
Stapleton, Gem, Howse, John, Taylor, John and Thompson, Simon (2004)
The Expressiveness of Spider Diagrams. Journal of Logic and Computation,
14 (6). pp. 857-880. ISSN 0955-792X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14057/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1093/logcom/14.6.857

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14057/
https://doi.org/10.1093/logcom/14.6.857
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Expressiveness of Spider Diagrams

GEM STAPLETON, JOHN HOWSE and JOHN TAYLOR, Visual Modelling
Group, School of Computing, Mathematical and Information Sciences, University
of Brighton, Brighton, BN2 4GJ, UK.
E-mail: �g.e.stapleton,john.howse,john.taylor�@brighton.ac.uk

SIMON THOMPSON, University of Kent, Canterbury, Kent, CT2 7NF UK.
E-mail: s.j.thompson@kent.ac.uk

Abstract
Spider diagrams are a visual language for expressing logical statements. In this paper we identify a well-known fragment
of first-order predicate logic, that we call ����

�
, equivalent in expressive power to the spider diagram language. The

language ����
�

is monadic and includes equality but has no constants or function symbols. To show this equivalence,
in one direction, for each diagram we construct a sentence in����

�
that expresses the same information. For the more

challenging converse we prove that there exists a finite set of models for a sentence � that can be used to classify all the
models for �. Using these classifying models we show that there is a diagram expressing the same information as �.

Keywords: Spider diagrams, expressiveness, monadic logic, model theory.

1 Introduction

Euler diagrams [5] exploit topological properties of enclosure, exclusion and intersection to repre-
sent subset, disjoint sets and set intersection respectively. The diagram �� in Figure 1 is an Euler
diagram and asserts that nothing is both a car and a van. Venn diagrams [17] are similar to Euler
diagrams. In Venn diagrams, all possible intersections between contours must occur and shading is
used to represent the empty set. The diagram �� in Figure 1 is a Venn diagram and also expresses
that no element is both a car and a van.

Various visual languages have emerged that extend Euler and Venn diagrams. Peirce [14] in-
creased the expressiveness of Venn diagrams by adding �-sequences. The presence of an �-
sequence indicates the existence of an element. The Venn-II system, introduced by Shin [15], con-
sists of Venn diagrams together with�-sequences. The diagram �� in Figure 1 is a Venn-II diagram.
In addition to the information which is expressed by the underlying Venn diagram, it also asserts
that the set ���� � � ��� is not empty. In Venn-II, diagrams are joined by straight line segments
to represent disjunction between diagrams. Venn-II diagrams can express whether a set is empty or
not empty. Shin shows that Venn-II is equivalent in expressive power to a first order language that
she calls ��. The language �� is a pure monadic language (i.e. all the predicate symbols are ‘one
place’) that does not include constants or function symbols.

Another visual language, called Euler/Venn, based on Euler diagrams is discussed by Swoboda
and Allwein in [16]. These diagrams are similar to Venn-II diagrams but, instead of �-sequences,
constant sequences are used. The diagram �� in Figure 2 is an Euler/Venn diagram and asserts that
no element is both a car and a van and that there is something called ‘ford’ that is either a car or a
van. Swoboda and Allwein give an algorithm that determines whether a given monadic first-order
formula is ‘observable’ from a given diagram. If the formula is observable from the diagram then it is
a consequence of the information contained in the diagram, but need not express all the information

J. Logic Computat., Vol. 14 No. 04-14, c� Oxford University Press 2004; all rights reserved

2 The Expressiveness of Spider Diagrams

� � � � � � � �

� �

� � � � � � � �

� �

� � � � � � � �

� �

FIGURE 1. An Euler diagram, Venn diagram and a Venn-II diagram.

� � � � � � � �

� �

� 	 � � � 	 � �

� � � � � � � �

� �

� � � � � � � �

� �

FIGURE 2. An Euler/Venn diagram and two spider diagrams.

in the diagram.
Like Euler/Venn diagrams, spider diagrams are based on Euler diagrams. Rather than allowing

the use of constant sequences1 as in Euler/Venn diagrams, spiders denote the existence of elements.
Unlike the �-sequences, distinct spiders denote distinct elements. The spider diagram � � in Figure
2 asserts that no element is both a car and a van and there are at least two elements, one is a car and
the other is a car or a van. The spider diagram �� asserts that there are exactly three vans that are
not cars. Spiders (by their existential import) allow a lower bound to be placed on the cardinality of
sets. Shading allows upper bounds to be placed on the cardinality of sets.

Several sound and complete spider diagram systems have been developed [10, 11, 13]. A tool to
support reasoning with spider diagrams has been developed, available from [18]. In [7] an algorithm
is presented that, given any spider diagrams�� and��, either constructs a proof from�� to��, or
provides a model for �� that is not a model for ��. The proofs constructed by this algorithm tend
to be long and unwieldy. In [6] a heuristic approach to proof writing in the spider diagram system
is developed, but is restricted to the case of unitary spider diagrams. The authors invoke the 	 �

algorithm [2] to find a shortest proof, provided such a proof exists.
In this paper we prove that the spider diagram language is equivalent in expressive power to a

fragment of first-order logic that we call �����. The language ����� extends �� by adding
equality, so ����� is monadic predicate logic with equality. Within �� it is not possible to
express that a particular property,
 , holds for a unique element:

�� �
 ��� � � � �
 ���	 � � ���

Thus spider diagrams increase expressiveness over Venn-II.
Although we do not include constants in����� or given spiders (to represent constants) in our

spider diagram language, this is not a significant restriction. It is relatively straightforward to show
that adding constants to either of these languages does not lead to an increase in expressiveness.

1In some spider diagram languages, given spiders [10] represent constants but for our purposes spiders represent existen-
tial quantification.

The Expressiveness of Spider Diagrams 3

However, the omission of function symbols is more significant: the standard elimination of function
symbols in terms of relation symbols relies upon binary predicate symbols which we do not have.

In Section 2 we give the syntax and semantics of spider diagrams. We define����� in Section
3. In Section 4 we identify when a diagram and a sentence express the same information. We
address the task of mapping each diagram to a sentence expressing the same information in Section
5, showing that the spider diagram language is at most as expressive as �����. In Section 6 we
show that ����� is at most as expressive as spider diagrams. We will outline Shin’s algorithmic
approach to show �� (in which there is no equality) is not more expressive than Venn-II. It is simple
to adapt this algorithm to find a spider diagram that expresses the same information as a sentence
in ����� that does not involve equality. However, for sentences in ����� that do involve
equality, the algorithm does not readily generalize. Thus we take a different approach. To motivate
our approach we consider relationships between models for diagrams. We consider the models for a
sentence and show that there is a finite set of models that can be used to classify all the models for
the sentence. These classifying models can then be used to construct a diagram that expresses the
same information as the sentence.

2 Spider diagrams

In diagrammatic systems, it is helpful to distinguish two levels of syntax: concrete (or token) syntax
and abstract (or type) syntax [9]. Concrete syntax captures the physical representation of a diagram.
Abstract syntax ‘forgets’ semantically irrelevant spatial relations between syntactic elements in a
concrete diagram. We include the concrete syntax to aid intuition but we work at the abstract level.

