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Abstract

In this paper, we propose a new logical approach to represent and to reason about different time granularities.
We identify a time granularity as an infinite sequence of time points properly labelled with proposition symbols
marking the starting and ending points of the corresponding granules, and we symbolically model sets of granular-
ities by means of linear time logic formulas. Some real-world granularities are provided, from a clinical domain
and from the Gregorian Calendar, to motivate and exemplify our approach. Different formulas are introduced,
which represent relations between different granularities. The proposed framework permits to algorithmically
solve the consistency, the equivalence, and the classification problems in a uniform way, by reducing them to the

validity problem for the considered linear time logic.



1. Introduction

1.1 Context and Motivation

Any time granularitycan be viewed as the partitioning of a temporal domain in groups of elements, where
each group is perceived as an indivisible unit (a granule). The description of a fact can use these granules to
provide it with a temporal qualification, at the appropriate abstraction level. However, adding the concept of time
granularity to a formalism does not merely mean that one can use different temporal units to represent temporal
guantities in a unique flat model, but it involves semantic issues related to the problem of assigning a proper
meaning to the association of statements with the different temporal domains of a layered model and of switching
from one domain to a coarser/finer one. The ability of providing and relating temporal representations at different
‘grain levels’ of the same reality is an important research theme in computer science. In particular, it is a major
requirement for formal specifications, temporal databases, data mining, problem solving, and natural language

understanding.

e As for formal specificationsthere exists a large class of reactive systems whose components have dynamic
behavior regulated by very different time constants (granular reactive systems). A good specification lan-
guage must enable one to specify and verify the behavior of the components of a granular reactive system

and their interactions in a simple and intuitively clear way [13, 19, 20, 29, 40, 46, 47, 48, 49].

e With regard totemporal databasegshe common way to represent temporal information is to timestamp

either attributesdttribute timestampingor tuples/objectstgple-timestamping Timestamping is performed

taking time values over some fixed granularity. However, it may happen that differently-grained timestamps
have to be associated with data, for example, when information is collected from different sources which
are not under the same control. Furthermore, users and applications may also require the flexibility of
viewing and querying the temporal information stored in the database in terms of different granularities. To
guarantee consistency either the data must be converted into a uniform representation that is independent
of time granularity or temporal operations must be generalized to cope with data associated with different
temporal domains. In both cases, a precise semantics for time granularity is needed [3, 12, 18, 26, 37, 38,

45, 51, 54, 58, 59].

e With regard tadata mining a huge amount of data is collected every day in the form of event-time sequences.
These sequences represent valuable sources of information, not only for what is explicitly registered, but also

for deriving implicit information and predicting the future behavior of the process that we are monitoring.



The latter activity requires an analysis of the frequency of certain events, the discovery of their regularity,
and the identification of sets of events that are linked by particular temporal relationships. Such frequencies,
regularity, and relationships are very often expressed in terms of multiple granularities, and thus analysis

and discovery tools must be able to deal with these granularities [1, 4, 6, 25, 42].

e With regard tgproblem solvingseveral problems in scheduling, planning, and diagnosis can be formulated
as temporal constraint satisfaction problems, often involving multiple time granularities. In a temporal
constraint satisfaction problem, variables are used to represent event occurrences and constraints are used to

represent their granular temporal relationships [8, 5, 21, 28, 36, 39, 50, 53, 55].

e Finally, shifts in the temporal perspective occur very often in natural language communication, and thus the
ability of supporting and relating a variety of temporal models, at different grain sizes, is a relevant feature

for the task oinatural language understandirjg1, 30, 34].

A further distinction we have to introduce is betweenrdgresentation and reasoning on time granularites
therepresentation and reasoning on facts/statements associated with times specified at different graniilagities
requirements for reasoning on facts at different levels of granularity are often related and specific to the different
research areas mentioned above: e.g., supporting for different time granularities for database query languages
[26], supporting the specification of real-time systems with different granularities [20], providing algorithms for
pattern discovery on time series with several time units [4]. Nevertheless, the need for formalisms allowing the
specification and the reasoning on granularities is common to all the mentioned research areas and originated
several different proposals [9, 30, 35, 44, 51, 52, 60].

More specifically, most approaches proposed in the literature for representing and reasoning about time gran-
ularity can be classified into algebraic approaches and logical ones. &igetteraic(or operationa) framework,
a bottom granularityis assumed, and a finite setadlendar operatorg@re exploited to create new granularities
by suitably manipulating other granularities [9, 30, 51, 52]. Inltigical (or descriptivé framework for time
granularity, the different granularities and their interconnections are represented by means of mathematical struc-
tures called layered structures, consisting of a possibly infinite set of related differently-grained temporal domains.
Suitable operators make it possible to move within a given temporal domain and across temporal domains. Logical
formulas allow one to specify properties involving different time granularities in a single formula by mixing such
operators [33, 44, 46, 48, 49].

Algebraic and logical frameworks stem from different research areas calling for different focuses. For instance,

in the database context, where the algebraic framework is usually adopted, granule conversion plays a major role



because it allows the user to view the temporal information contained in the database in terms of different granular-
ities, while in the context of verification, where logical frameworks have been proposed, decision procedures are
unavoidable to automatically validate the system (for example, to establish whether two different representations
define the same granularity). Abstracting away from the research areas of the two frameworks, it is possible to
identify their main limitations and advantages. The main advantage of the algebraic framework is its naturalness:
by applying user-friendly operations to existing standard granularities like ‘days’, ‘weeks’, and ‘months’, a quite
large class of new granularities, like ‘business weeks’, ‘business months’, and ‘years since 2000’, can be easily
generated. The major weakness of the algebraic framework is that reasoning methods basically reduce to granule
conversions and semantic translations of statements. Little attention has received the investigation of algorithms
to check whether some meaningful relation holds between granularities (e.g., to verify whether the graaularity

is finer than granularitys, or GG; is equivalent ta=,). Moreover, only a finite number of time granularities can

be represented. On the contrary, reasoning methods have been extensively investigated in the logical framework,
where both a finite and an infinite number of time granularities can be dealt with. Theorem provers make it possi-
ble to verify whether a granular requirement is consistent (i.e., specifies a well-defined granularity), while model
checkers allow one to check whether a granular property is satisfied in a particular structure. To allow such com-
putational properties, however, some limitations have to be introduced for the involved granularities, assuming,
for example, some form of regularity of the sizes of the granules.

With respect to this scenario, several efforts are needed to have a more comprehensive approach, which main-
tains both the naturalness of the algebraic framework and the reasoning methods developed for the logical frame-
work, allowing its usage in different research areas and a deep comparison of the proposals currently existing for
the specification of time granularities.

In general, in order to represent and to reason about time granularity, any formalism should satisfy the following

requirements:

e ExpressivenessThe class of granularities represented in the formalism should be large enough to be of

practical use.

e Effectiveness The formalism should provide algorithms to reason about different time granularities. In
particular, it should provide an effective solution to the well-known problemsoaEistencyequivalence

andclassification

— The consistency problers the problem of deciding whether a granularity representation is well-

defined. The algorithmic solution of the consistency problem is important to avoid the definition



of inconsistent granularities that may produce unexpected failures in the system.

— Theequivalence probleris the problem of deciding whether two different representations define the
same granularity. The decidability of the equivalence problem implies the possibility of effectively
testing the semantic equivalence of two different time granularity representations, making it possible

to use the smallest and most tractable one.

— Theclassification problenis the problem of deciding whether a natural numbetepresenting a time
point, belongs to a granule of a given granularity. The classification problem is strictly related to the
granule conversion problem which allows one to relate granules of a given granularity to granules of

another one.

e CompactnessThe formalism should exploit regularities exhibited by the considered granularities to make

their representations as compact as possible.

1.2 Focus and goals of the paper

The paper deals with a first attempt to propose an approach for the specification of temporal granularities, taking
into account both the algebraic framework and the logical one. The basic idea is to assume the standard definition
of granularity proposed by Bettini and colleagues (see, for example, [8]) and extensively adopted by algebraic
approaches proposed for temporal databases, temporal data mining, and problem solving [3, 4, 6, 7, 16, 18, 52],
and to develop on top of it a logical approach based on a linear temporal logic, also considering how (and which
of) the main algebraic operators can be expressed as logical formulas.

