof has originally been formulated in [24] without using
the “extended multi-cut rule” (see Remark 17).

Another proof of the cut-elimination theorem for HIF can be found in [10]. This
proof follows the Schütte-Tait method ([57, 59]) that differs from Gentzen’s method
by its cut selection rule: Gentzen selects a highest cut, while in Schütte-Tait style
procedure a largest cut (w.r.t. the number of connectives and quantifiers of the cut-
formula) is selected. Moreover, the cut-elimination proof in [10] allows one to establish
non-elementary primitive recursive bounds for the lengths of cut-free proofs in HIF
in terms of the length and the maximal complexity of cut-formulas in the original
proof. Indeed, let 4n

0 = n, 4n
k+1 = 44n

k . The length of the resulting cut-free derivations

in HIF is bounded by 4
|d|
ρ(d), where |d| is the depth of the original derivation and ρ(d)

the maximal complexity of cut-formulas in it.

Remark 33 The elimination procedure of the rule (tt) (Theorem 28) is directly ap-
plicable to cut-free proofs. Note that case (5) in the original proof of Lemma 29, i.e.,
when the last inference I applied is either (∨, l) or (∃, l) (see [24]), can be handled
without introducing cuts, since the needed generalized rules (∨, l)∗ and (∃, l)∗ are
cut-free derivable in HIF (Lemmas 12 and 30).

As is well known, already Gentzen showed that in LK — as a consequence of cut-
elimination — a separation between propositional and quantificational inferences can
be achieved in deriving a prenex sequent (see, e.g., [62]). This result, that does not
hold for LJ, was extended in [24] to Gödel logic, as follows:

Theorem 34 (Mid-hypersequent) Any HIF-derivation π of a prenex hyperse-
quent H can be transformed into one in which no propositional rule is applied below
any application of a quantifier rule.
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Proof The proof proceeds as in the classical case (see, e.g., [62]). First observe that
all non-atomic axioms are cut-free derivable from atomic axioms. Recall that the only
case that does not work for LJ arises when π contains a quantifier inference above
a (∨, l) inference. In HIF the (∨, l) rule can be simulated without using cuts by the
following one

G | A,Γ ⇒ C1 G | B, Γ ⇒ C2

G | A ∨ B, Γ ⇒ C1 | A ∨ B, Γ ⇒ C2
(∨′, l)

We replace all the applications of (∨, l) by applications of (∨′, l) in π. We define the
order of a quantifier inference in π to be the number of propositional inferences under
it, and the order of π as the sum of the orders of its quantifier inferences. The proof
then proceeds by induction on the order of π. ut

The above theorem can be used to prove Herbrand’s theorem for the prenex fragment
of Gödel logic. (See [12] for a semantical proof of the latter theorem).

4.2 Quantified propositional Gödel logic

An interesting generalization of propositional Gödel logic is obtained by adding quan-
tifiers over propositional variables. In contrast to classical logic, propositional quan-
tification may increase the expressive power of Gödel logic. More precisely, statements
about the topological structure of the set of truth-values (taken as infinite subsets of
the real interval [0, 1]) can be only expressed using propositional quantifiers [22].
There is yet another reason that renders the investigation of quantified propositional
Gödel logic interesting, namely its relation with the interpolation property (see [21]).
Indeed, Gödel logic admits elimination of propositional quantifiers which yields an
immediate proof of the uniform interpolation property (Corollary 38).

Henceforth let us use the notation A[X ] to exhibit the occurrences of the formula
X in the formula A.

In classical propositional logic one may understand (∃q)A[q] to abbreviate A[⊥]∨
A[>] and (∀q)A[q] to abbreviate A[⊥] ∧A[>]. In other words, propositional quantifi-
cation is semantically defined by the supremum and infimum, respectively, of truth
functions (with respect to the usual ordering “0 < 1” over the classical truth-values
{0, 1}). This correspondence can be extended to Gödel logic by using propositional
quantifiers. Syntactically, this means that we allow formulas (∀q)A and (∃q)A for
propositional variables in the language. Again we distinguish free and bound vari-
ables syntactically by using a to denote free variables and q to denote bound variables.