2.1 Informal concrete syntax

A contour is a simple closed plane curve. Each contour is labelled. Within a unitary diagram,
the same label cannot be used twice. A boundary rectangle properly contains all contours. The
boundary rectangle is not a contour and is not labelled. A basic region is the bounded area of the
plane enclosed by a contour or a boundary rectangle. A region is defined recursively as follows: any
basic region is a region; if �� and �� are regions then the union, intersection and difference of � � and
�� are regions provided these are non-empty. A zone is a region having no other region contained
within it. A region is shaded if each of its component zones is shaded. A spider is a tree with nodes
(called feet) placed in different zones. The connecting edges (called legs) are straight line segments.
A spider touches a zone if one of its feet is placed in that zone. A spider is said to inhabit the region
which is the union of the zones it touches. This union of zones is called the habitat of the spider.

A concrete unitary spider diagram is a single boundary rectangle together with a finite collec-
tion of contours, shading and spiders. No two contours in the same unitary diagram can have the
same label. We place certain well-formedness conditions on unitary diagrams. We stipulate that
each zone is connected. There must be at least one zone inside each contour (this follows from the
fact that contours are simple closed plane curves). The boundary rectangle properly contains all
contours, so there is a zone inside the boundary rectangle but outside all the contours.

EXAMPLE 2.1
Spider diagram �� in Figure 2 (Section 1) has two contours and four zones. The shaded zone is
inhabited by three spiders, each with one foot.

4 The Expressiveness of Spider Diagrams

 �

� �

 �

� �

FIGURE 3. Two spider diagrams.

2.2 Formal abstract syntax

We can think of the contour labels used in our diagrams as being chosen from a countably infinite
set, �. A zone, at the concrete level, can be described by the set of labels of the contours that include
it. When we reason with a spider diagram, its contour label set may change, so we will define an
abstract zone to be a pair of sets, ��� ��. The set � contains the labels of the contours that include
��� �� whereas � is the set of labels of the contours that do not include ��� ��. So, � and � form a
partition of the contour label set.

Now we consider how we represent spiders at the abstract level. In order to describe the spiders
in a concrete diagram, it is sufficient to say how many spiders there are in each region. We could
specify any finite set to be a collection of spiders, and map each of these spiders to a region in the
diagram, giving its habitat. For any given concrete diagram, then, there would potentially be many
choices for an abstract set of spiders. In order to give a unique abstraction from a concrete diagram
we will use a bag of regions, called spider identifiers, rather than an arbitrary set of spiders.

DEFINITION 2.2
An abstract unitary spider diagram � (with labels in �) is a tuple
���� � �� ��� whose compo-
nents are defined as follows.

1. � � ���� � � is a finite set of contour labels.

2. � � ����
 ���� �� �� � �
 �� is a set of zones such that
(i) for each label � � � there is a zone ��� �� �� � ���� such that � � � and

(ii) the zone ��� �� is in ����.

3. �� � �����
 � is a set of shaded zones.

4. �� � ����� � �� � ��� � ���� is a finite set of spider identifiers such that

����� ���� ���� ��� � �� � �� � �� 	 �� � ��

If ��� �� � �� we say there are � spiders with habitat �.

Some remarks about the definition are in order. Every contour in a concrete diagram contains at
least one zone and this is captured by condition 2 (i). In any concrete diagram, the zone inside the
boundary rectangle but outside all the contours is present and this is captured by condition 2 (ii).

EXAMPLE 2.3
The diagram �� in Figure 3 has the following abstract description.

1. The set of contour labels is ����� � �	���.

2. The set of zones is ����� � ���� �	����� ��	�� ����� ����� �	��� ��	���� ���.

3. The set of shaded zones is � ����� � ������ �	���.

The Expressiveness of Spider Diagrams 5

4. The set of spider identifiers is

������ � ���� ������ �	����� ��� ���	�� ����� ����� �	�����

We define, for unitary diagram �, the Venn zone set to be

� ���� � ���� ����� �� � �
 �����

and the missing zone set to be����� � � ���������. If ���� � � ���� then � is said to be in
Venn form. If � ������ then � is missing from �. Missing zones represent the empty set.

Spiders represent the existence of elements and regions (an abstract region is a set of zones)
represent sets – thus we need to know how many elements we have represented in each region. The
number of spiders contained by region �� in � is denoted by ����� ��. More formally,

����� �� �
�

	����
���	�
������

�

So, any spider in � whose habitat is a subset of �� contributes to the sum ����� ��. The number of
spiders touching �� in � is denoted by � ���� ��. More formally,

� ���� �� �
�

	����
���	�
������ ���

�

So, any spider in � that has a foot in �� contributes to the sum � ���� ��. In the diagram ��, in figure 3,
�������� �	���� ��� � � and � �������� �	���� ��� � �.

Unitary diagrams form the building blocks of compound diagrams. If � � and �� are spider
diagrams then so are �� (‘not ��’), ��� � ��� (‘�� or ��’) and ��� � ��� (‘�� and ��’).
Some diagrams are not satisfiable and we introduce the symbol �, defined to be a unitary diagram
interpreted as false. Our convention will be to denote unitary diagrams by � and arbitrary diagrams
by�.

2.3 Semantics

Regions in spider diagrams represent sets. We can express lower bounds and, in the case of shaded
regions, upper bounds on the cardinalities of the sets that we are representing as follows. If region
� contains � spiders in diagram � then � expresses that the set represented by � contains at least �
elements. If � is shaded and touched by� spiders in � then � expresses that the set represented by
� contains at most � elements. Thus, if � has a shaded, untouched region, �, then � expresses that
� represents the empty set. Missing zones also represent the empty set. To formalize the semantics
we shall map contour labels, zones and regions to subsets of some universal set. We define� and�
to be the sets of all abstract zones and abstract regions respectively. So,

� � ���� �� � PF���� PF��� � � � � � ��

where PF��� denotes the set of all finite subsets of �, and � � PF���.

DEFINITION 2.4
An interpretation of contour labels, zones and regions, or simply an interpretation, is a pair
����� where � is a set and ��� � � � � � �� is a function mapping contour labels, zones and
regions to subsets of � such that the images of the zones and regions are completely determined by
the images of the contour labels as follows.

6 The Expressiveness of Spider Diagrams

1. For each zone ��� ��,

���� �� �
�
���

���� �
�
���

����

where ���� � � ����� and we define
�
���

���� � � �
�
���

����.

2. For each region �,
���� �

�
	��

����

and we define ���� �
�
	��

���� � �.

We introduce a semantics predicate which identifies whether a diagram expresses a true statement,
with respect to an interpretation.

DEFINITION 2.5
Let� be a diagram and let � � ����� be an interpretation. We define the semantics predicate of
�, denoted

���. If � �� then

��� is �. If � ����� is a unitary diagram then

��� is
the conjunction of the following three conditions.