More precisely, in this paper, we propose an original logical approach to represent and to reason about different
time granularities, which overcomes some limitations of logical and algebraic frameworks. We identify a time
granularity with a discrete linear time structure properly labelled with proposition symbols marking the starting
and ending points of the corresponding granules. We make use of a linear time logic, interpreted over labelled
linear time structures, to model possibly infinite sets of time granularities. Any linear time formula is associated
with a set of labelled linear time structures satisfying the formula (the set of models of the formula). Since any
properly labelled linear time structure identifies a time granularity, we may model possibly infinite sets of time
granularities by means of well-defined linear time formulas. Moreover, a single sequence may identify a finite
number of different granularities (a calendar) by using a different couple of marking proposition symbols for any
granularity. Hence, well-defined linear time formulas may model possibly infinite sets of calendars as well. The

proposed approach permits to model a large set of regular granularities and to algorithmically solve the consistency,



the equivalence, and the classification problems in a uniform way by reducing them to the validity problem for the

considered linear time logic, which is known to be decidable in polynomial space.

1.3 Structure of the paper

The rest of the paper is organized as follows. In Section 2 we describe in some detail the main approaches to the
problem of representing and reasoning about time granularity. In Section 3 we present some real-world motivating
examples. In Section 4 we propose our logical approach to represent and to reason about time granularity and
discuss both expressiveness and computational features of our proposal. In Section 5 we summarize the compari-
son of our work with related ones and, finally, in Section 6 we sketch some concluding remarks and outline future

work.

2 Related work

In this section, we describe in some detail the main proposals for the algebraic framework and the logical one
present in the literature, for representing and reasoning about time granularity; then, we introduce some recent

approaches which originated th&ing-basedramework.

2.1 Algebraic Framework

In the algebraic framework, new granularities are generated from existing ones, assuming a bottom granularity,
through a finite set of calendar operators. A granularity is hence identified by an algebraic expression. In the
algebraic framework, algorithms are provided to perform granule conversions, that is, to convert the granules
in one granularity to those in another granularity, and to perform semantic conversion of statements associated
to different granularities. The algebraic approach to time granularity has been mostly applied in the fields of
databases, data mining, and temporal reasoning. Algebraic approaches for time granularities have been proposed
by Foster, Leban, and McDonald [30], by Niezette and Stevenne [51], by Bettini and De Sibi [9], and by Ning,
Jajodia, and Wang [52]. Foster, Leban, and McDonald proposeethporal interval collection formalismA
collection is a structured set of intervals, where the order of the collection gives a measure of the structure depth:
a collection of order 1 is an ordered list of intervals, and a collection of otgesith n > 1, is an ordered list of
collections of ordern — 1. Each interval denotes a set of contiguous moments of time. To manipulate collections,
dicing and slicing operators are used. The former allow one to divide each interval of a collection into another
collection, while the latter provide means to select intervals from collections. For instance, the application of

the dicing operatoWeek : during : January1998 divides the interval corresponding fanuary1998 into the
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intervals corresponding to the weeks that are fully contained in the month. Moreover, the application of the slicing
operator[1, —1]/Week : during : January1998 selects the first and the last week from those identified by the
dicing operator above.

Niezette and Stevenne introduce a similar formalism, callegltbe formalism A slice has the form
>, 0,.C; > D, where the elements of the sum identify the starting points of the intervals, 6eiagymbol
denoting a calendar (i.e., a periodic infinite set of consecutive intervalgpaaiher a set of natural numbers or
the keywordall , andD their duration. For instancell.Year + {3,5}.Month + {2}.Day > 5.Day denotes a
set of intervals corresponding to the days 2 - 6 of March and May of each year: i.e, any interval lasts 5 days, as
specified by the duratiohDay, and may start either on March 2 or on May 2 of each year, as specified by the first
part of the expression.

Bettini and De Sibi show that both slice and collection formalisms can capture the set of finite no-gap gran-
ularities and that of infinite periodical no-gap granularities. Intuitively, a finite no-gap granularity is composed
by a finite number of granules, i.e., intervals on the basic time line; infinite periodical no-gap granularities are
composed by an infinite number of granules, i.e., intervals on the basic time line, with a periodical behaviour
with respect to their extensions. Moreover, the collection formalism is extended to capture also both gap and
guasi-periodical granularities: gap granularities, which are not expressible by the slice and collection formalisms,
have granules which are composed by a set of non contiguous time points of the basic time liBaigegss
Months , defined as the set of business days in a month, is a gap granularity on the time line of days); quasi-
periodical granularities behave as periodical granularities, except for a finite number of spans of time, where they
have an anomalous behaviour. The extended collection formalism allows one to express also infinite bi-periodical
granularities, which are represented by two sets of repeating granules, the first repeating from a maximum time
point towards—oo and the second one repeating from a minimum time point towarsds

Finally, Ning, Jajodia, and Wang introducealendar algebraconsisting of a finite set of parametric calendar
operations that can be classified into grouping-oriented operations and granule-oriented operations. The former
operations group certain granules of a granularity together to form the granules of a new granularity. For instance,
a typical group-oriented operationdsoup,, (G) that generates a new granularty by partitioning the granules
of GG into groups containing granules and making each group a granule of the resulting granularity. The granule-
oriented operations do not change the granules of a granularity, but rather select which granules should remain
in the new granularity. A typical granule-oriented operatiorsudset], (G) that generates a new granularity
G’ by taking all the granules off betweenm andn. By the calendar algebra, all the finite and the infinite

periodical granularities can be represented. Some syntactic restrictions are introduced in the usage of the algebraic



operations: these restrictions facilitate the calendar algebraic operations, without decreasing the expressiveness
of the algebra. Three layers are identified in the calendar algebra, according to the operators used for defining
new granularities: layer 1 is composed by the basic granularity and by all the granularities obtained without
introducing gaps within granules and without using operators which produce finite granularities (in this layer,
only the grouping-oriented basic operations are allowed); layer 2 is mainly composed by granularities obtained
by applying subset and selecting operations on granularities of layer 1 (i.e., only granule-oriented operations
are allowed); layer 3 contains granularities obtained from granularities of layers 1 and 2, suitably combined by
some specific grouping-oriented operations. Moreover, all the three layers can contain granularities obtained by
other granularities of the same layer, using suitable algebraic operators. Being the calendar algebra proposed
in the context of temporal databases, algorithms are then provided by the authors to support different kinds of
granule conversions: to this regard, also the granule conversion problem has simpler solutions with the above
syntactic restrictions, being computations of (up and down) granule conversions based on the features of the

involved granularities, with respect to the layer they belong to.

2.2 Logical Framework

In the logical framework for time granularity, mathematical structures, i.e., layered structures, represent the
different granularities and their interconnectionslafered structureonsists of a possibly infinite set of related
differently-grained temporal domains. Such a structure identifies the relevant temporal domains and defines the
relations between time points belonging to different domains. Suitable operators make it possible to move horizon-
tally within a given temporal domain (displacement operators), and to move vertaatigstemporal domains
(projection operators). These operators recall the slicing and dicing operators of the collection formalism. Both
classical and temporal logics can be interpreted over the layered structure. Logical formulas allow one to specify
properties involving different time granularities in a single formula by mixing displacement and projection opera-
tors. Algorithms are provided to verify whether a given formula is consistent (satisfiability problem) as well as to
check whether a given formula is satisfied in a particular structure (model checking problem).

The logical approach to represent time granularity has been mostly applied in the field of formal specification
and verification of concurrent systems. A logical approach to represent and reason about time granularity, based
on a many-level view of temporal structures, has been proposed by Montanari in [44], and further investigated by
Franceschet, Montanari, Peron, and Policriti in [31, 46, 49]. In the proposed approaitht tés@poral structure
of standard temporal logics is replaced Hgygeredtemporal universe consisting of a possibly infinite set of related

differently-grained temporal domains. In [44], a metric and layered temporal logic (MLTL) for time granularity



has been proposed. It is provided with temporal operators of displacement and projection, which can be arbitrarily
combined, and it is interpreted over layered structures. However, only a sound axiomatic system is given, and no
decidability result is proved for MLTL.

