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Abstract

In this paper, we propose a new logical approach to represent and to reason about different time granularities.

We identify a time granularity as an infinite sequence of time points properly labelled with proposition symbols

marking the starting and ending points of the corresponding granules, and we symbolically model sets of granular-

ities by means of linear time logic formulas. Some real-world granularities are provided, from a clinical domain

and from the Gregorian Calendar, to motivate and exemplify our approach. Different formulas are introduced,

which represent relations between different granularities. The proposed framework permits to algorithmically

solve the consistency, the equivalence, and the classification problems in a uniform way, by reducing them to the

validity problem for the considered linear time logic.



1. Introduction

1.1 Context and Motivation

Any time granularitycan be viewed as the partitioning of a temporal domain in groups of elements, where

each group is perceived as an indivisible unit (a granule). The description of a fact can use these granules to

provide it with a temporal qualification, at the appropriate abstraction level. However, adding the concept of time

granularity to a formalism does not merely mean that one can use different temporal units to represent temporal

quantities in a unique flat model, but it involves semantic issues related to the problem of assigning a proper

meaning to the association of statements with the different temporal domains of a layered model and of switching

from one domain to a coarser/finer one. The ability of providing and relating temporal representations at different

‘grain levels’ of the same reality is an important research theme in computer science. In particular, it is a major

requirement for formal specifications, temporal databases, data mining, problem solving, and natural language

understanding.

• As for formal specifications, there exists a large class of reactive systems whose components have dynamic

behavior regulated by very different time constants (granular reactive systems). A good specification lan-

guage must enable one to specify and verify the behavior of the components of a granular reactive system

and their interactions in a simple and intuitively clear way [13, 19, 20, 29, 40, 46, 47, 48, 49].

• With regard totemporal databases, the common way to represent temporal information is to timestamp

either attributes (attribute timestamping) or tuples/objects (tuple-timestamping). Timestamping is performed

taking time values over some fixed granularity. However, it may happen that differently-grained timestamps

have to be associated with data, for example, when information is collected from different sources which

are not under the same control. Furthermore, users and applications may also require the flexibility of

viewing and querying the temporal information stored in the database in terms of different granularities. To

guarantee consistency either the data must be converted into a uniform representation that is independent

of time granularity or temporal operations must be generalized to cope with data associated with different

temporal domains. In both cases, a precise semantics for time granularity is needed [3, 12, 18, 26, 37, 38,

45, 51, 54, 58, 59].

• With regard todata mining, a huge amount of data is collected every day in the form of event-time sequences.

These sequences represent valuable sources of information, not only for what is explicitly registered, but also

for deriving implicit information and predicting the future behavior of the process that we are monitoring.
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The latter activity requires an analysis of the frequency of certain events, the discovery of their regularity,

and the identification of sets of events that are linked by particular temporal relationships. Such frequencies,

regularity, and relationships are very often expressed in terms of multiple granularities, and thus analysis

and discovery tools must be able to deal with these granularities [1, 4, 6, 25, 42].

• With regard toproblem solving, several problems in scheduling, planning, and diagnosis can be formulated

as temporal constraint satisfaction problems, often involving multiple time granularities. In a temporal

constraint satisfaction problem, variables are used to represent event occurrences and constraints are used to

represent their granular temporal relationships [8, 5, 21, 28, 36, 39, 50, 53, 55].

• Finally, shifts in the temporal perspective occur very often in natural language communication, and thus the

ability of supporting and relating a variety of temporal models, at different grain sizes, is a relevant feature

for the task ofnatural language understanding[11, 30, 34].

A further distinction we have to introduce is between therepresentation and reasoning on time granularitiesand

therepresentation and reasoning on facts/statements associated with times specified at different granularities. The

requirements for reasoning on facts at different levels of granularity are often related and specific to the different

research areas mentioned above: e.g., supporting for different time granularities for database query languages

[26], supporting the specification of real-time systems with different granularities [20], providing algorithms for

pattern discovery on time series with several time units [4]. Nevertheless, the need for formalisms allowing the

specification and the reasoning on granularities is common to all the mentioned research areas and originated

several different proposals [9, 30, 35, 44, 51, 52, 60].

More specifically, most approaches proposed in the literature for representing and reasoning about time gran-

ularity can be classified into algebraic approaches and logical ones. In thealgebraic(or operational) framework,

a bottom granularityis assumed, and a finite set ofcalendar operatorsare exploited to create new granularities

by suitably manipulating other granularities [9, 30, 51, 52]. In thelogical (or descriptive) framework for time

granularity, the different granularities and their interconnections are represented by means of mathematical struc-

tures called layered structures, consisting of a possibly infinite set of related differently-grained temporal domains.

Suitable operators make it possible to move within a given temporal domain and across temporal domains. Logical

formulas allow one to specify properties involving different time granularities in a single formula by mixing such

operators [33, 44, 46, 48, 49].

Algebraic and logical frameworks stem from different research areas calling for different focuses. For instance,

in the database context, where the algebraic framework is usually adopted, granule conversion plays a major role
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because it allows the user to view the temporal information contained in the database in terms of different granular-

ities, while in the context of verification, where logical frameworks have been proposed, decision procedures are

unavoidable to automatically validate the system (for example, to establish whether two different representations

define the same granularity). Abstracting away from the research areas of the two frameworks, it is possible to

identify their main limitations and advantages. The main advantage of the algebraic framework is its naturalness:

by applying user-friendly operations to existing standard granularities like ‘days’, ‘weeks’, and ‘months’, a quite

large class of new granularities, like ‘business weeks’, ‘business months’, and ‘years since 2000’, can be easily

generated. The major weakness of the algebraic framework is that reasoning methods basically reduce to granule

conversions and semantic translations of statements. Little attention has received the investigation of algorithms

to check whether some meaningful relation holds between granularities (e.g., to verify whether the granularityG1

is finer than granularityG2 or G1 is equivalent toG2). Moreover, only a finite number of time granularities can

be represented. On the contrary, reasoning methods have been extensively investigated in the logical framework,

where both a finite and an infinite number of time granularities can be dealt with. Theorem provers make it possi-

ble to verify whether a granular requirement is consistent (i.e., specifies a well-defined granularity), while model

checkers allow one to check whether a granular property is satisfied in a particular structure. To allow such com-

putational properties, however, some limitations have to be introduced for the involved granularities, assuming,

for example, some form of regularity of the sizes of the granules.

With respect to this scenario, several efforts are needed to have a more comprehensive approach, which main-

tains both the naturalness of the algebraic framework and the reasoning methods developed for the logical frame-

work, allowing its usage in different research areas and a deep comparison of the proposals currently existing for

the specification of time granularities.

In general, in order to represent and to reason about time granularity, any formalism should satisfy the following

requirements:

• Expressiveness. The class of granularities represented in the formalism should be large enough to be of

practical use.

• Effectiveness. The formalism should provide algorithms to reason about different time granularities. In

particular, it should provide an effective solution to the well-known problems ofconsistency, equivalence

andclassification.

– The consistency problemis the problem of deciding whether a granularity representation is well-

defined. The algorithmic solution of the consistency problem is important to avoid the definition
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of inconsistent granularities that may produce unexpected failures in the system.

– Theequivalence problemis the problem of deciding whether two different representations define the

same granularity. The decidability of the equivalence problem implies the possibility of effectively

testing the semantic equivalence of two different time granularity representations, making it possible

to use the smallest and most tractable one.

– Theclassification problemis the problem of deciding whether a natural numbern, representing a time

point, belongs to a granule of a given granularity. The classification problem is strictly related to the

granule conversion problem which allows one to relate granules of a given granularity to granules of

another one.

• Compactness. The formalism should exploit regularities exhibited by the considered granularities to make

their representations as compact as possible.

1.2 Focus and goals of the paper

The paper deals with a first attempt to propose an approach for the specification of temporal granularities, taking

into account both the algebraic framework and the logical one. The basic idea is to assume the standard definition

of granularity proposed by Bettini and colleagues (see, for example, [8]) and extensively adopted by algebraic

approaches proposed for temporal databases, temporal data mining, and problem solving [3, 4, 6, 7, 16, 18, 52],

and to develop on top of it a logical approach based on a linear temporal logic, also considering how (and which

of) the main algebraic operators can be expressed as logical formulas.

More precisely, in this paper, we propose an original logical approach to represent and to reason about different

time granularities, which overcomes some limitations of logical and algebraic frameworks. We identify a time

granularity with a discrete linear time structure properly labelled with proposition symbols marking the starting

and ending points of the corresponding granules. We make use of a linear time logic, interpreted over labelled

linear time structures, to model possibly infinite sets of time granularities. Any linear time formula is associated

with a set of labelled linear time structures satisfying the formula (the set of models of the formula). Since any

properly labelled linear time structure identifies a time granularity, we may model possibly infinite sets of time

granularities by means of well-defined linear time formulas. Moreover, a single sequence may identify a finite

number of different granularities (a calendar) by using a different couple of marking proposition symbols for any

granularity. Hence, well-defined linear time formulas may model possibly infinite sets of calendars as well. The

proposed approach permits to model a large set of regular granularities and to algorithmically solve the consistency,
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the equivalence, and the classification problems in a uniform way by reducing them to the validity problem for the

considered linear time logic, which is known to be decidable in polynomial space.