1. Distinct spiders condition. For each region � in ������ ���,

������ � ������

2. Shading condition. For each shaded region � in �� ����� ���,

������ � � �����

3. Missing zones condition. Any zone, �, in����� satisfies ���� � �.

If � � �� then

��� �

�
���. If � � �� � �� then

��� �

�

��� !

�
���. If

� � �� ��� then

��� �

�
��� �

�

���. We say � satisfies �, denoted� �� �, if and
only if

��� is true. If� �� � we say� is a model for�.

EXAMPLE 2.6
Defining ��	� � ��� and ���� � ��� characterizes the interpretation� � ���� ����� which is a
model for �� in figure 3 but not for ��.

3 The language ����
�

Spider diagrams do not have syntactic elements to represent constants or functions. We can express
statements of the form ‘there are at least � elements in 	’ and ‘there are at most � elements in 	’.
A first-order language equivalent in expressive power to the spider diagram language will involve
equality, to allow us to express distinctness of elements, and monadic predicates, to allow us to
express � � 	. In order to define such a language we require a countably infinite set of monadic
predicate symbols, " , from which all monadic predicate symbols will be drawn. Moreover, we also
require a countably infinite set of variables, # , from which all variables will be drawn.

DEFINITION 3.1
The first-order language ����� consists of the following.

1. Atomic formulae which are defined as follows,

The Expressiveness of Spider Diagrams 7

(a) if �� and �� are variables then ��� � ��� is an atomic formula,
(b) if
� � " and �� is a variable then
����� is an atomic formula.

2. Formulae, which are defined inductively.
(a) Atomic formulae are formulae.
(b) � and $ are formulae.
(c) If � and � are formulae so are �� � ��, �� ! �� and �.
(d) If � is a formula and �� is a variable then ���� �� and ���� �� are formulae.

We define � and % to be the sets of formulae and sentences (formulae with no free variables) of the
language����� respectively.

We shall assume the standard first-order predicate logic semantic interpretation of formulae in this
language (see, for example, [1]) with one exception: we allow a structure to have an empty domain.
Logic with potentially empty structures is explored in [8, 12]. The motivation for this non-standard
choice comes from the intended application domain for spider diagrams: modelling object oriented
software systems. The domain will consist of the objects in the system and in some instances there
will be no objects (for example, in an initial state before any objects have been created).

4 Structures and interpretations

We wish to identify when a diagram and a sentence express the same information. To aid us for-
malize this notion, we map interpretations to structures in such a way that information is preserved.
For this discussion we fix the set of labels � � ���� ���

� and the set of monadic predicate sym-
bols " � �
��
��

�. We identify corresponding labels and predicates � � and
�. We also fix
� ���� ���

�. Define & to be the class of all sets. The sets in & form the domains of structures
in the language �����.

DEFINITION 4.1
Define '() to be the class of all interpretations for spider diagrams over �, that is

'() � ������ � � � & ���� � � �� � ����

where ����� is an interpretation. Define also %) � to be the class of structures for the language
����� over " , that is

%) � � �� � � � & �� �
���
�

� �

� �

���

where

� is the interpretation of
� in the structure � (that is,

�
 �) and we always interpret
� as the diagonal subset of � � � , denoted ������ � ��.

LEMMA 4.2
The function, �� '() � %) � defined by

������ �
�� ������ � ���������������

�

is a bijection.

Essentially, ������ is just a different way of writing �����. Our aim is to identify, for each
diagram, a sentence that expresses the same information. We also aim, for each sentence, to identify
a diagram that expresses the same information and we now formalize this notion. A diagram and
a sentence express the same information when � provides a bijective correspondence between their
models, illustrated in Figure 4.

8 The Expressiveness of Spider Diagrams

�

� � 	
 � � �
 	
 	 � � � � � 	 � � � 	 � �
 �

� � �
 � � �

� � � � �

� � �
 � � �

� � � �

�

 � � �
 � � � �
 � � �

 � � � �
 �
 � 	

FIGURE 4. A model-level relationship between expressively equivalent diagrams and sentences.

DEFINITION 4.3
Let� be a diagram and � be a sentence. We say� and � are expressively equivalent if and only if

����� � � � '() � � �� �� � �� � %) � � � �� ��

So, a diagram and a sentence are expressively equivalent if they have essentially the same models.

5 Mapping from diagrams to sentences

To show that the spider diagram language is not more expressive than ����� we will map dia-
grams to expressively equivalent sentences. An �-diagram is a spider diagram in which all spiders
inhabit exactly one zone [13].

THEOREM 5.1
Every spider diagram is semantically equivalent to an �-diagram [11].

PROOF. (Sketch) Spider legs represent disjunction within a unitary diagram, �. Therefore, if there
is a spider, �, in � that inhabits region �� � �� where �� � �� � � then � is semantically equivalent
to �� � �� where each of �� and �� are copies of � except that � inhabits �� in �� and �� in ��, thus
removing a spider’s leg. This process of splitting spiders can be repeated until all spiders inhabit
exactly one zone.

It follows that to show that the spider diagram language is at most as expressive as ����� it is
sufficient to identify an expressively equivalent sentence for each �-diagram.

� � � �

� �
� �

� �

� �

FIGURE 5. Two �-diagrams: from diagrams to sentences.

EXAMPLE 5.2
The diagram �� in Figure 5 contains three spiders, one outside both �� and ��, the other two inside
�� and outside �� and is expressively equivalent to the sentence

��� �
����� �
������ � ������ �
����� �
����� �
����� �
����� � �� �� ���

The Expressiveness of Spider Diagrams 9

The diagram �� asserts that no elements can be in �� and not in �� (due to the missing zone) and no
element can be in both �� and �� (due to the shading) and is expressively equivalent to the sentence

��� �
����� �
������ � ��� �
����� �
������

To construct sentences for diagrams, it is useful to map zones to formulae as follows.

DEFINITION 5.3
Define a function to map zones to formulae,�� �� �# � � (�� for ‘zone formula’) by, for each
��� �� � � � ���� ��� and variable �� ,

������ ��� ��� �
�
����

����� �
�
����

�����

and
������ ��� ��� � $

We use the function �� to construct a sentence of ����� for each zone in a unitary �-
diagram. We shall take these zone sentences in conjunction to identify a sentence expressively
equivalent to the diagram. We define *�

� to be the class of all unitary �-diagrams and *� to be the
class of all �-diagrams.

DEFINITION 5.4
The partial function�% �� �*�

� � % (�% for ‘zone sentence’) is specified for unitary �-diagram
� and zone � in � ���� (recall, � ���� is the Venn zone set of �, defined in Section 2.2) as follows.

1. If � is not shaded in � and ������ �� � � then

�%��� �� � $

2. If � is not shaded in � and ������ �� � � � then

�%��� �� � ���

���
� �

�������

 ��� � ��� �
�

�����

����� ���
�

3. If � is either missing from � or is shaded in � and ������ �� � � then

�%��� �� � ��� ����� ���

4. If � is shaded in � and ������ �� � � � then

�%��� �� � ���

���

� �
�������

 ��� � ��� �
�

�����

����� ��� �

�
�����

	

�����

���� � �� ! ����� �����
���

DEFINITION 5.5
Define *% �*� � % (*% for ‘diagram sentence’) as follows.

