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Abstract

We show how labelled deductive systems can be combined with a logical framework to provide a

natural deduction implementation of a large and well-known class of propositional modal logics

(including K,D, T , B, S4, S4:2,KD45, S5). Our approach is modular and based on a separation

between a base logic and a labelling algebra, which interact through a �xed interface. While the

base logic stays �xed, di�erent modal logics are generated by plugging in appropriate algebras.

This leads to a hierarchical structuring of modal logics with inheritance of theorems. Moreover, it

allows modular correctness proofs, both with respect to soundness and completeness for semantics,

and faithfulness and adequacy of the implementation. We also investigate the tradeo�s in possible

labelled presentations: We show that a narrow interface between the base logic and the labelling

algebra supports modularity and provides an attractive proof-theory (in comparision to, e.g.,

semantic embedding) but limits the degree to which we can make use of extensions to the labelling

algebra.
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1 Introduction

In this paper we examine how two complementary proposals for dealing with

the enormous range of logics developed in recent years combine together in

practice. The �rst is the use of a generic theorem prover [10, 11, 15], based

on a logical framework, which can be used to implement proof systems for

many logics in a uniform manner. These theorem provers are based on a

metalogic in which the syntax and proof rules of object logics are encoded,

and theorems of the object logic are constructed by proving theorems in the

metalogic. The second is that of a Labelled Deductive System (LDS, [8]),

a method for giving uniform presentations of non-standard logics based on

possibly radically di�erent deductive systems, e.g. modal, substructural, or

non-monotonic logics. In the LDS approach, instead of a consequence re-

lation being de�ned over formulae (: : :A ` B : : :), it is de�ned over pairs

consisting of a label and a formula (: : : x :A ` y :B : : :). The labels then

allow information needed to formalize the more subtle metatheoretic aspects

of the relation to be tracked. For modal logic, for instance, we might want to

distinguish between `local' (with respect to some world) and `global' (with

respect to some frame) consequence, so the label could keep track of the `pos-

sible world' in which the formula lives. Or for a substructural logic, where

the consequence relation should be sensitive to operations like weakening

and contraction, the labels might track resources and their use [5].

We study this combination in the case of propositional modal logics and

show how it can provide a simple and usable implementation of a large col-

lection of logics (including K, D, T , B, S4, S4:2, KD45, S5) in a natural

deduction (ND, [16, 17]) setting. We view a proof system for an LDS as

consisting of two parts: a base logic for manipulating labelled formulae, and

a separate labelling algebra for reasoning about the labels. Our base logic,

in which labels represent possible worlds in the Kripke frame, is a labelled

ND presentation of propositional calculus extended with introduction and

elimination rules for 2 (i.e. the modal logic K). Our labelling algebras are

relational theories comprised of Horn clause axioms formalizing the acces-

sibility of worlds in Kripke frames. These two parts are separate and com-

municate through an interface provided by the rules for 2. We implement

these theories in the Isabelle logical framework [15], and this separation is

enforced by the use of multiple judgements (cf. [10]) in the metalogic, which

distinguish between relational and labelled formulae.
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Why Combine Paradigms?

Why should the LDS and logical framework paradigms be combined when

logical frameworks themselves should su�ce to formalize and implement

logics? We contend, and we hope our development illustrates, that the

combination is sensible and advantageous since each paradigm can provide

something that the other lacks. On one hand, an LDS can help tailor the

consequence relation of a logic to �t better that of the metalogic. On the

other, a logical framework provides a means of directly implementing certain

kinds of LDS presentations (see discussion in Section 6.2) as ND proof

systems, provides a concrete metalogic for reasoning about the correctness

of the implementation, and may, as in the case of Isabelle, support structured

theory development. Below we consider these points in more detail.

Many of the framework logics which have been actively studied, e.g. the

type theory of the Edinburgh LF [10], the higher-order logic of Isabelle [15],

and even programming languages like �-Prolog [6], lend themselves best to

representing logics which can be presented as collections of rules for proof

under assumption. An example of such a rule is the standard arrow (impli-

cation) introduction rule:

�; A ` B

� ` A! B
! I

This rule is associated with natural deduction, which, as the name suggests,

is commonly recognized as one of the most natural systems for building

proofs, at least for humans (as opposed to computers).

