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Abstract

Spider diagrams are a visual language for expressing logical statements. In this paper we identify a well-known fragment
of first-order predicate logic, that we call MFOL_, equivalent in expressive power to the spider diagram language. The
language MFO L= is monadic and includes equality but has no constants or function symbols. To show this equivalence,
in one direction, for each diagram we construct a sentence in M FO L that expresses the same information. For the more
challenging converse we prove that there exists a finite set of models for a sentence S that can be used to classify al the
models for .S. Using these classifying models we show that there is a diagram expressing the same information as S.

Keywords: Spider diagrams, expressiveness, monadic logic, model theory.

1 Introduction

Euler diagrams [5] exploit topological properties of enclosure, exclusion and intersection to repre-
sent subset, digoint sets and set intersection respectively. The diagram d; in Figure 1 is an Euler
diagram and asserts that nothing is both a car and a van. Venn diagrams [17] are similar to Euler
diagrams. In Venn diagrams, all possible intersections between contours must occur and shading is
used to represent the empty set. The diagram d» in Figure 1 is a Venn diagram and also expresses
that no element is both a car and a van.

Various visual languages have emerged that extend Euler and Venn diagrams. Peirce [14] in-
creased the expressiveness of Venn diagrams by adding ®-sequences. The presence of an ®-
seguence indicates the existence of an element. The Venn-I1 system, introduced by Shin [15], con-
sists of Venn diagramstogether with ®-sequences. Thediagram d s in Figure 1isaVenn-l1 diagram.
In addition to the information which is expressed by the underlying Venn diagram, it also asserts
that the set Cars U Vans is not empty. In Venn-11, diagrams are joined by straight line segments
to represent digjunction between diagrams. Venn-11 diagrams can express whether a set is empty or
not empty. Shin shows that Venn-I1 is equivalent in expressive power to a first order language that
she cals Ly. Thelanguage L is a pure monadic language (i.e. al the predicate symbols are ‘one
place’) that does not include constants or function symbols.

Another visual language, called Euler/Venn, based on Euler diagrams is discussed by Swoboda
and Allwein in [16]. These diagrams are similar to Venn-I1 diagrams but, instead of ®-sequences,
constant sequences are used. The diagram d4 in Figure 2 is an Euler/Venn diagram and asserts that
no element is both a car and a van and that there is something called ‘ford’ that is either acar or a
van. Swoboda and Allwein give an agorithm that determines whether a given monadic first-order
formulais‘ observable’ from agivendiagram. If theformulais observablefromthediagramthenitis
a consequence of the information contained in the diagram, but need not express all the information
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Cars Vans Cars Vans Cars Vans

OC

FIGURE 1. An Euler diagram, Venn diagram and a Venn-11 diagram.

d, d,

Cars Vans Cars Vans Cars Vans
a '

d4 ds d6

FIGURE 2. An Euler/Venn diagram and two spider diagrams.

in the diagram.

Like Euler/Venn diagrams, spider diagrams are based on Euler diagrams. Rather than alowing
the use of constant sequences! as in Euler/Venn diagrams, spiders denote the existence of elements.
Unlike the ®-sequences, distinct spiders denote distinct elements. The spider diagram d 5 in Figure
2 asserts that no element is both a car and avan and there are at least two elements, oneis a car and
the other is a car or avan. The spider diagram d¢ asserts that there are exactly three vans that are
not cars. Spiders (by their existential import) alow alower bound to be placed on the cardinality of
sets. Shading allows upper boundsto be placed on the cardinality of sets.

Several sound and complete spider diagram systems have been developed [10, 11, 13]. A tool to
support reasoning with spider diagrams has been devel oped, available from [18]. In[7] an agorithm
is presented that, given any spider diagrams D, and D-, either constructs a proof from D, to D, or
provides amodel for D, that is not amodel for D,. The proofs constructed by this algorithm tend
to be long and unwieldy. In [6] a heuristic approach to proof writing in the spider diagram system
is developed, but is restricted to the case of unitary spider diagrams. The authors invoke the A *
algorithm [2] to find a shortest proof, provided such a proof exists.

In this paper we prove that the spider diagram language is equivalent in expressive power to a
fragment of first-order logic that we call MFOL —. Thelanguage MFOL - extends Ly by adding
equality, so MFOL—- is monadic predicate logic with equality. Within L it is not possible to
expressthat a particular property, P, holds for a unique element:

dz (P(x) AVy (Py) = z =y))

Thus spider diagrams increase expressiveness over Venn-|1.

Although we do not include constantsin M FOL — or given spiders (to represent constants) in our
spider diagram language, this is not a significant restriction. It is relatively straightforward to show
that adding constants to either of these languages does not lead to an increase in expressiveness.

1In some spider diagram languages, given spiders[10] represent constants but for our purposes spiders represent existen-
tial quantification.
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However, the omission of function symbolsis more significant: the standard elimination of function
symbolsin terms of relation symbols relies upon binary predicate symbols which we do not have.

In Section 2 we give the syntax and semantics of spider diagrams. We define MFOL _ in Section
3. In Section 4 we identify when a diagram and a sentence express the same information. We
address the task of mapping each diagram to a sentence expressing the same information in Section
5, showing that the spider diagram language is at most as expressive as MFOL —. In Section 6 we
show that MFOL_ isat most as expressive as spider diagrams. We will outline Shin’s algorithmic
approach to show L (in which thereis no equality) is not more expressive than Venn-I1. It issimple
to adapt this algorithm to find a spider diagram that expresses the same information as a sentence
in MFOL_ that does not involve equality. However, for sentences in MFOL — that do involve
equality, the algorithm does not readily generalize. Thus we take a different approach. To motivate
our approach we consider relationships between models for diagrams. We consider the modelsfor a
sentence and show that thereis afinite set of models that can be used to classify all the models for
the sentence. These classifying models can then be used to construct a diagram that expresses the
same information as the sentence.

2 Spider diagrams

In diagrammatic systems, it is helpful to distinguish two levels of syntax: concrete (or token) syntax
and abstract (or type) syntax [9]. Concrete syntax captures the physical representation of adiagram.
Abstract syntax ‘forgets semantically irrelevant spatial relations between syntactic elements in a
concrete diagram. We include the concrete syntax to aid intuition but we work at the abstract level.

2.1 Informal concrete syntax

A contour is a simple closed plane curve. Each contour is labelled. Within a unitary diagram,
the same label cannot be used twice. A boundary rectangle properly contains al contours. The
boundary rectangle is not a contour and is not labelled. A basic region is the bounded area of the
plane enclosed by a contour or aboundary rectangle. A region is defined recursively asfollows: any
basicregionisaregion; if r; and r» are regionsthen the union, intersection and differenceof r ; and
ro are regions provided these are non-empty. A zone is a region having no other region contained
withinit. A regionisshaded if each of its component zonesis shaded. A spider isatree with nodes
(called feet) placed in different zones. The connecting edges (called legs) are straight line segments.
A spider touchesazoneif oneof itsfeet is placed in that zone. A spider issaid to inhabit the region
whichisthe union of the zones it touches. This union of zonesis called the habitat of the spider.