Layered structures with exactly > 1 temporal domains such that each time point can be refined:into2
time points of the immediately finer temporal domain, if any, are catledfinablen-layered structuresLSs
for short). They have been investigated in [49], where a classical second-order language, with second-order
guantification restricted to monadic predicates, has been interpreted over them. The language includes a total
ordering< andk projection functions g, ..., |,_; over the layered temporal universe such that, for every point
z, lo(x),..., |,_1(z) are thek elements of the immediately finer temporal domain, if any, into whighrefined.
The satisfiability problem for the monadic second-order languagerei&s has been proved to be decidable by
using a reduction to the emptiness problem foicBi sequence automata. Unfortunately, the decision procedure
has a nonelementary complexity. Layered structures with an infinite number of temporal donikgsred
structures, have been studied in [46]. In particular, the authors investigadithable upward unbounded layered
structures(UULSSs), that isw-layered structures consisting of a finest temporal domain together with an infinite
number of coarser and coarser domains,/anefinable downward unbounded layered struct(25LSs), that is,
w-layered structures consisting of a coarsest domain together with an infinite number of finer and finer domains. A
classical monadic second-order language, including a total orderamglk projection functiong,, ..., |,_;, has
been interpreted over both UULSs and DULSs. The decidability of the monadic second-order theories of UULSs
and DULSs has been proved by reducing the satisfiability problem to the emptiness problem for systolic and Rabin
tree automata, respectively. In both cases the decision procedure has a nonelementary complexity. Expressively
complete and elementarily decidable temporal logic and automata counterparts of the second-order theories of
n-LSs, DULSs and UULSs have been proposed in [31]. Moreover, the monadic language for granularity has been
extended with meaningful predicates like the equi-level, constraining two time points to belong to the same layer
of a layered structure, and the equi-column, constraining two time points to belong to the same column of a layered

structure, and the decidability problems of the resulting theories over layered structures have been explored [31].
2.3 String-based Framework

A recent original approach to represent and to reason about time granularity has been proposed by Wijsen [60]
and later refined by Dal Lago, Montanari, and Puppis [22, 23, 24]. Wijsen models infinite granularities as infinite
strings over a suitable finite alphabet. The resulting string-based model is then used to formally state and solve the

problems of granularity equivalence and minimality. This formalism does not fulfill the requirement of compact-



ness: the representation of a granularity can be very long whenever the granularity is periodic with a long prefix
or period (as in the case of the Gregorian Calendar).

Dal Lago and Montanari [22] give an automata-theoretic counterpart of the string-based model devised by
Wijsen. They propossingle-string automataa variant of deterministic Bchi automata accepting a single infinite
string, to represent time granularities. Furthermore, they show that regularities of modeled granularities can be
naturally expressed by extending single-string automata with counters. This extension makes the structure of the
automata more compact, and it allows one to efficiently deal with those granularities which have a quasi-periodic
structure. In [23], the authors prove that single-string automata provide an efficient solution to the fundamental
problems of equivalence and classification. Moreover, they argue how single-string automata can be used not only
as a specification formalism for time granularities, but also as a low-level formalism into which high-level time
granularity specifications can be mapped. For instance, expressions of Calendar Algebra [52] can be efficiently
mapped into equivalent single-string automata.

Finally, Dal Lago, Montanari, and Puppis [24] focus on two kinds of optimization problems for automata-
based representations of time granularities, namely, computing the smallest representation and computing the
most tractable representation, that is, the one in which granule conversion algorithms run fastest. They show how

to efficiently compute complexity optimal automata from smaller ones in a bottom-up fashion.

3. Motivating examples

To motivate the need of managing different granularities, we will focus on two examples of different nature. The
first example comes from clinical medicine and deals with the definition of specific granularities related to therapy
plans. Intuitively, therapy plans can be considered as the calendar according to which it is possible to properly
observe the evolution of the patient’s state. We consider here chemotherapies for oncological patients, a topic
which has been extensively considered by the clinical research and that is precisely described and recommended
in several clinical practice guidelines, the physicians follow during the daily routine. Chemotherapies are usually
intensive and potentially have several side effects for the patients: itis, then, useful to observe how a treated patient
reacts during the different phases of the therapy.

In general, oncology patients undergo several chemotherapy cycles: each cycle can include the administration
of several drugs, which the patient has to assume according to a specific temporal pattern. Within each cycle, the
temporal administration of each drug is usually predefined; a cycle can be repeated several times. As an example,

consider the following chemotherapy recommendation [41]:

10



CMF chemotherapy

Cycle(1) Cycle(2) Cycle(3) Cycle(4) Cycle(5) Cycle(6)

delays of 0-5 days between a
cycle and the next one

|‘lII~LIII-LIIIII-I.IIIIIIIIIIIIIJ -
\ time
Day(1) .o e Day(28)
OC+IM(1) OC+IM(4) OC+IM(8) OC+IM(14)
5-FI(1) 5-FI(2)

Figure 1. Granularities involved in a chemotherapy treatment.

“The recommended CMFegimen consists of 14 days of oral cyclophosphamide with intravenous

methotrexate, and 5-fluorouracil on days 1 and 8. This is repeated every 28 days for 8 cycles

Moreover, it may happen that the beginning of a cycle is delayed a few days, due to patient’s blood analysis results.
Figure 1 provides a graphical representation of the recommended CMF regimen.
According to this scenario, we can easily identify some requirements related to the definition of useful granu-

larity systems:

1. Definition of therapy-related granularitiesThese granularities should be suitably specified for different

patients, according to the moment at which they start a given chemotherapy.

2. Definition of granularities having some degree of uncertaiiityere is, indeed, the need of representing the

fact that two consecutive cycles may be separated by some days, due to the patient’s conditions.

3. Verification of consistency between an assigned therapy and the recommended .re§iveena therapy
assigned to a patient with the specification of days and corresponding drug assumptions, it is important to

be able to determine whether the therapy is consistent with the recommended regimen.

4. Assignment of a therapy according to the recommended regimen and to other granularity-related con-
straints It could be necessary, for organizational reasons, to avoid that some specific drug administrations
happen during the weekend: for example, in specifying a CMF therapy, we could avoid that the administra-

tion of 5-fluorouracil is on Sundays or on December 25.

1CMF stands for the chemotherapy based on the drugs Cyclophosphamide, Methotrexate, and 5-Fluorouracil.
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As mentioned in the last point, we cannot disregard, when dealing with time granularities, the representation
of the Gregorian Calendar: the second example is, thus, the typical example in the field of time granularity. The
Gregorian Calendar has a bottom granularity representing the days. Days group into weeks: a week consists of 7
consecutive days. Days group into months as well. The first month is January and consists of 31 days, the second
is February and contains either 28 days or, during leap years, 29 days, the third is March consisting of 31 days and
so on. Note that weeks and months may overlap. A year groups twelve months, starting from January. Leap years
are those multiple of 4, excluding years multiple of 100, but including years multiple of 400. For instance, 1900

is not leap, but 2000 is leap.
4. A logical approach to represent and reason about calendars

In this section, we propose our logical approach to represent and reason about different time granularities and

provide some examples of real-world temporal granularities, represented according to our approach.
4.1. Representing time granularity
We model time granularities according to the following standard definition.

Definition 4.1 A granularityis a mapping : N — 2N such that:
1. forall i < j, foranyn € G(i) andm € G(j), n < m;

2. forall i < 7, if G(j) # 0, thenG(3) # 0.

Following the classical definition given in [8], the domain of a granulattis calledindex setand an element of
the codomain ot is called agranule The first condition states that granules in a granularity do not overlap and
that their index order is the same as their time domain order. The second condition states that the subset of the
index set that maps to nonempty granules forms an initial segment.

The definition of granularity above specializes the definition given in [8], assuming that both the index set and
the time domain (i.e., the domain of granules) are the linear discrete dohain. The choice of linear temporal
logics for expressing granularities forces the use of linear discrete domains. For the sake of simplicity, we choose
a linear time domain with a least element (instead of integers as in [8]). Since we shall describe granularities by
means of Past Propositional Linear Time Logic, our approach could be straightforwardly adapted to deal also with
granularities having integers as index set.

A granularityG is said:

12



externally continuoudf there are no gaps between nonempty granulegs;of

internally continuousif there are no gaps inside the granuleg:6f

continuousif it is both internally and externally continuous;

total, if the granules ot~ cover all the time domain;

uniform, if all the nonempty granules @f have the same cardinality.

With reference to standard calendar granularities, the granubaytys continuous, uniform and total. Granulari-
tiesMonth andYear are not uniformYearsSince2000 is not total, BusinessWeek is not externally continuous,
andBusinessMonth is not internally continuous. Following [52], a number of meaningful relationships can be

established between pairs of granularitiegsandGs, as detailed in the following.

e FinerThan(G;,G2) holds if each granule ofr; is contained into a granule @f, that is, if, for each
indexsi, there exists an indexsuch thaiG (i) C G2(j). For instanceDay is finer tharMonth, butWeek is

not finer tharMonth, since a week can spread over two consecutive months.

e SubGranularity (G, G2) holds if each granule off; is equal to a granule aff¢, that is, if, for each
index ¢, there exists an indey, such thatG,(i) = G2(j). For example, the granularitgunday is a

subgranularity oDay.

e GranuleRefinement (G, G2) holds if each granule off; is contained into the corresponding granule
of G, that is, if, for every index, G1(i) € G(i). As an instance, we have thateekend is a granule

refinement ofVeek

e Group(G1,Gs) holds if each granule aff, is obtained by grouping an arbitrary number of consecutive
granules of71, thatis, if for anyi there exists a se&t (which is either empty or has the forfy, j+1, ..., 7+

k}, with j, k > 0) such thatGs (i) = [ J;c g G1(1).