Unfortunately, modal logics �t natural deduction poorly; they are usually

presented as Hilbert systems, even though these are recognised as one of

the least natural systems for building proofs. This is not to say that it is

impossible to give a natural deduction presentation of a modal logic, they

have been developed and studied; the problem is that the resulting systems

are much more awkward. For instance in any ND presentation of a modal

logic based on K, where we have ! I , we also are allowed to use the rule

� ` A
2� ` 2A

2I

where 2� indicates that each assumption in � has 2 as its outermost con-

nective. The problem with this rule is that it is not pure: it carries a side

condition on the complete set of assumptions. While logical frameworks

work well in encoding certain kinds of rules, namely those rules of ordinary
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pure single-conclusioned ND systems1, the logical frameworks so far pro-

posed are not able to formalize the above kind of impure side condition in a

natural deduction setting and hence cannot directly formalize such presen-

tations.

The inability to encode impure rules in a logical framework forbids build-

ing proof systems using ! I and 2I together, but not ND presentations

of modal logics in general: a pure presentation of S4 for the Edinburgh LF

logical framework can be found in [2, x4.4], where two judgements (true and

valid) are used which, in essence, factor the proof system into two parts,

in one of which only propositional reasoning is possible. While it may be

possible to develop other presentations in this fashion, there does not appear

to be a systematic way to do this; each new modal logic requires some in-

sight and its own justi�cation of correctness. Further, even when given such

presentations, we have no reason to expect them to have the same combina-

tional properties as their corresponding Hilbert systems; i.e. given systems

corresponding to K4 and KT (i.e. T ), we do not know if their combination

corresponds to KT4 (i.e. S4).

We show that the LDS approach can serve as a solution to this problem;

for modal logics, it provides precisely what is needed, namely an ordinary,

pure single-conclusioned natural deduction presentation. Moreover, the so-

lution supports modularity since the labelling algebra directly expresses the

properties of the appropriate Kripke frames.

Finding a `good' presentation

In order to provide an LDS formalization of a logic we need two things: a

base logic, and a general notion of a labelling algebra. However, for each of

these there may be more than one possible candidate. For instance in this

paper we concentrate on labelling algebras corresponding to Horn theories of

the accessibility relation, one possibility out of many, and not even perhaps

the most obvious | why restrict ourselves to Horn clause logic, instead of

full �rst-order, or even higher-order, logic?

Clearly we need some criteria for assessing the relative merits of the

range of possibilities. We can, of course, consider the basic metatheoretic

properties that any logical system is expected to satisfy, such as proof nor-

1In [1, footnote to x5.5], Avron summarizes this when he says that \every ordinary,
pure single-conclusioned ND system can, e.g., quite easily be implemented on the Edin-

burgh LF." Note that `ordinary' means that the system admits the well known rules for

contraction and thinning of assumptions.
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malization, but we can extend this list. There are pragmatic considerations,

such as `is it easy to use?'. But there are other theoretical considerations:

for instance D'Agostino and Gabbay, in [5, p.244], write

The labelling algebra represents this metalevel information as a sep-

arate component of a standard derivation system and can be treated

as an independent parameter. In the LDS approach, logical systems

are not studied statically, in isolation, but dynamically, observing the

process of their generation and their interaction (via modi�cations of

the labelling algebras) on the basis of a �xed proof-theoretical hard

core (the underlying system of deduction). [their emphasis]

In other words, a good LDS presentation should correspond not just to

some logic, but to a space of possible logics, which vary in a well-behaved

way according to the details of the labelling algebra; e.g. we would expect

that given an LDS for modal logic, a presentation of K4 combined with a

presentation of T does result in S4. By this standard, for instance, while the

presentation of S4 in [2] could be seen as an LDS where the two judgements

correspond to labels, it would not be a good one, since there is no labelling

algebra to vary.2

The system we propose does well by these measures. It cleanly separates

the labelling algebra from the base logic K, and we show that it has good

modular, compositional properties for the labelling algebra, behaving in the

way we would expect as we combine labelling algebras together, provid-

ing a natural hierarchy of systems that inherit theorems and derived rules.

