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0. Introduction

Alternation of quantifiers is a common measure of problem complexity either in the subrecursive setting or in
the undecidable one. Thus, the polynomial, arithmetical and analytical hierarchies are semantically defined
in terms of machines that make queries to oracles in a certain class, but are syntactically characterized by
quantifier alternation. A formula like

3z1Vz3...Qzn R(Z1...2Zn,Y1---Yi) (1)

where Q is a existential or universal quantifier depending on the parity of n, defines a subset of N * beloriging
to TP (in the polynomial hierarchy, see [1] ch. 8 for this hierarchy of complexity classes) if the sizes of the
z; are polynomial in the size of (y1...v,), and R is a recursive relation which is computable in polynomial
time. Also, it defines a set in X, (in the arithmetical hierarchy of Kleene, see (8]) if no condition is imposed
on the z; or on R aside from being recursive.

On the other hand, a model of computation and a theory of recursiveness that allowed an ordered ring
or field as alphabet for the space of admissible inputs has been recently introduced by L. Blum, M. Shub
and S. Smale in (3], which emphasised the case when the ring is the field of real numbers, R. In this case, if
we take a formula like (1) where R is a recursive relation decidable in polynomial time, we obtain a subset
of R which is in BF in the polynomial hierachy (which is defined from P and NP in the same manner as
the polynomial hierarchy in the boolean case).

This last fact contrasts with what happens over the integers, whose existential theory is undecidable,
and is a consequence of the existence of quantifier elimination in the theory of the reals. In particular, it
leads to the question of finding a syntactical characterization of the arithmetical hierarchy over the reals.

In section 1 of this paper we provide such a characterization in terms of alternations of countable
connectives (conjunctions and disjunctions) for formulee in the infinitary logic £,,,1, that permits such
connectives but no quantifiers. From such characterizations we show the existence of complete problems for
each level of the hierarchy, and we exhibit some more natural problems that are complete in the low levels.

In order to classify some undecidable problems, one is led to consider expressions that merge infinitary
connectives with quantification over variables denoting real numbers, and these expressions do not fit in
any level of the arithmetical hierarchy. In section 2, we show that another arithmetical hierarchy can be
defined by using nondeterministic machines and that the whole arithmetical hierarchy is contained in one of
the lowest levels of its nondeterministic counterpart. We also give some complete natural problems in the
low levels of this hierarchy. In section 3 we relate both hierarchies with classes of subsets of R currently
studied in descriptive set theory. This allows us to obtain some more results concerning them.

TPartinlly supported by the ESPRIT BRA Program of the EC under contract no. 3075, project ALCOM, DGICyT PB 89/0379
and UPC PR9014.



1. The arithmetical hierarchy and infinitary logic

In what follows, we assume the reader is aquainted with the theory of computability and complexity over the
real numbers introduced in [3]. Thus, concepts like real Turing machine, recursive or recursively enumerable
subsets of R™ and alike will be freely used. We just recall that by R™ we denote the direct sum @;-, R
and that we denote by M(z) |* the fact that the machine M with input z has halted after ¢ steps, and
by M(z) 1! its negation. Also, in many situations, we shall say simply “machine” instead of real Turing
machine expecting that no confusion can arise.

We begin by recalling that in [6], C. Michaux states a characterisation of r.e. subsets of R® in terms of
countable unions of semialgebraic sets. However, no proof is provided there and, since this characterization

together with some of the central ideas underlying the proof are central for what follows, we now give one
possible proof.

Definition 1.1. A semialgebraic set S is a subset of some finitely dimensional real affine space, S C R",
for n < oo, such that there is a finite number of polynomials f;; € R[X;,...,X,] and sign conditions
€ij € {> 0,= 0, < 0} such that the following equality holds :

S= L'J n{(zl, .., 2a) ER™ | sign(fij(z1,...,2a)) = €ij}

Thus, the class of semialgebraic subsets of R" is the closure under finite Boolean operations of the class
of subsets defined by polynomial inequalities in the variables X;,..., X;,. If all the polynomials f;; have
coefficients in a subfield H C IR we shall say that S is defined over H.

Semialgebraic sets are the main object of study in real algebraic geometry. For a comprehensive intro-

duction to the subject see [2] and [4].