A concrete unitary spider diagram is a single boundary rectangle together with a finite collec-
tion of contours, shading and spiders. No two contours in the same unitary diagram can have the
same label. We place certain well-formedness conditions on unitary diagrams. We stipulate that
each zone is connected. There must be at least one zone inside each contour (this follows from the
fact that contours are simple closed plane curves). The boundary rectangle properly contains al
contours, so there is a zone inside the boundary rectangle but outside all the contours.

EXAMPLE 2.1
Spider diagram dg in Figure 2 (Section 1) has two contours and four zones. The shaded zone is
inhabited by three spiders, each with one foot.



4 The Expressiveness of Spider Diagrams

A B A B

d, d,

FIGURE 3. Two spider diagrams.

2.2 Formal abstract syntax

We can think of the contour labels used in our diagrams as being chosen from a countably infinite
set, £. A zone, at the concretelevel, can be described by the set of 1abel s of the contoursthat include
it. When we reason with a spider diagram, its contour label set may change, so we will define an
abstract zone to be a pair of sets, (a,b). The set a contains the labels of the contours that include
(a,b) whereas b is the set of labels of the contours that do not include (a,b). So, a and b form a
partition of the contour label set.

Now we consider how we represent spiders at the abstract level. In order to describe the spiders
in a concrete diagram, it is sufficient to say how many spiders there are in each region. We could
specify any finite set to be a collection of spiders, and map each of these spidersto aregion in the
diagram, giving its habitat. For any given concrete diagram, then, there would potentially be many
choicesfor an abstract set of spiders. In order to give a unique abstraction from a concrete diagram
we will use a bag of regions, called spider identifiers, rather than an arbitrary set of spiders.

DEFINITION 2.2

An abstract unitary spider diagram d (with labelsin £) isatuple (L, Z, Z*, SI) whose compo-
nents are defined as follows.

1. L = L(d) C Lisafinite set of contour labels.
2.Z=27(d) C{(a,L —a):aC L} isaset of zones such that
(i) foreachlabel | € L thereisazone (a, L — a) € Z(d) suchthat ! € ¢ and
(i) thezone (@, L) isin Z(d).
3. Z* = Z*(d) C Zisaset of shaded zones.
4.S1 =SI(d) Cc Z* x (PZ — {0}) isafinite set of spider identifiers such that

V(nlyrl);(nz,rz) €eSler,=ry=>n =ny
If (n,r) € ST we say there are n spiderswith habitat r.

Some remarks about the definition are in order. Every contour in a concrete diagram contains at
least one zone and this is captured by condition 2 (i). In any concrete diagram, the zone inside the
boundary rectangle but outside all the contoursis present and thisis captured by condition 2 (ii).

EXAMPLE 2.3
The diagram d; in Figure 3 has the following abstract description.

1. The set of contour labelsis L(d;) = {A, B}.
2. Theset of zonesis Z(d;) = {(0, {4, B}), {A},{B}), {B},{A}), {A, B},0)}.
3. The set of shaded zonesis Z*(d;) = {({B}, {4})}.
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4. The set of spider identifiersis
SI(dy) = {(L{{B} {AD}), (L{{ALAB}), (B}, {ADH}-

We define, for unitary diagram d, the Venn zone set to be
VZ(d) = {(a, L(d) — a) - a C L(d)}

and themissing zonesettobe M Z(d) = VZ(d) — Z(D). If Z(d) = VZ(d) thend issaid to bein
Venn form. If z € M Z(d) then z ismissing from d. Missing zones represent the empty set.

Spiders represent the existence of elements and regions (an abstract region is a set of zones)
represent sets — thus we need to know how many elements we have represented in each region. The
number of spiders contained by regionr in d is denoted by S(r1,d). Moreformally,

S(ry,d) = Z n.

(n,r2)€SI(d)Ar2Cry

So, any spider in d whose habitat is a subset of r; contributesto the sum S(ry,d). The number of
spiderstouching r; in d isdenoted by T'(r, d). More formally,

T(ri,d) = Z n.

(n,r2)ESI(d)Aranri#D

So, any spider ind that hasafoot inr; contributestothesumT'(ry, d). Inthediagramd,, infigure3,
SUUBY.{AD} di) = 1and T(({({B}, {A})}.dh) = 2.

Unitary diagrams form the building blocks of compound diagrams. If D, and D are spider
diagrams then so are D, (‘not D;’), (Dy U D») (‘D or Dy’) and (D M D3) (‘D; and D>’).
Some diagrams are not satisfiable and we introduce the symbol _L, defined to be a unitary diagram
interpreted as false. Our convention will be to denote unitary diagrams by d and arbitrary diagrams
by D.

2.3 Semantics

Regions in spider diagrams represent sets. We can express lower bounds and, in the case of shaded
regions, upper bounds on the cardinalities of the sets that we are representing as follows. If region
r contains n spidersin diagram d then d expresses that the set represented by r contains at least n
elements. If r is shaded and touched by m spidersin d then d expresses that the set represented by
r contains at most m elements. Thus, if d has a shaded, untouched region, r, then d expresses that
r represents the empty set. Missing zones a so represent the empty set. To formalize the semantics
we shall map contour labels, zones and regionsto subsets of some universal set. We define Z and R
to be the sets of all abstract zones and abstract regions respectively. So,

2 = {(a,b) € PF(L) x PF(L) :anb =0}

where PF(L) denotes the set of al finite subsets of £, and R = PF(Z).

DEFINITION 2.4

An interpretation of contour labels, zones and regions, or simply an interpretation, is a pair
(U, ¥)whereU isasetand ¥: LU Z UR — PU isafunction mapping contour labels, zones and
regionsto subsets of U such that the images of the zones and regions are compl etely determined by
the images of the contour labels as follows.
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1. For each zone (a, b),

T(a,b) = (TN 20D

lEa leb
where ¥ (l) = U — ¥(]) andwedefine N T()) =U = ) T().
len led
2. For each regionr,
v(r)=J ()
zZer

andwedefine¥ () = |J ¥(z) = 0.
z€0
We introduce a semantics predicate which identifies whether a diagram expresses a true statement,
with respect to an interpretation.

DEFINITION 2.5

Let D beadiagram and let m = (U, ¥) be an interpretation. We define the semantics predicate of
D, denoted Pp(m). If D =1 then Pp(m) is L. If D (# 1) isaunitary diagram then Pp(m) is
the conjunction of the following three conditions.

1. Ditinct spiders condition. For eachregionr inPZ (D) — {0},
W (r)| > S(r, D).
2. Shading condition. For each shaded regionr in PZ*(D) — {0},
¥ (r)| <T(r,D).
3. Missing zones condition. Any zone, z, in M Z (D) satisfies ¥(z) = §).