Moreover, we use the parameterized relational theory to prove a parameter-

ized completeness theorem with respect to Kripke semantics, and to prove

the correctness of the encodings. These theorems show that our implemen-

tation not only properly captures modal provability within our hierarchy,

but also a satisfactory notion of proof under assumption, i.e. consequence.

Third, although not formally quanti�able, our experience shows that proof

construction using our presentation is natural and intuitive. Finally, we

consider the metatheory of our system, and compare it with other related

possibilities, including semantic embedding , where the Kripke semantics is

used to translate modal propositions into a �rst-order or higher-order logic.

We show that using our base logic K we are able to interpret the `sep-

arate' in the previous quotation in a strong way: not only do we have a

separation between the base logic and the labelling algebra, but that sepa-

ration is maintained even when building proofs; i.e. the proofs themselves

2We do not mean this as a criticism of that presentation, which was not motivated by

such concerns.
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consist of a derivation tree built from the base logic, which is decorated with

a fringe of derivations in the labelling algebra alone. It turns out that this

property is directly related to the behavior of falsum (?) in K, which is

able to propagate between di�erent worlds. We call this property a global

falsum. We show that this is enough to implement, among others, the logics

in the Geach hierarchy (including many of the modal logics we are likely

to encounter in practice), but not enough to implement all modal logics

corresponding to �rst-order de�nable frames.

Having identi�ed this property of K, we can vary it to produce di�erent

candidate `hard cores'. We investigate the other two obvious possibilities.

The �rst of these, an extension we call universal falsum, allows ? to prop-

agate not only from one world to another, but also between worlds and the

labelling algebra (assuming that the labelling algebra is also extended with

this). The second, a restriction where ? is no longer able to propagate even

between worlds, we call local falsum.

A system with a universal falsum is certainly more general than K. In

fact we show that it is equivalent to a traditional semantic embedding in �rst-

order logic, and therefore able to treat not just, e.g., the Geach logics, but

any �rst-order axiomatizable theory. However in exchange for this greater

scope we loose the better behaved proof theory of K, and the result does

not seem to o�er any advantages over semantic embedding in �rst-order

logic (where there is no separation at all), and thus provides no essential

alternative to this better known approach. If we restrict ourselves to a

local falsum on the other hand, the proof system is in general not suitable

for formalizing modal logics, and proofs even no longer have normal forms.

Thus K seems to be the weakest logic in which we can embed a useful range

of modal logics.

Organization

The remainder of this paper is organized as follows. In Section 2 we present

a hierarchy of labelled (propositional) modal logics based on K and Horn

relational theories. In Section 3 we consider the soundness and complete-

ness of these theories with respect to Kripke semantics. After, in Section 4,

we consider some of the proof-theoretic properties of our encodings and use

that to contrast our approach with related formalizations. In Section 5 we

sketch our implementation in Isabelle, its application, and its correctness. In

Section 6 we compare with related work based on natural deduction presen-

tations of modal logics, LDS presentations, and translation into �rst-order
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logic. Finally, we draw conclusions. An Appendix contains proof scripts

from an Isabelle session which demonstrate interactive proof construction

with our implementation.

2 A Hierarchy of Labelled Modal Logics

We introduce a labelled ND system for the base modal logic K and extend

it with (Horn) relational theories.

2.1 The Base Modal Logic K

De�nition 2.1 Let W be a set of labels and R a binary relation over W .

If x and y are labels, and A is a propositional modal formula built from ?,

!, 2, 3, then x R y is a relational formula (rw�), and x :A is a labelled

formula (lw�).