Definition 1.2. A language L is said to be finitely generated if there is a finitely generated field
extension Q(S) of Q contained in R and a countable family of semialgebraic sets {4, C R'"} defined over
Q(S), such that

L= U Aqn

n€N

This notion describes the geometrical structure of r.e. sets, as we shall see in the following theorem. We
firstly prove a lemma which is of general interest.

Lemma 1.38. For every partial mapping s : IN —— IN there is a machine M which compules s when
restricted to IN.

Proof: Let us recall from [3] section 1, example 6, that given a set S C IN we can decide whether a real
number z belongs to S. Now, we consider the polynomial

fam) = “ X2 0t m) + (m+ 1),

the set S = f(graph(s)), and the algorithm

input(n)
m:=0
while f(n,m) ¢ S do
m:=m+1
od
RETURN(m)
This algorithm computes a(n). "



Theorem 1.4. For any subset L C R®, L is r.e. iff L is finitely generated.
Proof:
(=) Suppose that L is recognised by a machine M. We know that for each pair (¢,n) € IN?, the set

(<)

Lin:={z € R™ | |z| = n and z is accepted by M in time t}

is a semialgebraic subset of R™. Moreover there is a finitely generated field extension Q(a,...,a,) of
Q, where {a;,...,a,} is the collection of all constants appearing in the description of M, such that for
all n € N, I, ,, can be described by a finite number of polynomials in Q(ay,...,a,)[X1,...,X,] . Thus,
we have that

L=(JIa)

from where we deduce the statement.

Let us now suppose that L is finitely presented. Then there is a finite extension Q(S) = Q(ay,...,a,)
of Q and a countable family of semialgebraic sets defined over Q(S), {4, C R%"} such that L is the
union of the A,’s.

For each n the set A, can be described as a finite system &, of equalities and inequalities (as in the
definition) involving polynomials with coefficients in Q(S). Thus, for each n, A, is described by a family
{(£5:€5)}

where €} is a sign and f}} € Q(S)[Xy,. .., X4,]-
Now, each f7} can be expressed as a polynomial in Q[ay,...,ar, X1,..., Xa,] and can then be coded as

an element of N*°. Thus, the same happens with the whole family {(f5},€[;)}. We therefore consider
the function

@¢:N -5 IN®
n — the encoding of {(f7},€;)}
together with the machine given by

input(z)
n = |z|
t:=1

accept := false
while not accept do
compute {(ff;,€!;)} := o(t)
if d; = n then
for every (i, j) evaluate f3}(ay,...,ar,21,...,2n)
if the evaluated values satisfy ®,, then
accepl := ilrue

fi
fi
od
ACCEPT
The preceding machine accepts exactly L. "

Remarks 1.6. We want to attract the reader’s attention to the fact that the preceding theorem provides a
particular finite representation for r.e. sets. In fact, if a r.e. set L is given by

[ <]

U 4.

n=1

where all the A, are defined over Q(ay,...,a,;), we can represent L by the point (a1,...,a,,s) where s is
the real number coding the function ¢.

We now define the arithmetical hierarchy in the real setting, in the same manner as it is classically

defined, i.e. using real Turing machines with oracles.



Definition 1.6. Let X be the class of recursive sets. We inductively define X34, to be the class of
sets accepted by real Turing machines that consult an oracle in ;. Also, we define IIx to be the class of
sets whose complements are in I, for every k > 0, and A = Xy NII;. The class AH = Up>oZ; is called
the arithmetical hierarchy.

The standard relativization arguments mutatis mutandis allow one to prove that the inclusions between
the different levels of the hierarchy are strict.

Proposition 1.7, For every k > 1 the following inclusions are sirict:
i) Tx C Akt
‘l‘l) O C Ag+1
) A C i
iv) Ay CIO, ]

Our next concern is to characterize syntactically the classes in AH. To do so, we begin by recalling
that formulas in the logic £, ; are constructed from the atomic ones by using countable conjunctions and
disjunctions. The logic £,,,; is an example of an infinitary logic, and the reader interested in such logics
should consult [5).

Formulee in £,,,,; can have a quite complicated structure of nested infinitary connectives, corresponding
to the countable ordinals. Since we shall only deal with a class of formula possesing a simpler structure, we
shall give a name to this class.

Definition 1.8. For any subfield F of R we define the arithmetical formule of L, ,; in the theory of
ordered fields with constants in F to be those of the form

V /\ u nrnn(T1---Zn) (2)

or of the form

/\ V U Pnions (1. .2Zn) (3)

where @p,..n\(Z1...25) is a8 quantifier-free formula with constants in F whose number of free variables n
depends on the tuple (n;,...,n;), and | | is a conjunction or disjunction depending on the parity of k, the
number of connective alternations.