1. If � �� then *%��� ��.

10 The Expressiveness of Spider Diagrams

2. If � � ���� is a unitary �-diagram then

*%��� �
�

	�� �	�

�%��� ��

3. If� � �� then *%��� � *%����

4. If� � �� ��� then *%��� � �*%���� ! *%�����

5. If� � �� ��� then *%��� � �*%���� � *%�����

We wish to show, for unitary �-diagram �, that *%��� is expressively equivalent to �. To do this,
we shall consider each zone of � in turn. Thus it is useful to consider when an interpretation satisfies
a zone, which we now define.

DEFINITION 5.6
Let � � ����� be an interpretation and let � be a unitary �-diagram. Let � � � ����. Given �, we
say � satisfies �, denoted � ��� �, if and only if the following hold.

1. The number of elements in the set represented by � is at least the number of spiders in �:

������ � ������ ��

2. If � is shaded or missing then the number of elements in the set represented by � equals the
number of spiders in �:

� � ����� ������	 ������ � ������ ��

LEMMA 5.7
Let � � ����� be an interpretation and let � ����� be a unitary �-diagram. The interpretation �
satisfies � if and only if � satisfies all the Venn zones of �:

� �� �+ �� � � ���� � ��� �

PROOF. (Sketch) Noting that when � is an �-diagram, ���� �� � � ��� �� for each region � in � the
result follows from a straightforward restatement of the semantics predicate.

THEOREM 5.8
Let � be a unitary �-diagram. Diagram � is expressively equivalent to *%���.

PROOF. (Sketch) For each zone, � � � ����, in turn, show that

����� � '() � � ��� �� � �� � %) � � � �� �%����

The result then follows by Lemma 5.7.

COROLLARY 5.9
Let� be an �-diagram. Then� is expressively equivalent to *%���.

THEOREM 5.10
The language of spider diagrams is at most as expressive as the language �����.

The Expressiveness of Spider Diagrams 11

6 Mapping from sentences to diagrams

We now consider the more challenging task of constructing a diagram for a sentence. Since every
formula is semantically equivalent to a sentence obtained by prefixing the formula with �� � for
each free variable �� (i.e. constructing its universal closure), we only need to identify a diagram
expressively equivalent to each sentence.

In [16] Swoboda and Allwein give an algorithm that determines whether a given first-order logic
sentence containing only monadic predicates can be observed from a given Euler/Venn diagram.
Sentences observable from a diagram are logical consequences of the diagram (but the diagram and
the sentence are not necessarily expressing the same information). They also give an algorithm to
determine if a diagram is observable from a sentence. First they manipulate the sentence into a
special normal form that they call Euler/Venn conjunctive normal form (EVCNF). Using this normal
form it is then possible to construct a directed acyclic graph (DAG) for the sentence. A DAG is
also constructed for the given diagram. Transformation rules are then applied to the DAG for the
sentence (analogous to reasoning rules for their Euler/Venn system) to determine whether it can be
changed into the DAG arising from the diagram. If it can then the diagram is observable from the
sentence. The approach to determine if a sentence is observable from a diagram is similar.

Shin’s approach to show Venn-II is equally as expressive as language � � (����� without
equality) is algorithmic [15]. To find a diagram expressively equivalent to a sentence, she first
converts the sentence into prenex normal form, say! ���

!���" where each!� is a quantifier and
" is quantifier free. If !� is universal then" is transformed into conjunctive normal form. If ! � is
existential then" is transformed into disjunctive normal form. The quantifier! � is then distributed
through " and as many formulae are removed from its scope as possible. All � quantifiers are
distributed through the sentence in this way. The sentence resulting from this process has no nested
quantifiers. A diagram can then be drawn for each of the simple parts of the resulting formula. To
adapt this algorithm to find expressively equivalent diagrams for sentences in ����� that do not
involve equality is straightforward.

� � � �

� � � �

FIGURE 6. Illustrating Shin’s algorithm.

EXAMPLE 6.1
Applying Shin’s algorithm to the sentence ��� ��� �
����� !
������ gives rise to the diagram
shown in Figure 6 (recall that in Venn-II disjunction between diagrams is denoted by connecting
them with a straight line segment).

Shin’s algorithm does not readily generalize to arbitrary sentences in ����� because � is a
dyadic predicate symbol which means nesting of quantifiers cannot necessarily be removed. We
take a different approach, modelled on the classic result of Dreben and Goldforb [3, 209–210]. To
establish the existence of a diagram expressively equivalent to a sentence we consider models for
that sentence. To illustrate the approach we consider relationships between models for �-diagrams.

12 The Expressiveness of Spider Diagrams

� � � �

�

FIGURE 7. Extending models for a diagram.

EXAMPLE 6.2
The diagram in Figure 7 has a minimal model (in the sense that the cardinality of the universal set
is minimal) � � ��� �� ��, ����� � ���, ����� � ��� �� and, for � �� �� �, ����� � �. This
model can be used to characterize all the models for the diagram, up to isomorphism. We can use
this model to generate further models, by adding elements to � and we may add these elements to
images of contour labels if we so choose. As an example, the element 	 can be added to � and we
redefine ����� � ��� �� 	� to give another model for �. No matter what changes we make to the
model, we must ensure that the zone ������ ����� always represents a set containing exactly one
element or we will create an interpretation that does not satisfy the diagram. We can add elements
to all and only the sets represented by zones which are not shaded. Adding elements in this way will
generate all models for �, up to isomorphism.

In considering models for ����� sentences we will use the notion of a predicate intersection
set. This is the interpretation of the conjunction of certain monadic predicate symbols, and thus
corresponds to the interpretation of a zone in a diagram. Suppose � is a model for sentence �.
We will show that if a predicate intersection set satisfies certain cardinality conditions then we can
increase the cardinality of that predicate intersection set (enlarging �) and still have a model for
�. We are able to use this fact to show that there is a finite set of models for � that can be used
to classify all the models for �. Moreover, we can use this classifying set to construct a diagram
expressively equivalent to �.

DEFINITION 6.3
Let � be a structure and let # and $ be finite subsets of " (the countably infinite set of pred-
icate symbols). Define the predicate intersection set in � with respect to # and $, denoted

����#� $ �, to be

����#� $ � �
�

����

� �

�
����

�

(recall that

� is the interpretation of
� in �). We define

�
����

� �

�
����

� � � where � is

the domain of�.

In the context of �����, we will identify all the structures that can be generated from a given
structure,�, by adding or renaming elements subject to cardinality restrictions determined by sen-
tence �. We will call this class of structures generated by � the cone of �, given �. For each
sentence, �, we will show that there is a finite set of models, the union of whose cones is pre-
cisely the collection of models for �. Formalizing and proving this insight is the kernel of the result
here. Central to our approach is the notion of similar structures with respect to �. To define similar
structures we use the maximum number of nested quantifiers in �. 2

2The maximum number of nested quantifiers in � is called the quantifier rank of � [4].