More specialized forms of grouping can be defined. Gizen 1, the relationGroupy (G, G2) holds if
each granule off, is obtained by grouping consecutive granules 6f;, that is, if, for each index G2 (i) =

?;(1] G1(i - p+ j). More generally, givep > 1 andg > 0, the relationGroup,Skipq(G1, G2) holds if
each granule of7, is obtained by grouping consecutive granules &f; and by skipping the following
consecutive granules @f4, that is, if, for each index, G»(i) = f;é G1(i- (p+ q) + j). Similarly, the

relationSkip,Group,(G1, G2) holds if each granule af; is obtained by skipping consecutive granules
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of G and by grouping the following consecutive granules @f;. Note thatGroup,Skipo(G1,G2) =
SkipgGroupy(Gi,G2) = Groupy(Gi,Gs). Finally, EqualGroup(Gi,G2) holds if each granule
of G5 is obtained by grouping the same (not fixed) humber of consecutive granulés diVe have that
Group(Day, Week) holds, and, in particulatzroupz (Day, Week) holds. MoreovenGroupsSkipz(Day,

BusinessWeek), andSkips Groupz(Day, Weekend) hold.

e Givenp > 0, Shift,(G1,G2) holds if the granules of¥, are obtained by backward shifting pfposi-
tions the granules aofy, that is, for each index, G2(i) = G1(i + p). Moreover,Shift(G;, G2) holds
if the granules ofGG, are obtained by backward shifting of an arbitrary number of positions the gran-
ules of Gy, that is, if there existp > 0 such that, for each index G2(i) = G1(i + p). For example,
Shifteggo(Year, YearSince2000) holds.

Note that, in general, the group operations do not preserve internal continuity. Indeed, if we group two non-
adjacent granules of an internally continuous granularity, we get a non-convex granule, i.e. a granule consisting of
a set of non-contiguous time points, and the resulting granularity is hence no more internally continuous.

In the following, we propose a logical framework to moagkrnally continuougranularities as defined above.

We will extend our framework to granularities with gaps inside the granules (i.e., non-internally continuous gran-
ularities) in Section 4.2.

Let G = {Gi,...,G,} be afinite set of granularities (we will refer t¢ as acalenda), and letPg =
{Pg,,Qq, | 1 <i<n} be aset of proposition symbols associated with the caleghdar

Given an alphabet of proposition symb®s> Pg, we shall consider in the following-labelled (discrete) lin-
ear time structures having the foriN, <, V'), where(N, <) is the set of natural numbers with the usual ordering,
andV : N — 27 is a labelling function mapping natural numbers to sets of proposition symbols.

The idea is to identify an internally continuous granularitywith a linear time structure, properly labelled
with proposition symbols taken frofg, Q¢ }: the starting point of an arbitrary granule Gfin the structure is

labelled byP and the ending point of an arbitrary granule(éfn the structure is labelled b ;.

Definition 4.2 A labelled linear time structuréN, <, V') is G-consistent whenever:

1. if Po € V(q) for somei € N, then eitherQq € V(i) or Qg € V (j) for somej > i such thatP; ¢ V (k)

foreachi < k < jandQqg & V (k) for eachi < k < j;

2. if Qg € V(i) for somei € N, then eitherP; € V(i) or Pg € V(j) for somej < i such thatQq ¢ V (k)

foreachj < k <iandPg ¢ V (k) for eachj < k <.
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The above conditions say that every point labelled Withhas to match with a unique point labelled with;,
and vice versa. Everg-consistent labelled linear time structure induces an internally continuous gran@arity
given aG-consistent labelled linear time structutd = (N, <, V'), a granule ofM with respect toG is a set
{n,n+1,...,n+ k}, for somen,k > 0, such thatPg € V(n), Qg € V(n+ k) andQqg ¢ V(n + j) for

all 0 < j < k. The granularityG induced byM is such that=(¢) is thei-th granule ofM with respect taG,

if any, andG(i) = 0 otherwise. It is easy to check thatis an internally continuous granularity. Conversely,
an internally continuous granularity corresponds to &-consistent labelled linear time structure: label every
starting point of a granule af with symbol P, and every ending point of a granule @fwith symbolQ¢. Itis

not difficult to see that the resulting labelled linear time structurg-onsistent.

Example 4.3 We give some examples of labelled linear time structures that induce well-defined granularities and

one example of a labelled linear time structure that does not correspond to a granularity.

e The structurgN, <, V) such thatV' (i) = {Pg} iff i is even, and/ (i) = {Q¢} iff 7 is odd, induces the

uniform, total, and continuous granularitysuch thatG(:) = {2 -4,2 - i + 1} for anyi € N.

e The structurgN, <, V), represented in Figure 2, such that0) = V(3) = {Pg, Py}, V(1) = {Qg},
V(2) ={Qu}, V(4) =0, V(5) = {Q¢,Qu}, V(6) = {Pu}, V(7) = {Fg,Qc} andV(8) = {Qnu}
(V(i) = 0, for i > 9) induces two granularitie§ and H:

1. the non-uniform, non-total, non-externally continuous, and internally continuous grandasitgh
thatG(0) = {0,1}, G(1) = {3,4,5}, G(2) = {7}, andG (i) = 0, for anyi > 3;

2. the uniform, non-total, and continuous granuladfysuch thatd (0) = {0,1,2}, H(1) = {3,4,5},
H(2)=1{6,7,8},andH (i) = 0, for anyi > 3.

e The structuregN, <, V') such that’ (0) = {Ps}, V(1) = {Qa, Pc}, V(2) = {Q¢} does not induce any
granularity, since it is nof7-consistent (indeed, the granul@$0) = {0, 1} andG(1) = {1, 2} intersect).

In the following we show how a set of granularities can be defined in an intensional declarative manner by
means of a formula of a propositional linear time logic (instead of defining it extensively as done in Example 4.3).
We will use Past Propositional Linear Time LogieKLTL for short) [27, 56], interpreted over labelled linear

time structures. We proceed by introducing the syntax and the semanB&d GfL..

Definition 4.4 (Syntax ofPPLTL)

Formulas ofPPLTL are inductively defined as follows:
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Py Qu Pu Qe Pr Qe Qn
P Qg Pg Qc Pg
0 1 2 3 4 5 7T 8 9
Figure 2. A labelled linear time structure inducing two granularities G and H.

e any proposition symbaP € P is aPPLTL formula;

e if p andy are PPLTL formulas, thenp A ¢ and—¢ are PPLTL formulas;

e if ¢ andy are PPLTL formulas, theriX¢, #Uv, X ~1¢ and ¢S are PPLTL formulas.

Formulasp V ¢, ¢ — 1, and¢ « ¢ are defined as:(—¢ A =), =¢ V ¢, and(¢p — ¥) A (v — ¢),

respectively. Moreoveif o (o will hold in the future),Ga (o will always hold in the future)Pa (« held in the

past) andHa (« always held in the past) are shorthands for, respectivelye Ua, -F—«, trueSa and—-P-a,

wheretrue = P Vv —P, for someP € P. Temporal operators ifiX, U, X1 S} have priority over Boolean

operators{ A, V }. Moreover,— has priority overA and overV, and A has priority overV . For instance,

—a A Uy V éreads((—a) A (BU7)) V 6.

We interpretPPLTL overP-labelled linear time structures. The semanticPBILTL is as follows.

Definition 4.5 (Semantics aPPLTL)

Let M = (N, <, V) be aP-labelled linear time structure anile N. The truth of aPPLTL-formula in M

with respect to the point denotedM, i |= v, is defined as follows:

M,ik= P iff
Mik=¢ A iff
M,ik-¢  iff
M,i k= Uy iff

M,il=Xy iff
M,il= ¢Sy iff

M,i = X1y iff

PeV(i)forPeP;

M,i = pand M, i =

it is not the case that\1, i = ¢;
M, j |+ for somej > i and
M,k = ¢ foreachi < k < j;
M, i+ 1=,

M, j |+ for somej < iand
M,k |= ¢ foreachy < k <
i>0andM,i—1 .
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We say thai\ is a model ofp if M, 0 = 1. A formulay is satisfiabldf and only if there is @-labelled linear
time structure that is a model gf; it is valid if and only if everyP-labelled linear time structure is a model ¢f

Note thaty is valid if and only if— is not satisfiable.

A PPLTL-formula intensionally defines a possibly infinite set of labelled linear time structures (the set of mod-
els of the formula). Since, as shown above, consistently labelled linear time structures correspond to granularities,
we can use suitable linear time formulas to define possibly infinite sets of granularities. We nBRIpLE at

work. The set of all internally continuous granularities is captured by the folloRiAGTL-formula
IntContGran(G) = G((Pg — «a) A (Qa — f)),

where

a is Q¢ V X(=(Pe V Qe)U(-Ps A Qg)), and

B is Pg VX N~(PeV Qa)S(Pe A =Qq)).

