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Abstract
We investigate modal systems for knowledge and belief, taking as a starting point a logic that was originally introduced
by Kraus and Lehmann. We derive several properties and discuss (their) consequences for the epistemic operators. Kraus
and Lehmann observed that adding the axiom B,(f —+ B,K,(p to the system gives a collapse of knowledge and belief:
(Kitp +* Bi<p). We investigate the cause(s) of this problem and suggest a 'similar' system that does allow the same
axiom without the mentioned collapse. We consider as the main benefit of this paper, however, the techniques that arc
developed to come to this solution. It appears that applying basic correspondence theory to a multi-modal system allows
a systematic examination of possible combinations of epistemic operators.

Keywords: Combined epistemic and doxastic logic, positive and negative introspection and extraspection, multi-modal
logic, correspondence theory.

1 Introduction
We discuss (multi modal) logics for both knowledge and belief which are to be interpreted on
Kripke structures. The basic system for our discussion is introduced by Kraus and Lehmann
[19]. Knowledge (K) and belief (B) are both interpreted (as necessity operators with respect
to two binary relations) over Kripke structures. (For an introduction to modal logic, see [4] or
[18].) We denote their basic system with KBCD- What is interesting in KBCD is, that it does
not only give notions of knowledge and belief (which on their own are rather familiar ones—see
[9] or [23,24]), but also some interaction properties between the two (an alternative approach to
have both notions in one system is to define one in terms of the other—cf. [21] or [27]).

In the literature of philosophical logic, systems for knowledge and belief were studied in the
1960s (cf. [10]). In the 1980s, these notions became one of the central themes in the field
of AI [9] and are thus gaining their place in the field of computer science [23, 24]. It now
seems conventional to take the system 55 for knowledge and weak S5 (or KD45) for belief (cf.
[9,10, 23, 24]). To be more precise, it is customary to ascribe the following properties to belief.
One does not believe false assertions (-<B±), believers have positive- (B(p —> BBip) as well
as negative introspection (~>Bip —} B-<Bip). Knowledge should moreover also be veridical:
(Kip -> (p). We will give a rather systematic classification of properties like these in Section 6.
To mould the notions into a logical system, one usually adds the inference rules modus ponens
(h tp, h (p -t rp => h xp) and necessitation for K as well as B (h ip ^> r- K(p, h ip =• h Btp).

Once we have given the basic system KBCD for knowledge and belief, we investigate some
of its properties. One important theme in this paper is a problem that is also mentioned in [19]. It
appears that adding the axiom (Bcp -+ BKip) to KBCD yields (K<p <-̂  Btp), which is clearly
undesirable. We will develop some techniques (in Section 4) to study this problem systematically,
and suggest some solutions. These techniques are presented in a slightly more general setting
than needed for this problem only, but the generalizations are obtained in a very natural way.
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In Section 2 we introduce KBCD and show the system in action by deriving some theorems.
We will briefly discuss the impact of some of the properties of KBCD on the notions of knowledge
and belief. In Section 3 we give a Kripke semantics for a 'finitary part' of the logic, and prove
completeness: in particular, we will construct a canonical model; this construction will be used
throughout the paper to obtain completeness results for modified systems as well. In Section 4
we systematically investigate the impact of particular axioms on the canonical models (for those
axioms). It will appear, that these correspondences are not hard to prove, but are, at the same
time, easily transferable to more specific cases. It gives us an alternative way to derive KBCD-
theorems, and also enables us to prove that some formulas are not theorems.

In Section 5 we discuss the problem that we mentioned above: adding (Bip —y BKip) to
KBCD yields (Kip f+ Bip). In Section 6, properties like positive and negative introspection
(and 'extraspection') are introduced. From Section 4 we know how these properties are related
with the Kripke structure, so that we can investigate which properties KBCD does not have. It
will turn out that KBCD is 'saturated' with respect to introspection and extraspection properties:
adding any of them to KBCD yields (Kip <-• Bip). We show how one can define systems for
knowledge and belief with various degrees of introspection, without having (Kip <-> Bip). In
Section 7 we give some conclusions.

2 KBCD as a basis for knowledge and belief
Kraus and Lehmann [19] introduced a system (which we will denote with KBCD) that can deal
with knowledge and belief simultaneously. They used 2n operators K\,..., Kn, B\,..., Bn,
modelling the knowledge and belief of n agents from an index set People = { 1 , . . . , n} . In
general, given a set P of propositional atoms and O of operators, a language L(P, 0) is the
smallest set 5 3 P which is closed both under infix attachment of A, V, —i, and «-»•, and prefix
placing of -> and operators 0 6 0. For the moment, our language KBCD for KBCD is L(P, 0) ,
where P is a set of atoms and 0 = {C, D, E, F, K{, B<|i < n}. If | 0 | > 1, we say to have a
multi modal logic. In the sequel, if we write K, or B{, i is a member of People. The system
KBCD has four levels, the first of which is a propositional one:

(AO) Any axiomatization of the propositional calculus
(RO) h ip, \- ip -tip =>\- ip.

Next, there is a level concerning properties of knowledge (Ki) and common knowledge (C).
Eip (everybody knows that ip) is defined as follows: Eip = K\ip A K2<p A . . . A Knip. Cip is
supposed to mean (Eip A EEip A . . . ) . Somewhat surprisingly, this infinite conjunction can be
axiomatized.

(A2) K{ip -> ip
t A 1 \ TS « V IS TS , r.

\Pi-i) —ii\.iip —f ft.i~il\itp
(A4) C(ip -)• xp) ->• (Cip -> Cip)
(A5) Cip -)• Eip
(A6) Cip -* ECip
(A7) C(ip -*• Eip) -»• (ip ->• Cip)
(Rl) h tp => r- Cip.

Then, a level concerning general properties about belief (Bi), and common belief (D). Fip
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(everybody believes that <p) is defined as follows: Ftp = B\ip A Bi<p A . . . A Bn<p. Dip is
supposed to be the infinite conjunction (F<p A FF<p A . . . ) .

(A8)
(A9)
(A10)
(All)
(A 12)
(A 13)

BJolse

Dtp-
Dtp-
D(<p F<p) -> (Ftp •

Finally, there is a level combining (common) knowledge and (common) belief:

(A14) Knp -> Bnp
(A15) Bitp -> KiBxtp
(A 16) Ctp ->• Dtp.

LEMMA 2.1
Let [a Ip\tp be any formula, which arises from tp by substituting any occurrence^) of /J in tp by
a. Then the following rule of substitution Sub is derivable in KBCD

Sub \- a++ (3 => \- ip++ [a/p]>p.

PROOF. Here, we omit the simple, but tedious proof by induction on the complexity of (p, which
should be preceded by an inductive definition of substitution. I

The following theorem shows that the notions of knowledge and belief, as defined in KBCD
(and considered separately) have at least the properties of those in 55 and weak 55, respectively
(cf. the introduction, or [9, 23, 24]).
LEMMA 2.2
In the system KBCD, knowledge (Ki) has all the properties of 55 whereas belief (Bt) has those
of weak 55.
PROOF. Modus ponens is immediate from RO. Also, Rl, (h tp =*• h dp), together with
A5 ((- Cip —» Eip) and the definition of E (= K\ip A . . . A Knip) gives necessitation
for Ki ()- ip =>• h Ktip). Axiom A14 (Kiip —> B{ip) then yields necessitation for B{
as well. Veridicality and negative introspection are explicitly added for Kx to KBCD (A2
and A3, respectively). Positive introspection for Ki follows from A2 and A3 (Knp =>A2
-iKi~iKi(p =>A3 Ki-iKt-iKi(p ^A3 KiKttp). Thus we have that knowledge in KBCD is
'55-like'. Concerning belief, to show that this is 'weak 55-like', since we have A9, we only
have to derive the two introspection properties for Bi. Positive introspection follows immediately
from A15 {Bitp -> KiBnp) and A14 (Ktxp -> Btrp). Finally we prove negative introspection

1.
2.
3.
4.
5.
6.
7.