Remarks 1.9. i) The requirement that ¢n,..n,(Z;-..2a) be quantifier-free is not strictly necessary since
any first order formula in the theory of the real closed fields has a quantifier-free equivalent one.

ii) In the same manner as in remark 1.5, we observe now that any formula like (2) or (3) with constants
in a field F = Q(ay,...,a,) can be coded by a point (a,...,a,,a) € R"*!. This is the main point for our
syntactical characterization of the sets in the arithmetical hierarchy.

We finally recall that we say that a point (ai,...,a,) satisfies a system of equations and inequalities
®(z1,...,2m) when n = m and the closed formula &(a,...,a,) is a tautology. It is important to require
the first condition since we want that finite formule define semialgebraic sets in R® with finite dimension
and not infinite cylinders over a semialgebraic basis. We extend this notion to formulee in £,,,,; by defining
satisfaction of a countable disjunction as satisfaction of at least one of its terms, and satisfaction of a
countable conjunction as satisfaction of all of its terms. The fact that a point @ = (a,,...,a,) in R®
satisfies a formula ®(z1,22,...) in £,,,; will be denoted by R | ®(a).



Proposition 1.10.
i) For every k > 1 and for every set S € I, there is a finitely generated eztension F of Q contiained in
R and a formula ®5 like (2) with constants in F such that S = {z € R® | R |- &(z)}.
i) For every k > 1 and for every set S € Iy, there is a finitely generated eztension F of Q contained in
R and a formula ®5 like (3) with constanis in F such that S={z € R™ | R | &(z)}.
Proof: We just prove the first statement. The second follows straight.
(k=1) Directly follows from theorem 1.4.

(k>1) Let S € Zx. Then, thereis a set A € Zx_; and a machine M which accepts S making queries to
A. Now, if we add a w-ary symbol relation Orac(z) to our language (+,—, #, /, <, =), the same arguments

used to prove the “if” part of theorem 1.4 allow us to describe S as the set of the z € R satisfying a
formula

V Yn(Z1...24,) (4)
n=1

where now the atomic subformule of ¥, are of the kind ¢t > 0, ¢ = 0 or Orac(z) for any term t and any point
z € R™. By the induction hypothesis, Orac(z) is equivalent to a formula

VAL enn(zi..2a) (5)

ny=1ny=1 np=1

We now substitute (5) in (4) and since infinitary connectives behave like quantifiers with respect to the
finitary connectives, by standard manipulations we can now “push them to the outside of the formula”
getting a new one of the stated form. "

Proposition 1.11. For every k > 1 the problem

St = {(®,2) | ® is a formula like (2), z € R™ and R = ®(z)}
belongs to X, and the problem

P, ={(®,2) | ® is a formula like (3), z € R® and R | &(z)}

belongs to .

Proof: As before we shall only prove that Sy € . For k = 1 the part (<=) of theorem 1.4 proves our
statement.

For k > 1, for every & like (1) and for every n € IN we shall denote by &, the subformula

/\ I_I wn.n,...n.(zl ‘e z,,)

nz=1 nE=1

We have that & = \/p_, ®,, and from this equality and the fact that Sx_, € Zx_; by the induction
hypothesis, we design the following machine

input(®, z)

n:=1

accept := false

while not accept do
compute &,
if (®n,2z) € Sk—1 then

accepl := irue

fi

od

ACCEPT

that accepts Sy by querying a set in X}_;. "



In the rest of this section we exhibit some problems that are complete in the first levels of the arithmetical
hierarchy.

Let INJ be the set {z € R* | the function computed by M is injective}.
Theorem 1.12. The set INJ is II, -complete.
Proof: We first note that the set belongs to II; since z €INJ if and only if it satisfies

AN,

On the other hand, we can map any formula

. VzaVyr .. Vym Mz(2) 10 VM (y) 1* VM:(z) = Mz (y)

||>3
u>8

o(v) = /\ we(v)

and any z € R® to the coding f(®, z) of the following machine

input(y)
= |yl
fori=1tondo
if ~y;(z) then
RETURN(1) and HALT
fi
od
RETURN(y)