If D = D_lthen PD(m) = —LPD1 (m) If D = D, U D5 then PD(m) = PDl(m) \Y PDZ(m). If
D = D, N D, then Pp(m) = Pp, (m) A Pp,(m). We say m satisfies D, denoted m |= D, if and
only if Pp(m) istrue. If m = D we say m isamodel for D.

EXAMPLE 2.6
Defining ¥ (A) = {1} and ¥(B) = {2} characterizesthe interpretation m = ({1, 2}, ¥) whichisa
model for dy in figure 3 but not for ds.

3 Thelanguage MFOL_

Spider diagrams do not have syntactic elements to represent constants or functions. We can express
statements of the form ‘there are at least n elementsin A’ and ‘there are at most m elementsin A’.
A first-order language equivalent in expressive power to the spider diagram language will involve
equality, to allow us to express distinctness of elements, and monadic predicates, to allow us to
expressz € A. Inorder to define such a language we require a countably infinite set of monadic
predicate symbols, P, from which all monadic predicate symbolswill be drawn. Moreover, we also
reguire a countably infinite set of variables, )V, from which all variables will be drawn.

DEFINITION 3.1
Thefirst-order language M FO L~ consists of the following.

1. Atomic for mulae which are defined as follows,
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(@) if z; and ; are variablesthen (z; = z;) isan atomic formula,
(b) if P; € P and z; isavariablethen P;(z;) isan atomic formula
2. Formulae, which are defined inductively.
(a) Atomic formulae are formulae.
(b) L and T areformulae.
(c) If pand g areformulaeso are (p A q), (p V q) and —p.
(d) If pisaformulaand 2 ; isavariablethen (Vz; p) and (3z; p) are formulae.

We define F and S to be the sets of formulae and sentences (formul ae with no free variables) of the
language MFOL_ respectively.

We shall assumethe standard first-order predicatelogic semantic interpretation of formulaein this
language (see, for example, [1]) with one exception: we allow a structure to have an empty domain.
Logic with potentially empty structuresis explored in [8, 12]. The motivation for this non-standard
choice comes from the intended application domain for spider diagrams. modelling object oriented
software systems. The domain will consist of the objects in the system and in some instances there
will be no objects (for example, in an initial state before any objects have been created).

4 Structuresand interpretations

We wish to identify when a diagram and a sentence express the same information. To aid us for-
malize this notion, we map interpretations to structuresin such away that information is preserved.
For this discussion we fix the set of labels £ = {L, L», ...} and the set of monadic predicate sym-
bolsP = {P,, P,,...}. We identify corresponding labels and predicates L, and P;. We also fix
V = {1, 22, ...}. Define/ to be the class of al sets. The setsin ¢/ form the domains of structures
inthe language MFOL_.

DEFINITION 4.1
Define ZN'T to bethe class of al interpretationsfor spider diagrams over £, that is

INT ={(U,%): U € UANT:LUZUR — PU},

where (U, ¥) is an interpretation. Define also STR to be the class of structures for the language
MFOL_ over P, that is

STR={m:UeUAm=U,=",P",P", ..}
where P/™ is the interpretation of P; in the structure m (that is, P/ C U) and we always interpret
= asthediagona subset of U x U, denoted diag(U x U).
LEMMA 4.2
Thefunction, h: ZN'T — STR defined by
hU, ) = (U,diag(U x U),¥(Ly),¥(Ls),...)

isabijection.

Essentialy, h(U, ¥) is just a different way of writing (U, ¥). Our aim is to identify, for each
diagram, a sentence that expresses the same information. We also aim, for each sentence, to identify
a diagram that expresses the same information and we now formalize this notion. A diagram and

a sentence express the same information when i provides a bijective correspondence between their
models, illustrated in Figure 4.
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interpretations h structures

expressively

equivalent
D« 5§

FIGURE 4. A model-level relationship between expressively equivalent diagrams and sentences.

DEFINITION 4.3
Let D beadiagram and S be asentence. Wesay D and S are expressively equivalent if and only if

{h(p) :p€INT ApED}={m e STR :m E S}.

So, adiagram and a sentence are expressively equivaent if they have essentially the same models.

5 Mapping from diagramsto sentences

To show that the spider diagram language is not more expressive than MFOL — we will map dia-
grams to expressively equivalent sentences. An a-diagram is a spider diagram in which al spiders
inhabit exactly one zone[13].

THEOREM 5.1
Every spider diagram is semantically equivalent to an a-diagram [11].

PROOF. (Sketch) Spider legs represent disjunction within a unitary diagram, d. Therefore, if there
isaspider, s, in d that inhabitsregion 71 U r, wherer; Nry = 0 then d is semantically equivalent
to d; U dy where each of dy and d» are copies of d except that s inhabitsr, ind; and r» in ds, thus
removing a spider’s leg. This process of splitting spiders can be repeated until all spiders inhabit
exactly one zone. [ |

It followsthat to show that the spider diagram languageis at most as expressiveas MFOL _ itis
sufficient to identify an expressively equivalent sentence for each a-diagram.

L L, L,

d, d,

FIGURE 5. Two a-diagrams: from diagrams to sentences.

EXAMPLE 5.2
Thediagram d; in Figure 5 contains three spiders, one outside both L, and L, the other two inside
L, and outside L; and is expressively equivalent to the sentence

3171 (—|P1 (371) N ﬁPQ(xl)) A 31713372 (P2($1) A PQ(ZL'Q) A ﬁpl (171) A —|P1 (372) N X1 7é 172).
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Thediagram d, assertsthat no elementscanbein L3 and notin L, (dueto the missing zone) and no
element can bein both L; and L3 (dueto the shading) and is expressively equivalent to the sentence

Vl‘l _|(P3(1'1) A _|P1(1'1)) /\Vl‘l _|(P1(1'1) A P3(1'1))

To construct sentences for diagrams, it is useful to map zonesto formulae as follows.

DEFINITION 5.3
Define afunction to map zonesto formulag, ZF: Z x V — F (ZF for ‘zone formula’) by, for each
(a,b) € Z—{(0,0)} and varidble z;,

ZF((a,b),z) = N\ Pulej) A [\ —Pela))
Li€a Li€b

and
Z]:(((Z), @),Z’j) =T.

We use the function ZF to construct a sentence of MFOL_ for each zone in a unitary a-
diagram. We shall take these zone sentences in conjunction to identify a sentence expressively
equivalent to the diagram. We define D§ to be the class of all unitary a-diagramsand D to be the
class of al a-diagrams.

DEFINITION 5.4
The partial function Z25: Z x D§ — S (28 for ‘ zone sentence’) is specified for unitary «-diagram
dandzonez inV Z(d) (recall, V Z(d) isthe Venn zone set of d, defined in Section 2.2) as follows.

1. If zisnot shaded in d and S({z},d) = 0 then
Z28(z,d)=T.
2. If zisnot shadedind and S({z},d) = n > 0 then

Z28(z,d) = Elxl...ﬂmn( /\ —(xj =) A /\ Z]—'(z,mk)).