Bt<p
<KxBnp

-Bitp -> * V

B{-<B,tp
>Biip

'<-': A2,'->': A15
AO, 1

A3
AO, 2, 3

Sub (subst of Bitp for if.Biip (1) in 4)
A14

AO, 5, 6
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DEFINITION 2.3
We say that an operator D is a (normal) modal operator (in L) if it satisfies:

(i) 1- <p => h Dip necessitation
(ii) I- D(ip -4 ip) -4 {Dtp -> D^) distribution

Moreover, we call a modal logic L normal if it contains AO, RO, necessitation and distribution.

LEMMA 2.4
The operators Kit Bi, C, D, E and F are all normal modal operators in KBCD-

REMARK 2.5
The observation above immediately follows from the definition of E and F and the axioms of
KBCD- This implies that we may apply our modal intuitions to derive several properties of our
operators. To mention some, we have h tp -4 ip => I- Dtp —t D0(i), h D(tpAip) •(-4 (DtpAOip)
(ii) and h (D<p V Dip) -> •(<£ V i/>) (iii). When we want to use such properties for • (e.g.
when deriving some if-BcD-theorems (2.8)), we refer to them as 2.5. These properties naturally
provide some attributes for the epistemic operators they are supposed to model; for a discussion
we refer to [13].

THEOREM 2.6
In [19], it is claimed (not proven) that KBCD has the following theorems:

(Tl) Ki-np -> ->Bitp (T8) Bi(Bttp -> ip)
(T2) Biip «->• KiBnp (T9)
(T3) ->Bttp «-> Kt->Bitp (T10)
(T4) Kxy <* BxKitp (Til)
(T5) -'ifiV' *•> B^Kitp (T12) £>y> «-»•
(T6) Bxtp <^ BxBtip (T13) C(tp Aip) o Cip ACip
(T7) -"SiV <-> Bi~>Bitp (T14) Z3(<p Aip) *r* Dtp A Dip

REMARK 2.7
Where in this logic, knowledge and belief are defined as separate entities with some interaction
(A14-A16) axioms, an alternative approach is to take one of the two as basic, and connect the two
in one fundamental definition. A popular direction follows the slogan 'knowledge = justified,
true belief (already advocated in the 1960s by e.g. [21]), but an opposite view is taken in [27],
where belief (or rather B(tp, tpa,3), the belief in tp relative to some 'unusuality assertion' tpa,s)
is defined in terms of knowledge. In [27] it is shown that, when S5 is taken for knowledge, the
/fD45-properties for belief follows from their fundamental definition! The same even holds for
the interaction axioms A14 and A15 of KBCD and the theorems T1-T7 (T8 can be shown to
be also valid in their approach). However, from their proofs it follows that when the B-operator
occurs more then once in a theorem, it is assumed that all the unusuallity assertions are the same.
For example, one can derive in their system B(B(tp, ipaas),tpass) f4 B(tp, tpass) (cf. T8), but
not (B(B(p,<paill),(Btp)a,3)) +4 B(tp,tpass). More generally, as is also stated in [27], it is not
always clear which choice should be made for ipa,,-

To see our system KBCD in action, we provide a derivation for T8. For a proof of the other
theorems of 2.6, we refer to [13].
PROPOSITION 2.8
The following proves T8:
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PROOF.
1. Bnp++KiBitp A2, A15
O Jf • R //i \ Jf W R //i A Q

3. ~<Biip -*• Ki->KiBnp AO, 1,2
4. ->Bi¥> -»• Ki->Btp Sub (-iB.cp) for ̂ KiBxtp (1) in 3)
5. ~^B{ip —y B{~^B{tp A14,4
6. (-^Bitp V B((p) -+ [Bx^Bxtp V B,v?) AO, 5
7. (Bx^Bitp V Bi<p) -> Bx(->Bitp V v?) 2.5
8. Bx(-iBi<p V tp) -t Bx(Bitp -> y>) AO, 2.5
9. (->B,(p V Bj<p) -> Bi(Bitp -> v?) AO, 6,7,8
10. Bx{Bitp^tp) 9, AO, RO

Note how first negative introspection for Bi is derived (5), which then immediately (using only
propositional logic and modal observations for Bi) yields the result. We will later also argue
semantically (as a consequence of 4.5), that 10 follows directly from 5.

We mentioned already in the introduction that one typical property that distinguishes knowl-
edge from belief is that knowledge is veridical, i.e. known facts are true. Although this property
does not hold for belief, T8 expresses that agent i believes that it does hold; B{{Bnp -»tp). Note
that T8 implies that, by definition of F, we also have h B,(Fip -> <p). Since this is true for
arbitrary i G People, we have

I- F(Ftp ^<p) (T)

expressing that everybody believes that 'the belief of everybody' is also veridical. In the system
KBCD, knowledge is stronger than belief, which is expressed by A14, Kttp -* Bitp. A14 seems
perfectly reasonable1 (but cf. also [28]). Of course, one does not want knowledge and belief
to collapse, so in particular, we do not want A14': Bi^p —¥ Ktip. For one class of formulas,
however, belief and knowledge are the same.
DEFINITION 2.9

A formula with occurrences of Ki or Bl is called an epistemic formula. The belief set (knowledge
set) of an agent t in a system L is defined as {(p\L h Bi<p}({ip\L h Knp}). A formula tp is
i-doxastic sequenced if there are ip, operators Xi,... Xn £ {Kt,Bt, -</£',, ->Bi} and n > 0
such that tp = XiX2 •.. Xnip . We will not always mention reference to agent t.
THEOREM 2.10

For any i-doxastic sequenced tp, we have:
K B C D f" {Knp <-></>) A (<p <-> Bxtp).

PROOF. Immediate from A2 and A3, combined with 2.2 and T2-T7 of 2.6. I
COROLLARY 2.11

For all t-doxastic sequenced tp:
KBCD I - ^ O KBCD (" Kitp o KBCD H Bnp

Theorem 2.10 implies that in KBCD i-doxastic sequenced formulas are believed by agent i
iff they are known by agent i. Thus, knowledge and belief do collapse for believed facts and for

1 Howtra, hi mtml Unfoige k bcommon tha oaeapxaaHe taoatat (tea ooe koowi. If ijudp nylttm bearilnmtha pamuilned icrfng, he
bnpUcily uyi th« be doa not t«w h ycL Howem, hiving Kf -t By tni Btp -> -ijfv> b one irseni b not
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facts tp for which ->Knp holds. In particular, BiKup -> K±Knp is valid. The following theorem
shows that the formulas of 2.9 can be reduced to a formula with at most one main epistemic
operator, provided that all epistemic operators have the same subscript. It implies that KBCD is
'optimally manageable': all sequences of operators and -is can be rewritten to a sequence with at
most one operator. So, if KBCD models 'our' knowledge and belief, in every-day-life we never
need to use complicated 'epistemic phrases' like 'I believe, that I know to believe . . . ' .
THEOREM 2.12 _
Let t be given, 1 < t < n. Let X, Y G {Ki, Bi, ->} such that Y ^ -• and let X be a sequence
of X's. Let tp be any KBcD-Jprmu\a. Then KBCD r- X~Yip «-> (~<)Ytp, where the '-•' is
present if the number of '->' in X is odd.

PROOF. Immediate from 2.10. I

3 Kripke semantics for KB
In this section we introduce a semantics for ifScD-like systems. Unlike the completeness proof
of [19], which is based on the construction of a 'universal model' using labelled traces, we will
construct a 'canonical model' for any consistent formula tp, thus applying ideas from classical
modal logic (cf. [4, 18]). To emphasize that the structure of a model for a particular system
heavily depends on the specific axioms of that system, we start out with a kind of 'barest' model.
Moreover, since in this paper the notions of knowledge and belief (and their interactions) are
our primary concern, we start out by simplifying KBCD'- in the sequel, we will not consider
'common knowledge' or 'common belief any longer. This enlightens our considerations on
completeness substantially (cf. 3.12, 3.15).
DEFINITION 3.1
The system KB is a logic in the language KB = L(P,{.ftrt, Bi, E, F}). It consists of the axioms
A0-A3, A8-A9, and A14-A15. As inference rules it has R0 and Necessitation for K. From
now, we will use 'h ' and '\~KB' interchangeably.
LEMMA 3.2
For any tp G KB, !-/<-£ tp iff \-KBcD (p.