Hence, if p is a sentence letter, and A;B are propositional modal formulae,

then x : p, x :?, x :A ! B, x :2A, x :3A are all lw�s. Lw�s over other

connectives (e.g.:, ^, _) can be de�ned in the usual manner, e.g. x ::A � x :

A! ?. Henceforth, we assume that the variables x; y; z; w range over labels,

the variables A;B range over propositional modal formulae, ' is an arbitrary

rw� or lw�, and � = fx1 :A1; : : : ; xn :Ang and � = fx1 R y1; : : : ; xm R ymg

are arbitrary sets of lw�s and rw�s. We will also freely use subscripts or

superscripts for all of them.

The rules given in Figure 1 determine K, the base ND system which

formalizes a labelled version of the modal logicK. For the sake of simplicity,

in the following we will sometimes use the rules for negation, :I and :E,

which are special cases of ! I and ! E, respectively:

[x :A]
...

x :?
x ::A

:I
x ::A x :A

x :?
:E

2.2 Relational Theories

We will formalize particular modal logics by extending K with relational

theories , which axiomatize properties of the accessibility relation R in Kripke

frames. Correspondence theory [21, 22] provides a tool for telling us which

modal axioms correspond to which axioms for R. For example, the T axiom,
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[x :A]
...

x :B

x :A! B
! I

[x R y]
...

y :A

x :2A
2I

y :A x R y

x :3A
3I

[x :A!?]
...

y :?

x :A
?E

x :A x :A! B

x :B
! E

x :2A x R y

y :A
2E x :3A

[y :A] [x R y]
...

z :B

z :B
3E

In 2I [3E], y is di�erent from x [x and z] and does not occur in the assumptions

on which y :A [z :B] depends, except those of the form x R y [y :A and x R y],

which are discharged by the inference. We do not enforce Prawitz's side condition

on ?E that A 6= ?.

Figure 1: The rules of K

2A ! A, corresponds to the �rst order axiom 8x(x R x). Not all modal

axioms can be captured in a �rst-order setting (e.g. the McKinsey axiom

23A! 32A), so there is an important decision that we must make: Should

we allow all higher-order relational theories, or some subset thereof?

This decision is non-trivial. We show in Section 4 that di�erent choices of

interface between K and the labelling algebra result in essentially di�erent

systems. Our choice is based on our intention to implement these theories

(Section 5.1) as sets of proof rules using a metalogic corresponding to mini-

mal implicational predicate logic. Hence, we have chosen to admit precisely

those theories of R which can be directly formulated in the Horn-fragment of

this metalogic without requiring additional axioms (e.g. for auxiliary pred-

icates) or judgements (e.g. for identity). We partially justify this choice

below by showing that it captures a large class of well-known modal logics

including most of those used in practice.

2.3 Horn Relational Theories

De�nition 2.2 A Horn relational formula is a closed formula of the form

8x1 : : :8xn((t1 R s1 ^ : : :^ tm R sm)! t0 R s0) ;

where the ti and si are terms built from the labels x1; : : : ; xn and function
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symbols. Corresponding to each such formula is a Horn relational rule

t1 R s1 : : : tm R sm
t0 R s0

A Horn relational theory T is then a theory generated by a set of such rules.

In �rst-order logic the addition of a Horn formula to a theory is equivalent to

adding the corresponding rule; hence, in the context of our metatheories we

shall talk about additions based on either formulae or rules as is convenient.

We now indicate that restricting our attention to Horn theories is often

su�cient in practice. Let i, j, m, and n be natural numbers, and let 2n

[3n] stand for a sequence of n consecutive 2s [3s]; for example 32
2
3
3

0A

is 33222A. A large and important class of modal logics falls under the

generalized Geach axiom schema

3
i
2
mA! 2

j
3
nA ;

which corresponds to the semantic notion of (i; j;m;n) convergency (or `in-

cestuality' in the terminology of [4])

8x8y8z(x Ri y ^ x Rj z ! 9u(y Rm u ^ z Rn u)) ;

where x R0 y means x = y and x Ri+1 y means 9v(x R v ^ v Ri y).

There are instances of (i; j;m; n) convergency which explicitly require

the identity predicate, e.g. (1; 0; 0; 0) yields vacuity , 8x8y(x R y ! x = y).