1.3 Structure of the paper

The rest of the paper is organized as follows. In Section 2 we describe in some detail the main approaches to the

problem of representing and reasoning about time granularity. In Section 3 we present some real-world motivating

examples. In Section 4 we propose our logical approach to represent and to reason about time granularity and

discuss both expressiveness and computational features of our proposal. In Section 5 we summarize the compari-

son of our work with related ones and, finally, in Section 6 we sketch some concluding remarks and outline future

work.

2 Related work

In this section, we describe in some detail the main proposals for the algebraic framework and the logical one

present in the literature, for representing and reasoning about time granularity; then, we introduce some recent

approaches which originated thestring-basedframework.

2.1 Algebraic Framework

In the algebraic framework, new granularities are generated from existing ones, assuming a bottom granularity,

through a finite set of calendar operators. A granularity is hence identified by an algebraic expression. In the

algebraic framework, algorithms are provided to perform granule conversions, that is, to convert the granules

in one granularity to those in another granularity, and to perform semantic conversion of statements associated

to different granularities. The algebraic approach to time granularity has been mostly applied in the fields of

databases, data mining, and temporal reasoning. Algebraic approaches for time granularities have been proposed

by Foster, Leban, and McDonald [30], by Niezette and Stevenne [51], by Bettini and De Sibi [9], and by Ning,

Jajodia, and Wang [52]. Foster, Leban, and McDonald propose thetemporal interval collection formalism. A

collection is a structured set of intervals, where the order of the collection gives a measure of the structure depth:

a collection of order 1 is an ordered list of intervals, and a collection of ordern, with n > 1, is an ordered list of

collections of ordern− 1. Each interval denotes a set of contiguous moments of time. To manipulate collections,

dicing and slicing operators are used. The former allow one to divide each interval of a collection into another

collection, while the latter provide means to select intervals from collections. For instance, the application of

the dicing operatorWeek : during : January1998 divides the interval corresponding toJanuary1998 into the
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intervals corresponding to the weeks that are fully contained in the month. Moreover, the application of the slicing

operator[1,−1]/Week : during : January1998 selects the first and the last week from those identified by the

dicing operator above.

Niezette and Stevenne introduce a similar formalism, called theslice formalism. A slice has the form
∑n

i=1 Oi.Ci > D, where the elements of the sum identify the starting points of the intervals, beingCi a symbol

denoting a calendar (i.e., a periodic infinite set of consecutive intervals) andOi either a set of natural numbers or

the keywordall , andD their duration. For instance,all.Year + {3, 5}.Month + {2}.Day > 5.Day denotes a

set of intervals corresponding to the days 2 - 6 of March and May of each year: i.e, any interval lasts 5 days, as

specified by the duration5.Day, and may start either on March 2 or on May 2 of each year, as specified by the first

part of the expression.

Bettini and De Sibi show that both slice and collection formalisms can capture the set of finite no-gap gran-

ularities and that of infinite periodical no-gap granularities. Intuitively, a finite no-gap granularity is composed

by a finite number of granules, i.e., intervals on the basic time line; infinite periodical no-gap granularities are

composed by an infinite number of granules, i.e., intervals on the basic time line, with a periodical behaviour

with respect to their extensions. Moreover, the collection formalism is extended to capture also both gap and

quasi-periodical granularities: gap granularities, which are not expressible by the slice and collection formalisms,

have granules which are composed by a set of non contiguous time points of the basic time line (e.g.,Business

Months , defined as the set of business days in a month, is a gap granularity on the time line of days); quasi-

periodical granularities behave as periodical granularities, except for a finite number of spans of time, where they

have an anomalous behaviour. The extended collection formalism allows one to express also infinite bi-periodical

granularities, which are represented by two sets of repeating granules, the first repeating from a maximum time

point towards−∞ and the second one repeating from a minimum time point towards+∞.

Finally, Ning, Jajodia, and Wang introduce acalendar algebraconsisting of a finite set of parametric calendar

operations that can be classified into grouping-oriented operations and granule-oriented operations. The former

operations group certain granules of a granularity together to form the granules of a new granularity. For instance,

a typical group-oriented operation isGroupn(G) that generates a new granularityG′ by partitioning the granules

of G into groups containingn granules and making each group a granule of the resulting granularity. The granule-

oriented operations do not change the granules of a granularity, but rather select which granules should remain

in the new granularity. A typical granule-oriented operation isSubsetn
m(G) that generates a new granularity

G′ by taking all the granules ofG betweenm and n. By the calendar algebra, all the finite and the infinite

periodical granularities can be represented. Some syntactic restrictions are introduced in the usage of the algebraic

7



operations: these restrictions facilitate the calendar algebraic operations, without decreasing the expressiveness

of the algebra. Three layers are identified in the calendar algebra, according to the operators used for defining

new granularities: layer 1 is composed by the basic granularity and by all the granularities obtained without

introducing gaps within granules and without using operators which produce finite granularities (in this layer,

only the grouping-oriented basic operations are allowed); layer 2 is mainly composed by granularities obtained

by applying subset and selecting operations on granularities of layer 1 (i.e., only granule-oriented operations

are allowed); layer 3 contains granularities obtained from granularities of layers 1 and 2, suitably combined by

some specific grouping-oriented operations. Moreover, all the three layers can contain granularities obtained by

other granularities of the same layer, using suitable algebraic operators. Being the calendar algebra proposed

in the context of temporal databases, algorithms are then provided by the authors to support different kinds of

granule conversions: to this regard, also the granule conversion problem has simpler solutions with the above

syntactic restrictions, being computations of (up and down) granule conversions based on the features of the

involved granularities, with respect to the layer they belong to.

2.2 Logical Framework

In the logical framework for time granularity, mathematical structures, i.e., layered structures, represent the

different granularities and their interconnections. Alayered structureconsists of a possibly infinite set of related

differently-grained temporal domains. Such a structure identifies the relevant temporal domains and defines the

relations between time points belonging to different domains. Suitable operators make it possible to move horizon-

tally within a given temporal domain (displacement operators), and to move verticallyacrosstemporal domains

(projection operators). These operators recall the slicing and dicing operators of the collection formalism. Both

classical and temporal logics can be interpreted over the layered structure. Logical formulas allow one to specify

properties involving different time granularities in a single formula by mixing displacement and projection opera-

tors. Algorithms are provided to verify whether a given formula is consistent (satisfiability problem) as well as to

check whether a given formula is satisfied in a particular structure (model checking problem).

The logical approach to represent time granularity has been mostly applied in the field of formal specification

and verification of concurrent systems. A logical approach to represent and reason about time granularity, based

on a many-level view of temporal structures, has been proposed by Montanari in [44], and further investigated by

Franceschet, Montanari, Peron, and Policriti in [31, 46, 49]. In the proposed approach, theflat temporal structure

of standard temporal logics is replaced by alayeredtemporal universe consisting of a possibly infinite set of related

differently-grained temporal domains. In [44], a metric and layered temporal logic (MLTL) for time granularity
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has been proposed. It is provided with temporal operators of displacement and projection, which can be arbitrarily

combined, and it is interpreted over layered structures. However, only a sound axiomatic system is given, and no

decidability result is proved for MLTL.

Layered structures with exactlyn ≥ 1 temporal domains such that each time point can be refined intok ≥ 2

time points of the immediately finer temporal domain, if any, are calledk-refinablen-layered structures (n-LSs

for short). They have been investigated in [49], where a classical second-order language, with second-order

quantification restricted to monadic predicates, has been interpreted over them. The language includes a total

ordering< andk projection functions↓0, . . . , ↓k−1 over the layered temporal universe such that, for every point

x, ↓0(x), . . . , ↓k−1(x) are thek elements of the immediately finer temporal domain, if any, into whichx is refined.

The satisfiability problem for the monadic second-order language overn-LSs has been proved to be decidable by

using a reduction to the emptiness problem for Büchi sequence automata. Unfortunately, the decision procedure

has a nonelementary complexity. Layered structures with an infinite number of temporal domains,ω-layered

structures, have been studied in [46]. In particular, the authors investigatedk-refinable upward unbounded layered

structures(UULSs), that is,ω-layered structures consisting of a finest temporal domain together with an infinite

number of coarser and coarser domains, andk-refinable downward unbounded layered structures(DULSs), that is,

ω-layered structures consisting of a coarsest domain together with an infinite number of finer and finer domains. A

classical monadic second-order language, including a total ordering< andk projection functions↓0, . . . , ↓k−1, has

been interpreted over both UULSs and DULSs. The decidability of the monadic second-order theories of UULSs

and DULSs has been proved by reducing the satisfiability problem to the emptiness problem for systolic and Rabin

tree automata, respectively. In both cases the decision procedure has a nonelementary complexity. Expressively

complete and elementarily decidable temporal logic and automata counterparts of the second-order theories of

n-LSs, DULSs and UULSs have been proposed in [31]. Moreover, the monadic language for granularity has been

extended with meaningful predicates like the equi-level, constraining two time points to belong to the same layer

of a layered structure, and the equi-column, constraining two time points to belong to the same column of a layered

structure, and the decidability problems of the resulting theories over layered structures have been explored [31].