Note that the first conjund®s; — « captures point (1) of Definition 4.2, whereas the second confbact>
captures point (2) of Definition 4.2.

The set of continuous granularities are defined by the following formula that requires two consecutive granules

to be adjacent:

ContGran(G) = IntContGran(G) A G(Q¢ — X(Ps V G-Fg)).

The set of continuous and total granularities are defined by the formula that follows:

TotalGran(G) = ContGran(G) A P; AN GFPg.

It states that7 is a continuous granularity, starting immediately, and having an infinite number of nonempty
granules.

The set of uniform granularities cannot be encoded in our framework. Indeed, to encode uniformity, we have
to say that any granule have the samo¢fixedcardinality. This boils down to encode the predicate saying that “X
and Y are sets of the same cardinality” over the natural numbers. It is well-known that such a predicate cannot be
expressed in the monadic second-order theory of natural numbers (S1S, for short) [57PEHifideis a fragment
of S1S [57], it follows that such a predicate, and hence uniformity, cannot be expre$3eiii.. However, we
are able to encode the set of internally continuous granularities having granules of uniform cardinaiity

k > 1, as follows:
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k-2
Uniformy (G) = IntContGran(G) A G(Pg — (XX 1Qg A /\ Xi-Qq)),
=0

where, X% stands for and, for everyh > 0, X®¢ stands foXX*1¢.

A finite number of different granularities may be involved in the same formula by using different pairs of mark-
ing proposition symbols. For instance, given a caleddar {G1,. .., G,}, the formula/\]" ; IntContGran(G;)
defines the set of all calendars withgranularities4, . .., G,,. The granularities in a calendar usually have to
satisfy certain constraints, such as, to be finer than or to group into other granularities. Such constraints may be
expressed by means of binary relations between granularities, as those proposed above. We show how to encode
the above introduced relations between granularities in our framework.

The relationFinerThan(G1, G2) is expressed by the following formula:

IntContGran(G;) A IntContGran(Ga) A
G(PG1 - ((_'PGz N _‘QGZ)SPG2 N (_‘PG2 A _‘QGQ)UQGl))‘

The formula requires that each granule(®f is included into some granule 6f,. In particular, it allows that
more than one granule @f; is included into the same granule @f,. Hence, the calendars withgranularities
that are totally ordered with respect to fRimerThan relation are defined by the following formula:

n—1
/\ FinerThan(G;, G11).
=1

The relationrSubGranularity (G, G2) is expressed by the formula that follows:

IntContGran(G;) A IntContGran(Ga) A
G(PGl - (PGz N _'(QGl v QGZ)U(QGl A QGQ)))
The formula above requires that each granul&pttoincides with a granule afs.

The relationGranuleRefinement(G1, G2) is expressed by the following formula:

IntContGran(G;) A IntContGran(Gs) A
G((Pe, = a) A (Qay, — B) A (Pa, N (mP6,UQq,)) — G(=Fg,))),
where
a is —(Pg, V Qe,)U(Qa, N (Qa, V X(-Pz,UQg,))), and
B is —(Pg, V Qa,)S(Pg, A (Pa, V X 1(=Qg,SPa,))).

18



The formula above requires that th¢h granule ofGs contains the-th granule ofG4, if any. Formulasy and
[ require that at most one granule @f is included into a granule af’s. Moreover, the third conjunct of the
formula ensures that if some granule(@f does not contain any granule @f;, then all the following granules of
G are empty.

The operation of defining a granularity by grouping the granules of another granularity might lead in general to
non-internally continuous granularities, which are treated in Section 4.2. However, if we group (without skipping)
granules of a continuous granularity, the resulting granularity is still internally continuous. We implement in the

following the relationGroup(G1, G2), assuming that?; is continuous.

ContGran(Gp) A IntContGran(Ga) A
G(Pg, — (Pg, N “Qac,U(Qa, N Qa,)))-
Notice thatG, is required to be internally continuous but not continuous, since it is not required that each
granule ofGG; belongs to a granule @f-.

We now encode the relatidBroupy, (G1, G2), assuming again th&t; is continuous.

ContGran(Gi) A ContGran(Gz) A (—Pg, N Pg,)U(Pg, N Pg,) N G(Pg, — ap-1),

where,
agis P, A =(Qa, V Qa,)U(Qa, N Qa,),
and, fork > 0,
ok is Pg, N =(Qc, V Q6,)U(Qey A ~Qa, N Xag—1).

The definitions foiGroupy, Skipq andSkip,Groupy, are similar. However, the relatidiqualGroup(G1, G2)
is beyond the expressiveness of our framework. Indeed, it forces the grandfgesmbe composed of the same
not fixednumber of granules af;. To express such a property, we should be able to encode the predicate “X and
Y are sets of the same cardinality”. As discussed above, such a predicate is not expressible in our setting.

Finally, we encode the relations that shift a granularity. The rel&ieift, (G, G2) can be written as follows:

IntContGran(Gi) A IntContGran(Ga) A ay,

where

apisG((Pg, < Pg,) N (Qa, < Qa,))s
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and, forg > 0,
aqis =(Qa, V Pe,)U(Qa, A —Pa, A Xag-1).

Formulacy, requires that there are no granules of the granulafityill the p-th granule of the granularitg; .
Starting from thep + 1-th granule onwards, the two granulariti@s andG, coincide (formulaxy).

The unbounded shift relatid®hift (G, G2) is as follows:

IntContGran(G;) A IntContGran(Gs) A
(ﬁ(PGQ \/QGQ)UG((PGI A PGz) A (QGl A QGZ)))
The formula above requires that there are no granules of the grandfatiitythe n-th granule of the granularity
(1, beingn an arbitrarily chosen non negative number. Fromrikte granule onwards, the two granulariti@s

andG4 coincide.

Example 4.6 We model in the proposed granularity framework the examples given in Section 3. We preliminary
introduce some useful shorthands. BoK n < m, V[n,m|(«) (resp.3[n, m|(a)) stands for & holds every-
where (resp. somewhere) in the time interfralm]”, and is defined ag\!", Xia (resp.\/~, Xia). Finally,
Count(a,n) stands for & holds exactlyn times in the future” and is defined as followSvunt(«,0) = G-«
andCount(a,n) = ~aU(a A XCount(a, k — 1)).

We consider now the clinical example of Section 3. Let us assumeéxtiafcyclophosphamide), M (intra-
venous methotrexate) adl (5-fluorouracil) are the granularities corresponding to the drugs of the CMF regimen.
The formula) ¢y, ¢ below defines, on the time domaihof days, the granularitie§€ M F', OC, IM, andF'I ac-

cording to the recommendation given in Section 3:

FinerThan(/M,CMF) A FinerThan(OC,CMF) A FinerThan(FI,CMF) A
Count(Pcprr,6) A Uniformag(CMFEF) A G((Qeomr N FPoymr) — 31, 5] Poyr) A
G(Pomr — (V]0,13](Poc A Prv A Qoc A Qi) A

Prr A Qrr A XT(Ppr A Qrr) AV[L,6](=Prr A =Qpr) A V[8,13](=Ppr A —Qrr) A

V[14,27](=Poc A =Py A =Prr A =Qoc N ~Qru A —QFr))).

The first three conjuncts (first line) say that the three granularities related to specific drugs are finer than the CMF
granularity and that all the four granularities are internally continuous. The next three conjuncts (second line) say,
respectively, that the granularity CMF consist$aranules (cycles), each 88 elements (days), and each cycle

is separated by time intervals not exceeding 5 units. The last big conjunct associates the drugs with each day in the
cycle, according to the recommendation (the first 14 days cyclophosphamide and intravenous methotrexate, with

5-fluorouracil only on days 1 and 8, and no drugs during the second 14 days).
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Example 4.7 In this example we cope with the representation of the Gregorian Calendar. The main (and most
tedious) part consists of the definition of the granularityith: indeed, the overall periodicity of months is 4
centuries and the only solution is to explicitly define the granules corresponding to each month within this period.
For the sake of readability, we therefore introduce some shorthands. We start by defining the fdiipla
encoding a month of, days, wherer is a natural number and is a formula, andPycentury is the proposition

symbol marking the starting point of a granule of 4 centuries:

Mn((p) Stands fOrPMonth A V[O,n - 2](_'QMonth A X_‘P4Century) A Xnil(QMonth A XSO)

We now define the formulas (p) andLY (), encoding, respectively, the months during a year and the months

during a leap year as follows (for the sake of readability, we will wkitg),,, instead ofM,, (M,,)):

Y(p)  standsfor Mz MagMsy Mo Mszy Mzo Mz My MzoMsy Mo M3 ();
LY (¢) stands for Mgy MagMszy Mo Mszy MzoMzy My MzoMsy Mo M3 ().
Moreover, we define the formuldd”(¢), C(¢), and4C(y) encoding, respectively, the months during a 4-year
period (with three years and one leap year), the months during a century (with a sequence of 24 periods of 4-year
plus a period of 4 non leap years), and the months during a 4-century period (3 centuries plus a sequence of 25

periods of 4-year):

4Y (p) standsfor Y3LY (¢);
C(p)  standsfor 4Y24y4(y);
4C(p) standsfor C34Y?%(yp),

whereY 3 stands fo’ Y'Y, and similarly for the other powers.