The semantics of propositional quantifiers is defined analogously to that of first-
order quantifiers as the infimum and supremum of the corresponding distribution. In
this context the distribution of A([q]) is the set {vI(A[p]) | p ∈ D}.

To obtain a Hilbert style calculus for quantified propositional logic, we first add
to the axiom system for IL of Table 2 the following two axioms and rules:

Implies−∃ : A[X ] ⊃ (∃q)A[q] ∀−Implies : ((∀q)A[q]) ⊃ A[X ]

Z[a] ⊃ Y

((∃q)Z[q]) ⊃ Y
(R∃)

Y ⊃ Z[a]

Y ⊃ (∀q)Z[q]
(R∀)

where a does not occur in Y .
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Remark 35 Implies-∃, ∀-Implies as well as (R∃) and (R∀) are already sound for
intuitionistic logic with propositional quantifiers.

The system sQG for quantified propositional Gödel logic is obtained by taking all
abovementioned axioms and rules plus the following two axioms:

∨−Shift : ((∀q)(A ∨ B)) ⊃ (A ∨ (∀q)B)
Density : [(∀q′)((A ⊃ q′) ∨ (q′ ⊃ B))] ⊃ (A ⊃ B)

where q does not occur in A and q′ occurs neither in A nor in B.

Theorem 36 ([22]) sQG admits quantifiers elimination: For every formula A there
exists a quantifier-free formula B, all whose variables are in A, such that sQG derives
(A ⊃ B) ∧ (B ⊃ A).

Corollary 37 sQG is sound and complete for quantified propositional Gödel logic.

Corollary 38 G admits uniform interpolation: For every tautology P ⊃ Q of G
there exists a formula C, depending only on P and on the propositional variables of
P not occurring in Q, such that P ⊃ C and C ⊃ Q are tautologies of G.

Proof Let us use u to denote a sequence of subformulas in a formula. Let A[y, x] ⊃
B[z, x] be a tautology of G. sQG derives A[y, x] ⊃ ∃qA[y, q] and ∃qA[y, q] ⊃ B[z, x].
The claim follows from Theorem 36. ut

Remark 39 In fact, it was proved in [22] that instances of axioms Implies−∃ and
∀−Implies, where the formulas denoted by X are quantifier free, suffice for the com-
pleteness of the calculus.

The hypersequent calculus HQG for quantified propositional Gödel logic is obtained
by augmenting HG with both the density rule (tt) and the following rules for intro-
ducing propositional quantifiers:

G | A[X], Γ ⇒ B

G | (∀q)A[q],Γ ⇒ B
(∀, l)0

G | Γ ⇒ A[a]

G | Γ ⇒ (∀q)A[q]
(∀, r)0

G | A[a], Γ ⇒ B

G | (∃q)A[q],Γ ⇒ B
(∃, l)0

G | Γ ⇒ A[X]

G | Γ ⇒ (∃q)A[q]
(∃, r)0

In the rules (∀, l)0 and (∃, r)0 the formula X is quantifier free. Moreover, the rules
(∀, r)0 and (∃, l)0 must obey the eigenvariable condition.

Theorem 40 ([20]) HQG is sound and complete for quantified propositional Gödel
logic.

Proof The proof is relative to the Hilbert system sQG. It proceeds as in Theo-
rem 27. For the completeness part, we just show how to prove the density axiom in
HQG. First notice that for all formulas A, B and C,

HQG derives (A ⊃ C) ∨ (C ⊃ B), A ⇒ C | (A ⊃ C) ∨ (C ⊃ B), C ⇒ B

Therefore, the derivation of the density axiom proceeds as follows:
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(A ⊃ q) ∨ (q ⊃ B), A ⇒ q | (A ⊃ q) ∨ (q ⊃ B), q ⇒ B
2x(∀,l)0