As a consequence of 3.2 we know that the theorems T1-T8 are derivable in KB.
DEFINITION 3.3
A Kripke model M for a modal language L with one modal operator D is a tuple (W, R, TT),
where W is a set of worlds, R C W x W a binary relation, and TT : W —¥ P —¥ {true, false}
a truth assignment to the prepositional atoms for each world w £ W. Truth definition for tp G L
at w, written (A4, w) ^= (p, is:

1. (M,w) (= piff7r(w)(p) =true
2. (M,w) \=tpAxift(M,w) |= ipwd(M,w) \= x
3. (M,w) \= ->V>iffnot(.M,u;) (= rp
4. {M,w) \= Dtp iff for all v for which RiWV, (M,v) (= ip.

We say that an operator that is defined like D for R, is a necessity operator for R. For any
modal operator D, we define Q = -i D ->. D is called the possibility operator for R. We then
say that (p is satisfiable if ip is true at some world w in some model M, <p is true in model M
(M (= tp) if {M,w) ^= tp for all worlds of M, and, finally, tp is valid ((= tp) if it is true in all
models. For any class C of models, we write ^ c tp if ip is true in all models in C.
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As is easily verified, we have (|= tp =» \= Dtp) and (|= O(tp -> rp) -> (Dtp -> Dt/0)-
Since also all prepositional tautologies and modus ponens are valid, this explains why Kripke
structures are so suitable for interpreting modal formulas: necessitation and distribution are valid.
To summarize, we have the following (K is the 'minimal' normal modal logic).

LEMMA 3.4
For all tp G L, h/<- tp =>• \= tp.

The proof of the converse, (which is equivalent to saying that K-consistent formulas are
satisfiable (in some Kripke model)) is also a fact from the modal logic folklore. However,
for future reference, we will sketch the idea of the proof (and the construction of the model).
This construction is known as the Henkin construction, and takes full benefit of the similarity
between properties of maximal consistent sets on the syntactic side (3.5) and the truth definition
of formulas in a world on the model-theoretic side (3.3). We only give a short sketch here, the
reader is referred to [4, 18] or [7] for further details. We start out by repeating the notion of
maximal consistent sets.

A set $ is maximal consistent (m.c.) in a logic L if it is: (i) consistent (in L) and (ii) for all
tp, $ U {tp} is consistent =>• tp G 3>. Due to a theorem of Lindenbaum (cf. [3]), such maximal
consistent sets do exist for the logic KB and its variants that we discuss here. Moreover, each
consistent formula <p is contained in a m.c. set. We assume familiarity with m.c. sets (cf. [4,18]),
but summarize their vital properties in Lemma 3.5. Then we proceed by giving the definition
of the canonical model for a (normal) modal logic (3.6) and recall some of its properties in 3.7.
These notions and results will be needed in the sequel.

LEMMA 3.5
Let L be any normal modal logic (cf. 2.3). Then:

1. Every L-consistent set $ can be extended to a m.c. set E
2. Suppose S is m.c. in L. Then:

(a) <p £ £ O -vp G E
(b) (tp A t/i) G £ O tp G £ and rp G £
(c) {tp V i/0 G E o tp e E or V € E
(d) $ \-L ip iff E r-£, tp for every m.c. set E 2 $•

DEFINITION 3.6
The canonical model Mc — (Wc, Rc, TTC) for a modal logic L is defined as follows:

• Wc = {E|E is a maximal L-consistent set}
• Rc = {(E, A)\forall D tp e E => tp € A}
• 7rc(E)(p) = true iff p 6 E.

LEMMA 3.7 ([7, 18])
For all tp and m.c. sets E £ Mc :

=> <p G A)
• Dtp e E <=> 3A e MC(RCT,A A tp e A)
• E T A O for all tp : (<p € A =• Dtp G T)

LEMMA 3.8 ('fundamental theorem' [4,18])
\=ipiff<pe E.
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PROOF. For atomic formulas, this is immediate from the definition of nc. For conjunctions and
negations it follows from 3.5.(2a) and 3.5.(2b), respectively. If </? = Dip : (M, E) |= D ^ iff
(by 3.3) for all A with RCZA, (M, A) \= rp iff (by induction) for all A with #CEA, xp £ A
iff(3.7)Dy>6 E. I

COROLLARY 3.9
\-K tpifi \=<p.

PROOF. The 'only if part is 3.4. For the 'if part, suppose \/K V. '•£-, ~"P ' s K-consistent. Then,
by 3.5.1, {-»p} is contained in a m.c. set S. By 3.8, (Mc, E) |= -*p, implying ^ (p. I

Now we start to rig our bare model to models for KB. Of course we have to add a number of
binary relations, so that our .ft'.B-models will be tuples

(W,IT,Si,.. .,Sn,SB,Ti,.. . ,Tn,T»,

where 5, is the relation for Kt, T{ for S,-, SE for E, and Tp for F, respectively. More
interestingly, we will see that the axioms of KB force special properties upon those relations (in
the canonical model).

EXAMPLE 3.10
As an easy example, consider the axiom Ktip —y Btip. In Mc this leads to: T^TA «=> {<p\Bnp €
r} c A => {<p\Ki<p e r} c A ̂  S.TA.
DERNmON3.il
A KB-model M\sn tuple {W, TT, SI , ..., 5 n , SE,Ti,..., Tn , TF) satisfying:

1. Si is an equivalence relation (cf. Definition 4.2)
2. Vx3yTxxy
3. Ti C Si
4. Vi, y, z € W((Sixy A Ttyz) => T{xz)
5. SE = Si U . . . U Sn, TF = Ti U . . . U Tn.

We denote the class ofKB-models with K.B.

THEOREM 3.12
Each i^B-consistent formula is satisfied in some £B-model.

PROOF. If (p is ifB-consistent, it is contained in some KB-m.c. set T. So it is true in (Mc, T).
We thus only have to show that Mc is a model in KB, i.e. that it satisfies 1-5 of 3.11.

1. Sf is an equivalence: 5,c is reflexive, SflT, by definition of S£ and, using A2, Knp € F ^
</? E F. It is seen to be transitive, by an argument similar to that in the proof of item 4 of
this theorem. Finally, it is symmetric: suppose SJTA, i.e. K^p £ F => <p £ A (•). If not
5,?Ar, we have a xp with K{Xp £ A, but ip g I \ By item 2a of 3.5 then, ->ip £ T, implying
(using A2) -^Krp 6 T. Axiom A3 guarantees K^K^ £ T, so, by (•), -iKitp £ A, which
contradicts Ktip £ A.

2. By A9, (Ritrue) £ T, so, by 3.7, for some A: T ^ A .
3. This was argued in 3.10.
4. Suppose S.TA and T/AE. Then, _B,<? £ T => K{B{ip £ T (by A15), so (by definition of

Tf), Bnp £ A and hence (since SfAE) <p € S. All in all, we
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5. Since h Etp -> Knp, as in 3.10, we conclude S\ C SC
E for all i < n, and hence 5f U . . . U

S ; C S | . Now suppose S% <£ Sf U . . . U S£, then for some A : S%TA and for no i < n,
we have SfTA. Then, for all i < n, there is some (pi for which Kxtpi G F, but tpi & A. The
former gives us Ki(tpiV.. -Vtpn) € F for alii < n (and hence E{ip\ V.. .Vtpn) € F), and
the latter ((piV...Vv?n) £ A (cf. 3.5.2b). This contradicts S |FA, so S | C SfU.. .L)S£.l

In [9], it is claimed that, if we would add the axioms for C to the S5-logic for knowledge, the
necessity operator for C may be seen as the transitive reflexive closure of S&, i.e., Rcuv iff there
is some S^-path from u to v. From [7], where a similar operator (D*) is studied in the area of
dynamic logic, we know that the canonical model for such a system need not have this property.
However, the canonical model is transferred into a finite model, which then is still a model of the
proper kind and in which the relation that belongs to • * is the reflexive transitive closure of the
relation for • . It may be shown that for KBQD there are similar problems, but also that a finite
canonical model (of the appropriate kind) can be obtained in this case (cf. [17]). However, for
the sequel, we need the unaffected canonical model as defined in 3.6.