Unfolding formula4C, we have the following encoding of all the rules of the Gregorian Calendar:

(YPLY Y12 (YPLY ) (p).
Finally, the granularitfonth is defined as follows:

(ZSMonth - P4Century A G(P4Century - 4C(P4Century))-

The granularityday is such thaipp.y = TotalGran(Day) A Uniform;(Day). The granularityWeek can
be defined as a group of 7 days, thatdig..x = Groupr(Day,Week). The granularityYear is a group of 12
months, namelybyeay = Groupiz(Month, Year), and the granularitgentury is a group of 100 years, i.e.,

¢century = Groupioo(Year, Century). As for the granularityCentury, being a group of 4 centuries, we have
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that pacentury = Groupy4(Century, 4Century) holds. The Gregorian Calendar is finally defined as follows:

¢Day A ¢Week A (Z)Month A (Z)Year A ¢Century A ¢4Century-

It is worth noting that in the above examples only a bounded form of uncertainty is involved. In the clinical
example, two successive cycles may be separated by no more than 5 time units (in the chosen granularity). More-
over, in the Gregorian Calendar, no degree of uncertainty is present. However, there exist applications calling
for unbounded uncertaintyFor instance, two therapy cycles that are arbitrarily distant or a therapy starting at an

arbitrary instant. Our framework can cope with unbounded uncertainty as well.
4.2 Extending granularities with gaps

The above proposal does not consider granularities with gaps inside the granules (only internally continuous

granularities are treated). However, it can be easily extended to cope with such granularit@ebelatalendar

andPg = {Pg,Qa, Pr.,Qu, | G € G} be a set of proposition symbols associated with the calefd@&iven

an alphabet of proposition symbd’s D Pg, we shall consideP-labelled linear time structures. We use symbols

P andQ¢ to delimit the granules of a granulari€y as before, and we take advantage of symbsgls andQ g,

to bound the gaps inside the granulesGbfin this way we have that the description of the gaps-as itself a
granularity H;. Note thatH is finer thanGG. Indeed, every granule dfi; (an internal gap of7) is a subset

of some granule ofy. Moreover, there are no granules@fthat are entirely covered by granulesi@f;. The

extension of the definition af’-consistency is as follows.

Definition 4.8 A labelled linear time structurd1 = (N, <, V') is G-gap-consistent whenever:
1. M is G-consistent and{;-consistent (according to Definition 4.2);
2. every granule ofM with respect taH is a subset of some granule ® with respect taz;

3. no granule ofM with respect ta7 is the union of some granules 8ff with respect taf .

It is easy to show that &-gap-consistent linear time structure corresponds to a (not necessarily continuous)
granularity and vice versa. The set of (not necessarily continuous) granularities can be encoded by the temporal

formulaGran(G) defined as follows:
FinerThan(Hg, G) AN G(Pg — —a),
whereq stands for
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Pue N ((Qe A Qug) V X((#Qa N (Que — XPpg))U(Qc AN Que)))-

The first conjunct ofGran(G) states thatz and H¢ are consistent (point (1) of Definition 4.8) and that each
granule ofH; is a subset of a granule 6f (point (2) of Definition 4.8). The second conjunct@tran(G) claims
that each granule af is not entirely covered by granules éf; (point (3) of Definition 4.8). As an example,
we define the non-internally continuous granulaBiysinessMonth . The granules of a business month have
gaps corresponding to weekends. We define the granuBuiginessMonth  on top of the previously defined

granularityWeekEnd as follows:

Gran(BuSineSSMonth) A G(-PBusinessMonth = PMonth A QBusinessMonth — QMonth)/\
G (Phyyinessmonsn < (Picexind V (Qweekend /A PousinessMontn)) /A

QHBusinessMonth — (QWeekEnd \ (PWeekEnd A QBusinessMonth)))-

4.3 Expressiveness

A precise upper bound to the expressiveness of our approach is fixed by the expressiveirdsElofIn fact,
granularities are induced by labelled linear time structureswigequences over a suitable alphabet) and it is well
known that the set of labelled linear time structures which satighWp&TL formula is aw-regular set, namely
a set ofw-sequences accepted by adBi automaton (e.g., see [57]); actualRPLTL allows one to capture a
proper fragment of the class ofregular sets. In the previous sections we have given examples of relations which
are not definable in our setting (for instance, the relallepualGroup(Gi, G2) or the property of uniformity
for granularities). An example of a granularify that is not regular, and hence can not be represented in our
framework, is the following: for every > 0, G(i) = {2' + 1,2¢ + 2,...,2"1} (note that the cardinality of the
i-th granuleG (i) is 2%). However, even thougRPLTL allows one to capture only a proper fragment of the class
of w-regular sets, we shall show in this section that it allows the description of the class of granularities considered
of practical interest. In particular, we shall show that our setting is at least as expressive to define all finite, infinite
periodical, and quasi-periodical granularities, thus placing its expressive power beyond that of other widely known
frameworks (e.g., the collection formalism). Conversely, we have not yet established whether the class of finite,
infinite periodical, and quasi periodical granularities precisely captures the class of granularities definable in our
framework (a precise characterization of the class of definable granularities is still missing and will be addressed
in the future work).

In [9], Bettini and De Sibi studied the expressive power of the two well known frameworks of collection and

slice formalisms, comparing them mainly with respect to the subclass of infiaiiedical granularities. Pe-
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riodical granularities can be defined in terms of another granularity by means of a particular type of grouping
relationship. The idea is that the defined granularity has a repeating pattern of f2ngthesponding to a span

of P granules of the underlying granularity.

Definition 4.9 A granularity G is periodical with respect to a granularitg; if the relation Group(G1, G2)
holds and there exisk, P € N (thepattern), whereR is less than (or equal to) the number of granulegef such

thatforalli € N, if G2(i) = U c5 G1(4) andGa(i + R) # 0, thenGa(i + R) = U5 G1(j + P).

For instance, ilGroupy(G1, G2) (resp., eitheiGroup,Skipq(G1, G2) or SkipqGroupy(G1, G2)) holds,
then Gy is periodical with respeat’; with R = 1 andP = p (resp.,R = 1 and P = p + ¢). Given abasic
total continuous granularity, a granularity is said to beperiodicalif it is periodical with respect to that basic
granularity. The expressive power of the collection and slice formalisms with respect to the class of finite and
infinite periodical no-gap granularities is summarized by the following results [9], according to the terminology

used in our proposal:

1. For any collection expression, there exists an equivalent internally continuous finite or infinite periodical

granularity, and viceversa.

2. For any disjoint slice expression (i.e., where the granules of the defined granularities do not overlap) there

exists an equivalent internally continuous finite or infinite periodical granularity, and viceversa.

In the following we show that our formalism allows one to express periodical granularities, thus allowing to
prove that it is at least as expressive as collection and (disjoint) slice formalisms.
In fact, for R, P € N, the relationPeriodicGroupr,p(G1, G2), which holds ifG is periodical with respect to

(G with patternR, P, is defined as follows:

Group(Gi,G2) A Countglnp N —(Pg, V Pg,)U(Pg, N Pgy) A
G((PG1 - (PGz A dispP(PGwPGl))) A (QGI - (QGz A dispP(QszQGH))))

where,Countylng is True, and fork, s > 0, Count,Ing is False and
Countolngis ~(Pg, V Pg,)U(Pg, N =Pg, N XCountoIns_1)

andCountyIng is
(=(Pg, V Pg,)U(Pg, N\ =Pg, N XCountypIns_1))V

(=(Pgy, V Pg,)U(Pg, N Pg, N XCounty_1Ins_1))
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and, forg, ¢' formulas,dispo(¢, ¢') is ¢ , and fork > 0

disp (¢, ¢) I8 X(G(=¢') V (~¢'U(¢" A dispi—1(9))))-

In the formula above, the two initial conjuncts require thatis a grouping of granules @¥; and that the initial
span of P granules ofz; contains exactly® granules oiG» (notice that in this wayx, is forced to have at least
R granules); the third conjunct requires that the first granul@o$tarts together with the first granule @§; the
last conjunct requires that the starting point (resp. the ending point) éf-thié granule ofG; (for anysi) is the
starting point (resp. ending point) of a granulef if and only if the starting point (resp. the ending point) of the
1+ P — th granule ofG; (if any) is the starting point (resp. ending point) of a granulé/ef

Actually, the expressive power of our approach goes beyond the subclass of finite and infinite periodical no-
gap granularities, which are expressible by collection and (disjoint) slice formalisms. Indeed, in Section 4.2,
we showed that we can capture gap granularities, i.e., with gaps inside granules (provided that also gaps are
periodical). Thus, assuming that we define according to the previous formula both periodical grandharities
and Hg, with respect to the basic granularify; (provided thatG, and Hg, define aG-gap-consistent linear
time structure, according to Definition 4.8), we can express both gap and no-gap, finite and infinite periodical,
granularities.