2.3 String-based Framework

A recent original approach to represent and to reason about time granularity has been proposed by Wijsen [60]

and later refined by Dal Lago, Montanari, and Puppis [22, 23, 24]. Wijsen models infinite granularities as infinite

strings over a suitable finite alphabet. The resulting string-based model is then used to formally state and solve the

problems of granularity equivalence and minimality. This formalism does not fulfill the requirement of compact-
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ness: the representation of a granularity can be very long whenever the granularity is periodic with a long prefix

or period (as in the case of the Gregorian Calendar).

Dal Lago and Montanari [22] give an automata-theoretic counterpart of the string-based model devised by

Wijsen. They proposesingle-string automata, a variant of deterministic B̈uchi automata accepting a single infinite

string, to represent time granularities. Furthermore, they show that regularities of modeled granularities can be

naturally expressed by extending single-string automata with counters. This extension makes the structure of the

automata more compact, and it allows one to efficiently deal with those granularities which have a quasi-periodic

structure. In [23], the authors prove that single-string automata provide an efficient solution to the fundamental

problems of equivalence and classification. Moreover, they argue how single-string automata can be used not only

as a specification formalism for time granularities, but also as a low-level formalism into which high-level time

granularity specifications can be mapped. For instance, expressions of Calendar Algebra [52] can be efficiently

mapped into equivalent single-string automata.

Finally, Dal Lago, Montanari, and Puppis [24] focus on two kinds of optimization problems for automata-

based representations of time granularities, namely, computing the smallest representation and computing the

most tractable representation, that is, the one in which granule conversion algorithms run fastest. They show how

to efficiently compute complexity optimal automata from smaller ones in a bottom-up fashion.

3. Motivating examples

To motivate the need of managing different granularities, we will focus on two examples of different nature. The

first example comes from clinical medicine and deals with the definition of specific granularities related to therapy

plans. Intuitively, therapy plans can be considered as the calendar according to which it is possible to properly

observe the evolution of the patient’s state. We consider here chemotherapies for oncological patients, a topic

which has been extensively considered by the clinical research and that is precisely described and recommended

in several clinical practice guidelines, the physicians follow during the daily routine. Chemotherapies are usually

intensive and potentially have several side effects for the patients: it is, then, useful to observe how a treated patient

reacts during the different phases of the therapy.

In general, oncology patients undergo several chemotherapy cycles: each cycle can include the administration

of several drugs, which the patient has to assume according to a specific temporal pattern. Within each cycle, the

temporal administration of each drug is usually predefined; a cycle can be repeated several times. As an example,

consider the following chemotherapy recommendation [41]:
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Cycle(1) Cycle(2) Cycle(3) Cycle(4) Cycle(5) Cycle(6)

delays of 0-5 days between a
cycle and the next one

OC+IM(1) OC+IM(4) OC+IM(8)
5-Fl(1) 5-Fl(2)

OC+IM(14)
Day(1) ......              .........            ...... Day(28) 

CMF chemotherapy

time

time

Figure 1. Granularities involved in a chemotherapy treatment.

“The recommended CMF1 regimen consists of 14 days of oral cyclophosphamide with intravenous

methotrexate, and 5-fluorouracil on days 1 and 8. This is repeated every 28 days for 6 cycles”

Moreover, it may happen that the beginning of a cycle is delayed a few days, due to patient’s blood analysis results.

Figure 1 provides a graphical representation of the recommended CMF regimen.

According to this scenario, we can easily identify some requirements related to the definition of useful granu-

larity systems:

1. Definition of therapy-related granularities. These granularities should be suitably specified for different

patients, according to the moment at which they start a given chemotherapy.

2. Definition of granularities having some degree of uncertainty. There is, indeed, the need of representing the

fact that two consecutive cycles may be separated by some days, due to the patient’s conditions.

3. Verification of consistency between an assigned therapy and the recommended regimen. Given a therapy

assigned to a patient with the specification of days and corresponding drug assumptions, it is important to

be able to determine whether the therapy is consistent with the recommended regimen.

4. Assignment of a therapy according to the recommended regimen and to other granularity-related con-

straints. It could be necessary, for organizational reasons, to avoid that some specific drug administrations

happen during the weekend: for example, in specifying a CMF therapy, we could avoid that the administra-

tion of 5-fluorouracil is on Sundays or on December 25.
1CMF stands for the chemotherapy based on the drugs Cyclophosphamide, Methotrexate, and 5-Fluorouracil.

11



As mentioned in the last point, we cannot disregard, when dealing with time granularities, the representation

of the Gregorian Calendar: the second example is, thus, the typical example in the field of time granularity. The

Gregorian Calendar has a bottom granularity representing the days. Days group into weeks: a week consists of 7

consecutive days. Days group into months as well. The first month is January and consists of 31 days, the second

is February and contains either 28 days or, during leap years, 29 days, the third is March consisting of 31 days and

so on. Note that weeks and months may overlap. A year groups twelve months, starting from January. Leap years

are those multiple of 4, excluding years multiple of 100, but including years multiple of 400. For instance, 1900

is not leap, but 2000 is leap.

4. A logical approach to represent and reason about calendars

In this section, we propose our logical approach to represent and reason about different time granularities and

provide some examples of real-world temporal granularities, represented according to our approach.

4.1. Representing time granularity

We model time granularities according to the following standard definition.

Definition 4.1 A granularityis a mappingG : N→ 2N such that:

1. for all i < j, for anyn ∈ G(i) andm ∈ G(j), n < m;

2. for all i < j, if G(j) 6= ∅, thenG(i) 6= ∅.

Following the classical definition given in [8], the domain of a granularityG is calledindex setand an element of

the codomain ofG is called agranule. The first condition states that granules in a granularity do not overlap and

that their index order is the same as their time domain order. The second condition states that the subset of the

index set that maps to nonempty granules forms an initial segment.

The definition of granularity above specializes the definition given in [8], assuming that both the index set and

the time domain (i.e., the domain of granules) are the linear discrete domain(N, <). The choice of linear temporal

logics for expressing granularities forces the use of linear discrete domains. For the sake of simplicity, we choose

a linear time domain with a least element (instead of integers as in [8]). Since we shall describe granularities by

means of Past Propositional Linear Time Logic, our approach could be straightforwardly adapted to deal also with

granularities having integers as index set.

A granularityG is said:
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• externally continuous, if there are no gaps between nonempty granules ofG;

• internally continuous, if there are no gaps inside the granules ofG;

• continuous, if it is both internally and externally continuous;

• total, if the granules ofG cover all the time domain;

• uniform, if all the nonempty granules ofG have the same cardinality.

With reference to standard calendar granularities, the granularityDay is continuous, uniform and total. Granulari-

tiesMonth andYear are not uniform,YearsSince2000 is not total,BusinessWeek is not externally continuous,

andBusinessMonth is not internally continuous. Following [52], a number of meaningful relationships can be

established between pairs of granularitiesG1 andG2, as detailed in the following.

• FinerThan(G1, G2) holds if each granule ofG1 is contained into a granule ofG2, that is, if, for each

indexi, there exists an indexj such thatG1(i) ⊆ G2(j). For instance,Day is finer thanMonth, butWeek is

not finer thanMonth, since a week can spread over two consecutive months.

• SubGranularity(G1, G2) holds if each granule ofG1 is equal to a granule ofG2, that is, if, for each

index i, there exists an indexj, such thatG1(i) = G2(j). For example, the granularitySunday is a

subgranularity ofDay.

• GranuleRefinement(G1, G2) holds if each granule ofG1 is contained into the corresponding granule

of G2, that is, if, for every indexi, G1(i) ⊆ G2(i). As an instance, we have thatWeekend is a granule

refinement ofWeek.

• Group(G1, G2) holds if each granule ofG2 is obtained by grouping an arbitrary number of consecutive

granules ofG1, that is, if for anyi there exists a setS (which is either empty or has the form{j, j+1, . . . , j+

k}, with j, k ≥ 0) such thatG2(i) =
⋃

l∈S G1(l).

More specialized forms of grouping can be defined. Givenp ≥ 1, the relationGroupp(G1, G2) holds if

each granule ofG2 is obtained by groupingp consecutive granules ofG1, that is, if, for each indexi, G2(i) =
⋃p−1

j=0 G1(i · p + j). More generally, givenp ≥ 1 andq ≥ 0, the relationGrouppSkipq(G1, G2) holds if

each granule ofG2 is obtained by groupingp consecutive granules ofG1 and by skipping the followingq

consecutive granules ofG1, that is, if, for each indexi, G2(i) =
⋃p−1

j=0 G1(i · (p + q) + j). Similarly, the

relationSkipqGroupp(G1, G2) holds if each granule ofG2 is obtained by skippingq consecutive granules
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of G1 and by grouping the followingp consecutive granules ofG1. Note thatGrouppSkip0(G1, G2) =

Skip0Groupp(G1, G2) = Groupp(G1, G2). Finally, EqualGroup(G1, G2) holds if each granule

of G2 is obtained by grouping the same (not fixed) number of consecutive granules ofG1. We have that

Group(Day, Week) holds, and, in particular,Group7(Day, Week) holds. Moreover,Group5Skip2(Day,

BusinessWeek), andSkip5Group2(Day, Weekend) hold.