For simplicity, we will not consider theories with identity, and we introduce

the subclass of restricted (i; j;m; n) convergency axioms, as the class of prop-

erties of the accessibility relation which can be expressed as Horn rules in

the theory of one binary predicate R. These theories yield, among others,

most of the modal logics usually of actual interest (K, D, T , B, S4, S4:2,

KD45, S5,: : :).

De�nition 2.3 Restricted (i; j;m;n) convergency axioms are closed formu-

lae of the form 8x8y8z((x Ri y ^ x Rj z) ! 9u(y Rm u ^ z Rn u)), where

m = n = 0 implies i = j = 0.

Proposition 2.4 If TG is a theory corresponding to a collection of restricted

(i; j;m; n) convergency axioms, then there is a Horn relational theory TH
conservatively extending it.
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Proof The restriction that m = n = 0 implies i = j = 0 is a necessary

and su�cient condition for identity to be inessential (the necessity can be

checked semantically), as noted in [20]. Now, for each convergency axiom

Ak in TG, let B
k be formed by prenexing quanti�ers followed by skolemizing

remaining existential quanti�ers. Bk must be of the form:

8x1 : : :8xl((t1 R s1 ^ : : :^ tp R sp)! (t01 R s01 ^ : : :^ t
0
q R s0q)) ;

where q = m + n 6= 0, and where Skolem functions only occur in the

consequent. We can translate Bk into q Horn relational formulae, Bk
r for

r 2 f1; : : : ; qg, of the form

8x1 : : :8xl((t1 R s1 ^ : : :^ tp R sp)! t0r R s0r) :

Let TH be the theory generated by the union of the Bk
r rules; the conser-

vativity of TH follows by the theorem on functional extensions [19, p.55],

and the observation that Skolem constants only occur positively in the Bk
r .

(Alternatively, cf. Theorem 3.4.4.(i) in [23, p.137]). 2

Some properties corresponding to instances of restricted (i; j;m; n) con-

vergency are given in Figure 2. We also present there the Horn relational

rules that result by applying the above translation to these axioms, together

with the corresponding characteristic axioms.

Various combinations of Horn relational rules de�ne labelled equivalents

of standard propositional modal logics: the logic L = K + T is obtained

by extending K with a given Horn relational theory T .3 Figure 3 shows a

fragment of the resulting hierarchical dependency. For example, KT4 (S4) is

obtained by extending K with the rules R refl and R trans, or alternatively

by extending either KT with R trans or K4 with R refl.

Our approach of presenting logics by combinations ofK with a relational

theory T provides a general method for representing logics in a modular and

transparent way. The relational theory can be viewed as an independent

parameter: the base logic K stays �xed for a given class of related logics and

we generate the one we want by combining K with the appropriate relational

theory. In Section 4, we return to the question of extensions to full �rst-

order or higher-order theories. It is possible to generalize our presentation

3We adopt the convention of naming the modal logic K + T as KAx, where Ax is a
string consisting of the standard names of the characteristic axioms corresponding to the

relational rules contained in T . As an example, KD, KT , KTB, KT4, KT5 identify the

logics also known as D, T , B, S4, S5.
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Property (i; j;m; n) Char. Axiom Horn Relational Rule

Seriality (0; 0; 1; 1) D : 2A! 3A x R f(x)
R ser

Re
exivity (0; 0; 1; 0) T : 2A! A x R x
R refl

Symmetry (0; 1; 0; 1) B : A! 23A
x R y

y R x
R symm

Transitivity (0; 2; 1; 0) 4 : 2A! 22A
x R y y R z

x R z
R trans

Euclideaness (1; 1; 0; 1) 5 : 3A! 23A
x R y x R z

z R y
R eucl

Convergency (1; 1; 1; 1) 2 : 32A! 23A
x R y x R z

y R g(x; y; z)
R conv1

x R y x R z

z R g(x; y; z)
R conv2

Where f :W !W and g : (W �W �W )!W are (Skolem) function constants.