Note how the particular properties of the binary relations in the canonical model are guaranteed
by particular axioms of our logic. For instance, A2, Knp -> <p forces Si to be reflexive, (3.12.1)
and the definition of E guarantees that E may be understood as the necessity operator for the
union of the operators Si for Kt. We emphasize that although K,<p —> tp is true on all S^-reflexive
models, the converse is not true: let M consist of two worlds u and v, with 5, = {(u, v), (v, u)}
and vr(u) = n{v). Then, M is not reflexive and still M \= Kxip -> tp, because of a particular
property of a particular TT. TO abstract from the actual assignment 7r, the notion of frame is
introduced, on which the interaction between axioms and properties on the binary relation can be
studied more clearly.

DEFINITION 3.13
A frame T is a Kripke model without valuation

•n:T= {W,Sl,...,Sn,SE,Tl,... ,Tn,TF)

(in shorthand, T = (W, Si,Ti)). We write T (= <p iff for all TT, (J",7r> |= ip. If $ is any
(first-order) property of T, we say that multi modal formula <p (which is generally understood to
be a schema) corresponds with $, if T |= <p O- T satisfies <£. We then write ip ~ c o $. If this is
only true for frames T in some class V of frames, we say that we have relative correspondence
(<P ~co(D) *)• Fof an introduction to this topic, we refer to [2]. We denote the class of models
based on T by M(!F). A given model M. is understood to be based on its underlying frame
J~M: the underlying frame of the canonical model is called the canonical frame. Finally, we say
that a logic L is sound and complete with respect to V, or (L \- tp o \=v <p) if for all T in V, L
\- tp <=> T |= ip (we then say that T is a frame for L).

DEFINITION 3.14
Let ML be some multi modal language for a normal modal logic L. We say that (the scheme)
tp € ML is canonical (can(y>)) if the canonical frame for L satisfies tp.

As is known, (and as will be a consequence of the following section), on the level of frames, A2
does correspond to reflexivity. From 3.12.1 we know that St

c in the canonical model for KB is
reflexive (forced by A2), and thus the canonical frame is. Since A2 ~ c o reflexivity, we conclude
that A2 is canonical. We stress that in general, the fact that an axiom A corresponds to property
$ is not equivalent to saying that A is canonical2. We know that A5 A A6 A A7 corresponds to
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the property that 5 c (the relation for which C is the necessity operator) is the reflexive transitive
closure of SE, whereas the canonical model for KB need not have this property at all (cf. [7,17]).
Conversely, it may be that the canonical frame has some property $ that is 'coincidental', i.e.
that is not forced by any axiom. As an example, we saw that (A2 A A3) (<p) forces 5f to be an
equivalence relation. If n — 1, since V = {Kip, p) and A' = {Ki~>p, ->p} are both consistent
sets, they give rise to worlds F and A which are not 5c-accessible from each other. In other
words, in the canonical frame 3x3y(-<Sxy A - I 5 J / I ) ( $ ) is true, although this property does not
correspond to any modal formula (If T = ({w}, {(w,w)}), then T (= tp, but T ^ $)• It will
appear that all the multi-modal schemes tp in which we are interested here, are canonical.

REMARK 3.15
The fact that no modal formula (p corresponds to a given -i$ is sometimes exploited to make a
shift from a class of models C for which some logic L is a complete axiomatization, to the class of
models in C that do satisfy <£ (and for which L is still a complete axiomatization)! For instance,
on 55-frames, -<ixVy(Sxy A Syx) does not (relatively) correspond to any <p; however, a move
from the canonical model for 55 to generated models gives models for which VxVy(Sxy A Syx)
holds (cf. [23,24]). Similarly, adding (KiipV.. .VKnip) ->• Drp (where the operator D denotes
'distributed knowledge' cf. [9] or [14] in which this operator was represented with / ) to our logic
KB would not give immediately a canonical model for which 5ifl . . .nSn = So holds (cf. [14]),
where So is the accessibility relation for which D is the necessity operator. Now, the fact that
Si n . . . n Sn ^ 5 / (= -><!>) is not multi modally definable may be used to knead this canonical
model into a model for which $ is true, so that completeness of KB U {(Kirp V . . . V Knrp) -*•
Drp} with respect to ^-models can be obtained (cf. [14]).

REMARK 3.16
A typical question we want to address using this machinery is the following. Suppose we have
some epistemic logic KB* and we want to know whether adding one of our favourite properties
for knowledge and belief implies having to accept another, perhaps less preferable property, i.e.
we ask whether

The answer is positive, if, for example, we can show that can (ipi), and find $ i and 3>j such that
Vi ~co $i.V2 ~ c o $2. and $ i => $2- It is negative if we can find $h with ^h ~co $h (h =
1,2) and a if i?*-frame for $ i that does not satisfy $2, a question about first-order properties
on Kripke frames. (Note that the seemingly semantical question whether the canonical model for
KB* U {(pi} is a model for (̂ 2 has a syntactical back bone: the answer is no iff -np2 is true at
some world in /Ac iff (by the fundamental theorem) -up? is consistent in KB* U {ipi}.)

We end this section by mentioning an alternative semantics for our notions of knowledge and
belief. In [8], Halpern shows that probabilistic Kripke models are also suitable to interpret 55-
like knowledge or KD45-\ike belief. Such a model (for simplicity, we assume to have only one
agent) M is of the form M = (W, P, n), where W is a finite or countably infinite set (of, again,
worlds) and P: V{W) -> [0,1] is a discrete probability function. In particular, Dip is true at w
iffP({u|(A/\t;) f= <p}) = 1 (cf. also [12,22]). It appears that, when no additional constraints
are made upon P, the logic for ' • ' is just KD45, so that, in that case, 'belief is the same as
'certainty'. If we want that 'certainty' is 'knowledge', we have to import the property O<p —> ip,
which is valid if we additionally assume that P satisfies VwP(w) > 0. In other words, B<p A -up
is satisfiable in world w, iff the measure of w equals 0 (and w is not taken into account when
verifying B<p at w). The techniques that we develop in the following section to characterize
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several properties for knowledge and belief, are easily extended to the models of this kind (which
we make clear at the end of Section 4).

4 Some correspondence results
In this section, we will prove (among other properties) that axiom A15: Bi<p —¥ KxBi<p
corresponds with ViVyVz(5jij/ A Tiyz -> Tixz). Given this, it is not difficult to see that
T4: Knp -¥ BiKt<p corresponds with VxVyVz(TiXy A Styz -> Sixz), (an interchange of
the KiS and B{S induces an interchange of the SiS and T,s) and also that (Kt<p ->• KlKl(p)
corresponds with VxVyVz(Siiy A Siyz -> S{xz), transitivity of Si (replacing Bi by Ki induces
a replacement of T, by 5,). Obviously, inferring the last mentioned correspondence from one of
the first two is easy, whereas the other way around is a much more difficult, if not impossible, task.
So, for correspondence-problems, it would be nice having different operators for each occurrence
in formulas like A15.
DEFINITION 4.1

We assume to have a language with sufficiently many operators K1, K2, K3,... and equally
many binary relations R1, R2, R3,... associated to them. The Km's (m e IN) are just modal op-
erators, which could be instantiated with operators from {Ki,Bi\
i <n}.
DEFINITION 4.2
We define the following properties on binary relations R1, R? and R3, leaving universal quan-
tification over x, y and z implicit.
(a) serialityof-R1 3yR1xy
(b) reflexivity of R1 Rxxx
(c) transitivity of R1 over (R2, R3) R?xy A R3yz =» R}xz
(d) Euclidicityofi^overt-R2,./?1) R?xy A Rlxz =» R3yz
(e) weak {R1, R2)-density of R3 R3xy => (3z(R1xz A R2zy)
(f) selective transitivity of R1 over (R2,R3) 3yVz(R2xy A (R3yz =• R}xz))
(g) ^-postponed reflexivity of R2 R1xy => R2yy
(h) i^-symmetryof-R1 Rlxy => R2yx

If, for instance, we have transitivity of R over (R, R), we say that R is transitive. An equivalence
relation is reflexive, transitive and symmetric.
THEOREM 4.3
Consider the following multi modal formulas (in K1 ,K2 and K3).