• Given p ≥ 0, Shiftp(G1, G2) holds if the granules ofG2 are obtained by backward shifting ofp posi-

tions the granules ofG1, that is, for each indexi, G2(i) = G1(i + p). Moreover,Shift(G1, G2) holds

if the granules ofG2 are obtained by backward shifting of an arbitrary number of positions the gran-

ules ofG1, that is, if there existsp ≥ 0 such that, for each indexi, G2(i) = G1(i + p). For example,

Shift2000(Year, YearSince2000) holds.

Note that, in general, the group operations do not preserve internal continuity. Indeed, if we group two non-

adjacent granules of an internally continuous granularity, we get a non-convex granule, i.e. a granule consisting of

a set of non-contiguous time points, and the resulting granularity is hence no more internally continuous.

In the following, we propose a logical framework to modelinternally continuousgranularities as defined above.

We will extend our framework to granularities with gaps inside the granules (i.e., non-internally continuous gran-

ularities) in Section 4.2.

Let G = {G1, . . . , Gn} be afinite set of granularities (we will refer toG as acalendar), and letPG =

{PGi , QGi | 1 ≤ i ≤ n} be a set of proposition symbols associated with the calendarG.

Given an alphabet of proposition symbolsP ⊇ PG , we shall consider in the followingP-labelled (discrete) lin-

ear time structures having the form(N, <, V ), where(N, <) is the set of natural numbers with the usual ordering,

andV : N → 2P is a labelling function mapping natural numbers to sets of proposition symbols.

The idea is to identify an internally continuous granularityG with a linear time structure, properly labelled

with proposition symbols taken from{PG, QG}: the starting point of an arbitrary granule ofG in the structure is

labelled byPG and the ending point of an arbitrary granule ofG in the structure is labelled byQG.

Definition 4.2 A labelled linear time structure(N, <, V ) is G-consistent whenever:

1. if PG ∈ V (i) for somei ∈ N, then eitherQG ∈ V (i) or QG ∈ V (j) for somej > i such thatPG 6∈ V (k)

for eachi < k ≤ j andQG 6∈ V (k) for eachi ≤ k < j;

2. if QG ∈ V (i) for somei ∈ N, then eitherPG ∈ V (i) or PG ∈ V (j) for somej < i such thatQG 6∈ V (k)

for eachj ≤ k < i andPG 6∈ V (k) for eachj < k ≤ i.
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The above conditions say that every point labelled withPG has to match with a unique point labelled withQG,

and vice versa. EveryG-consistent labelled linear time structure induces an internally continuous granularityG:

given aG-consistent labelled linear time structureM = (N, <, V ), a granule ofM with respect toG is a set

{n, n + 1, . . . , n + k}, for somen, k ≥ 0, such thatPG ∈ V (n), QG ∈ V (n + k) andQG 6∈ V (n + j) for

all 0 ≤ j < k. The granularityG induced byM is such thatG(i) is thei-th granule ofM with respect toG,

if any, andG(i) = ∅ otherwise. It is easy to check thatG is an internally continuous granularity. Conversely,

an internally continuous granularityG corresponds to aG-consistent labelled linear time structure: label every

starting point of a granule ofG with symbolPG, and every ending point of a granule ofG with symbolQG. It is

not difficult to see that the resulting labelled linear time structure isG-consistent.

Example 4.3 We give some examples of labelled linear time structures that induce well-defined granularities and

one example of a labelled linear time structure that does not correspond to a granularity.

• The structure(N, <, V ) such thatV (i) = {PG} iff i is even, andV (i) = {QG} iff i is odd, induces the

uniform, total, and continuous granularityG such thatG(i) = {2 · i, 2 · i + 1} for anyi ∈ N.

• The structure(N, <, V ), represented in Figure 2, such thatV (0) = V (3) = {PG, PH}, V (1) = {QG},
V (2) = {QH}, V (4) = ∅, V (5) = {QG, QH}, V (6) = {PH}, V (7) = {PG, QG} andV (8) = {QH}
(V (i) = ∅, for i ≥ 9) induces two granularitiesG andH:

1. the non-uniform, non-total, non-externally continuous, and internally continuous granularityG such

thatG(0) = {0, 1}, G(1) = {3, 4, 5}, G(2) = {7}, andG(i) = ∅, for anyi ≥ 3;

2. the uniform, non-total, and continuous granularityH such thatH(0) = {0, 1, 2}, H(1) = {3, 4, 5},
H(2) = {6, 7, 8}, andH(i) = ∅, for anyi ≥ 3.

• The structure(N, <, V ) such thatV (0) = {PG}, V (1) = {QG, PG}, V (2) = {QG} does not induce any

granularity, since it is notG-consistent (indeed, the granulesG(0) = {0, 1} andG(1) = {1, 2} intersect).

In the following we show how a set of granularities can be defined in an intensional declarative manner by

means of a formula of a propositional linear time logic (instead of defining it extensively as done in Example 4.3).

We will use Past Propositional Linear Time Logic (PPLTL for short) [27, 56], interpreted over labelled linear

time structures. We proceed by introducing the syntax and the semantics ofPPLTL.

Definition 4.4 (Syntax ofPPLTL)

Formulas ofPPLTL are inductively defined as follows:
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Figure 2. A labelled linear time structure inducing two granularities G and H .

• any proposition symbolP ∈ P is aPPLTL formula;

• if φ andψ arePPLTL formulas, thenφ ∧ ψ and¬φ arePPLTL formulas;

• if φ andψ arePPLTL formulas, thenXφ, φUψ, X−1φ andφSψ arePPLTL formulas.

Formulasφ ∨ ψ, φ → ψ, andφ ↔ ψ are defined as¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, and(φ → ψ) ∧ (ψ → φ),

respectively. Moreover,Fα (α will hold in the future),Gα (α will always hold in the future),Pα (α held in the

past) andHα (α always held in the past) are shorthands for, respectively,trueUα, ¬F¬α, trueSα and¬P¬α,

wheretrue = P ∨ ¬P , for someP ∈ P. Temporal operators in{X,U,X−1,S} have priority over Boolean

operators{∧ , ∨}. Moreover,¬ has priority over∧ and over∨ , and ∧ has priority over∨ . For instance,

¬α ∧ βUγ ∨ δ reads((¬α) ∧ (βUγ)) ∨ δ.

We interpretPPLTL overP-labelled linear time structures. The semantics ofPPLTL is as follows.

Definition 4.5 (Semantics ofPPLTL)

LetM = (N, <, V ) be aP-labelled linear time structure andi ∈ N. The truth of aPPLTL-formulaψ in M
with respect to the pointi, denotedM, i |= ψ, is defined as follows:

M, i |= P iff P ∈ V (i) for P ∈ P;

M, i |= φ ∧ ψ iff M, i |= φ andM, i |= ψ;

M, i |= ¬φ iff it is not the case thatM, i |= φ;

M, i |= φUψ iff M, j |= ψ for somej ≥ i and

M, k |= φ for eachi ≤ k < j;

M, i |= Xψ iff M, i + 1 |= ψ;

M, i |= φSψ iff M, j |= ψ for somej ≤ i and

M, k |= φ for eachj < k ≤ i;

M, i |= X−1ψ iff i > 0 andM, i− 1 |= ψ.
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We say thatM is a model ofψ if M, 0 |= ψ. A formulaψ is satisfiableif and only if there is aP-labelled linear

time structure that is a model ofψ; it is valid if and only if everyP-labelled linear time structure is a model ofψ.

Note thatψ is valid if and only if¬ψ is not satisfiable.

A PPLTL-formula intensionally defines a possibly infinite set of labelled linear time structures (the set of mod-

els of the formula). Since, as shown above, consistently labelled linear time structures correspond to granularities,

we can use suitable linear time formulas to define possibly infinite sets of granularities. We now putPPLTL at

work. The set of all internally continuous granularities is captured by the followingPPLTL-formula

IntContGran(G) = G((PG → α) ∧ (QG → β)),

where

α is QG ∨ X(¬(PG ∨ QG)U(¬PG ∧ QG)), and

β is PG ∨ X−1(¬(PG ∨ QG)S(PG ∧ ¬QG)).

Note that the first conjunctPG → α captures point (1) of Definition 4.2, whereas the second conjunctQG → β

captures point (2) of Definition 4.2.

The set of continuous granularities are defined by the following formula that requires two consecutive granules

to be adjacent:

ContGran(G) = IntContGran(G) ∧ G(QG → X(PG ∨ G¬PG)).

The set of continuous and total granularities are defined by the formula that follows:

TotalGran(G) = ContGran(G) ∧ PG ∧ GFPG.