1<j<k<n 1<k<n
3. If z iseither missing fromd or isshaded ind and S({z},d) = 0 then
Z8(z,d) =Vx, ~ZF (2, 21).

4.If zisshadedind and S({z},d) = n > 0 then

Z8(z,d) = Elxl..Elxn< /\ —(xj =) A /\ ZF(z,zk) A

1<j<k<n 1<k<n
(anﬂ ( \/ Tyl =T V —|Z.7-'(z,;rn+1)))>.
1<j<n

DEFINITION 5.5
Define DS: D* — S (DS for ‘diagram sentence’) as follows.

1.1fd =1 then DS(d) = L.
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2. 1f d (# 1) isaunitary a-diagram then

DS(d) = J\ Z8(z,4d).

eV Z(d)

3.1f D = D; then DS(D) = -DS(D;).
4.1f D = D, U D, then DS(D) = (DS(D1) V DS(D>)).
5.1f D = D, N D, then DS(D) = (DS(D;) A DS(Dy)).

We wish to show, for unitary a-diagram d, that DS(d) is expressively equivalent to d. To do this,
we shall consider each zone of d inturn. Thusit is useful to consider when an interpretation satisfies
azone, which we now define.

DEFINITION 5.6
Letp = (U, ¥) be an interpretation and let d be aunitary a-diagram. Let z € V Z(d). Given d, we
say p satisfies z, denoted p |=4 z, if and only if the following hold.

1. The number of elementsin the set represented by z is at |east the number of spidersin z:
W (2)| > S({z}, d).

2. If z is shaded or missing then the number of elements in the set represented by z equals the
number of spidersin z:

2 € Z(d)UMZ(d) = |¥(2)| = S({z},d).

LEMMA 5.7
Let p = (U, ¥) be an interpretation and let d (# L) be a unitary «-diagram. The interpretation p
satisfies d if and only if p satisfies all the Venn zones of d:

pEdeVzeVZ(d) pl=aq-z.

PrROOF. (Sketch) Noting that when d is an a-diagram, S(r,d) = T'(r,d) for each region r in d the
result follows from a straightforward restatement of the semantics predicate. [ |

THEOREM 5.8
Let d beaunitary a-diagram. Diagram d is expressively equivalent to DS(d).

PROOF. (Sketch) For each zone, z € V Z(d), in turn, show that
{h(p) €INT :pl=g 2z} ={m e STR : m |= Z5(2)}.

The result then follows by Lemma5.7. [ |

COROLLARY 5.9
Let D be an a-diagram. Then D is expressively equivalent to DS (D).

THEOREM 5.10
Thelanguage of spider diagramsis at most as expressive as the language MFOL _.
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6 Mapping from sentencesto diagrams

We now consider the more challenging task of constructing a diagram for a sentence. Since every
formula is semantically equivalent to a sentence obtained by prefixing the formula with Vz ; for
each free variable x; (i.e. constructing its universal closure), we only need to identify a diagram
expressively equivalent to each sentence.

In [16] Swoboda and Allwein give an agorithm that determines whether a given first-order logic
sentence containing only monadic predicates can be observed from a given Euler/Venn diagram.
Sentences observable from a diagram are logical consequences of the diagram (but the diagram and
the sentence are not necessarily expressing the same information). They aso give an agorithm to
determine if a diagram is observable from a sentence. First they manipulate the sentence into a
specia normal form that they call Euler/Venn conjunctive normal form (EVCNF). Using this normal
form it is then possible to construct a directed acyclic graph (DAG) for the sentence. A DAG is
also constructed for the given diagram. Transformation rules are then applied to the DAG for the
sentence (analogous to reasoning rules for their Euler/Venn system) to determine whether it can be
changed into the DAG arising from the diagram. If it can then the diagram is observable from the
sentence. The approach to determineif a sentence is observable from adiagramis similar.

Shin’s approach to show Venn-1l is equally as expressive as language L, (MFOL_ without
equality) is algorithmic [15]. To find a diagram expressively equivalent to a sentence, she first
convertsthe sentenceinto prenex normal form, say Q 1 x1 ...Q ,x,, G Whereeach @) ; isaquantifier and
G isquantifier free. If @, isuniversal then G istransformed into conjunctive normal form. If @ ,, is
existential then G is transformed into digunctive normal form. The quantifier @ ,, isthen distributed
through G and as many formulae are removed from its scope as possible. All n quantifiers are
distributed through the sentence in this way. The sentence resulting from this process has no nested
quantifiers. A diagram can then be drawn for each of the simple parts of the resulting formula. To
adapt this algorithm to find expressively equivalent diagrams for sentencesin MFOL _ that do not
involve equality is straightforward.

L L,

d, d,

FIGURE 6. Illustrating Shin’s algorithm.

EXAMPLE 6.1

Applying Shin’s algorithm to the sentence 31 Vo (Pi(x1) V Py(x2)) gives rise to the diagram
shown in Figure 6 (recal that in Venn-11 disjunction between diagrams is denoted by connecting
them with a straight line segment).

Shin’s algorithm does not readily generalize to arbitrary sentencesin MFOL _ because = isa
dyadic predicate symbol which means nesting of quantifiers cannot necessarily be removed. We
take a different approach, modelled on the classic result of Dreben and Goldforb [3, 209-210]. To
establish the existence of a diagram expressively equivalent to a sentence we consider models for
that sentence. To illustrate the approach we consider rel ationships between models for a-diagrams.
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L, L,

d

FIGURE 7. Extending models for a diagram.

EXAMPLE 6.2

The diagram in Figure 7 has a minimal model (in the sense that the cardinality of the universal set

isminimal) U = {1,2,3}, ¥(L;) = {1}, ¥(Ls) = {2,3} and, for i # 1,2, ¥(L;) = 0. This
model can be used to characterize all the models for the diagram, up to |somorph|sm We can use
this model to generate further models, by adding elementsto U and we may add these elements to

images of contour labels if we so choose. As an example, the element 4 can be added to U and we
redefine ¥'(Ly) = {2, 3,4} to give another model for d. No matter what changes we make to the
model, we must ensure that the zone ({L}, {L»}) adways represents a set containing exactly one
element or we will create an interpretation that does not satisfy the diagram. We can add elements
to all and only the sets represented by zones which are not shaded. Adding elementsin thisway will

generate all modelsfor d, up to isomorphism.

In considering models for MFOL _ sentences we will use the notion of a predicate intersection
set. This is the interpretation of the conjunction of certain monadic predicate symbols, and thus
corresponds to the interpretation of a zone in a diagram. Suppose m is a model for sentence S.
We will show that if a predicate intersection set satisfies certain cardinality conditions then we can
increase the cardinality of that predicate intersection set (enlarging m) and still have a model for
S. We are able to use this fact to show that there is a finite set of models for .S that can be used
to classify all the models for S. Moreover, we can use this classifying set to construct a diagram
expressively equivalent to S.
DEFINITION 6.3
Let m be a structure and let X and Y be finite subsets of P (the countably infinite set of pred-
icate symbols). Define the predicate intersection set in m with respect to X and Y, denoted
PI(m,X,Y),tobe

PI(m,X,Y)= () P"n (] P"

PeX Pey
(recall that P/™ is the interpretation of P; inm). We define (| P/ = (| P/™ = U whereU is
P;ed P;ed

the domain of m.