The Expressiveness of Spider Diagrams 13

EXAMPLE 6.4
Let � be the sentence ���
����� � ��� ��� ��� � ���. The formula ���
����� has one nested
quantifier and ��� ��� ��� � ��� has two nested quantifiers. Therefore the maximum number of
nested quantifiers in � is two. Now, � nested quantifiers introduce � variable names, and so it is
only possible to talk about (at most) � distinct individuals within the body of the formula. This has
the effect of limiting the complexity of what can be said by such a formula. In the particular case
here, this observation has the effect that if a model for � has at least two elements in certain pred-
icate intersection sets then � does not place an upper bound on the cardinalities of those predicate
intersection sets.

In a model for �, the interpretation of
� has to contain all the elements, of which there must be at
least two. Also, � constrains the predicate intersection set
���� �� �
��� to have cardinality zero.
As an example, we consider two models, �� and �� with domains �� � ��� �� �� 	� and �� �
��� ��
� �� ��, respectively, that are characterized by

�

� � ��� �� �� 	� and

�

� � ��� ��
� �� ��.
Now

�
����� �� �
���� � ��� � � % � and �
����� �� �
���� � ��� � � % �

Also
�
����� �
��� ��� � ���� � � and �
����� �
��� ��� � ���� � ��

so � cannot place an upper bound on �
���� �
��� ���. We can think of�� and�� as each enlarg-
ing the model�� with domain �� � ��� �� where

�

� � ��� �� and

�

� � �, for all & �� �.

The following definition, Lemmas 6.6, 6.8 and Corollary 6.7 are adapted (by changing the notation
and adding details to the proofs) from [3, 209–210].

DEFINITION 6.5
Let � be a sentence and define ���� to be the maximum number of nested quantifiers in � and
 ���
to be the set of monadic predicate symbols in �. Two structures�� and�� are called similar with
respect to � if and only if for each subset# of
 ���, either

(1)
����� #�
 ����#� �
����� #�
 ����#� or

(2) �
����� #�
 ����#� �
����� #�
 ����#�� � ����

and, in addition to (1) or (2), for all subsets $ of
 ��� such that # �� $,

����� #�
 ����#� �
����� $�
 ���� $ � � �

In the previous example, ��, �� and �� are all similar with respect to �. There is a close
relationship between the notions of similar structures and homomorphic structures, although they
are not equivalent. Consider the structures�� and�� defined below:

�� �
���� ���� ���� ���� �� ��

�

and
�� �
���� ���� ���� ���� �� ��

�

These structures are homomorphic (indeed, they are isomorphic) but they are not similar with respect
to the sentence ��� �
����� !
������. For example,

����� �
��� �
��� � ��� ��
����� �
��� �
��� � ����

so

�
����� �
��� �
��� �
����� �
��� �
���� � ��� �� ����� �
����� !
������� � �

14 The Expressiveness of Spider Diagrams

Therefore, when # � �
��, neither condition (1) nor condition (2) in the definition of similar
structures hold for �� and ��. We also observe that, given a sentence �, if we restrict the set
of predicate symbols in our language ����� to include only those in � (i.e
 ���), along with
equality, then similar structures are also homomorphic.

LEMMA 6.6
Let � be a sentence. Let �� and �� be similar structures with respect to � and with domains ��

and �� respectively. For all (not necessarily proper) subformulas " of � and for each assignment
of values in �� � �� to the free variables (if any) of ", " is true in�� under the assignment if and
only if " is true in�� under the assignment.

PROOF. The proof is by induction on the complexity of " (i.e. the depth of " in an inductive
construction of formulae). If " is atomic, then " is
��'� or ' � (. In the case when ' � (the
result is obvious. For
��'�, assign � � �� � �� to '. Suppose
��'� is true in �� under this
assignment. We will show that
��'� is true in �� under this assignment. Now, there exist # and
$, both subsets of
 ���, such that

� �
����� #�
 ����#� �
����� $�
 ���� $ �

Moreover, since
��'� is true in �� under this assignment,
� � # . Since �� and �� are similar
with respect to � it follows that # � $. Thus
��'� is true in �� under this assignment. The
converse is similar.

If " is)� !)�,)� �)� or)�, then the result follows immediately if it holds for)� and)�

separately.
Let" be �') , and suppose an assignment of values in ����� to the free variables of" is fixed.

Let $ be the set of values so assigned. Since " is a subformula of �, it contains at most ���� � �
free variables. Hence �$ � % ����. Suppose " is true in �� under the assignment. Hence there is
an � in �� such that) is true in �� when, additionally, the variable ' is assigned the value �. If
� � ��, then by the inductive hypothesis,) is true in�� under the augmented assignment.

Suppose therefore that � is not in ��, and let � be in
����� #�
 ����#�, where #

 ���.
Thus

����� #�
 ����#� ��
����� #�
 ����#��

so

����� #�
 ����#� �
����� #�
 ����#�

has cardinality at least ����. But then there is an element � of �
����� #�
 ����#��
����� #�

 ��� � #�� � $. Let *��� � �� carry � to �, � to � and every other member of �� to itself.
Then * is an automorphism of the structure��, because the sets
����� #�
 ����#� completely
characterize the model�� by partitioning the elements according to which of the monadic predicates
that they satisfy and interchanging two elements within the same partition therefore changes none of
the logical properties of the structure, and * is the identity on $. Hence) is true in � � under the
original assignment augmented by assigning � to '. Then, by the inductive hypothesis,) is true in
�� under this augmented assignment, so �') is true in�� under the original assignment. We have
shown that if " is true in�� then " is true in��. The converse is similar.

The case " � �') remains. Since " is logically equivalent to �') the preceding arguments
suffice.

COROLLARY 6.7
If�� and�� are similar structures with respect to �, then�� is a model for � if and only if�� is
a model for �.

The Expressiveness of Spider Diagrams 15

LEMMA 6.8
Let � be a sentence. If � has a model of any cardinality at least � �� 	�
����� then � has models of
every cardinality at least ��� 	�
�����.

PROOF. Suppose � has a model �� with universe �� of cardinality at least ��� 	�
�����. Then
�
����� #�
 ����#�� � ���� for at least one #

 ���. So, for each & � ��� 	�
����� there is
a structure �� similar to �� whose universe has cardinality &. Hence there are models for � with
every cardinality at least ��� 	�
�����.

The (upward) Löwenheim–Skolem theorem tells us that if a sentence of first-order logic has a
model of a particular infinite cardinality, then it has models of all larger cardinalities; it is not the
case that this holds for finite models. A simple counterexample is the sentence which states that

is an equivalence relation all of whose equivalence classes are of size two; the finite models of this
will necessarily have even cardinality.

DEFINITION 6.9
Let � be a sentence and suppose � is a model for �. If the cardinality of � is at most � �� 	�
�����
then we say� is a small model for �. Otherwise we say� is a large model for �.