It states thatG is a continuous granularity, starting immediately, and having an infinite number of nonempty

granules.

The set of uniform granularities cannot be encoded in our framework. Indeed, to encode uniformity, we have

to say that any granule have the samenot fixedcardinality. This boils down to encode the predicate saying that “X

and Y are sets of the same cardinality” over the natural numbers. It is well-known that such a predicate cannot be

expressed in the monadic second-order theory of natural numbers (S1S, for short) [57]. SincePPLTL is a fragment

of S1S [57], it follows that such a predicate, and hence uniformity, cannot be expressed inPPLTL. However, we

are able to encode the set of internally continuous granularities having granules of uniform cardinalityk, with

k ≥ 1, as follows:
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Uniformk(G) = IntContGran(G) ∧ G(PG → (Xk−1QG ∧
k−2∧

i=0

Xi¬QG)),

where,X0φ stands forφ and, for everyn > 0, Xnφ stands forXXn−1φ.

A finite number of different granularities may be involved in the same formula by using different pairs of mark-

ing proposition symbols. For instance, given a calendarG = {G1, . . . , Gn}, the formula
∧n

i=1 IntContGran(Gi)

defines the set of all calendars withn granularitiesG1, . . . , Gn. The granularities in a calendar usually have to

satisfy certain constraints, such as, to be finer than or to group into other granularities. Such constraints may be

expressed by means of binary relations between granularities, as those proposed above. We show how to encode

the above introduced relations between granularities in our framework.

The relationFinerThan(G1, G2) is expressed by the following formula:

IntContGran(G1) ∧ IntContGran(G2)∧
G(PG1 → ((¬PG2 ∧ ¬QG2)SPG2 ∧ (¬PG2 ∧ ¬QG2)UQG1)).

The formula requires that each granule ofG1 is included into some granule ofG2. In particular, it allows that

more than one granule ofG1 is included into the same granule ofG2. Hence, the calendars withn granularities

that are totally ordered with respect to theFinerThan relation are defined by the following formula:

n−1∧

i=1

FinerThan(Gi, Gi+1).

The relationSubGranularity(G1, G2) is expressed by the formula that follows:

IntContGran(G1) ∧ IntContGran(G2)∧
G(PG1 → (PG2 ∧ ¬(QG1 ∨ QG2)U(QG1 ∧ QG2))).

The formula above requires that each granule ofG1 coincides with a granule ofG2.

The relationGranuleRefinement(G1, G2) is expressed by the following formula:

IntContGran(G1) ∧ IntContGran(G2)∧
G((PG1 → α) ∧ (QG1 → β) ∧ ((PG2 ∧ (¬PG1UQG2)) → G(¬PG1))),

where

α is ¬(PG2 ∨ QG2)U(QG1 ∧ (QG2 ∨ X(¬PG1UQG2))), and

β is ¬(PG2 ∨ QG2)S(PG1 ∧ (PG2 ∨ X−1(¬QG1SPG2))).
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The formula above requires that thei-th granule ofG2 contains thei-th granule ofG1, if any. Formulasα and

β require that at most one granule ofG1 is included into a granule ofG2. Moreover, the third conjunct of the

formula ensures that if some granule ofG2 does not contain any granule ofG1, then all the following granules of

G1 are empty.

The operation of defining a granularity by grouping the granules of another granularity might lead in general to

non-internally continuous granularities, which are treated in Section 4.2. However, if we group (without skipping)

granules of a continuous granularity, the resulting granularity is still internally continuous. We implement in the

following the relationGroup(G1, G2), assuming thatG1 is continuous.

ContGran(G1) ∧ IntContGran(G2)∧
G(PG2 → (PG1 ∧ ¬QG2U(QG1 ∧ QG2))).

Notice thatG2 is required to be internally continuous but not continuous, since it is not required that each

granule ofG1 belongs to a granule ofG2.

We now encode the relationGroupp(G1, G2), assuming again thatG1 is continuous.

ContGran(G1) ∧ ContGran(G2) ∧ (¬PG1 ∧ ¬PG2)U(PG1 ∧ PG2) ∧ G(PG2 → αp−1),

where,

α0 is PG1 ∧ ¬(QG1 ∨ QG2)U(QG1 ∧ QG2),

and, fork > 0,

αk is PG1 ∧ ¬(QG1 ∨ QG2)U(QG1 ∧ ¬QG2 ∧ Xαk−1).

The definitions forGrouppSkipq andSkipqGroupp are similar. However, the relationEqualGroup(G1, G2)

is beyond the expressiveness of our framework. Indeed, it forces the granules ofG2 to be composed of the same

not fixednumber of granules ofG1. To express such a property, we should be able to encode the predicate “X and

Y are sets of the same cardinality”. As discussed above, such a predicate is not expressible in our setting.

Finally, we encode the relations that shift a granularity. The relationShiftp(G1, G2) can be written as follows:

IntContGran(G1) ∧ IntContGran(G2) ∧ αp,

where

α0 is G((PG1 ↔ PG2) ∧ (QG1 ↔ QG2)),
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and, forq > 0,

αq is¬(QG1 ∨ PG2)U(QG1 ∧ ¬PG2 ∧ Xαq−1).

Formulaαp requires that there are no granules of the granularityG2 till the p-th granule of the granularityG1.

Starting from thep + 1-th granule onwards, the two granularitiesG1 andG2 coincide (formulaα0).

The unbounded shift relationShift(G1, G2) is as follows:

IntContGran(G1) ∧ IntContGran(G2)∧
(¬(PG2 ∨QG2)UG((PG1 ↔ PG2) ∧ (QG1 ↔ QG2))).

The formula above requires that there are no granules of the granularityG2 till the n-th granule of the granularity

G1, beingn an arbitrarily chosen non negative number. From then-th granule onwards, the two granularitiesG1

andG2 coincide.

Example 4.6 We model in the proposed granularity framework the examples given in Section 3. We preliminary

introduce some useful shorthands. For0 ≤ n ≤ m, ∀[n,m](α) (resp.∃[n,m](α)) stands for “α holds every-

where (resp. somewhere) in the time interval[n,m]”, and is defined as
∧m

i=n Xiα (resp.
∨m

i=n Xiα). Finally,

Count(α, n) stands for “α holds exactlyn times in the future” and is defined as follows:Count(α, 0) = G¬α

andCount(α, n) = ¬αU(α ∧ XCount(α, k − 1)).

We consider now the clinical example of Section 3. Let us assume thatOC (cyclophosphamide),IM (intra-

venous methotrexate) andFI (5-fluorouracil) are the granularities corresponding to the drugs of the CMF regimen.

The formulaΩCMF below defines, on the time domainN of days, the granularitiesCMF , OC, IM , andFI ac-

cording to the recommendation given in Section 3:

FinerThan(IM,CMF ) ∧ FinerThan(OC,CMF ) ∧ FinerThan(FI, CMF )∧
Count(PCMF , 6) ∧ Uniform28(CMF ) ∧ G((QCMF ∧ FPCMF ) → ∃[1, 5]PCMF )∧
G(PCMF → (∀[0, 13](POC ∧ PIM ∧ QOC ∧ QIM )∧
PFI ∧ QFI ∧ X7(PFI ∧ QFI) ∧ ∀[1, 6](¬PFI ∧ ¬QFI) ∧ ∀[8, 13](¬PFI ∧ ¬QFI)∧
∀[14, 27](¬POC ∧ ¬PIM ∧ ¬PFI ∧ ¬QOC ∧ ¬QIM ∧ ¬QFI))).

The first three conjuncts (first line) say that the three granularities related to specific drugs are finer than the CMF

granularity and that all the four granularities are internally continuous. The next three conjuncts (second line) say,

respectively, that the granularity CMF consists of6 granules (cycles), each of28 elements (days), and each cycle

is separated by time intervals not exceeding 5 units. The last big conjunct associates the drugs with each day in the

cycle, according to the recommendation (the first 14 days cyclophosphamide and intravenous methotrexate, with

5-fluorouracil only on days 1 and 8, and no drugs during the second 14 days).
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Example 4.7 In this example we cope with the representation of the Gregorian Calendar. The main (and most

tedious) part consists of the definition of the granularityMonth: indeed, the overall periodicity of months is 4

centuries and the only solution is to explicitly define the granules corresponding to each month within this period.

For the sake of readability, we therefore introduce some shorthands. We start by defining the formulaMn(ϕ),

encoding a month ofn days, wheren is a natural number andϕ is a formula, andP4Century is the proposition

symbol marking the starting point of a granule of 4 centuries:

Mn(ϕ) stands forPMonth ∧ ∀[0, n− 2](¬QMonth ∧ X¬P4Century) ∧ Xn−1(QMonth ∧ Xϕ).

We now define the formulasY (ϕ) andLY (ϕ), encoding, respectively, the months during a year and the months

during a leap year as follows (for the sake of readability, we will writeMnMm instead ofMn(Mm)):

Y (ϕ) stands for M31M28M31M30M31M30M31M31M30M31M30M31(ϕ);

LY (ϕ) stands for M31M29M31M30M31M30M31M31M30M31M30M31(ϕ).