In the context of MFOL_, wewill identify all the structures that can be generated from a given
structure, m, by adding or renaming elements subject to cardinality restrictions determined by sen-
tence S. We will cal this class of structures generated by m the cone of m, given S. For each
sentence, S, we will show that there is a finite set of models, the union of whose cones is pre-
cisely the collection of modelsfor S. Formalizing and proving thisinsight is the kernel of the result
here. Central to our approach is the notion of similar structures with respect to .S. To define similar
structures we use the maximum number of nested quantifiersin 5.2

2The maximum number of nested quantifiersin S is called the quantifier rank of S [4].
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EXAMPLE 6.4

Let S bethe sentenceVzy Py (z1) A Vz; 3zo ~(z1 = z2). TheformulaVz, P (z,) has one nested
quantifier and V1 3z —(z1 = z2) has two nested quantifiers. Therefore the maximum number of
nested quantifiersin S is two. Now, n nested quantifiers introduce n variable names, and so it is
only possible to talk about (at most) n distinct individuals within the body of the formula. This has
the effect of limiting the complexity of what can be said by such aformula. In the particular case
here, this observation has the effect that if a model for S has at least two elements in certain pred-
icate intersection sets then .S does not place an upper bound on the cardinalities of those predicate
intersection sets.

Inamodel for S, theinterpretation of P; hasto contain al the elements, of which there must be at
least two. Also, S constrains the predicate intersection set P1(m, (), { P1}) to have cardinality zero.
As an example, we consider two models, m; and my with domains Uy = {1,2,3,4} and Uy =
{1,2,5,6, 7}, respectively, that are characterized by P,"* = {1,2,3,4} and P/"* = {1,2,5,6,7}.
Now

|[PI(my,0,{P})|=10|=0<2 and |PI(ms,0,{P})|=10=0<2.

Also
|PI(my,{P1},0)| =|U|>2 and [PI(my,{P1},0)| =|Us|> 2,

s0 .S cannot place an upper bound on | PI(m, { Py}, ?)|. We can think of m, and m- as each enlarg-
ing the model m3 with domain Us = {1,2} where P = {1,2} and P;"* = 0, forall j # 1.

The following definition, Lemmas 6.6, 6.8 and Corollary 6.7 are adapted (by changing the notation
and adding details to the proofs) from [3, 209-210].

DEFINITION 6.5

Let S be asentence and define ¢(S) to be the maximum number of nested quantifiersin .S and P(.S)
to be the set of monadic predicate symbolsin S. Two structures m ; and m- are called similar with
respect to S if and only if for each subset X of P(.S), either

(1) PI(m1, X, P(S) — X) = PI(ms, X, P(S) — X) or
() |PI(m, X, P(S) — X) N PI(m2, X, P(S) — X)| > q(5)

and, in addition to (1) or (2), for all subsetsY” of P(S) suchthat X # Y,
PI(my, X, P(S) — X)N PI(ms,Y,P(S) —Y) = 0.

In the previous example, m1, my and ms are al similar with respect to S. There is a close
relationship between the notions of similar structures and homomorphic structures, although they
are not equivalent. Consider the structures m 4 and m 5 defined below:

my = <{1}, {(17 1)}, {1}7 0, w: >

and

ms = ({2},{(2,2)},{2},0,0,...).
These structuresare homomorphic (indeed, they areisomorphic) but they are not similar with respect
tothe sentenceVz; (P (z1) V Pa(z1)). For example,

PI(ma,{P1},{P2}) = {1} # PI(ms,{P.},{P2}) = {2},

|PI(ma, {P1},{P2}) N PI(ms, {P1}, {P2})] = |0] 2 q(Vo1 (Pi(21) V Pa(z1))) = 1.
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Therefore, when X = {P,}, neither condition (1) nor condition (2) in the definition of similar
structures hold for m4 and ms. We also observe that, given a sentence S, if we restrict the set
of predicate symbolsin our language MFOL _ to include only thosein S (i.e P(S)), along with
equality, then similar structures are also homomorphic.

LEMMA 6.6

Let S be asentence. Let m; and mo be similar structures with respect to S and with domains U,
and U, respectively. For all (not necessarily proper) subformulas G of S and for each assignment
of valuesin U; N U, to the free variables (if any) of G, G istrue in m; under the assignment if and
only if G istruein mo under the assignment.

PROOF. The proof is by induction on the complexity of G (i.e. the depth of G in an inductive
construction of formulag). If G is atomic, then G is P (v) or v = w. Inthe case whenv = w the
result is obvious. For Py (v), assign ¢ € U; N Us to v. Suppose Py (v) is true in m4 under this
assignment. We will show that P (v) istruein mqy under this assignment. Now, there exist X and
Y, both subsets of P(.S), such that

x € PI(my, X, P(S) — X) N PI(m,Y,P(S) - Y).

Moreover, since Py (v) istruein m, under this assignment, P, € X. Sincem; and m» are similar
with respect to S it follows that X = Y. Thus Py (v) is true in my under this assignment. The
converseis similar.

If GisH, V Hy, Hy N\ H, or —H1, then the result followsimmediately if it holdsfor H, and H,
Separately.

Let G be3dvH, and suppose an assignment of valuesin U; N U, to the free variables of G isfixed.
Let Y be the set of values so assigned. Since G is a subformulaof S, it contains at most ¢(S) — 1
free variables. Hence |Y'| < ¢(S). Suppose G istruein m; under the assignment. Hence thereis
ana in U; such that H istrue in m; when, additionally, the variable v is assigned the value a. If
a € Us,, then by the inductive hypothesis, H istruein m under the augmented assignment.

Suppose therefore that a isnot in Us, and let a bein PI(mq, X, P(S) — X), where X C P(S).
Thus

PI(mlaXap(S) _X) # PI(mZ,X,P(S) _X)7

SO
PI(my,X,P(S) = X)N PI(ms, X, P(S) — X)

has cardinality at least ¢(.S). But thenthereisan element b of (PI(m 1, X, P(S)— X)NPI(mas, X,
P(S)—-X))—-Y. Lety:U; — Uy carry a to b, b to a and every other member of U, to itself.
Then ~y is an automorphism of the structure m ,, because the sets P1(m, X, P(S) — X') completely
characterizethe model m by partitioning the elementsaccording to which of the monadic predicates
that they satisfy and interchanging two elements within the same partition therefore changes none of
the logical properties of the structure, and v is the identity on Y. Hence H istruein m ; under the
original assignment augmented by assigning b to v. Then, by the inductive hypothesis, H istruein
ms under this augmented assignment, so JuH istrueinm s under the original assignment. We have
shownthat if G istruein m; then G istruein m,. The converseis similar.