(a) -yR1 false
(b) # V -> tp
(c) Kxip -4 K2K3<p
(d) - .A-V -> K2->K3<p
(e) KlK2ip -¥ K3ip
(f)
(g)
(h)

Then, for all x € {a, ...,h}:

1. as a scheme, 4.3.x corresponds with 4.2.x
2. axiom 4.3.x is canonical.
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PROOF. A proof for 1 is obtained by generalizing well known correspondence results for (standard)
modal logic (cf. [2, 18]). In fact, both 1 and 2 follow from a theorem ascribed to Sahlqvist, but
proven independently in [26] and [1] (cf. also [25]). Here we do not need that full machinery,
but prove 1 (d), as an example. For item 2, one needs generalizations of the construction in
Section 3, from which the results for (a), (b), (c) and (g) are immediately obtained. To illustrate
an existential quantified case, we prove 2(e) as a generalisation of a proof in [7].

l(d). We have to show:
T |= -./TV -» K2^K3<p «• T (= (R2xy A Rlxz => R3yz).
<= : Suppose for some n and w,(!F,n),w (= -iK1!?, i.e., for some v with R1wv,

(J-, TT), v (= -up. Let u be any world for which R2wu. Then R3uv, and hence (J-, n), u (=
->KV, and thus (T,TT),W (= K2^K3ip.

=> : Suppose .7-" ^ i?2xy A iJ1!,? =>• R3yz, i.e., there are worlds u, u, and w for which
R2wu, Rlwv, but not fl3uw. Define 7r such that p is false only in v. Then (.T-", IT), W \=
^Klp A -^K2^K3p, soT)£ ^KX

V -> K2^K3p.
2(e). Suppose i?3FA. We have to find a S in the canonical model, for which both i?1FE and

i?2£A. By the definition of canonical model, and Lemma 3.5.1, it is sufficient to show that
the set £ ' = {V»|if V G T} U {if2<5|(5 € A} is consistent. Suppose not, then Vi A . . . A
V'm A i^2(5i A. . .AK2St —t -L, for some m, k > 1. This is equivalent to t/>i A . . . A ^»m —>•
(if2 ->6i V. . . V K2 -iJfc), so, using 2.5(iii), we have V»i A. . . A ipm -»• X 2 (-KJI V . . . V -i<Jfc).
By 2.5(i) and (ii), we get K1^ A . . . A / fVm ->• ^K2^^ V . . . V -.<Jfc). We now use

-»• ir3v? : A"Vi A . . . A X V m ->• K3(-^5i V . . . V -i<Jfc). By definition of the
r 6 P (r < m). Since R3TA, we have (-KJI V . . . V ->6k) € A, and (using 2c)

->($, G A, for some s < fc, contradicting the definition of the 6s. I

We like to stress that the proofs for these general cases ('fresh' operators for each occurrence)
are not more complicated than in the standard modal case.

REMARK 4.4
Because K2tp —> ip corresponds with reflexivity of R2, (Vii?2xx), it is easy to see that
Kl(K2ip -¥ ip) is valid at x if all it1-successors y of x satisfy K2cp -> <p, and so, if
Wy(R1xy -> R2yy). This suggests a way to derive 'postponed correspondences' like 4.3(g).
Suppose if.BTn-formula tp corresponds locally with property 0(z), i.e. for all frames T and world
x € T, (F>x) \=(piff(T,x) \= <p{x). Then, K*<p corresponds locally with "iy{R{xy -+ <f>(y))
(and so, globally with VxVy(i?*xy

One can now systematically list all the properties that the relations 5, and T< of the frames
in K.B satisfy, by investigating the axioms involving K{ and Bj. For instance, for transitivity,
we get, that from the c-part of 4.3.1, it follows that Si and T, are transitive (from Lemma 2.2
and T6). T{ is transitive over (Si,Ti) (A15), Si is 'maximally transitive': it is transitive over
(5, , Si), over (T,, S,) (T4), over (St) T.) (because Knp =>Ai B^ =>Alb KiBnp : Tl 1) and
over (Tt,Ti)(Knp =>rn KiBt(p =>AU BiB^ : T12). We can now do some reasoning about
properties of binary relations in KB and translate the result to KB.

THEOREM 4.5
1. A reflexive, Euclidean relation is both symmetric and transitive.
2. If R1 is Euclidean and reflexive, R2 C R1 and R2 is transitive over (ii1, R2), then R2 is

Euclidean.
3. A relation that is Euclidean, is also postponed reflexive.
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PROOF. 1. Suppose Rxy (1) and Ryz (2). By reflexivity, Rxx (3). Euclidicity, (1) and (3) give
Ryx (4). This proves symmetry of it. Finally, (2), (4) and Euclidicity give Rxz.

2. Suppose R2xy and R?xz. Then (R7 C R1)R1xy and (by ii) R1yx. Since R2 is transitive
over (R\R2), and Rlyx and R2xz, we have R2yz.

3. -ftcy and Euclidicity give Ryy. I

Using arguments of 3.16, we find KB h <p -¥ Kx->Ki-«p, combining results on cor-
respondences and canonicalness in the following way: we have KB h Knp -> <p and
KB I <Knp ->• Ki->Kttp (A2 and A3); 4.3.2(b and d) guarantee that the canonical frame
for KB also validates A2 and A3. Now we use 4.3.l(b and d) to conclude that S, on this frame
is both reflexive and Euclidean, and thus, by 4.5.1, symmetric. By 4.3.l(h), we know that the
canonical frame (and hence, also the canonical model) for KB satisfies ip -> Ki-iK^ip; so,
using the fundamental theorem (3.8) we observe that <p ->• Ki->Ki-np is contained in every
KB-maximal consistent set and hence, by 3.5.2(d), KB h tp -> Kx->Ki->tp .

Note that, in a similar way, we conclude that 5, is transitive, so that we again have a proof
of positive introspection for Kx. Whereas in 2.2, we argued that A2 and A3 were sufficient to
derive the same result within KB, we now semantically use $2 and #3 with A2 ~ c o <f>2 and
A3 ~ c o $3 to find a $ with ($ 2 A $3) => $ and $ ~ c o Knp -> KiKup. There is a similar
correspondence between the proof of negative belief introspection in 2.2. and deriving Euclidicity
for Ti from 4.5.2. Finally,notethat4.5.3givesusT8again: since VxVy(TiXy -4 Txyy) is derived
for Ti, using 4.4 we conclude that B{(Bi<p —> (p) is derivable in KB; which we indeed showed
in 2.8.

In particular, note that the T;s in the frames of KB are also transitive, Euclidean and dense
(this follows from 4.3 together with T6 ('-)•'), T7 ('-»') and T6 ('<-') of 2.6, respectively). In
the opposite direction, one can make an exhaustive list of properties of 4.2 for the frames in K.B
(which immediately proves the following theorem), and use the absence of special properties in
K.B to show non-derivability in KB. For example, Ti is not transitive over (Ti, St) and also not
over (Si, Si). By way of example, we prove the former. Figure 1 is a £/3-structure, in which Ti
is denoted with thick, and 5^ with thin arrows, respectively. Note that although T{uv and Sxvw
are true in that structure, Tiuw is not.

FIG. 1. A ACB-structure, in which 5, is denoted with thin, and Tx with thick arrows, respectively
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From the previous paragraph, we get a lot of non-theorems of KB: in particular, because T,
is not transitive over (Ti, Si), we have KB 1/ £<</? —> BiKitp. We give a list (writing '\f tp'
instead of 'KB \f tp') of non-derivable formulas that are important when studying knowledge
and belief (cf. the introduction, 4.7, and, for a classification, Section 6).
THEOREM 4.6

1. \/ Bttp ->• BiKup, \f Bttp ->• KiKup
2. \/ ->Knp ->• Ki-iBicp, 1/ -.#<¥> ->• Bi->Bi<p
3.
4.
5. l/J^B^-xp)
6. V <p -* Ki-iBi-iip, \/ <p -* Bi->B{-np.