Moreover, we define the formulas4Y (ϕ), C(ϕ), and4C(ϕ) encoding, respectively, the months during a 4-year

period (with three years and one leap year), the months during a century (with a sequence of 24 periods of 4-year

plus a period of 4 non leap years), and the months during a 4-century period (3 centuries plus a sequence of 25

periods of 4-year):

4Y (ϕ) stands for Y 3LY (ϕ);

C(ϕ) stands for 4Y 24Y 4(ϕ);

4C(ϕ) stands for C34Y 25(ϕ),

whereY 3 stands forY Y Y , and similarly for the other powers.

Unfolding formula4C, we have the following encoding of all the rules of the Gregorian Calendar:

((Y 3LY )24Y 4)3(Y 3LY )25(ϕ).

Finally, the granularityMonth is defined as follows:

φMonth = P4Century ∧ G(P4Century → 4C(P4Century)).

The granularityDay is such thatφDay = TotalGran(Day) ∧ Uniform1(Day). The granularityWeek can

be defined as a group of 7 days, that is,φWeek = Group7(Day, Week). The granularityYear is a group of 12

months, namelyφYear = Group12(Month, Year), and the granularityCentury is a group of 100 years, i.e.,

φCentury = Group100(Year, Century). As for the granularity4Century, being a group of 4 centuries, we have
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thatφ4Century = Group4(Century, 4Century) holds. The Gregorian Calendar is finally defined as follows:

φDay ∧ φWeek ∧ φMonth ∧ φYear ∧ φCentury ∧ φ4Century.

It is worth noting that in the above examples only a bounded form of uncertainty is involved. In the clinical

example, two successive cycles may be separated by no more than 5 time units (in the chosen granularity). More-

over, in the Gregorian Calendar, no degree of uncertainty is present. However, there exist applications calling

for unbounded uncertainty. For instance, two therapy cycles that are arbitrarily distant or a therapy starting at an

arbitrary instant. Our framework can cope with unbounded uncertainty as well.

4.2 Extending granularities with gaps

The above proposal does not consider granularities with gaps inside the granules (only internally continuous

granularities are treated). However, it can be easily extended to cope with such granularities. LetG be a calendar

andPG = {PG, QG, PHG
, QHG

| G ∈ G} be a set of proposition symbols associated with the calendarG. Given

an alphabet of proposition symbolsP ⊇ PG , we shall considerP-labelled linear time structures. We use symbols

PG andQG to delimit the granules of a granularityG as before, and we take advantage of symbolsPHG
andQHG

to bound the gaps inside the granules ofG. In this way we have that the description of the gaps ofG is itself a

granularityHG. Note thatHG is finer thanG. Indeed, every granule ofHG (an internal gap ofG) is a subset

of some granule ofG. Moreover, there are no granules ofG that are entirely covered by granules ofHG. The

extension of the definition ofG-consistency is as follows.

Definition 4.8 A labelled linear time structureM = (N, <, V ) is G-gap-consistent whenever:

1. M is G-consistent andHG-consistent (according to Definition 4.2);

2. every granule ofM with respect toHG is a subset of some granule ofM with respect toG;

3. no granule ofM with respect toG is the union of some granules ofM with respect toHG.

It is easy to show that aG-gap-consistent linear time structure corresponds to a (not necessarily continuous)

granularity and vice versa. The set of (not necessarily continuous) granularities can be encoded by the temporal

formulaGran(G) defined as follows:

FinerThan(HG, G) ∧ G(PG → ¬α),

whereα stands for
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PHG
∧ ((QG ∧ QHG

) ∨ X((¬QG ∧ (QHG
→ XPHG

))U(QG ∧ QHG
))).

The first conjunct ofGran(G) states thatG andHG are consistent (point (1) of Definition 4.8) and that each

granule ofHG is a subset of a granule ofG (point (2) of Definition 4.8). The second conjunct ofGran(G) claims

that each granule ofG is not entirely covered by granules ofHG (point (3) of Definition 4.8). As an example,

we define the non-internally continuous granularityBusinessMonth . The granules of a business month have

gaps corresponding to weekends. We define the granularityBusinessMonth on top of the previously defined

granularityWeekEndas follows:

Gran(BusinessMonth) ∧ G(PBusinessMonth ↔ PMonth ∧ QBusinessMonth ↔ QMonth)∧
G(PHBusinessMonth ↔ (PWeekEnd ∨ (QWeekEnd ∧ PBusinessMonth))∧
QHBusinessMonth ↔ (QWeekEnd ∨ (PWeekEnd ∧ QBusinessMonth))).

4.3 Expressiveness

A precise upper bound to the expressiveness of our approach is fixed by the expressiveness ofPPLTL. In fact,

granularities are induced by labelled linear time structures (i.e.ω-sequences over a suitable alphabet) and it is well

known that the set of labelled linear time structures which satisfy aPPLTL formula is aω-regular set, namely

a set ofω-sequences accepted by a Büchi automaton (e.g., see [57]); actually,PPLTL allows one to capture a

proper fragment of the class ofω-regular sets. In the previous sections we have given examples of relations which

are not definable in our setting (for instance, the relationEqualGroup(G1, G2) or the property of uniformity

for granularities). An example of a granularityG that is not regular, and hence can not be represented in our

framework, is the following: for everyi ≥ 0, G(i) = {2i + 1, 2i + 2, . . . , 2i+1} (note that the cardinality of the

i-th granuleG(i) is 2i). However, even thoughPPLTL allows one to capture only a proper fragment of the class

of ω-regular sets, we shall show in this section that it allows the description of the class of granularities considered

of practical interest. In particular, we shall show that our setting is at least as expressive to define all finite, infinite

periodical, and quasi-periodical granularities, thus placing its expressive power beyond that of other widely known

frameworks (e.g., the collection formalism). Conversely, we have not yet established whether the class of finite,

infinite periodical, and quasi periodical granularities precisely captures the class of granularities definable in our

framework (a precise characterization of the class of definable granularities is still missing and will be addressed

in the future work).

In [9], Bettini and De Sibi studied the expressive power of the two well known frameworks of collection and

slice formalisms, comparing them mainly with respect to the subclass of infiniteperiodical granularities. Pe-
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riodical granularities can be defined in terms of another granularity by means of a particular type of grouping

relationship. The idea is that the defined granularity has a repeating pattern of lengthR corresponding to a span

of P granules of the underlying granularity.

Definition 4.9 A granularity G2 is periodical with respect to a granularityG1 if the relationGroup(G1, G2)

holds and there existR, P ∈ N (thepattern), whereR is less than (or equal to) the number of granules ofG2, such

that for all i ∈ N, if G2(i) =
⋃

j∈S G1(j) andG2(i + R) 6= ∅, thenG2(i + R) =
⋃

j∈S G1(j + P ).

For instance, ifGroupp(G1, G2) (resp., eitherGrouppSkipq(G1, G2) or SkipqGroupp(G1, G2)) holds,

thenG2 is periodical with respectG1 with R = 1 andP = p (resp.,R = 1 andP = p + q). Given abasic

total continuous granularity, a granularityG is said to beperiodical if it is periodical with respect to that basic

granularity. The expressive power of the collection and slice formalisms with respect to the class of finite and

infinite periodical no-gap granularities is summarized by the following results [9], according to the terminology

used in our proposal:

1. For any collection expression, there exists an equivalent internally continuous finite or infinite periodical

granularity, and viceversa.

2. For any disjoint slice expression (i.e., where the granules of the defined granularities do not overlap) there

exists an equivalent internally continuous finite or infinite periodical granularity, and viceversa.

In the following we show that our formalism allows one to express periodical granularities, thus allowing to

prove that it is at least as expressive as collection and (disjoint) slice formalisms.

In fact, forR,P ∈ N, the relationPeriodicGroupR,P(G1, G2), which holds ifG2 is periodical with respect to

G1 with patternR, P , is defined as follows:

Group(G1, G2) ∧ CountRInP ∧ ¬(PG1 ∨ PG2)U(PG1 ∧ PG2)∧
G((PG1 → (PG2 ↔ dispP (PG2 , PG1))) ∧ (QG1 → (QG2 ↔ dispP (QG2 , QG1))))

where,Count0In0 is True, and fork, s > 0, CountkIn0 is False and

Count0Ins is¬(PG1 ∨ PG2)U(PG1 ∧ ¬PG2 ∧ XCount0Ins−1)

andCountkIns is

(¬(PG1 ∨ PG2)U(PG1 ∧ ¬PG2 ∧ XCountkIns−1))∨
(¬(PG1 ∨ PG2)U(PG1 ∧ PG2 ∧ XCountk−1Ins−1))
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and, forφ, φ′ formulas,disp0(φ, φ′) is φ , and fork > 0

dispk(φ, φ′) is X(G(¬φ′) ∨ (¬φ′U(φ′ ∧ dispk−1(φ)))).