The case G = Vv H remains. Since G islogically equivalent to -Jv—H the preceding arguments
suffice.
COROLLARY 6.7

If my; and m+ are similar structures with respect to S, then m, isamodel for S if and only if m is
amodel for S.
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LEMMA 6.8
Let S be asentence. If S has amodel of any cardinality at least 217(9)1g(S) then S has models of

every cardinality at least 217(9lg(S).

PROOF. Suppose S has a model m; with universe U, of cardinality at least 2/7(9)g(S). Then
|PI(my, X, P(S) — X)| > q(S) for at least one X C P(S). So, for each j > 21P(9lg(S) thereis
a structure mo similar to m; whose universe has cardinality j. Hence there are models for S with
every cardinality at least 217(9lg(S). [ |

The (upward) Lowenheim—Skolem theorem tells us that if a sentence of first-order logic has a
model of a particular infinite cardinality, then it has models of all larger cardinalities; it is not the
case that this holds for finite models. A simple counterexampleis the sentence which states that P
is an equivalence relation all of whose equivalence classes are of size two; the finite models of this
will necessarily have even cardinality.

DEFINITION 6.9
Let S be a sentence and suppose m is amodel for S. If the cardinality of m is at most 2 17(9)1g(s)
then we say m isasmall model for S. Otherwise we say m is alarge model for S.

DEFINITION 6.10
Let S be a sentence and suppose m; isasmall model for S. An S-extension of m isastructure,
ma, for MFOL_ such that for each subset, X, of P(.S)

PI(my,X,P(S) — X) C PI(my, X, P(S) — X)
and, if |PI(my, X, P(S) — X)| < ¢(S) then
PI(my,X,P(S) — X) = PI(ms, X, P(S) — X).

The coneof m; given S, denoted cone(m,.S), isaclass of structures such that ms € cone(my, S)
if and only if m+ isisomorphic to some S-extension of m .

The cone of m given S containsmodelsfor S that can be restricted to (modelsisomorphic to) m. We
can think of elements of cone(m, S) as extending m in certain ‘directions’ and fixing m in others.

EXAMPLE 6.11

Let S be the sentence 313w Pi(x1) V Pa(x2) which has ¢(S) = 2. So, if we have predicate
intersection sets containing two or more elements we can add arbitrarily many elementsto them and
preservethe fact that S holds. Consider

m = ({1,2,3,4},=",{1,2},0,0,...).
A visual analogy of cone(m, S) can be seenin Figure 8. The structure
ml = <{]‘72’37 4’ 57 6}’:m17{]"27 5}’®7 0"")

can be obtained from m, extending PI(m, 0, { Py, P»}) and PI(m,{P; },{P»}) by adding elements
to these sets (and the domain), but keeping PI(m, { P>}, {P;1}) and PI(m,{P;, P>}, 0) fixed.

EXAMPLE 6.12
Let S be the sentence Vz,Vzy z; = x5 and consider the structure my = ({1},="2,0,0,0,...)
which satisfies S. We have the following conefor m

cone(my,S) = {ma € STR : |PI(m1,,0)| = |{1}| = |PI(m2,,0)|}.
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cone(m,S)

P(S)={PP,}

q(S) =2

|PI(m, {},{P,P,})|=2
|PI(m, {P},{P,})|=2
|PI(m,{P,},{P,})|=0
|PI(m,{P,P,},{})|=0

FIGURE 8. Visualizing cones.

The class cone(my, S) contains only structures that are models for S but does not contain them all,
for example ms = (0,0, ...) satisfies S but m3 isnot in cone(m1, S). All modelsfor S arein the
class cone(ms1,S) U cone(ms, S). Inthissense, m; and m3 classify al the models for S. We can
draw a diagram expressively equivalent to S using information given by m ; and mg. This diagram
isadigunction of two unitary diagrams, shown in Figure 9.

H

d, d,

FIGURE 9. A diagram expressively equivalentto Vz 1Vzy z1 = 5.

LEMMA 6.13

Let S be a sentence and suppose m 1 is alarge model for S. Then there exists a small model, m s,
for S suchthat m; € cone(ms, S).

PROOF. Definem asfollows. Let X beasubset of P(S). If |PI(my, X, P(S)—X)| < ¢(S) define
Mx = PI(my,X, P(S)—X). Otherwisedefine M x to be somechosen subset of PI(m1, X, P(S)—
X)) with cardindlity ¢(.S). Thedomain of m is

U, = U My.
XCP(S)

The set Us has cardinaity at most 2/7(9)1q(S). Define, for each P; € P, P> = P N U,. We
will show that structure m, is similar to m;, and we will refer to the domain of m, by U;. Let X be
asubset of P(S). Now

PI(ms, X, P(S) — X)

N p=n () P&

PeX PieP(S)—X

(@M nt)n () (P0l)

PieXx PicP(S)-X
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= Un () PMnw.- (J P™)
Pex PieP(S)—-X

= Usn ﬂ Pimlﬁ(Ul— U lel) SinceU2 gUl
Pex PieP(S)—-X

= UynPI(mi, X, P(S) - X).

It followsthat PI(my, X, P(S) — X) C PI(my, X, P(S) — X).

Supposethat |[PI(my, X, P(S))| > ¢q(S). Thenthereisasubset of PI(m;, X, P(S) — X) with
cardinality ¢(S) that is also asubset of U, namely Mx. Inwhich case |PI(ms, X, P(S) — X)| =
q(s) and |PI(my, X, P(S) — X) N PI(ma, X, P(S) — X)| > q(S).

Alternatively, |PI(mq, X, P(S) — X)| < ¢(S). Inwhich case PI(m;,X,P(S) — X) C Us.
Hence

PI(my,X,P(S) — X) = PI(my, X, P(S) — X).
Let Y beasubset of P(S) that isdistinct from X. Now
PI(mi,X,P(S) — X)NPI(m;,Y,P(S)-Y) =0

and
PI(m,,Y,P(S)—-Y) C PI(m,Y,P(S)-Y).

Therefore
PI(my, X, P(S)— X)NPI(my,Y,P(S)-Y) = 0.

Hence m; and my are similar with respect to S. By Corollary 6.7, m» isamodel for S, som. isa
small model for S.
We now show that m isinthe class cone(msa, S). For each subset X of P(S), wehave

PI(my, X, P(S) — X) C PI(my, X, P(S) — X).

|PI(my, X, P(S) = X)| < ¢(5)

then
PI(my, X,P(S) — X) = PI(my, X, P(S) — X)

and it follows that m is an S-extension of m,. Hence m, isin the class cone(ms, S). Thus for
each large model, 1, for S there exists asmall model, m, for S such that m; € cone(ms,S). 1

LEMMA 6.14
Let mq beasmall model for sentence S. Then cone(m, S) only contains modelsfor S.