REMARK 4.7
Of Theorem 4.6,1 and 3 are of the form XBy? ->• KATyj, with X,Y £ {B, K, e}, where e is the
empty (identity) operator. Properties 2 and 4 express that if tp is (believed or known to be) not
known, it should also have consequences for the agent's (non-) belief about tp (they are of the form
X->K(p -> Y-<B<p, X, Y € {B, K, c}). So, in KB, it is perfectly well possible (i.e. satisfiable
in the system KB), that an agent (knows or believes that he) believes (p, without (knowing or
believing that he is) knowing tp. The non-theorems of 4.6 neatly show some differences between
knowledge and belief: 1 - 5 of 4.6 are all valid in KB if we replace each occurrence of B by K.

We end this section with the following aside. The correspondences that are obtained here,
can directly be transformed to the general probability structures (g.p.s.) as introduced in [8]
(cf. the end of Section 3). To see this, we first generalize the notion of g.p.s. A structure
Af is a g.p.s.k if Af = {W,Vi, •. -VICTT), with W a (finite or countable) set of worlds,
7T a truth-assignment for each world and the Vi's families of discrete probability functions
(a function Pi(w) for each world w) on W(i < k). Following [8], we define the support^
relation on W as (u,v) in supportt iff Vi(u)(v) > 0. Under this definition, we can view a
g.p.s.k as a Kripke structure with k accessibility relations (the support relations). It is obvious
that any result on modal logic has immediate implications for probability structures via this
support relation. For instance, K1tp -> K2K3ip will be valid on those structures for which
Vxyz(P2(x)y > 0 A P3(y)z > 0 => P\{x)z > 0) holds.

5 Conscious beliefs, believed consciousness
Our system KB verifies A15: Bnp -* KiBttp (beliefs are 'conscious', in the sense of 'known').
This demonstrates that Bi represents a rather explicit belief, in the sense that the agent is aware
of adopting them—the terms 'explicit belief and 'implicit belief are introduced in [22] and
also used in [20]; in [5, 15] these notions are related to 'awareness'. Here, one may just associate
'implicit' with 'weak' and 'explicit' with 'strong'. Knowledge might be considered a very
explicit notion of belief. If Bi would represent a notion of implicit belief, it seems reasonable to
let (Bttp A Bi-*tp) be satisfiable simultaneously with ->BlL (cf [15]; however, at this point, our
use of 'implicit belief diverges from that in [5, 20, 22], where it is assumed to be some logically
closed set of beliefs—facts that implicitly follow from the agent's beliefs, although he need not be
aware of it). But assuming (satisfiability of) (Bitp A Bx-*p), A15 would yield Ki(B{tpABi-up).
This again demonstrates that A15 is reasonable for explicit beliefs (in our sense); if agent i knows
that he has inconsistent beliefs, he should retract some of them.
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Kraus and Lehmann remark that it would be interesting to also have Bnp -> BiKiip, implying
that agent i believes that his beliefs are conscious. (In Section 6, we pay some more attention
to the kinds of belief these two formulas would apply to.) However, adding Btip -¥ BiKiip
to KB would give Btip —¥ Kiip. Now, we concentrate on finding KB-\\ke systems that do
allow Bxip -> BtKi<p, without yielding (Bi<p *+ Kxip). (We will say that such a system solves
the B(elieved) C(onsciousness) of B(eliefs) problem.) The latter property (r- K,ip <-> Bnp)
corresponds with St = T,, for which we will give a sufficient condition. Recall from Theorem 4.3
that Bnp -»• BiKt(p corresponds with VsVtVu : TiSu A Stut =* T,st

THEOREM 5.1
Let 5 and T be two binary relations on a set W, and consider the properties:

(a) T is transitive over (T, 5)
(b) T is contained in S
(c) T is serial, and
(d) 5 is Euclidean

Then:

1. (5 and T satisfy (a)-(d)) => (S equals T)
2. For each proper subset A C {a, b, c, d}, we can find relations 5 and T that satisfy A, but for

which S / T.

PROOF. We prove 1, and refer to Fig. 2 for an example of a structure that satisfies a, b and c, but
for which S ^ T. So suppose Sxy. Using c, we find a z for which Txz and, by b, Sxz. By d,
we get Szy. Now apply a to Txz and Szy to conclude Txy. I

Semantically, we now know when 5 and T do collapse. What does this mean for knowledge
and belief? From 4.3 we know that Bnp -> B,Kitp (1) characterizes 5.1(a), that Knp -¥ Biip
(2) characterizes 5.1(b), that ->B,false (2) characterizes 5.1(c) and that ->Knp -* Kx->Kx<p (4)
characterizes 5.1(d). Now it is clear, that, if we want B{ip —> BiKiip but not Bif —> Kif, we
have to give up one of the three last properties of 2,2, and 4 for knowledge and belief, because
of the following:

THEOREM 5.2

PROOF. Apply 3.16 to 5.1. I

Theorem 5.2 implies that adding Bnp -> BxKnp to KB does yield Bnp = Kitp, because KB
satisfies 2, 2 and 4. Together with 5.1 it also offers solutions: if one wants to have B^ip —> BiKiip
but not B{(p —)• Ktip, one has to give up one of the properties expressed by A14, A9 or A3.
Summarizing, Theorem 5.1.1 implies that, in order to add (Bttp -> BiKiip) and at the same
time avoiding (Bttp = Knp), it is necessary to give up one of A3, A9 and A14, whereas 5.1.2
expresses that this may also be sufficient (whether this is indeed so, depends on the axioms we
do add to such a system; in the sequel, we will investigate several possibilities).

Giving up A14, Knp -y Bi<p, or semantically, T< C 5^, makes (Ktp A ->Bip), and even
(Kip A Bi~<p) satisfiable. Then, Bj represents an implicit notion of belief—a notion that we
studied in [15]—and then the whole system KB needs revision. (See also [28] for an epistemic
logic in which {Knp -+ Bnp) is not valid.) We doubt whether, for instance, A15 would be
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FIG. 2. A structure in which 5 is denoted with thin, and T with thick arrows

a desirable property for implicit belief, and probably the same holds for B,ip -+ BxKxp, the
formula that urged us to drop A14 in the first place.

One could also give up A9, but similar remarks as in the previous paragraph can be made
here. For instance, from A15, we get Bijd.se -> KiBiJalse, but why should an agent hold
on to false beliefs if he knows he has them? Moreover, dropping ->BiJalse cannot invalidate
-iBiJalse —> (Kxp <-> Bip). So, either agent i beliefs in falsehood, or his beliefs equal his
knowledge. Dropping A3, -<Kip -> Kt-<Ki<p is the third alternative. Note that a knowledge
agent that satisfies A3 is very much aware of all the facts that are around: if he does not know
(p, he knows that he does not. This would imply, that a Bantu tribesman knows that he does not
know that personal computer prices are going down. For a discussion about 'awareness', we
refer to [5], where the Bantu tribesman example is taken from, and to [15].

From Remark 2.2, we know that -<Knp -> Kt->Knp (A3) implies Knp -> KiKttp (A3'). We
could try to see what happens if we replace A3 by A3' (a discussion on these axioms can already
be found in [10]). We know that A3' corresponds with transitivity of S,.

DEFINITION 5.3
Let KB~ be the system consisting of all the axioms of KB, but with A3 replaced by A3':
Kxtp -> KiKtip and with A17 : B,(p -¥ B,Kxp, added to it.

THEOREM 5.4
KB- V Bi<p -> Ki<p.