In the formula above, the two initial conjuncts require thatG2 is a grouping of granules ofG1 and that the initial

span ofP granules ofG1 contains exactlyR granules ofG2 (notice that in this wayG2 is forced to have at least

R granules); the third conjunct requires that the first granule ofG1 starts together with the first granule ofG2; the

last conjunct requires that the starting point (resp. the ending point) of thei − th granule ofG1 (for anyi) is the

starting point (resp. ending point) of a granule ofG2 if and only if the starting point (resp. the ending point) of the

i + P − th granule ofG1 (if any) is the starting point (resp. ending point) of a granule ofG2.

Actually, the expressive power of our approach goes beyond the subclass of finite and infinite periodical no-

gap granularities, which are expressible by collection and (disjoint) slice formalisms. Indeed, in Section 4.2,

we showed that we can capture gap granularities, i.e., with gaps inside granules (provided that also gaps are

periodical). Thus, assuming that we define according to the previous formula both periodical granularitiesG2

andHG2 with respect to the basic granularityG1 (provided thatG2 andHG2 define aG-gap-consistent linear

time structure, according to Definition 4.8), we can express both gap and no-gap, finite and infinite periodical,

granularities.

Furthermore, in [9] a notion ofquasi-periodicityis introduced which extends the notion of periodicity by im-

posing the periodicity of grouping in the whole granularity, but inside a finite (fixed) number of intervals.

Definition 4.10 A granularityG2 is quasi-periodical with respect to a granularityG1 if Group(G1, G2) holds

and there exist a set of intervals (i.e., sets of consecutive indexes onG2) E1, . . . Ek (the granularity exceptions),

and two numbersR,P ∈ N, with R less than (or equal to) the minimum of the number of granules ofG2 between

any two exceptions, such that for alli ∈ N not belonging to any granularity exception, ifG2(i) =
⋃

j∈S G1(j)

andG2(i + R) 6= ∅, andi + R < min(E), whereE is the closest existing exception afteri, thenG2(i + R) =
⋃

j∈S G1(j + P ).

In the following we shall define grouping relations allowing the expression of a quasi-periodical granularity

with a granularity exception having either fixed indexes or arbitrarily placed indexes. The definition could be

easily generalized to quasi-periodical granularities with a numberk > 0 of granularity exceptions thus showing

that quasi-periodical granularities can be defined in our framework.

We start with defining a relation of periodical groupingPeriodicGroupR,PExceptB,E(G1, G2), where

R, P, B, E ∈ N, B > R andB andE represent the starting and ending indexes, respectively, of the exception
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interval. The relation, which holds ifG2 is quasi-periodical with respect toG1 with patternR,P and a granularity

exception[B, E], is defined as follows.

Group(G1, G2) ∧ CountRInP ∧ ¬(PG1 ∨ PG2)U(PG1 ∧ PG2)∧
AfterE+1,G2(PeriodicGroupR,P(G1, G2))∧

((PG1 → (PG2 ↔ dispP (PG2 , PG1))) ∧ (QG1 → (QG2 ↔ dispP (QG2 , QG1))))UAtB−R(G2)

where, for a granularityG and a formulaφ, After0,G(φ) is φ, and fork > 0

Afterk,G(φ) is¬PGU(PG ∧XAfterk−1,G(φ)),

and, for a granularityG, At0(G) is PG ∧ ¬X−1(P(PG)), and, fork > 0,

Atk is PG ∧ X−1(¬PGS(PG ∧ Atk−1(G))).

The formula above requires that starting from theE + 1-th granule,G2 is obtained by periodically grouping

granules ofG1 (fourth conjunct in the formula); moreover, it imposes (last conjunct) the condition that, for alli

with 0 ≤ i ≤ B −R, G2(i) =
⋃

j∈S G1(j) impliesG2(i + R) =
⋃

j∈S G1(j + P ).

We define now a relation of periodical groupingPeriodicGroupR,PExcept1(G1, G2), with R, P ∈ N,

admitting one exception interval of arbitrary length arbitrarily placed in the granularity. The relation is defined as

follows.

Group(G1, G2) ∧ CountRInP ∧ ¬(PG1 ∨ PG2)U(PG1 ∧ PG2)∧
((PG1 → (PG2 ↔ dispP (PG2 , PG1))) ∧ (QG1 → (QG2 ↔ dispP (QG2 , QG1))))U

PG2 ∧ AfterR,G2(TrueU(PG2 ∧ PeriodicGroupR,P(G1, G2))).

Notice that, in general, considering a fixed granularityG1 exactly one granularityG2 may satisfy the relation

PeriodicGroupR,PExceptB,E(G1, G2), whereas a (possibly infinite) set of granularities may satisfy the rela-

tion PeriodicGroupR,PExcept1(G1, G2).

It is easy to see that both the relationsPeriodicGroupR,PExceptB,E andPeriodicGroupR,PExcept1 can

be generalized to treat a numberk of granularity exceptions.

Also for quasi-periodical granularities, we can easily move to granularities with gaps, by defining a suitable

quasi-periodical granularityHG2 , which forms, together withG2, aG-gap consistent linear structure.

Finally, we can conclude that the constructions given in this section prove the following expressiveness property.
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Theorem 4.11 Any finite, infinite quasi-periodical, and infinite periodical granularity (with or without gaps) can

be defined in the proposed logical formalism.

We have also shown that we can encode (possibly) infinite sets of granularities in a single formula, thus over-

coming the expressiveness of other formalisms proposed in the literature: for example, we can express granularities

not anchored to the time domain or having some uncertainty, as in the case of the chemotherapy cycles, which can

have up to 5 days of delay between the end of a cycle and the start of the next one.

As previously underlined, it remains for further investigation the validity of the converse property, namely

whether any granularity, which can be defined in our setting over the basic granularity, is either finite or infinite

periodical or infinite quasi-periodical.

4.4. Reasoning about time granularity

Besides representing sets of granularities and relations among them, our framework permits to automatically

reason about the defined granularities. We give some examples of relevant problems that we can automatically

solve in our framework.

Consistency, equivalence and classification problems.The consistency problemis the problem of deciding

whether a granularity representation is well-defined. This problem is relevant whenever the granularities are rep-

resented in a declarative way as formulas of a logical language, as in the present approach. On the contrary, if

granularities are operationally represented as algebraic expressions, the consistency problem assumes little rel-

evance, since most algebraic formalisms exclude wrong expressions by construction. Letϕ(G) be a formula

using only proposition symbols in the set{PG, QG, PHG
, QHG

}. One can verify whetherϕ(G) encodes a set of

well-defined granularities by checking the validity of the formula

ϕ(G) → Gran(G).

The equivalence problemis the problem of deciding whether two different representations define the same

granularity. Letϕ1(G) andϕ2(G) be formulas encoding sets of granularities. It is possible to check whether the

two sets of granularities are the same by testing the validity of the formula

ϕ1(G) ↔ ϕ2(G).

Finally, theclassification problemsolves the problem of deciding whether a natural numbern, representing a

time point, belongs to a granule of a given granularity. Letϕ(G) be a formula encoding a set of granularities and
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n be a natural number. Thenn belongs to some granule of any granularity defined byϕ(G) if and only if

ϕ(G) → (αn(G) ∧ ¬αn(HG)),

is valid, whereαn(G) is as follows:

Xn(PG ∨ QG) ∨ Xn(¬(PG ∨ QG)SPG ∧ ¬(PG ∨ QG)UQG).

Automatic verification of granularity properties. Once we have defined a calendarG by means of a linear time

formula ϕ(G), one may verify whether the calendar satisfies a given propertyp by encodingp as a linear time

formulaψp and by checking the validity ofϕ(G) → ψp. This is a generalization of the classification problem.

For instance, with reference to our clinical example, a concrete chemotherapy plan can be checked for consistency

against the formulaΩCMF describing the chemotherapy regimen. Moreover, with reference to the Gregorian

Calendar, one may encode and check the following properties: “is 2000 a leap year?”, “is 6st February 2003 a

working day?”, and similar properties.

Automatic generation of granularities. Given a formulaϕ(G) defining a set of granularities, we would like

to automatically generate the granularities encoded byϕ(G). Moreover, we expect to generate the granularities

in order of increasing size. For instance, with reference to our clinical example, we would like to obtain some

minimal schedules for a chemotherapy according to the regimen encoded by the formulaΩCMF .

The reasoning procedures above reduce either to check the validity of aPPLTL-formula, or to generate its models

in increasing size order. We now describe how these two tasks can be performed. As for the problem of automatic

generation of models for a given linear time formula, there are two technical difficulties: the models for linear time

formulas are infinite structures, and hence they cannot be explicitly generated. Moreover the set of models of a

linear time structure may be infinite, and hence it is not possible to generate all the models. We can cope with the

former problem by encoding an infinite linear structure into a finiteultimately periodic structure, which is a finite

(possibly empty) initial segment followed by a finite loop. The unfolding of the periodic structure gives us the

original infinite model. To cope with the latter problem, the generation procedure generates models of increasing

size, starting from small models and proceeding to bigger and bigger ones, until a maximum size is reached.

As for the validity problem, notice that checking that a formula is true in every model corresponds to check that

there is no model in which its negation is true. In other words, checking the validity of a formula is equivalent

to verify that the negation of the formula is not satisfiable. SincePPLTL contains negation, the validity and

satisfiability problems for it are computationally equivalent.