PRrROOF. It is sufficient to prove that any S-extension of m isamodel for S, since it is clear that
isomorphism preserves the sentences modelled by structures. Let m , be an S-extension of m;. We
will show that mo is similar to my, with respect to S. Since m» isan S-extension of m, it isthe
case that, for each subset X of P(.5),

PI(my,X,P(S) — X) C PI(my, X, P(S) — X)
and, when |PI(mq, X, P(S) — X)| < ¢q(S),

PI(my,X,P(S) = X) = PI(ms, X, P(S) — X).
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LetY C P(S)) suchthat}Y # X. Now

PI(ma, X, P(S) — X) N PI(my,Y,P(S) - Y) = 0.

Furthermore
PI(’ITLI,X,P(S) _X) g Pl(m27X7P(S) _X)7
thus
PI(my, X, P(S)— X)NPI(ms,Y,P(S)-Y) = 0.
Thereforem issimilar to my, with respect to S. By Corollary 6.7, m» isamodel for S. [ |

We will show that, given a sentence, S, there is a finite set of small models, the union of whose
cones gives rise to only and all the models for S. We are able to use these models to identify a
diagram expressively equivalent to S. In order to identify such afinite set we require the notion of
partial isomorphism between structures.

DEFINITION 6.15
Let m, and ms be structuresfor MFOL_ with domains U; and U, respectively. Let ) be a set of
monadic predicate symbols. If there exists abijectiony: Uy — U, such that

VP, € QVz € Uy (z € P & v(z) € P™),

then m; and m- areisomorphicrestricted to @ and v isapartial isomorphism.

LEMMA 6.16
Let S be a sentence and let my and m» be structures. If m; and m- are isomorphic restricted to
P(S) thenm, isamodel for S if and only if m+ isamode for S.

LEMMA 6.17
There arefinitely many small models for sentence S, up to isomorphism restricted to P(.S).

PRrOOF. (Sketch) There is afinite choice for the size of each of the predicate intersection sets (be-
cause they are small) and afinite number of these, given P(S). [ |

LEMMA 6.18
Let S be asentence and let m, and my be structures isomorphic restricted to P(S). If m; and m»
are small modelsfor S then cone(m1, S) = cone(ms, S).

PROOF. Since m; and m- are isomorphic restricted to P(.S), for each subset X of P(.S) it is the
case that
|PI(my,X,P(S)— X)| = |PI(ma, X, P(S) — X)|.

For each S-extension of m; there is an S-extension of m» to which m; isisomorphic, shown by
extending ~ in the obvious way. Similarly any S-extension of m 5 isisomorphic to an S-extension
of my. It followsthat cone(my, S) = cone(ms, S).

DEFINITION 6.19
Let .S beasentence. A set of small models, ¢(.S), for S is called aclassifying set of modelsfor S if
for each small model, m 4, for S thereisauniquem, in ¢(S) such that m; and m» are isomorphic,
restricted to P(S).

LEMMA 6.20
Let S be asentence. Then there exists a set of classifying modelsfor S and all such sets are finite.
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ProoF. Choose one small model from each equivalence class of small models under the relation of
partial isomorphism restricted to P(.S) to give ¢(S). Finiteness follows from Lemma 6.17. [ |

We will now show that the union of the cones of the modelsin ¢(S) is precisely the collection of
modelsfor S.

THEOREM 6.21

Let S be a sentence and ¢(S) be a classifying set of models for S. Then |J cone(m,S) is
méec(S)
precisely the collection of modelsfor S.

PROOF. By Lemma6.14, |J cone(m,S) only contains modelsfor S.

mee(S)
We must now show that all the modelsfor S arein | cone(m,S). Thefirst step is to show
méc(S)
that any small model, m;, for Sisin | cone(m,S). If m; € ¢(S) thenitistrivial that m; €

méc(S)

U cone(m,S). If my & ¢(S) then there is some small model m, € ¢(S) that is isomorphic,
mee(S)
restricted to P(S), to m;. By Lemma 6.18, cone(m1,S) = cone(ms, S). It follows that m, €

U cone(m,S). Findly wemust show that each largemodel, m 3, for Sisin  |J cone(m, S).
méc(S) méc(S)
By Lemma 6.13, there is a small model, m. 4, such that ms € cone(my, S). If mg € ¢(S) then we
aredone. If my ¢ ¢(S) then thereisan ms € ¢(S) such that my isisomorphic restricted to P(.S)
to ms. Thereforems € cone(ms, S). Thusal the modelsfor S arein  |J cone(m, S). Hence

méec(S)

U cone(m,S) isprecisely the collection of modelsfor S. |
mee(S)

To summarize, we have shown that every sentence, S, has afinite set of classifying models and
the union of the cones of these classifying models is precisely the collection of models for S. We
will now use these classifying modelsto construct a diagram expressively equivalent to S.

DEFINITION 6.22
Let m be a small model for a sentence S. The unitary a-diagram, d, representing m given S,
denoted REP (m, S) = d, is defined as follows.®

1. The contour labels arise from the predicate symbolsin P(.S):
L(d) = {Ll €eL:dP, e PP € P(S)}

2. Thediagramisin Venn form:

That is, d containsal possible zones.

3. The shaded zones in d are given as follows. Let X be a subset of P(S) such that
|PI(m,X,P(S) — X)| < q(S). The zone (a, L(d) — a) in Z(d) wherea = {L; € L(d) :
P; € X} isshaded.

SInfact, d isa B-diagram (every zone is shaded or inhabited by at least one existential spider) [13] except when S = T.
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L L L L,

d, d, d, d,

FIGURE 10. Constructing diagrams from models.

4. The number of spidersin each zoneis the cardinality of the set |PI(m, X, P(S) — X)| where
X givesriseto the containing set of contour labelsfor that zone. Moreformally, the set of spider
identifiersis:

SI(d) = {(n,r) : 3X X C P(S) A |PI(m, X, P(S) — X)| > 0A
n=|PI(m,X,P(S)—X)|Ar={(a,L(d) —a) € Z(d):a={L; € L(d) : P, € X}}}.

Let ¢(S) beaset of classifying modelsfor S. Define SD(S) to beadigunction of unitary diagrams,
given by
spiS)= || rerm,s),

méec(S)

unless ¢(S) = (), inwhich case SD(S) = L.

EXAMPLE 6.23

Let S bethe sentence 3z Py (x1) V Va1 Py (z1). Tofind aclassifying set of modelswe must consider
structures of all cardinalitiesupto 21{713}1 x ¢(S) = 2' x 1 = 2. Thereare six distinct structures (up
to isomorphism restricted to P(.S)) with cardinality at most 2. Four of these structures are models
for .S and are listed below.

1. m; = <0,®, >,

2.my = <{1},:m2, {1}70,®7 >!
3.my = ({1,2}, =™, {1}, 0,0, ...),
4 my = ({1,2}, =™, {1,2},0,0,...).