Furthermore, in [9] a notion afuasi-periodicityis introduced which extends the notion of periodicity by im-

posing the periodicity of grouping in the whole granularity, but inside a finite (fixed) number of intervals.

Definition 4.10 A granularity G5 is quasi-periodical with respect to a granularity; if Group(G1, G2) holds
and there exist a set of intervals (i.e., sets of consecutive index@s)ah, . .. E}. (the granularity exceptions),
and two numbers, P € N, with R less than (or equal to) the minimum of the number of granulés,dfetween
any two exceptions, such that for alke N not belonging to any granularity exception,Gh (i) = UjeS G1(j)

andGsy(i + R) # 0, andi + R < min(E), whereE is the closest existing exception afiethenGs(i + R) =
Ujes G105 + P).

In the following we shall define grouping relations allowing the expression of a quasi-periodical granularity
with a granularity exception having either fixed indexes or arbitrarily placed indexes. The definition could be
easily generalized to quasi-periodical granularities with a nurhber0 of granularity exceptions thus showing
that quasi-periodical granularities can be defined in our framework.

We start with defining a relation of periodical groupil®riodicGroupr pExceptp (G1,G2), where

R,P,B,FE € N, B > R andB andF represent the starting and ending indexes, respectively, of the exception
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interval. The relation, which holds - is quasi-periodical with respect &8, with patternR, P and a granularity

exception B, E], is defined as follows.

Group(Gi,G2) A Countglnp N —(Pg, V Pg,)U(Pg, N Pgy) A
Aftergii1 g, (PeriodicGroupr p(Gi,G2)) A
(Pa, = (Pa, < dispp(Pa,, Fa,))) N(Qa, — (Qa, < dispp(Qay, Qa,))))UAtp-r(G2)

where, for a granularitys and a formulap, A fter ¢(¢) is ¢, and fork > 0
Afteryc(¢)is ~PoU(Pg A XAftery_1.c(¢)),
and, for a granularityz, Ato(G) is P A -X~1(P(Pg)), and, fork > 0,
Aty is Pg A XY (=PgS(Pg A Aty_1(Q@))).

The formula above requires that starting from #ie+ 1-th granule,GG, is obtained by periodically grouping
granules ofG; (fourth conjunct in the formula); moreover, it imposes (last conjunct) the condition that, for all
with0 <i < B — R, G2(i) = U;cg G1(j) impliesGa(i + R) = U;cs G1(j + P).

We define now a relation of periodical groupiiRpriodicGroupgr pExcept;(G1,G2), with R, P € N,
admitting one exception interval of arbitrary length arbitrarily placed in the granularity. The relation is defined as

follows.

Group(Gi,G2) A Countrlnp N —~(Pg, V Pg,)U(Pg, N Pg,) A

(Pey = (Pg, < dispp(Fg,, P6,))) NMQay — (Qa, < dispp(Qa,, @c,))))U
Pg, N Afterpg,(TrueU(Pg, N PeriodicGroupr p(G1,G2))).

Notice that, in general, considering a fixed granulaity exactly one granularityzo may satisfy the relation
PeriodicGroupr pExceptg g(G1, G2), whereas a (possibly infinite) set of granularities may satisfy the rela-
tion PeriodicGroupgr pExcept(G1, G2).
It is easy to see that both the relatidPeriodicGroupgr pExceptp g andPeriodicGroupgr p Except; can
be generalized to treat a numlieof granularity exceptions.

Also for quasi-periodical granularities, we can easily move to granularities with gaps, by defining a suitable
quasi-periodical granularit,, which forms, together witli=2, a G-gap consistent linear structure.

Finally, we can conclude that the constructions given in this section prove the following expressiveness property.
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Theorem 4.11 Any finite, infinite quasi-periodical, and infinite periodical granularity (with or without gaps) can

be defined in the proposed logical formalism.

We have also shown that we can encode (possibly) infinite sets of granularities in a single formula, thus over-
coming the expressiveness of other formalisms proposed in the literature: for example, we can express granularities
not anchored to the time domain or having some uncertainty, as in the case of the chemotherapy cycles, which can
have up to 5 days of delay between the end of a cycle and the start of the next one.

As previously underlined, it remains for further investigation the validity of the converse property, namely
whether any granularity, which can be defined in our setting over the basic granularity, is either finite or infinite

periodical or infinite quasi-periodical.
4.4. Reasoning about time granularity

Besides representing sets of granularities and relations among them, our framework permits to automatically
reason about the defined granularities. We give some examples of relevant problems that we can automatically

solve in our framework.

Consistency, equivalence and classification problemsThe consistency probleris the problem of deciding

whether a granularity representation is well-defined. This problem is relevant whenever the granularities are rep-
resented in a declarative way as formulas of a logical language, as in the present approach. On the contrary, if
granularities are operationally represented as algebraic expressions, the consistency problem assumes little rel-
evance, since most algebraic formalisms exclude wrong expressions by constructiop(Glidie a formula

using only proposition symbols in the sgfq, Q¢, Pr,,, Qu, }- One can verify whethep(G) encodes a set of

well-defined granularities by checking the validity of the formula
¢(G) — Gran(G).

The equivalence problens the problem of deciding whether two different representations define the same
granularity. Letp; (G) andps(G) be formulas encoding sets of granularities. It is possible to check whether the

two sets of granularities are the same by testing the validity of the formula

1(G) < 2(G).

Finally, theclassification problensolves the problem of deciding whether a natural numbeepresenting a

time point, belongs to a granule of a given granularity. L&) be a formula encoding a set of granularities and
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n be a natural number. Thenbelongs to some granule of any granularity definegb§) if and only if
p(G) = (an(G) N —an(Hg)),
is valid, wheren,, (G) is as follows:

X™"(Pg V Qg) V X"(=(Pe V Qc)SPe N ~(Pe vV Qc)UQq).
Automatic verification of granularity properties. Once we have defined a calendaby means of a linear time
formula ¢(G), one may verify whether the calendar satisfies a given propelty encodingp as a linear time
formulat, and by checking the validity ap(G) — 1,. This is a generalization of the classification problem.
For instance, with reference to our clinical example, a concrete chemotherapy plan can be checked for consistency
against the formuld)-,, describing the chemotherapy regimen. Moreover, with reference to the Gregorian
Calendar, one may encode and check the following properties: “is 2000 a leap year?”, “is 6st February 2003 a

working day?”, and similar properties.

Automatic generation of granularities. Given a formulap(G) defining a set of granularities, we would like
to automatically generate the granularities encodec(dy). Moreover, we expect to generate the granularities
in order of increasing size. For instance, with reference to our clinical example, we would like to obtain some

minimal schedules for a chemotherapy according to the regimen encoded by the fQgmuia

The reasoning procedures above reduce either to check the validiBRIEAL-formula, or to generate its models

in increasing size order. We now describe how these two tasks can be performed. As for the problem of automatic
generation of models for a given linear time formula, there are two technical difficulties: the models for linear time
formulas are infinite structures, and hence they cannot be explicitly generated. Moreover the set of models of a
linear time structure may be infinite, and hence it is not possible to generate all the models. We can cope with the
former problem by encoding an infinite linear structure into a finitenately periodic structurewhich is a finite
(possibly empty) initial segment followed by a finite loop. The unfolding of the periodic structure gives us the
original infinite model. To cope with the latter problem, the generation procedure generates models of increasing
size, starting from small models and proceeding to bigger and bigger ones, until a maximum size is reached.

As for the validity problem, notice that checking that a formula is true in every model corresponds to check that
there is no model in which its negation is true. In other words, checking the validity of a formula is equivalent
to verify that the negation of the formula is not satisfiable. SIREE.TL contains negation, the validity and
satisfiability problems for it are computationally equivalent.