(∀q)((A ⊃ q) ∨ (q ⊃ B)), A ⇒ q | (∀q)((A ⊃ q) ∨ (q ⊃ B)), q ⇒ B
(tt)

(∀q)((A ⊃ q) ∨ (q ⊃ B)), A ⇒ B
(⊃,r)

(∀q)((A ⊃ q) ∨ (q ⊃ B)) ⇒ A ⊃ B
(⊃,r)

⇒ [(∀q)((A ⊃ q) ∨ (q ⊃ B))] ⊃ (A ⊃ B)
ut

Theorem 41 (Cut-elimination) If a hypersequent S is derivable in HQG then S
is derivable in HQG without using the cut rule.

Proof Proceeds as in Theorem 31. We show that if both the hypersequents G :=
G′ | Γ1 ⇒ A | . . . |Γn ⇒ A and H := H ′ | Σ1, A

n1 ⇒ B1 | . . . |Σk, Ank ⇒ Bk are
cut-free provable in HQG, then so is H ′ | G′ | Γ, Σ1 ⇒ B1 | . . . |Γ, Σk ⇒ Bk where
Γ = Γ1, . . . , Γn. Let γ and δ be the proofs of G and H , respectively.

In order to see that reducing cuts on quantified formulas does not spoil the ter-
mination of the cut-elimination procedure we have to introduce the number nq of
quantifier occurrences in the multi-cut formula as an additional parameter to the pair
[c, r], where c is the complexity of the multi-cut formula, and r is the sum of the
ranks of γ and δ. The lexicographical ordering over the resulting triple [nq, c, r] is an
appropriate reduction ordering. As an example, suppose that γ and δ end in

··· γ1

G
′ | Γ ⇒ A[a]

(∀,r)0

G
′ | Γ ⇒ (∀q)A[q]

and

··· δ1

H
′ | Σ, A[X] ⇒ B

(∀,l)0

H
′ | (∀q)A[q],Σ ⇒ B

Let us denote with γ1[X/a], the proof γ1 after substituting all the occurrences of a
by X . Note that in A[X ] the number of occurrences of quantifiers is decreased w.r.t.
(∀q)A[q], since X is quantifier free. Therefore we can apply the induction hypothesis
to γ1[X/a] and δ1 to obtain the desired result, namely, G′ | H ′ | Γ, Σ ⇒ B.

Suppose that γ ends in an application of (tt), e.g.,

··· γ1

G
′ | Γ1 ⇒ p | Γ2, p ⇒ A | . . . | Γn ⇒ A

(tt)

G
′ | Γ1, Γ2 ⇒ A | . . . | Γn ⇒ A

Applying the induction hypothesis to γ1 and δ one obtains a proof of G′ | H ′ | Γ1 ⇒
p | Γ′, Σ1 ⇒ B1 | . . . | Γ′, Σk ⇒ Bk, where Γ′ = p, Γ2, . . . , Γn. In analogy with case 2
in the proof of Theorem 31, the desired result G′ | H ′ | Γ, Σ1 ⇒ B1 | . . . | Γ, Σk ⇒ Bk

with Γ = Γ1, . . . , Γn, follows by several applications of (tt), (com) and (ec). ut

As shown before, the density rule is needed to derive instances of the density axiom
in HQG. On the other hand, this rule renders proof search rather problematic.
Moreover we conjecture that the fragment of quantified propositional Gödel logic in
which the rule (tt) (or a variant thereof) is not actually needed to find a proof is
the intersection of all quantified propositional Gödel logics. Therefore it is useful to
characterize such a fragment. Let HQG− be the calculus obtained from HQG by
dropping the rules (∀, l)0 and (∃, r)0.
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Theorem 42 ([20]) Every HQG−-proof π of a hypersequent H can be transformed
into a proof π′ of H in which no application of the density rule occurs.

Proof The proof is similar to that of Theorem 28.

Remark 43 Due to the eigenvariable condition in (tt), one cannot permute this rule
with (∀, l)0 (or (∃, r)0) as, e.g., in the derivation of the density axiom (see the proof
of Theorem 40).