Figure 2: Some properties of R, characteristic axioms, and Horn relational

rules

here, but, perhaps surprisingly, for some extensions the `interface' between

K and the relational theory must be changed if completeness for encoded

logics (with respect to their intended Kripke semantics) is to be preserved,

and the metatheoretic properties of the system change.

2.4 Derivations

We adapt the standard de�nition of [16] to de�ne derivations of lw�s and

rw�s relative to a given relational theory T used to extend K.

De�nition 2.5 A derivation of an lw� or rw� ' from a set of lw�s � and

a set of rw�s � in a logic L = K + T is a tree formed using the rules in L,

ending with ' and depending only on � [�. We write �;� `L ' when '

can be so derived. A derivation of ' in L depending on the empty set, `L ',

is a proof of ' in L, and we say that ' is an L-theorem.
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KT5 (S5)
OO

R eucl

KT42 (S4:2)
OO

R conv1 R conv2
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OO
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Figure 3: A hierarchy of modal logics (fragment)

Fact 2.6 When ' is an rw�, say x R y, we have that

(1) �;� `K x R y i� x R y 2 �

(2) �;� `K+T x R y i� � `K+T x R y i� � `T x R y

We also call a derivation [proof] in a logic L an L-derivation [L-proof ],

and we will omit the `L' when the particular logic is not relevant. We

systematically use �, with or without indices, to range over derivations, and

we write �

'
to specify that the formula ' is the conclusion of the derivation �.

Similarly, we write '

�
[ [']
�
] to distinguish a possibly empty set of occurrences

of the open [discharged] assumption ' in �. Moreover, we use superscripts

to associate discharged assumptions with rule applications.

As an example, we give the K2-proof of the characteristic axiom corre-

sponding to convergency, i.e. `K2 x :32A! 23A.

[x :32A]3

[y :2A]1
[x R y]1 [x R z]2

y R g(x; y; z)
R conv1

g(x; y; z) :A
2E

[x R y]1 [x R z]2

z R g(x; y; z)
R conv2

z :3A
3I

z :3A
3E1

x :23A
2I2

x :32A! 23A
! I3

An Isabelle proof for this theorem is presented in Appendix A. As a further

example, taken from [8, p.36], we present the K-derivation of x :33B from

the assumptions x :22A, y :3(A! B), and x R y.
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y :3(A! B)

x :22A x R y

y :2A
2E

[y R z]1

z :A
2E

[z :A! B]1

z :B
! E

[y R z]1

y :3B
3I

y :3B 3E1

x R y

x :33B
3I

3 Correctness of Labelled Modal Logics

We introduce a Kripke semantics for our systems and modularly prove that

any logic L obtained by extending K with a Horn relational theory T is

sound and complete with respect to it.

De�nition 3.1 A (Kripke) frame is a pair (w; r), where w is a non-empty

set, and r � w�w. A (Kripke) model M is a triple (w; r; v), where (w; r) is

a frame, and v maps an element of w and a sentence letter to a truth value

(0 or 1). A model [frame] is said to have some property of binary relations

(e.g. transitivity) i� r has that property.

Note that our models do not contain functions corresponding to possible

Skolem functions in the signature. When such constants are present the

appropriate Skolem expansion of the model (cf. [23, p.137]) is required.

De�nition 3.2 Given a set of lw�s � and a set of rw�s �, we call the

ordered pair (�;�) a proof context (pc). When �1 � �2 and �1 � �2, we

write (�1;�1) � (�2;�2), and say that (�1;�1) is included in (is a subpc

of) (�2;�2). When w :A 2 �, we write w :A 2 (�;�) irrespective of �, and

when x R y 2 �, we write x R y 2 (�;�) irrespective of �. Finally, we say

that a label x occurs in (�;�), and by abuse of notation write x 2 (�;�),

if there exists an A such that x : A 2 �, or a y such that x R y 2 � or

y R x 2 �.