Clearly, if ®(z) is true, then the function computed by M4, ) is injective, since it is the identity. On the
other hand, if ®(z) is false, then there is a t € IN such that ¢;(z) is false, and so, the function computed by
M (3,5 returns 1 for every y such that |y| > t. That shows that INJ is II;-hard. ]

A classical undecidable problem in the Boolean setting is to decide wheter the language recognized by
a given machine is finite. Of course, this is equivalent to saying that such a language is contained in {0, 1}*
for some k € IN, and then that the language can be recognized by a “finite” machine (a circuit for instance).
This last problem is also interesting in the real case since, in particular, Blum, Shub and Smale introduced
a class of finite machines (see [3] §2). So we define the problem FIN to be the set
{z € R® | the set acepted by the machine M, is contained in R* for some k € N}
As in the Boolean case (cf. [8] §14.8) we have the following result

Theorem 1.183. The set FIN is ;-complete.

Proof: We first note that FIN is indeed in ¥ since it can be written in the following way

VA,

Now, we consider the reduction which associates with any formula of the form

..Vz,; (m < nV M; has not accepted (z;...zn,) after ¢ steps)

||>8
||>8

.<8
>3

®(v) = ®ie(v)

i=1

1
and any z € R® the coding f(®, z) of the following machine

input(y)
= |yl



fori=1ton do
t:=1
while not accept do
if —150.";(2) then
accept := true
fi
od
od
ACCEPT
In case that z satisfies ® there is a j € IN such that for every ¢t € IN we have that ¢;(z) is true, and then,
for all inputs with sise greater than ¢, the machine My (4 ) will loop forever, showing that f(®,z) €FIN.
On the other hand, if z does not satisfy that formula, it is immediate that M;(s .) accepts all R* and that
finishes our proof. n

We recall that a subset S of R*® is bounded when there is a constant X € IN such that for every z € S
Izl =23 +... +z|2,| < K. Thus we define BOU to be the set

{z € R | the language accepted by M, is bounded}

for which we can prove the following result.

Theorem 1.14. The set BOU is L;-complete.
Proof: The membership in £y comes from the fact that BOU can be expressed by the formula

<8

00 00
/\ /\ Vz1...V2, (||(215.--y2n)|| < K V M; accepts (2;...2,) in less than ¢ steps)
K=1n=1t=1

To see the hardness in the class, just consider the reduction which associates with any formula

<8
>3

®(v) = wi,e(v)

i=1t=1

1
~
1l

and any z € R® the coding f(®, z) of the following machine

input(y)

K :=||y|]?

fori=1ton do
t:=1

while not accept do
if —up,-,,(z) then
accept := true
fi
od
od
ACCEPT



2. Nondeterminism strikes again

If we try to classify the problem TOT of deciding wheter a given machine computes a total function, we find
that the problem is expressed by a formula like

(e} (o]
/\ Vvy ...V, V (M; halts on input (v; ...v,) after less than ¢ steps)
n=1 t=1

but no way seems to be available for moving the quantifiers inside the scope of all infinitary connectives
(to further eliminate them) and thus, no membership in any class in AH clearly follows. However, the
membership of a given machine in TOT can be disproved by a real Turing machine with an oracle in ¥, if
we allow this machine to make nondeterministic guesses. This property motivates the following definition.
Definition 2.1. Let T{ be the class of recursive sets. We inductively define £}, | to be the class of
sets accepted by nondeterministic real Turing machines that consult an oracle in EJ. Also, we define II¥
to be the class of sets whose complements are in £f, for every k > 0, and AY = T NII{¥. The class
NAH = Ux>oZ} is called the nondeterministic arithmetical hierarchy.

Again, we have the very first relation between classes in NAH.

Proposition 2.2. For every k > 1 the following inclusions are strict:
i) oY cal,
uw) O c A,
ii) AY czl
i) AY c oy "

A syntactical characterization of NAH can also be done, this time by means of classes of formulz in
the logic £, ., an extension of £,,,; obtained by allowing also first order quantification.

Definition 2.3. For any subfield F of R we define the arithmetical formulee of L,,, ., in the theory of
ordered fields with constants in F to be those of the form

oo oo oo
v 331_1 8900 321',-1 A V22‘1 o .szlr, i LJ Pn,...nx (y1 000 y,,) (6)
n;=1 na=1 ny=1
or the form - - -
A V:Bl‘l 0o .V:Bl‘,-l V 322,1 000 322',-2 60C LJ Pni...nx (y1 00 y,,) (7)
n;=1 na=1 nx=1

where pn,..n,(¥1-..¥n) is a quantifier-free formula with constants in F whose number of free variables n

depends on the tuple (n,,...,n;), and | | is a conjunction or disjunction depending on the parity of k, the
number of connective alternations.