The satisfiability problem forPPLTL have been extensively studied from a theoretical point of view, and

efficient procedures and heuristics for attacking the problem have been devised and implemented. It belongs to the
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complexity class PSPACE [56], which means that is can be solved using a polynomial amount of space in terms of

the length of the input formula. Moreover, it is complete for PSPACE, which means that there is no hope to find a

better algorithm. Albeit the space is polynomial, the time taken by the satisfiability procedure to terminate may be

exponential in the length of the formula. This could represent a serious drawback whenever the formula is long.

Nevertheless, some recent work effectively attacks this problem [2, 10, 43, 32], making it possible to practically

verify reasonable long formulas. We briefly describe these contributions.

The authors of [10] propose an alternative model checking technique for propositional linear time logicPLTL

calledBounded Model Checking(BMC). This technique has been extended to past propositional linear time logic

PPLTL in [2] and is implemented in the state-of-the-art symbolic model checker NuSMV [14, 15]. In BMC, an

existential model checking instance forPLTL is reduced to an instance of the popular propositional satisfiability

problem SAT, and efficient SAT solvers are then used to tackle this problem. More precisely, BMC tackles the

following boundedversion of the existential model checking problem: given a finite modelM , a past propositional

linear time formulaϕ, and an integerk ≥ 0, check whether there exists an ultimately periodic path of length

k belonging to the modelM that satisfiesϕ. If such a periodic path exists, it can be unfolded obtaining an

infinite path in the modelM that satisfies the formulaϕ. The bounded existential model checking problem can

be efficiently (in particular, polynomially) reduced to SAT. The latter can be efficiently attacked by exploiting the

impressive power of state-of-the-art propositional solvers. This approach solves both the satisfiability problem

and the model generation one forPPLTL. Indeed, it is well-known that the linear time satisfiability problem

can be embedded into the linear time existential model checking problem. It is sufficient to use in the model

checking instance a fictitious structure encoding all possible paths. Now we can interactively solve a bounded

model checking instance of sizek, for k = 0, 1, . . .. This generates models of the formula in increasing size order.

Moreover, since aPPLTL formulaϕ is satisfiable if and only if it is true in an ultimately periodic path of length

exponential in the length ofϕ [56], the generation procedure gives also a constructive way to solve the satisfiability

problem forϕ. The advantage is that in many practical cases a small model for a formula is detected soon by the

generation procedure, and thus the procedure can stop without performing an exponential number of steps.

The contribution of [43] relevant to the current discussion is the result that the model and satisfiability checking

problems for future and past temporal logic, that isPPLTL without Since, Until, Next-time and Previous-time

operators, is NP-complete, instead of PSPACE-complete. The proof exploits thelinear size witness propertyfor

future and past temporal logic: a future and past temporal formula is satisfiable if and only is if is true in an

ultimately periodic path of sizelinear in the length of the formula. Exploiting this result in the BMC technique

described above, we have the guarantee that after a linear number of bounded model checks, either we have found
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a model for the formula (and hence the formula is satisfiable) or we can conclude that the formula is not satisfiable.

Finally, in [32], the authors show that a limited version of Since, Until, Previous-time and Next-time operators is

still possible without sacrificing the nice computational behaviour. As soon as we avoid Since, Until, Previous-time

and Next-time operators in the scope of universal temporal ones, likeG and the universal part of Since and Until,

we have that the satisfiability problem is still in NP (and the linear size witness property is preserved). Dually, as

soon as we avoid Since, Until, Previous-time and Next-time operators in the scope of existential temporal ones,

like F and the existential part of Since and Until, we have that the validity problem is in coNP, and hence its dual

is in NP. Notice that all the formulas that we used in Section 4 are of this latter kind.

5. Discussion

In this section we summarize the comparison, we performed throughout Sections 1, 2, 4, of our approach with

the related ones. As discussed in Section 2, there are at least three main approaches to represent and reason about

time granularity: the algebraic one by Jajodia et al., the logical one by Montanari et al., and the string-based one

by Wijsen and Dal Lago et al.

The starting points of the approach proposed in this paper and that of the algebraic approach coincide: it is the

classical and general definition of time granularity given in [8]. However, our approach differs from the algebraic

one since, in the latter, granularities are algebraic expressions, whereas we encode granularities by means of

logical formulas. Moreover, we are able to speak of possibly infinite sets of granularities, symbolically encoded

by logical formulas. This feature permits us to representunanchored granularities, that is, granularities that

are not anchored to the underlying time domain. Typical examples of unanchored granularities are a repeating

pattern that can start at an arbitrary time point or two finite repeating patterns arbitrarily distant from each other.

On the contrary, the algebraic approach can encode onlyanchored granularities. Our approach is fully automatic:

reasoning about granularities reduce to solving well-known validity problems in linear time logic. On the contrary,

a major weakness of the algebraic approach is that reasoning methods basically reduce to granule conversions

and semantic translations of statements, and little attention has been devoted to other forms of reasoning (like

equivalence checking).

Our approach differs from the logical one by Montanari et al. [31, 44, 46, 49] for the following reason: while

Montanari et al. model different time granularities by using multi-layered mathematical structures and use tempo-

ral logic formulas to capturepropertiesof time granularities, we model both time granularities and their properties

by using temporal logic formulas. To allow nice computational properties, the logical approach makes strict

assumptions about the interrelations among granularities in the layered structures; for example, in the work of
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Montanari et al., all granularities are total, uniform, internally and externally continuous, and linearly ordered

with respect to the ‘finer than’ relation. Our solution is much more flexible: we can represent non-total, non-

continuous, non-uniform granularities, partially ordered with respect to the ‘finer than’ relation. We only require

that granularities show some form of periodicity. Moreover, the time granularity structure may be changed by

simply modifying the logical formula that defines it, and the properties of the time granularity structure may be

defined in the same logical language. One advantage of the logical approach of Montanari et al. is that it can

represent calendars with an infinite number of layers, corresponding to infinite granularities linearly ordered with

respect to the ‘finer than’ relation, whereas we only capture calendars possibly having infinite granularities, but on

a finite number of layers, according to the ordering induced by the ‘finer than’ relation.

Our approach is mostly related to the string-based approaches by Wijsen [60], and Dal Lago, Montanari, and

Puppis [22, 23, 24]. All these approaches and our approach represent granularities as infinite labelled structures,

that is, infinite strings. One main difference is that we can encode unanchored granularities by representing them

with (possibly) infinite sets of granularities, whereas the string-based approaches allow one only to represent

single (anchored) granularities. This increase in the expressiveness is however paid in terms of a complexity

blow-up. Reasoning about granularities in our framework has polynomial space but exponential time complexity,

while reasoning about granularities in the string-based framework has polynomial time (and space) complexity.

The feeling is that for some application involving (un)bounded uncertainty, our framework is what is needed,

but in some other cases our framework is too much expressive (and computationally complex). For instance, the

Gregorian Calendar can be represented in the simpler string-based approach as well, since no degree of uncertainty

is required.

A preliminary version of our approach has been described in [17]. In that paper, we did not provide the exhaus-

tive encoding of the relationships between granularities we gave here in Section 4. Moreover, we discussed here

in some detail the most relevant frameworks proposed for specifying time granularities and showed analogies and

differences with our proposal. Finally, the discussion about the expressiveness of our proposal is completely new,

as well as the discussion on its computational features.

6. Conclusions and Future Work

In this paper, we proposed an original approach to represent and to reason about different time granularities.

We identified a time granularity with a discrete linear time structure properly labelled with proposition symbols

marking the starting and ending points of the corresponding granules and of their (possible) internal gaps. We

adopted the linear time logicPPLTL, interpreted over labelled linear time structures, to model possibly infinite
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sets of time granularities.

In particular, the proposed approach allows one to overcome some specific limits of the algebraic and logical

frameworks in expressing real-world granularities, as shown in Section 3 for a clinical domain: indeed, it is

possible to express unanchored granularities, i.e., granularities not anchored to a fixed origin on the time domain

or having some finite parts which can be arbitrarily distant (possibly, within a given range).

In general, the proposed formalism permits to model a large set of regular granularities and to algorithmically

solve the consistency, the equivalence, and the classification problems in a uniform way by reducing them to the

validity problem for the considered linear time logic, which is known to be decidable in polynomial space.

As for future work, we shall investigate the problem of assessing a characterization of the class of granularities

definable in our approach. Moreover, we aim at integrating our approach with the string-based one in order to

obtain a more tuned framework for time granularity with respect to real-world applications. The starting point

could be the following question. We know that linear time formulas can be converted into equivalent Büchi

automata of size exponential in the length of the formula [57]. Is there an encoding of single-string linear time

formulas, that is, formulas with exactly one model (like the formula encoding the Gregorian Calendar), into single-

string automata of size polynomial in the length of the formula?

A further research direction is towards the integration of the proposed formalism within the context of tem-

poral databases: we will explore how to exploit our approach for expressing and verifying temporal functional

dependencies involving several granularities or, more generally, for expressing and checking integrity constraints.
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