Therefore, the class cone(my, S) U cone(ms, S) U cone(mg, S) U cone(my, S) contains only and
al the models for S. We use each of these models to construct a diagram. The models m 1, mso,
mg and my4 give rise to the diagrams d,, d», d3 and d, respectively in Figure 10. The diagram
dy U ds U ds U dy isexpressively equivalent to S. This is not the ‘natura’ diagram one would
associate with S. We note here that m4 is an S-extension of ma, S0 cone(ma, S) C cone(my, S).
The sentence S is, therefore, expressively equivalent to d; U d» U ds. In general, when constructing
adiagram expressively equivalent to S we only need to draw a diagram for each model in ¢(S) that
is not (isomorphic to) an S-extension of some other model in ¢(.S).

In fact, we can make further refinements to our approach. We note that d» LI d3 is semanticaly
equivalent to ds in figure 11. By capturing this kind of property at the model level, which may
involve defining an algebra of structures, we could further reduce the number of models required to
define SD(.S). We would, though, need to mark each predicateintersection set with whether it could
be extended indefinitely.
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ds
FIGURE 11. Refining the approach.

THEOREM 6.24
Let S beasentence. Then S is expressively equivalent to SD(S).

PROOF. Let ¢(S) be a set of classifying modelsfor S. For each m; € ¢(S), we will show that the
models for the diagram REP (m4,S) are in bijective correspondence (under i defined in Lemma
4.2) with the structuresin cone(m, S). To do so, we show first that any model for d = REP(m1, S)
isin cone(my, S). Second we will show that the inverse, under h, of any elementin cone(m 1, S) is
amode for d.

Let (U, ¥) beamodel for d. We will now show h(U, ¥) € cone(m, S). To do so, we will show
that h(U, ) isan S-extension of some small model, m, for S and that m- isisomorphic, restricted
to P(S), tom;.

We define m as follows. Let X be asubset of P(S). Choose z = (a,b) € Z(d) such that
a={L; € L(d): P, e X}. Then,since (U, 7) =4 z,

¥ (2)| = S({=},d).

Now
()] = | ﬂ U(L;) N ﬂ (L)
Li;ca L;eb
= IO N B
PeX PeP(S)-X
= |PI(h(U,¥),X,P(S)— X)|
> S({z},d)

|PI(m1, X, P(S) — X)|.
Therefore there exists an injection,
fx:PI(mi,X,P(S)—X) — PI(h(U,¥),X,P(S) — X).

Choose such an injection, fx. We define the domain of m - to be Us; where

Us = U im(fx)-

XCP(S)

We note that U; C U and, since m; is a small mode for S, |U| < 2/P(™lg(S). Moreover,
|Us| = |Uy| (where U, isthe domain of m ). Next we define, for each P; € P,

pre = pMUY n,.

(2
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We defineabijection, y:U; — Uz, byy = |  fx. Itisstraightforward to verify that v isa
XCP(S)
partial isomorphism. It followsthat cone(ms, S) = cone(m., S), by Lemma6.18.
We now show that h(U, ¥) isan S-extension of m». Let X be asubset of P(S). Now

N p™n () B™

PieX PicP(S)-X

= N @m0 ) @Yo
PeX P,cP(S)-X

= Un (| P00~ | PV

P,eX PiGP(S)fX

= Un (| PM""nw- |y PMPY osincel,CU
PeX PeP(S)—X

= U, nPIh(U,¥),X,P(S) - X) (1)

PI(ms, X, P(S) — X)

It followsthat PI(my, X, P(S) — X) C PI(h(U,®), X, P(S) — X).

In order to show that (U, ¥) is an S-extension of m,, al that remains is to show that when
|PI(m2, X, P(S)— X)| < ¢q(S) we have

PI(ms, X, P(S) — X) = PI(W(U, ¥), X, P(S) — X).
Suppose |PI(ms, X, P(S) — X| < q(S). Inwhich case |PI(m1, X, P(S) — X)| < ¢(S), since
|PI(TTL1,X,P(S) _X)| = |PI(m27XvP(S) _X)|
(which follows from the fact that ., and m» are isomorphic restricted to P(S)). By the definition
of d,thezonez = (a,b) € Z(d) wherea = {L; € L(d) : P; € X} isshaded. Since (U, ¥) |=q4 2,
|¥(z)| = S({z},d). Therefore
[¥(2)] = [PI(my, X, P(S) — X)|

and it follows that fx is bijective. Thus PI(h(U,¥), X, P(S) — X) = im(fx). Therefore
PI(h(U,¥),X,P(S) — X) C Uz and we deduce from (1)

PI(ms, X, P(S) — X) = PI(W(U,¥), X, P(S) - X).

Hence h(U, ¥) isan S-extension of m. Therefore h(U, ¥) € cone(ms, S). Therefore, by Lemma
6.14, h(U, ¥) € cone(ms, S) = cone(my, S). Hence

{h(U,®): (U,®) € INT A (U, ¥) = REP(m1,S5))} C cone(my, S).
We must now show that
{h(U,®): (U,®) € INT A (U, ¥) = REP(m1,S5))} D cone(my, S).

Letms € cone(my,S) andlet z = (a,b) € Z(d). Weshow h=1(ms) = (Uz, ¥) 4 2. Define X
to be the subset of P(S) that satisfiesa = {L; € L(d) : P, € X}. Sincemsy € cone(m;,S), the
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structure mo is isomorphic to some S-extension, ms say, of m;. Now PI(mq,X,P(S) — X) C
PI(ms, X, P(S) — X), therefore there exists an injective map

Fx:PI(my, X, P(S) — X) = PI(my, X, P(S) — X).

So
W (z)[ = [PI(m2, X, P(S) - X)|
> |PI(my, X, P(S) — X)|
= S{z}a).

Supposethat z isshadedind. Then |PI(m1, X, P(S) — X)| < ¢(S) and
PI(my,X,P(S) — X) = PI(ms, X, P(S) — X).
In which case thereis abijection
fx:PI(my,X,P(S) — X) — PI(ms, X, P(S) — X).

Therefore |¥(2)| = S({z},d). It follows that b= (m2) |=4 2. Since z was an arbitrary zone we
deduce, by lemma5.7, h =1 (ms) | d. Therefore

{h(U,®) : (U,¥) e INT A (U,9) = REP(m1,S)} D cone(my, S).

Hence
{h(U,9): (U, ) e INT A (U, ) = REP(m4,S)} = cone(my, PS).
It followsthat SD(S) is expressively equivalentto S. [ |

THEOREM 6.25
The language of spider diagramsand MFOL - are equally expressive.

7 Conclusion

In this paper we have identified a fragment of first-order predicate logic equivaent in expressive
power to the spider diagram language. To show that the spider diagram language is at most as ex-
pressiveas MFOL_, weidentified asentencein MFOL_ that expressed the same information as
agiven diagram. To show that M FOL— isat most as expressive as the language of spider diagrams
we considered relationshi ps between model s for sentences. We have shown that it is possibleto clas-
sify all the modelsfor a sentence by afinite set of models. We then used these classifying modelsto
define a spider diagram expressively equivalent to S. Aninteresting area, yet to be explored, is how
the reasoning rules for first-order logic compare with the reasoning rules for spider diagrams.
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