The satisfiability problem foPPLTL have been extensively studied from a theoretical point of view, and

efficient procedures and heuristics for attacking the problem have been devised and implemented. It belongs to the
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complexity class PSPACE [56], which means that is can be solved using a polynomial amount of space in terms of
the length of the input formula. Moreover, it is complete for PSPACE, which means that there is no hope to find a

better algorithm. Albeit the space is polynomial, the time taken by the satisfiability procedure to terminate may be

exponential in the length of the formula. This could represent a serious drawback whenever the formula is long.
Nevertheless, some recent work effectively attacks this problem [2, 10, 43, 32], making it possible to practically

verify reasonable long formulas. We briefly describe these contributions.

The authors of [10] propose an alternative model checking technique for propositional linear timelldgic
calledBounded Model Checkin®MC). This technique has been extended to past propositional linear time logic
PPLTL in [2] and is implemented in the state-of-the-art symbolic model checker NuSMV [14, 15]. In BMC, an
existential model checking instance BETL is reduced to an instance of the popular propositional satisfiability
problem SAT, and efficient SAT solvers are then used to tackle this problem. More precisely, BMC tackles the
following boundedversion of the existential model checking problem: given a finite mbfled past propositional
linear time formulap, and an integek > 0, check whether there exists an ultimately periodic path of length
k belonging to the modelM that satisfiesp. If such a periodic path exists, it can be unfolded obtaining an
infinite path in the model that satisfies the formula. The bounded existential model checking problem can
be efficiently (in particular, polynomially) reduced to SAT. The latter can be efficiently attacked by exploiting the
impressive power of state-of-the-art propositional solvers. This approach solves both the satisfiability problem
and the model generation one BBPLTL. Indeed, it is well-known that the linear time satisfiability problem
can be embedded into the linear time existential model checking problem. It is sufficient to use in the model
checking instance a fictitious structure encoding all possible paths. Now we can interactively solve a bounded
model checking instance of sizefor k = 0, 1, . ... This generates models of the formula in increasing size order.
Moreover, since  PLTL formulay is satisfiable if and only if it is true in an ultimately periodic path of length
exponential in the length af [56], the generation procedure gives also a constructive way to solve the satisfiability
problem forp. The advantage is that in many practical cases a small model for a formula is detected soon by the
generation procedure, and thus the procedure can stop without performing an exponential number of steps.

The contribution of [43] relevant to the current discussion is the result that the model and satisfiability checking
problems for future and past temporal logic, thaPBLTL without Since, Until, Next-time and Previous-time
operators, is NP-complete, instead of PSPACE-complete. The proof explolisdhesize witness propertipr
future and past temporal logic: a future and past temporal formula is satisfiable if and only is if is true in an
ultimately periodic path of siztinear in the length of the formula. Exploiting this result in the BMC technique

described above, we have the guarantee that after a linear number of bounded model checks, either we have found
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a model for the formula (and hence the formula is satisfiable) or we can conclude that the formula is not satisfiable.
Finally, in [32], the authors show that a limited version of Since, Until, Previous-time and Next-time operators is

still possible without sacrificing the nice computational behaviour. As soon as we avoid Since, Until, Previous-time

and Next-time operators in the scope of universal temporal onedzlited the universal part of Since and Until,

we have that the satisfiability problem is still in NP (and the linear size witness property is preserved). Dually, as

soon as we avoid Since, Until, Previous-time and Next-time operators in the scope of existential temporal ones,

like F and the existential part of Since and Until, we have that the validity problem is in coNP, and hence its dual

is in NP. Notice that all the formulas that we used in Section 4 are of this latter kind.

5. Discussion

In this section we summarize the comparison, we performed throughout Sections 1, 2, 4, of our approach with
the related ones. As discussed in Section 2, there are at least three main approaches to represent and reason about
time granularity: the algebraic one by Jajodia et al., the logical one by Montanari et al., and the string-based one
by Wijsen and Dal Lago et al.

The starting points of the approach proposed in this paper and that of the algebraic approach coincide: it is the
classical and general definition of time granularity given in [8]. However, our approach differs from the algebraic
one since, in the latter, granularities are algebraic expressions, whereas we encode granularities by means of
logical formulas. Moreover, we are able to speak of possibly infinite sets of granularities, symbolically encoded
by logical formulas. This feature permits us to repressmnchored granularitigsthat is, granularities that
are not anchored to the underlying time domain. Typical examples of unanchored granularities are a repeating
pattern that can start at an arbitrary time point or two finite repeating patterns arbitrarily distant from each other.
On the contrary, the algebraic approach can encodeamdfiored granularitiesOur approach is fully automatic:
reasoning about granularities reduce to solving well-known validity problems in linear time logic. On the contrary,

a major weakness of the algebraic approach is that reasoning methods basically reduce to granule conversions
and semantic translations of statements, and little attention has been devoted to other forms of reasoning (like
equivalence checking).

Our approach differs from the logical one by Montanari et al. [31, 44, 46, 49] for the following reason: while
Montanari et al. model different time granularities by using multi-layered mathematical structures and use tempo-
ral logic formulas to capturpropertiesof time granularities, we model both time granularities and their properties
by using temporal logic formulas. To allow nice computational properties, the logical approach makes strict

assumptions about the interrelations among granularities in the layered structures; for example, in the work of
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Montanari et al., all granularities are total, uniform, internally and externally continuous, and linearly ordered
with respect to the ‘finer than’ relation. Our solution is much more flexible: we can represent non-total, non-
continuous, non-uniform granularities, partially ordered with respect to the ‘finer than’ relation. We only require
that granularities show some form of periodicity. Moreover, the time granularity structure may be changed by
simply modifying the logical formula that defines it, and the properties of the time granularity structure may be
defined in the same logical language. One advantage of the logical approach of Montanari et al. is that it can
represent calendars with an infinite number of layers, corresponding to infinite granularities linearly ordered with
respect to the ‘finer than’ relation, whereas we only capture calendars possibly having infinite granularities, but on
a finite number of layers, according to the ordering induced by the ‘finer than’ relation.

Our approach is mostly related to the string-based approaches by Wijsen [60], and Dal Lago, Montanari, and
Puppis [22, 23, 24]. All these approaches and our approach represent granularities as infinite labelled structures,
that is, infinite strings. One main difference is that we can encode unanchored granularities by representing them
with (possibly) infinite sets of granularities, whereas the string-based approaches allow one only to represent
single (anchored) granularities. This increase in the expressiveness is however paid in terms of a complexity
blow-up. Reasoning about granularities in our framework has polynomial space but exponential time complexity,
while reasoning about granularities in the string-based framework has polynomial time (and space) complexity.
The feeling is that for some application involving (un)bounded uncertainty, our framework is what is needed,
but in some other cases our framework is too much expressive (and computationally complex). For instance, the
Gregorian Calendar can be represented in the simpler string-based approach as well, since no degree of uncertainty
is required.

A preliminary version of our approach has been described in [17]. In that paper, we did not provide the exhaus-
tive encoding of the relationships between granularities we gave here in Section 4. Moreover, we discussed here
in some detail the most relevant frameworks proposed for specifying time granularities and showed analogies and
differences with our proposal. Finally, the discussion about the expressiveness of our proposal is completely new,

as well as the discussion on its computational features.

6. Conclusions and Future Work

In this paper, we proposed an original approach to represent and to reason about different time granularities.
We identified a time granularity with a discrete linear time structure properly labelled with proposition symbols
marking the starting and ending points of the corresponding granules and of their (possible) internal gaps. We

adopted the linear time logiePLTL, interpreted over labelled linear time structures, to model possibly infinite
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sets of time granularities.

In particular, the proposed approach allows one to overcome some specific limits of the algebraic and logical
frameworks in expressing real-world granularities, as shown in Section 3 for a clinical domain: indeed, it is
possible to express unanchored granularities, i.e., granularities not anchored to a fixed origin on the time domain
or having some finite parts which can be arbitrarily distant (possibly, within a given range).

In general, the proposed formalism permits to model a large set of regular granularities and to algorithmically
solve the consistency, the equivalence, and the classification problems in a uniform way by reducing them to the
validity problem for the considered linear time logic, which is known to be decidable in polynomial space.

As for future work, we shall investigate the problem of assessing a characterization of the class of granularities
definable in our approach. Moreover, we aim at integrating our approach with the string-based one in order to
obtain a more tuned framework for time granularity with respect to real-world applications. The starting point
could be the following question. We know that linear time formulas can be converted into equivaldrit B
automata of size exponential in the length of the formula [57]. Is there an encoding of single-string linear time
formulas, that is, formulas with exactly one model (like the formula encoding the Gregorian Calendar), into single-
string automata of size polynomial in the length of the formula?

A further research direction is towards the integration of the proposed formalism within the context of tem-
poral databases: we will explore how to exploit our approach for expressing and verifying temporal functional

dependencies involving several granularities or, more generally, for expressing and checking integrity constraints.
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