Lemma 2.4. For any formula like (6) or (7) there is an equivalent one with the same form and such
that forany 1< j<k-—1, r; =n;.

Proof:  Let us consider a formula like (6)

p= V 3z;...32,, wn(zl,“')zi’ug)
n=1

To every pair (n,r,) we associate my, = 2"3"». Clearly, m,, > maz{n,r,}. Now,if S = {m, |n € N}, we
define

Jdz,...3zm ‘;r(zlv <oy Tm, y)
1

p=

<8

where .
o= {0 )V <O o3
™7 (V=12 <0), ifm¢s}

Clearly, @ is equivalent to ¢ and repeating this procedure with the ¥,, we eventually get a formula as stated.n

8



As in the deterministic case, we have the following result.

Theorem 2.5. For every k > 1 the problem

Sk = {(®,2) | ® is a formula like (6), z € R™ and R = &(z)}
1s }3{:’ -complele, and the problem

P = {(®,2) | ® is a formula like (7), z € R™ and R = $(z)}

is IY -complete. "

Our next goal is to relate the deterministic arithmetical hierarchy to the nondeterministic one.

Remarks 2.8. We have seen in lemma 1.3 that any partial recursive function can be computed by a real
Turing machine since it can be coded in a real number. On the other hand, any real number can be considered
to code a function from the naturals to the naturals. In the sequel, if z € R, we shall denote by [z] such
function and we just recall here that given »,m € IN and z € R, the predicate [z](n) = m is recursive.

Lemma 2.7. For every k > 2 and for every ¢ € II; there is a formula @ equivalent to ¢ of the form
Jzv and such that if k = 2 then ¢ € II;, else ¢ € IIx_».

Proof: Let

o]
oL Snnm®)

<8

o0
o= A
nx=1ny_;=1 n;=1
o0
= A V @i (Y)
nx=1ny_;=1

For every y € R™ we have that

R Eo(y) < Vng €N 3ng_1 € N s.t. &,, a,_,(y) holds
<= 3f:IN - N total s.t. Vi € N &; ;(;)(y) holds

< RE3z /\ /\ (m # [2](3) V ®i,m(v)

i=1lm=1

Now, since m # [z](s) is a recursive predicate, we can write it as a countably conjunction and by contracting
the three conjunctions in one, we get the desired result. "

Proposition 2.8. AH C aY.

Proof: By repeated applications of the preceeding lemma, it easily follows that VkII; C =%. Then, since
By C Oy, it follows that VkE, C =Y. Taking complements we get that VkE; C IIY and II; C O from
where we deduce the desired result. [

We close this section classifying a couple of problems inside NAH.



Theorem 2.9. The set TOT is IY -complete.
Proof: We have already seen that it belongs to IIY. For the hardness, just consider for any formula

[o ¢} [o ]
® = /\ Vvy...Vy; V wi (2, v)
i=1 t=1
and any z the code f(®, z) of the machine

input(y)
n:=|y|
t:=1
accept := false

while not accept do
if ¢; ¢(2,y) then
accept := true
fi
od
od
RETURN(y)
which computes a total function if and only if z €TOT. .

Theorem 2.10. The set EXH= {z € R™ | the function computed by M, is ezhaustive} is 1Y -complete.
Proof: The set belongs to IIY since it can be written by

00 (o o] 00
/\ Vv, ...V, V V Jw; .. .Yw, (Mz(w1...wy) |' returning (vy...vs))
n=1

m=1t=1

The reduction given in the preceding theorem shows also the hardness of this problem. =

3. Real Turing machines and descriptive set theory

The study of subsets of R, R", @R or [ R lies at the core of what is called descriptive set theory. Sets
of real numbers are classified there according to a certain measure of the complexity of their descriptions.
A central réle is played by the Borelian sets which are those generated from the open ones by performing
complements, and countable unions and intersections, and also by the analytical sets which are continuous
images of Borelians. In this section we shall prove that the aritmetical subsets of R are exactly the Borelian
ones of finite order, and that sets in class L} are exactly the analytical ones. From those results we shall
deduce that the inclusion AH C AY is strict.