PROOF. TO prove this, from arguments given in this section, it is clear that it is sufficient to find
a K.B~ model M in which the S<s are reflexive and transitive, the T,s are serial and transitive
(not Euclidean; note that 4.5.2 cannot be applied in K.B~),TX C 5, and in which the T ŝ are
transitive over both (Si,Ti) and (71,, Si), but at the same time Si g Ti. Such a structure is given
in Fig. 2. I

From the model of Fig. 2, we see that, since Ti is not Euclidean over (S<, 7j), we also have
KB~ \f ->Bnp -> Kl-'Bx<p. We will investigate the (non-) theorems of 'KB-\ike systems' a
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bit more systematically in the next section. Of course, it is easy to define a system that does not
verify Bnp -> Knp but that does yield A15 and A17. However, we want a system S that is
*close(st) to KB U {-417}' and such that 5 \f B{tp o Knp. For such an 5, some theorems of
KB must be sacrificed. For example, BiKup -> Knp (implied by T4), with Bnp -»• BiKup
immediately yields Bt(f -> Knp. In order to study these problems more systematically and to get
a clearer notion of 'close to KB' we will explore the fact that we now know how the properties
of knowledge and belief, as expressed in the axioms and theorems T1-T10 of KB act upon the
structure of its Kripke models.

6 Introspection and extraspection
Now, before we take up the BCB-problem itself, we will investigate some general properties of
knowledge and belief. We will see how they are present in KB, and we show some combinations
of those properties that are possible in a system that defines knowledge and belief as two necessity
operators.
DEFINITION 6.1
Let X, Y and Z range over epistemic operators. Then, formulas of the form:

(a) Xtp —> YZip are called positive introspection (p.i.-) formulas
(b) ->X(p —> Y-iZip are called negative introspection (n.i.-) formulas
(c) XY(p —> Zip are called positive extraspection (p.e.-) formulas
(d) X-<Yip -+ -<Zip are called negative extraspection (n.e.-) formulas
(e) X(Ytp —>• tp) are called trust formulas.

We will call instantiations of (a)-(d) inspection-formulas, and we will denote the set of all
instantiations of (a)-(e) with IT. Each of the above defined notions (a)-{e) determines a subclass
of IT.

Note that all the axioms and theorems that were discussed or given in Section 2 were equivalent
to either an /T-formula, or of one of the forms Xip -*• Yip and Xtp -> ip.
THEOREM 6.2
In any system, if (K{ip —¥ B,<p) (A14)is valid, each class of IT is partially ordered, withy) < tp
iff tp =*Mi4 i> • For each class of IT, there is a smallest element (modulo equivalence).

PROOF. We define the notions of positive and negative occurrences of operators X in formulas.
If tp does not contain X, X occurs positively in Xtp. Each positive (negative) occurrence of X in
tp is a positive (negative) occurrence of X in Ytp (Y may be X, e, or any other modal operator)
and tp —>• tp. Each positive (negative) occurrence of X in tp is a negative (positive) occurrence of
X in -><£ and tp -i tp. Now we can show that tp > tp iff rp can be obtained from tp by replacing
negative occurrences of Bi in tp by Bi or Ki, and replacing positive occurrences of Ki by B{
or Ki. Instead of a proof, we give an example: in Fig. 3, *>' is the transitive reflexive closure
or the relation denoted with arrows in the class NI (we do not write the subscript i; formulas in
rectangles are non-theorems of KB). I

In the next paragraphs, we will spend some words on positive introspection, followed by
a paragraph about negative introspection. The discussion can easily be extended to the other
inspection properties. To start, we want to point out the difference between (Xtp —» YZip)
and Y(Xtp —> Zip). Note that the latter is purely a property of y-beliefs, whereas one could
interpret the former as a property noted by an observer from outside. Compare the difference
between (Kxip —¥ KjKktp) and K}[Knp —> K^ip): in the latter formula, the fact that agent k
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FIG. 3. *>' in the class NI

knows everything that i knows, is known by agent j (i.e. in the scope of K}!). Even clearer is
the distinction between (Bcp ->• KB(p) and K(Btp -> Bip).

The positive introspection formula (Xip -> 5^2^) has, if (AV —• ^¥>) ' s valid, as a strongest
instantiation (By? -> KKtp), and as its weakest (A"<̂  -> BBip). For 'ordinary' belief and
knowledge, the first is indeed too strong. The latter presumes introspection in one's own beliefs.
We doubt, however, whether people use phrases like 'I believe that I believe that . . . ' , and if so,
they probably mean 'I very weakly believe that . . . ' . It would be interesting to have a system
with two (possibly the same) notions of belief, say explicit belief (Be) and implicit belief (B*),
such that (B'B'ip A ->Be<p) is satisfiable.

Because Kip —>• KKip is true for most notions of knowledge, it seems reasonable to expect
that {Bip —¥ BKip) is true for notions of belief that resemble knowledge, i.e. for strong notions
of belief. We can be a bit more precise here, and ask for which X and Y, (X(p ->• YK(p) should
be true. We might expect (Xip -¥ YKip) to hold for 'strong' X-belief, and 'weak' F-belief.
For instance, the choices X = 'I am convinced' and Y = 'I suspect' is a more acceptable than
the other way around. (In KB, (K<p -* BKip) is valid, whereas (Bcp -> KK<p) is not.)

Instead of 'strong' belief, we could also write 'expensive' (having serious consequences, e.g.
the belief of a judge or surgeon), and instead of 'weak' we could say 'cheap' (e.g. the belief
of some gossip-paper). (The introspection property B<p —> KBip seems desirable when B
denotes an 'expensive' belief; for instance, if a judge believes that females are bad car-drivers,
he had better know that he believes so when he has to judge about Alice's role in an accident.)
Furthermore, {Bip -+ BKip) models the attitude of an agent who thinks (believes) that he is
very critical in adopting beliefs: he only believes ip if he believes that he knows ip.

However, (Btp —> BKip) is not a property of all notions of belief. For instance, we can
imagine a mathematician believing Fermat's theorem is true, without believing that he knows it
is true. Moreover, -'(Btp -4 BKip) might be satisfiable in systems that interpret belief as a
'practical, working belief. If I leave home on a bright day, I may adopt the working belief that it
will not rain that day (so leave my raincoat at home), although I need not believe that I know that
it will stay dry. Also, it seems that, if B is interpreted as some religious belief, (Bip -> BKip)
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need not hold: (Bip A ->BK<p), even (B<p A B-iKp) seems perfectly consistent then.
Negative introspection formula (->X(p —t Y~>Zip) has, if (K<p —¥ B<p) is valid, (~<Kip —>

K->B(p) as its strongest instantiation, and (~>B(f —> B-^Kip) as its weakest. Negative in-
trospection is closely related to the problem of 'awareness' (cf. [5, 15]). ->Xip could be true
because the agent is not aware of <p. Now, if Y is the belief or knowledge of the same agent, and
(pXtp -> Y-'Zip) is true, he becomes aware of tp. Note that A3 (->K<p -t K-iKip) is a strong
property of knowledge: by contraposition, it implies, that the agent's ignorance of his ignorance
is sufficient to have knowledge: (->K-<Kip —• Kip).

The following theorem says that KB is saturated with respect to the classes of IT (cf.
Definition 6.1).

THEOREM 6.3
KB is maximal in the sense that adding any introspection, extraspection or trust formula to it
makes Bnp <-> K,<p a theorem.

PROOF. We carry out the proof for the classes of introspection formulas; the other cases are similar.
Due to the previous theorem, in each class we can find some 'weakest' formulas that are not KB-
theorems yet. The weakest p.i.- formula outside KB is Bt<p —t BxKi(p (cf. Theorem 4.6).
We have seen (in Section 5) that indeed KB U {Bnp ->• BiKi<p} h Bnp -4 Knp. Or, for the
case of negative introspection, we know from Fig. 3 that ->Kxtp -¥ Bi~<Kxip is the weakest
non-theorem of KB in this class. Since, by 15,Bx^Kxip is equivalent to -^Bx(p, we immediately
have KB U {->K,<p -»• B,^Kx<p} h Bnp -¥ Knp. •

Now we have some more equipment to look at our BCB-problem again.

DEFINITION 6.4
Let KB+ be the system KB \ {AZ} together with:

A3' Kt<p -¥ KiKup

A2+
A3+
A4+

A5+

Bx-iB
Bi<p-
-<Bxip
->Kxu>

xip —> -iB,ip
•> BxKi<p
-> Kx->Bi<p
->• B^Kup.