5 Conclusion

The literature contains various analytic calculi for G, see, e.g., [58, 1, 36, 17, 43, 7, 12,
39]. Among them, several calculi are better suited for proof search than hypersequent
calculi. This holds in particular for sequent of relations calculi [17, 13], goal-oriented
proof procedures [43], the systems recently defined in [7, 8, 39] or the resolution-style
chaining calculi used in [12]. However, the mentioned calculi cannot be modified in a
simple way to include quantifiers, modalities or to formalize related logics.

The most significant feature of the calculus HG is its close relation to Gentzen’s
sequent calculus LJ for intuitionistic logic. HG contains LJ as a sub-calculus and
simply adds an additional layer of information by allowing LJ-sequents to live in the
context of finite multisets of sequents; suitable structural rules allow to manipulate
sequents with respect to their contexts. This design provides a rather flexible frame-
work that allows one to formulate analytic Gentzen-style calculi for a range of logics
that bear a similar relation to contraction-free versions of intuitionistic logic as G
bears to IL (e.g., Urquart’s C [66, 67] or Esteva and Godo’s MTL [37]). In addition,
suitable rules for dealing with the ∆ modality, as well as for bounding the number
of possible truth-values in Gödel logics, can be naturally defined. Moreover, one can
easily go beyond the propositional level by adding the usual quantifier rules (both
for first-order and propositional quantifiers). Remarkably enough, in the resulting
calculus for first-order Gödel logic one can prove (a version of) Gentzen’s classical
mid-sequent theorem. This should be contrasted with the fact that no comparable
version of this theorem holds for intuitionistic logic. In this sense, the external level
of HG captures some “classical” features of G.

Finally, we remark that in (cut-free) hypersequent calculi the subformula prop-
erty is retained in its original form. This makes them a nice tool for analyzing and
reasoning about proofs in the logics concerned.

References

[1] A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi together
with cut-free and contraction free sequent calculi for the interpolable proposi-
tional intermediate logics. Logic J. of the IGPL, 7(4):447–480, 1999.

[2] A. Avron. A constructive analysis of RM. J. of Symbolic Logic, 52:939–951, 1987.

[3] A. Avron. Hypersequents, logical consequence and intermediate logics for con-
currency. Annals of Mathematics and Artificial Intelligence, 4:225–248, 1991.

25



[4] A. Avron. Natural 3-valued logics characterization and proof theory. J. of Sym-
bolic Logic, 56:276–294, 1991.

[5] A. Avron. The method of hypersequents in the proof theory of propositional
nonclassical logics. In Logic: from Foundations to Applications, European Logic
Colloquium, pages 1–32. Oxford Science Publications. Clarendon Press. Oxford,
1996.

[6] A. Avron. Two types of multiple-conclusion systems. Logic J. of the IGPL,
6(5):695–717, 1998.

[7] A. Avron. A tableau system for Gödel-Dummett logic based on a hyperse-
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Gödel 96. Kurt Gödel’s Legacy, volume 6 of LNL, pages 23–33, 1996.
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Logic for Programming and Automated Reasoning (LPAR’2000), volume 1955 of
LNAI, pages 240–257. Springer, 2000.

[17] M. Baaz and C. Fermüller. Analytic calculi for projective logics. In Automated
Reasoning with Tableaux and Related Methods (Tableaux’99), volume 1617 of
LNAI, pages 36–51. Springer, 1999.

26



[18] M. Baaz, C. Fermüller, and G. Salzer. Automated deduction for many-valued
logic. In Handbook of Automated Reasoning, volume 2, pages 1355–1402. Elsevier,
2001.

[19] M. Baaz, C. Fermüller, G. Salzer, and R. Zach. Labeled calculi and finite-valued
logics. Studia Logica, 61:7–33, 1998.

[20] M. Baaz, C. Fermüller, and H. Veith. An analitic calculus for quantified proposi-
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