DEFINITION 6.10
Let � be a sentence and suppose �� is a small model for �. An �-extension of �� is a structure,
��, for ����� such that for each subset,# , of
 ���

����� #�
 ����#�

����� #�
 ����#�

and, if �
����� #�
 ����#�� % ���� then

����� #�
 ����#� �
����� #�
 ����#�

The cone of�� given �, denoted +,�-���� ��, is a class of structures such that�� � +,�-���� ��
if and only if�� is isomorphic to some �-extension of��.

The cone of� given � contains models for � that can be restricted to (models isomorphic to)�. We
can think of elements of +,�-����� as extending� in certain ‘directions’ and fixing� in others.

EXAMPLE 6.11
Let � be the sentence ������
����� !
����� which has ���� � �. So, if we have predicate
intersection sets containing two or more elements we can add arbitrarily many elements to them and
preserve the fact that � holds. Consider

� �
��� �� �� 	���
� ��� ��� �� ��

�

A visual analogy of +,�-����� can be seen in Figure 8. The structure

�� �
��� �� �� 	�
� ����
�� ��� ��
�� �� ��

�

can be obtained from�, extending
���� �� �
��
��� and
���� �
��� �
��� by adding elements
to these sets (and the domain), but keeping
���� �
��� �
��� and
���� �
��
��� �� fixed.

EXAMPLE 6.12
Let � be the sentence ������ �� � �� and consider the structure �� �
�����
� � �� �� ��

�
which satisfies �. We have the following cone for��:

+,�-���� �� � ��� � %) � � �
����� �� ��� � ����� � �
����� �� ����

16 The Expressiveness of Spider Diagrams

�

� �
� �
� �
� �
� �
�
� �
�
� �
� �
� �
� �

�
� � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� �
 � � ! �

� � � � � � � � � � �
� � �

� � � � � �
� �

� � �

� 	 � � � � �
 �

� �

FIGURE 8. Visualizing cones.

The class +,�-���� �� contains only structures that are models for � but does not contain them all,
for example �� �
�� ��

� satisfies � but �� is not in +,�-���� ��. All models for � are in the
class +,�-���� �� � +,�-���� ��. In this sense, �� and �� classify all the models for �. We can
draw a diagram expressively equivalent to � using information given by� � and��. This diagram
is a disjunction of two unitary diagrams, shown in Figure 9.

� � � �

FIGURE 9. A diagram expressively equivalent to ������ �� � ��.

LEMMA 6.13
Let � be a sentence and suppose �� is a large model for �. Then there exists a small model, ��,
for � such that�� � +,�-���� ��.

PROOF. Define�� as follows. Let# be a subset of
 ���. If �
����� #�
 ����#�� % ���� define
�� �
����� #�
 ����#�. Otherwise define�� to be some chosen subset of
����� #�
 ����
#� with cardinality ����. The domain of�� is

�� �
�

��� 	�

��

The set �� has cardinality at most ��� 	�
�����. Define, for each
� � " ,

�

� �

�

� � ��. We
will show that structure�� is similar to�� and we will refer to the domain of�� by ��. Let# be
a subset of
 ���. Now

����� #�
 ����#� �
�

����

�

� �
�

���� 	�
	�

�

�

�
�

����

�

�

� � ��� �
�

���� 	�
	�

�

�

� � ���

The Expressiveness of Spider Diagrams 17

� �� �
�

����

�

� � ��� �
�

���� 	�
	�

�

� �

� �� �
�

����

�

� � ��� �
�

���� 	�
	�

�

� � since ��
 ��

� �� �
����� #�
 ����#�

It follows that
����� #�
 ����#�

����� #�
 ����#�.
Suppose that �
����� #�
 ����� � ����. Then there is a subset of
����� #�
 ����#� with

cardinality ���� that is also a subset of ��, namely�� . In which case �
����� #�
 ����#�� �
���� and �
����� #�
 ����#� �
����� #�
 ����#�� � ����.

Alternatively, �
����� #�
 ��� � #�� % ����. In which case
����� #�
 ��� � #�
 ��.
Hence

����� #�
 ����#� �
����� #�
 ����#�

Let $ be a subset of
 ��� that is distinct from# . Now

����� #�
 ����#� �
����� $�
 ���� $ � � �

and

����� $�
 ���� $ �

����� $�
 ���� $ �

Therefore

����� #�
 ����#� �
����� $�
 ���� $ � � �

Hence�� and �� are similar with respect to �. By Corollary 6.7,�� is a model for �, so �� is a
small model for �.

We now show that�� is in the class +,�-���� ��. For each subset# of
 ���, we have

����� #�
 ����#�

����� #�
 ����#�

If
�
����� #�
 ����#�� % ����

then

����� #�
 ����#� �
����� #�
 ����#�

and it follows that �� is an �-extension of ��. Hence �� is in the class +,�-���� ��. Thus for
each large model,��, for � there exists a small model,��, for � such that�� � +,�-���� ��.

LEMMA 6.14
Let�� be a small model for sentence �. Then +,�-���� �� only contains models for �.

PROOF. It is sufficient to prove that any �-extension of �� is a model for �, since it is clear that
isomorphism preserves the sentences modelled by structures. Let � � be an �-extension of��. We
will show that �� is similar to ��, with respect to �. Since �� is an �-extension of ��, it is the
case that, for each subset# of
 ���,

����� #�
 ����#�

����� #�
 ����#�

and, when �
����� #�
 ����#�� % ����,

����� #�
 ����#� �
����� #�
 ����#�

18 The Expressiveness of Spider Diagrams

Let $

 ���) such that $ �� # . Now

����� #�
 ����#� �
����� $�
 ���� $ � � �

Furthermore

����� #�
 ����#�

����� #�
 ����#��

thus

����� #�
 ����#� �
����� $�
 ���� $ � � �

Therefore�� is similar to��, with respect to �. By Corollary 6.7,�� is a model for �.

We will show that, given a sentence, �, there is a finite set of small models, the union of whose
cones gives rise to only and all the models for �. We are able to use these models to identify a
diagram expressively equivalent to �. In order to identify such a finite set we require the notion of
partial isomorphism between structures.

DEFINITION 6.15
Let�� and�� be structures for ����� with domains �� and �� respectively. Let ! be a set of
monadic predicate symbols. If there exists a bijection *��� � �� such that

�
� � !�� � �� �� �

�

� + *��� �

�

� ��

then�� and�� are isomorphic restricted to� and * is a partial isomorphism.

LEMMA 6.16
Let � be a sentence and let �� and �� be structures. If �� and �� are isomorphic restricted to

 ��� then�� is a model for � if and only if�� is a model for �.

LEMMA 6.17
There are finitely many small models for sentence �, up to isomorphism restricted to
 ���.

PROOF. (Sketch) There is a finite choice for the size of each of the predicate intersection sets (be-
cause they are small) and a finite number of these, given
 ���.

LEMMA 6.18
Let � be a sentence and let �� and �� be structures isomorphic restricted to
 ���. If �� and ��

are small models for � then +,�-���� �� � +,�-���� ��.