We thus begin by recalling some basic notions of descriptive set theory (the interested reader can find
a good exposition of the topic in [7]).

Definition 8.1. A Polish space is any topological space homeomorphic to a separated, complete metric
one. A Polish space is said to be perfect if it has no isolated points. Thus the real field is a perfect Polish

space. On the other hand, the class of Polish spaces is closed under countable sums and products as well as
under closed and open subspaces.

Definition 8.2. The class of Borelian subsets of a Polish space X is the smallest class of subsets of X
containing the open sets and closed under complements, countable unions and countable intersections. A
Borelian subset of X is said to be of finite order when it can be obtained from the open sets of X by a finite
number of such operations. A subset A of a Polish space X is said to be analytical when there is another
Polish space ) and a continuous function f: Y — A such that A = f()). In the case that ¥ = R™ we
shall denote these three classes of sets by Borg, Borf and Analyticaly respectively.

10



Theorem 8.3. The class of Borelian subsets of finite order of R™ coincides with the class of arith-
metical sets.

Proof: Since open sets are in X; and AH is closed under finitely many complements, countable unions
and intersections, we get that borelian sets of finite order are arithmetic.

In order to prove the converse, it is enough to show that any semialgebraic subset of R" is borelian of
finite order. Now, isf S is such a set, it can be described by a Boolean combination of equations of the form

f(z1,...,2a) =0 or  f(z1,...,24) >0

The first formula defines a closed set of R* and so, a Borelian one of finite order. The second one can be
written as

V fesnza) 2 3
k=1

and thus as a countable union of closed subsets of R, again Borelian of finite order. The conclusion now

follows straightforwardly. s
Theorem 3.4. The sets in Y are precisely the analytical sets in R™.
Proof: We shall rely on a characterigation of analytical sets as projections of Borelian sets of finite order.

In fact, we recall that if X is a perfect Polish space, and ) is any other Polish space, a subset P C Y is
analytical if and only if there is a Borelian set of finite order @ C X x Y such that P is the projection of @

(see [7] 1G.12). We now take X to be R and Y to be R™. Now, by the preceding theorem, P is analytical
if and only if there is an arithmetical formula ¢(z, y) such that

P={yeR*™ |R | 3z ¢(z,y)}

By repeatedly aplying lemma 2.7. we can transform ¢(z,y) into a £} formula from where we deduce that
analytical subsets of R™ are in B¥.

For the converse, let us consider a set S defined by a formula
[ o) oo
V dz,...3z, A vn,t(zli CEEY 2'.,!])
n=1 t=1
and the set B C R® x R* defined by
U ﬂ ‘Pﬂ“(zll ceey &n, y)
n=1¢=1
Since that last formula is arithmetical, B is a borelian set. Now, we consider the projection

: R xR® - R®

(z,9) —y
and it is trivial that S = #(B), which proves that S is analytical. »
Corollary 3.5. The sets in AY are ezactly the Borelian ones.
Proof: It is well known that a subset of a Polish space is analytical and co-analytical if and only if it is
Borelian ([7] 2E.2). .

Corollary 3.6. The inclusion AH C AY is strict.

Prooft: Let us consider the set B = {(k,z) | z € S }. Trivially, B is Borelian, since it is the union of a
collection of sets isomorphic to the Si’s. On the other hand, let us suppose that B € AH. Then, there is a
k such that B € I;. But using B as an oracle, we can decide Si4, and thus this set should belong to ;4
contradicting proposition 1.7. =

11



We can then summarize the relations between both arithmetical hierarchies in the following diagram
where the arrows denote strict inclusions.

=y Analyticalg,
I I
o oM T ... zy =y
| / N / N / N / N
A =R A, AH - AY AY NAH
N / N 7 I\ / N 7/
oo o, o, ... Borf;_ Borr oy oy
l
oy

Remarks 3.7. More relations can be pursued between the classes defined here and classes of real sets
studied elsewhere. Forinstance, as a consequence of theorem 3.4 we have that the part of the nondeterministic
arithmetical hierarchy constructed from £ coincides with Suslin’s projective hierarchy ([7] 1E). Also, subsets
of R (or R®) can be defined using classical recursion theory: an open set is semirecursive when the basic
open sets (open balls with rational center and radius) that are contained in it is a recursive set. From
this class a whole hierarchy is obtained, an it can be seen that its classes are strictly contained in their
corresponding classes within AH.
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