REMARK 6.5
Here, we will not discuss whether KB+ models some interesting notion of belief and knowledge.
Technically, we can relate KB+ with KB in terms of the notions developed in this section. The
basic idea behind KB+ is that it solves the BCB-problem and is quite similar to KB. An
important reference for this similarity is IT. In Definition 6.4 we take benefit of the nice order
in each of the /T-classes. We defined KB+ such that it has the same /T-properties as KB,
with (Bnp -> BxKxtp) added to it, and formulas that yield (Bt(p -> Knp) left out. For instance,
for the class PE, we take care that KB+ lacks B,Ki(p -¥ Kx<p (it would yield, using A3+,
Bi(p -> Knp), and add A\+, which is similar to KB's Theorem T6. The models for KB+ are
understood by applying Theorem 4.3. Then, in the same way as in 4.6, non-theorems of KB+

can be found.

The next theorem compares the two systems with respect to IT. In particular, item 6 of
Theorem 6.6 states that we cannot make KB and KB+ look more alike with respect to IT.
Lemma 6.7 shows that outside IT, KB and KB+ can still differ.
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THEOREM 6.6
KB+ satisfies the following properties:

1. KB+ h Bttp -4 BiKicp and KB+ \f B^ -4 Knp.
2. For all axioms x of KB such that \ £ IT:

3. For all axioms x of KB+ such that x

4. For all x £ / T \ {£,¥> -4 BiKi<p}:
KB+ \-X^KB\-x

5. For all x € IT \{->Kt(p -4 Kt->Ktip, B{Knp
if 5 I- x =>• -^5+ h x

6. For all x € IT, tffl' 6 {KB, KB+}:
(KB1 h x or # £ ' U {x} h 5,<^ -4 iiT^)

PROOF. The first part of item 1 follows by definition of KB+, the second part can be verified by
finding a model for KB+ (the structure of this model is immediately read off from Definition 6.4,
together with Theorem 4.3) for which S, <£ T{. Items 2 and 3 are true by definition of KB+.
Finally, 4, 5 and 6 are easily verified by checking them for the strongest formula x in each class
(cf. Theorem 6.2) for which the antecedent is true (in case of 5 and 6). I

LEMMA 6.7
KB+ h B^Bitp -4 Kt<p), but KB \f B{{Bnp -4 KiV>).

Solving the BCB-problem boils down to investigating the possibility of having certain combi-
nations of /T-formulas. Of course, one can do this independently from the BCB-problem and
study what kind of i^B-Iike systems are possible anyhow. For instance, one might want a modal
system modelling knowledge and belief of two agents (KB2)- Then, one might assume maximal
p.i. properties (in KB2, this amounts to KhSP —> KiKjtp,h,i,j £ {1,2}: if one agent knows
tp, they both know that they both know <p) and wonder what properties can be added to them,
without implying a collapse of both operators. We end this section with a theorem about possible
combinations.

THEOREM 6.8
Consider the following 'extreme systems' PI, NI, PE and NE, which are systems with two
epistemic operators B and K satisfying AO, RO, Rl (for K), Al and A8 of KB, and such that:

• in PI all instantiations of positive introspection are valid

• in NI all instantiations of negative introspection are valid

• in PE all instantiations of positive extraspection are valid

• in NE all instantiations of negative extraspection are valid.

Then (in the following, the variables X, Y, Z range over {K,B} and K' = B, whereas
B' = K):
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1. foranyTG {PI,NI,PE,NE},T\f Kip -> BipandT \/Bip -> Kip
2. 5 \f Kip -4 Bip and 5 \/ Bip -> JiV,

both for S = PI U NE and S = NI UPE.
3. adding p.e. formula XF<p -> Zip to PI yields Z V -> Zip
4. adding n.e. formula X-Yip ->• ->Z<p to TV/ yields Zip -*• Z'ip
5. adding p.i. formula Xip -> YZip to P.E yields X > -» X V
6. adding n.i. formula -iX<p -> Y->Ztp to iV.E yields X V -> X<p
7. adding n.i. formula ->X</? —> Y-<Zip to P /

yields (-^y/o/se -> (XV ̂  * v ) )
8. adding p.i. formula Xcp -4 yZip to A^/

yields (-IYfalse -> (X^ -> X'ip))
9. adding n.e. formula X-Yip —¥ -<Ztp to P S yields -^Xfalse
10. adding p.e. formula XYip —>• Z<p to A^S yields ->Xfalse
11. adding ^X false to P / yields the four n.e. formulas -X"->y<p —> ->Z(/5
12. adding -<Xfalseto NI yields the four p.e. formulas XFy) -> Zip.

PROOF. AS an example, we prove 1, 2, 3, 6,9 and 11.

1. T = PI, construct a frame such that R1 is transitive over {R2, R3), for all R1, R2, R3 e
{S,T}, but (5 £ T) and (T £ 5); for instance, W = {v,w},S = {(v,v)},T -
{(w,w)}.

2. For 5 = PIUNE, Let T = {W,S,T), with W = {t,u,v,w}, S = {(t,u),(t,w),
(u,w),(v,w),(w,w)} and T = {(t,v),(t,w),(u,w),(v,w),(w,w)}. T is an
S-frame, but T ^ Kip -> By> and J" ^ Bip -4 ifyj.

3. Suppose we add the formula Xy<p -> Z<p to P / . Then immediately: Z V =>p/ A'Fi/; -^
Zip.

6. X V =>p.t. yZ^? =>-,Y false -Y~*Zip => added n.i.-formula Xip.
9. Xfalse => Xy</3 A X-iy^i =>p.i. Z(p A X->y(/P =>addedn.e.-/ormu(o Zip A ->Z<p >̂-

/aise.
11. -iXfalse => (X-.yv> -¥ ^XYip) =>p... (X- iy^ -> -*Zip). I
REMARK 6.9
Theorem 6.8 has many implications. For instance, it follows from 1, 3, 7 and 11, although it is
possible to have a system with two maximally p.i.-related operators, adding one p.e. instantiation
to it gives either Kip -> Bip or Bip -> Kip. The same holds for adding an n.i.-formula,
provided that -Yfalse holds for a suitable Y. Moreover, if we assume the latter, all n.e.-
formulas are imported to the theory. Theorem 6.8 shows an asymmetry between systems with
maximal introspection, and those with maximal extraspection. For example, adding n.e.-formula
X-iY ip ->• -i Zip to PE does not yield (->X false -)• (Zip -> ZV)). it just gives XYip =>PE
Zip => ->X-Yip.

7 Conclusions and problems
Studying the BCB-problem, I applied some correspondence theory to multi-modal epistemic
logic. Studying this multi-modal system, possible combinations of epistemic properties could be
examined systematically. With this general approach I showed that Kraus and Lehmann's KB is
saturated with respect to many important properties (such as introspection): adding any of them
to KB yields Bi<p «4 Knp. I investigated one of the many possible systems that are 'close to



194 Systems for Knowledge and Belief

KB' and that solves the BCB-problem. This shows that the collapse of knowledge and belief
one obtains by adding B(p -t BKtp is not caused by the use of Kripke semantics. I argued that
the techniques presented in this paper can straightforwardly be applied to probabilistic Kripke
structures as well.

By allowing more epistemic operators (for each agent), many notions of belief can be com-
bined. It seems interesting to explore this idea of having a spectrum of beliefs, ranging from
weak belief, corresponding with having less alternatives (worlds) in the structure (cf. [15], where
a notion of belief is defined as a possibility operator) to knowledge as some 'limit'. This idea
might be extended to do a kind of 'quantitative reasoning' as follows. With respect to a relation
R, define operators L n , n G l N , with interpretation of Lntp : 'in all, except for at most n worlds,
ip is the case'. This enables defining notions like V is believed at least as strong as ip'. At
the moment, I are studying some interesting perspectives offered by this option. The idea of
having such 'numerical' modal operators was suggested independently in [6] and [11]. A first
application to epistemic logic is to be found in [16].
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