PROOF. Since �� and �� are isomorphic restricted to
 ���, for each subset # of
 ��� it is the
case that

�
����� #�
 ����#�� � �
����� #�
 ����#��

For each �-extension of �� there is an �-extension of �� to which �� is isomorphic, shown by
extending * in the obvious way. Similarly any �-extension of � � is isomorphic to an �-extension
of��. It follows that +,�-���� �� � +,�-���� ��.

DEFINITION 6.19
Let � be a sentence. A set of small models, +���, for � is called a classifying set of models for � if
for each small model,��, for � there is a unique�� in +��� such that�� and�� are isomorphic,
restricted to
 ���.

LEMMA 6.20
Let � be a sentence. Then there exists a set of classifying models for � and all such sets are finite.

The Expressiveness of Spider Diagrams 19

PROOF. Choose one small model from each equivalence class of small models under the relation of
partial isomorphism restricted to
 ��� to give +���. Finiteness follows from Lemma 6.17.

We will now show that the union of the cones of the models in +��� is precisely the collection of
models for �.

THEOREM 6.21
Let � be a sentence and +��� be a classifying set of models for �. Then

�

��	�

+,�-����� is

precisely the collection of models for �.

PROOF. By Lemma 6.14,
�

��	�

+,�-����� only contains models for �.

We must now show that all the models for � are in
�

��	�

+,�-�����
 The first step is to show

that any small model, ��, for � is in
�

��	�

+,�-�����. If �� � +��� then it is trivial that �� ��

��	�

+,�-�����. If �� �� +��� then there is some small model �� � +��� that is isomorphic,

restricted to
 ���, to ��. By Lemma 6.18, +,�-���� �� � +,�-���� ��. It follows that �� ��

��	�

+,�-�����. Finally we must show that each large model,��, for � is in
�

��	�

+,�-�����.

By Lemma 6.13, there is a small model, ��, such that �� � +,�-���� ��. If �� � +��� then we
are done. If �� �� +��� then there is an �� � +��� such that �� is isomorphic restricted to
 ���
to ��. Therefore�� � +,�-���� ��. Thus all the models for � are in

�

��	�

+,�-�����. Hence

�

��	�

+,�-����� is precisely the collection of models for �.

To summarize, we have shown that every sentence, �, has a finite set of classifying models and
the union of the cones of these classifying models is precisely the collection of models for �. We
will now use these classifying models to construct a diagram expressively equivalent to �.

DEFINITION 6.22
Let � be a small model for a sentence �. The unitary �-diagram, �, representing � given �,
denoted�,"����� � �, is defined as follows.3

1. The contour labels arise from the predicate symbols in
 ���:

���� � ��� � � � �
� � "
� �
 ����

2. The diagram is in Venn form:

���� � ���� ����� �� � �
 �����

That is, � contains all possible zones.

3. The shaded zones in � are given as follows. Let # be a subset of
 ��� such that
�
����#�
 ��� � #�� % ����. The zone ��� ���� � �� in ���� where � � ��� � ���� �

� � #� is shaded.

3In fact, � is a �-diagram (every zone is shaded or inhabited by at least one existential spider) [13] except when � � �.

20 The Expressiveness of Spider Diagrams

� �

� �

� �

� �

� �

� �

� �

� �

FIGURE 10. Constructing diagrams from models.

4. The number of spiders in each zone is the cardinality of the set �
����#�
 ��� �#�� where
gives rise to the containing set of contour labels for that zone. More formally, the set of spider
identifiers is:

����� � ���� �� � �##

 ��� � �
����#�
 ����#�� ��

� � �
����#�
 ����#�� � � � ���� ����� �� � ���� � � � ��� � ���� �
� � #���

Let +��� be a set of classifying models for �. Define %*��� to be a disjunction of unitary diagrams,
given by

%*��� �

��	�

�,"������

unless +��� � �, in which case %*��� ��.

EXAMPLE 6.23
Let � be the sentence ���
�����!���
�����. To find a classifying set of models we must consider
structures of all cardinalities up to ��
����� ���� � ��� � � �. There are six distinct structures (up
to isomorphism restricted to
 ���) with cardinality at most �. Four of these structures are models
for � and are listed below.

1. �� �
�� ��

�,

2. �� �
�����
� � ���� �� ��

�,

3. �� �
��� ����
�� ���� �� ��

�,

4. �� �
��� ����
�� ��� ��� �� ��

�.

Therefore, the class +,�-���� �� � +,�-���� �� � +,�-���� �� � +,�-���� �� contains only and
all the models for �. We use each of these models to construct a diagram. The models � �, ��,
�� and �� give rise to the diagrams ��, ��, �� and �� respectively in Figure 10. The diagram
�� � �� � �� � �� is expressively equivalent to �. This is not the ‘natural’ diagram one would
associate with �. We note here that �� is an �-extension of ��, so +,�-���� ��
 +,�-���� ��.
The sentence � is, therefore, expressively equivalent to �� � �� � ��. In general, when constructing
a diagram expressively equivalent to � we only need to draw a diagram for each model in +��� that
is not (isomorphic to) an �-extension of some other model in +���.

In fact, we can make further refinements to our approach. We note that � � � �� is semantically
equivalent to �� in figure 11. By capturing this kind of property at the model level, which may
involve defining an algebra of structures, we could further reduce the number of models required to
define %*���. We would, though, need to mark each predicate intersection set with whether it could
be extended indefinitely.

The Expressiveness of Spider Diagrams 21

� �

� �

FIGURE 11. Refining the approach.

THEOREM 6.24
Let � be a sentence. Then � is expressively equivalent to %*���.

PROOF. Let +��� be a set of classifying models for �. For each �� � +���, we will show that the
models for the diagram �,"���� �� are in bijective correspondence (under � defined in Lemma
4.2) with the structures in +,�-���� ��. To do so, we show first that any model for � � �,"���� ��
is in +,�-���� ��. Second we will show that the inverse, under �, of any element in +,�-�� �� �� is
a model for �.

Let ����� be a model for �. We will now show ������ � +,�-���� ��. To do so, we will show
that ������ is an �-extension of some small model,��, for � and that�� is isomorphic, restricted
to
 ���, to��.

We define �� as follows. Let # be a subset of
 ���. Choose � � ��� �� � ���� such that
� � ��� � ���� �
� � #�. Then, since ����� ��� �,

������ � ������ ��

Now

������ � �
�
����

����� �
�
����

������

� �
�

����

�	���

� �

�
���� 	�
	�

�	���

� �

� �
��������� #�
 ����#��

� ������ ��

� �
����� #�
 ����#��

Therefore there exists an injection,

.� �
����� #�
 ����#��
��������� #�
 ����#�

Choose such an injection, .� . We define the domain of�� to be �� where

�� �
�

��� 	�

���.��

We note that ��
 � and, since �� is a small model for �, ���� � ��� 	�
�����. Moreover,
���� � ���� (where �� is the domain of��). Next we define, for each
� � " ,

�

� �

�	���

� � ��

22 The Expressiveness of Spider Diagrams

We define a bijection, *��� � ��, by * �
�

��� 	�

.� . It is straightforward to verify that * is a

partial isomorphism. It follows that +,�-���� �� � +,�-���� ��, by Lemma 6.18.
We now show that ������ is an �-extension of��. Let# be a subset of
 ���. Now

����� #�
 ����#� �
�

����

�

� �
�

���� 	�
	�

�

�

�
�

����

�

�	���

� � ��� �

�
���� 	�
	�

�

�	���

� � ���

� �� �
�

����

�	���

� � ��� �

�
���� 	�
	�

�	���

�

� �� �
�

����

�	���

� � �� �

�
���� 	�
	�

�	���

� since ��
 �

� �� �
��������� #�
 ����#� (1)

It follows that
����� #�
 ����#�

��������� #�
 ����#�.
In order to show that ������ is an �-extension of ��, all that remains is to show that when

�
����� #�
 ����#�� % ���� we have

����� #�
 ����#� �
��������� #�
 ����#�

Suppose �
����� #�
 ����# � % ����. In which case �
����� #�
 ����#�� % ����, since

�
����� #�
 ����#�� � �
����� #�
 ����#��

(which follows from the fact that �� and �� are isomorphic restricted to
 ���). By the definition
of �, the zone � � ��� �� � ���� where � � ��� � ���� �
� � #� is shaded. Since ����� ��� �,
������ � ������ ��. Therefore

������ � �
����� #�
 ����#��

and it follows that .� is bijective. Thus
��������� #�
 ��� � #� � ���.��. Therefore

��������� #�
 ����#�
 �� and we deduce from (1)

����� #�
 ����#� �
��������� #�
 ����#�

Hence ������ is an �-extension of��. Therefore ������ � +,�-���� ��. Therefore, by Lemma
6.14, ������ � +,�-���� �� � +,�-���� ��. Hence

������� � ����� � '() � ����� �� �,"���� ����
 +,�-���� ��

We must now show that

������� � ����� � '() � ����� �� �,"���� ���� - +,�-���� ��

Let�� � +,�-���� �� and let � � ��� �� � ����. We show �	����� � ������ ��� �. Define #
to be the subset of
 ��� that satisfies � � ��� � ���� �
� � #�. Since �� � +,�-���� ��, the

The Expressiveness of Spider Diagrams 23

structure �� is isomorphic to some �-extension, �� say, of ��. Now
����� #�
 ��� � #�

����� #�
 ����#�, therefore there exists an injective map

.� �
����� #�
 ����#��
����� #�
 ����#�

So

������ � �
����� #�
 ����#��

� �
����� #�
 ����#��

� ������ ��

Suppose that � is shaded in �. Then �
����� #�
 ����#�� % ���� and

����� #�
 ����#� �
����� #�
 ����#�

In which case there is a bijection

.� �
����� #�
 ����#��
����� #�
 ����#�

Therefore ������ � ������ ��. It follows that �	����� ��� �. Since � was an arbitrary zone we
deduce, by lemma 5.7, �	����� �� �. Therefore

������� � ����� � '() � ����� �� �,"���� ��� - +,�-���� ��

Hence
������� � ����� � '() � ����� �� �,"���� ��� � +,�-����
��

It follows that %*��� is expressively equivalent to �.

THEOREM 6.25
The language of spider diagrams and ����� are equally expressive.

7 Conclusion

In this paper we have identified a fragment of first-order predicate logic equivalent in expressive
power to the spider diagram language. To show that the spider diagram language is at most as ex-
pressive as �����, we identified a sentence in ����� that expressed the same information as
a given diagram. To show that����� is at most as expressive as the language of spider diagrams
we considered relationships between models for sentences. We have shown that it is possible to clas-
sify all the models for a sentence by a finite set of models. We then used these classifying models to
define a spider diagram expressively equivalent to �. An interesting area, yet to be explored, is how
the reasoning rules for first-order logic compare with the reasoning rules for spider diagrams.

8 Acknowledgements

Gem Stapleton thanks the UK EPSRC for support under grant number 01800274. John Howse, John
Taylor and Simon Thompson are partially supported by the UK EPSRC grant numbers GR/R63516
and GR/R63509 for the Reasoning with Diagrams project. Thanks also to Andrew Fish, Jean Flower
and Chris John for their comments on earlier drafts of this paper.

24 The Expressiveness of Spider Diagrams

References
[1] S. N. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2] R. Dechter and J. Pearl. Generalised best first search strategies and the optimality of a*, Journal of the Association for

Computing Machinery, 32, 505–536, 1985.
[3] B. Dreben and D. Goldforb. The Decision Problem. Solvable Classes of Quantificational Formulas. Addison Wesley,

1979.
[4] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1991.
[5] L. Euler. Lettres a une princesse d’allemagne. Sur divers sujets de physique et de philosophie, 1761. Letters No. 102-108

vol 2 Basel, Birkhauser.
[6] J. Flower, J. Masthoff, and G. Stapleton. Generating readable proofs: A heuristic approach to theorem proving with

spider diagrams. In Proceedings of International Conference on the Theory and Application of Diagrams, pp. 166–181,
Cambridge, UK, March 2004. Springer-Verlag.

[7] J. Flower and G. Stapleton. Automated theorem proving with spider diagrams. In Proceedings of CATS’04, Computing:
The Australasian Theory Symposium, Electronic Note in Theoretical Computer Science, pp. 116–132, Dunedin, New
Zealand, January 2004. Science Direct.

[8] W. Hodges. Logic. Penguin Books, 1977.
[9] J. Howse, F. Molina, S-J. Shin, and J. Taylor. On diagram tokens and types. In Proceedings of International Conference

on the Theory and Application of Diagrams, Callaway Gardens, Georgia, USA, April 2002. Lecture Notes in Artificial
Intelligence, pp. 76–90, Springer-Verlag.

[10] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider diagrams: A diagrammatic reasoning system. Journal of
Visual Languages and Computing, 12, 299–324, June 2001.

[11] J. Howse, G. Stapleton, and J. Taylor. Reasoning with spider diagrams. Technical report, University of Brighton, 2004.
Available from �������������	
���
���������
��	�������������	
��.

[12] P. T. Johnstone. Notes on Logic and Set Theory. Cambridge University Press, 1987.
[13] F. Molina. Reasoning with Extended Venn-Peirce Diagrammatic Systems. PhD thesis, University of Brighton, 2001.
[14] C. Peirce. Collected papers, vol 4. Harvard University Press, 1933.
[15] S.-J. Shin. The Logical Status of Diagrams. Cambridge University Press, 1994.
[16] N. Swoboda and G. Allwein. Using DAG transformations to verify Euler/Venn homogeneous and Euler/Venn FOL

heterogeneous rules of inference. In International Workshop on Graph Transformation and Visual Modeling Techniques.
Elsevier Science, Barcelona, October 2002.

[17] J. Venn. On the diagrammatic and mechanical representation of propositions and reasonings. The London, Edinburgh
and Dublin Philosophical Magazine and Journal of Science, 1880.

[18] The visual modelling group web site, �������������	
���
���������
��	����.

Received 15 March 2004