De�nition 3.3 Truth for an rw� or lw� ' in a model M, j=M ', is the

smallest relation j=M satisfying:

j=M x R y if (x; y) 2 r

j=M x :p if v(x; p) = 1

j=M x :A! B if j=M x :A implies j=M x :B

j=M x :2A if for all y, j=M x R y implies j=M y :A

j=M x :3A if for some y, j=M x R y and j=M y :A

13



When j=M ', we say that ' is true in M. By extension, j=M (�;�) means

that j=M ' for all ' 2 (�;�), and �;� j= ' means that j=M (�;�) implies

j=M ' for any model M.

Truth for lw�s containing other connectives, e.g. j=M x ::A, can be de�ned

in the usual manner. Moreover, truth for lw�s is related to the standard

truth relation for unlabelled modal logics, e.g. [4], by observing that j=M x :A

i� j=M
x A. Analogous to Fact 2.6 we have that:

Fact 3.4 �;� j= x R y i� � j= x R y.

De�nition 3.5 The modal logic L = K + T is sound i� �;� `L ' implies

�;� j= '. L is complete i� the converse holds.

The explicit embedding of properties of the models, and the possibility of

explicitly reasoning about them, via rw�s and relational rules, require us to

consider also soundness and completeness for rw�s, where, by Fact 2.6 and

Fact 3.4, we show that � `L x R y i� � j= x R y.

Lemma 3.6 L = K + T is sound, i.e.

(1) � `L x R y implies � j= x R y

(2) �;� `L x :A implies �;� j= x :A

Proof Throughout the proof let ML = (wL; rL; vL) be an arbitrary model

for the logic L. We prove (1) by induction on the structure of the derivation

of x R y from �. The base case (x R y 2 �) is trivial. There is one step

for each Horn relational rule; we treat only transitivity and convergency

as examples. For transitivity, assume that rL is transitive and consider

applications of the rule R trans

�1

x R y

�2

y R z

x R z
R trans

where �1 and �2 are the derivations �1 `L x R y and �2 `L y R z,

with � = �1 [ �2. The induction hypotheses are �1 `L x R y implies

�1 j= x R y, and �2 `L y R z implies �2 j= y R z. Assume j=ML �.

Then, from the induction hypotheses we obtain j=ML x R y and j=ML y R z,

i.e. (x; y) 2 rL and (y; z) 2 rL. Since rL is transitive, we conclude j=ML x R z

by De�nition 3.3.
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In the case of Skolem constants ML is a Skolem expansion; e.g. consider

applications of the rules R conv1 and R conv2

�1

x R y

�2

x R z

y R g(x; y; z)
R conv1

�1

x R y

�2

x R z

z R g(x; y; z)
R conv2

where �1 and �2 are the derivations �1 `L x R y and �2 `L x R z, with

� = �1[�2. By Proposition 2.4, the theory TH generated by R conv1 and

R conv2 is a conservative extension of the �rst-order theory TG correspond-

ing to the convergency axiom. By Theorem 3.4.4.(ii) in [23, p.137], each

model of the theory TG has a Skolem expansion, contained in ML, which is

a model of TH . Assume j=ML �. Then, from the induction hypotheses we

obtain j=ML x R y and j=ML x R z, i.e. (x; y) 2 rL and (x; z) 2 rL. Since

rL is convergent, we have j=ML y R g(x; y; z) and j=ML z R g(x; y; z) by

De�nition 3.3.

We prove (2) by induction on the structure of the derivation of x :A from

� and �. The base case (x :A 2 �) is trivial. There is one step for each

inference rule; we treat only applications of ?E, 2I and 2E.

?E

[x :A! ?]

�

y :?

x :A
?E

where � is the derivation �1;� `L y :?, with �1 = � [ fx :A ! ?g. The

induction hypothesis is �1;� `L y : ? implies �1;� j= y :?. We assume

j=ML (�;�), and prove j=ML x : A. Since 6j=ML y : ? for any y, from the

induction hypothesis we obtain 6j=ML �1, and therefore 6j=ML fx :A ! ?g,

i.e. j=ML x :A and 6j=ML x :? by De�nition 3.3.

2I

[x R y]

�

y :A

x :2A
2I

where � is the derivation �;�1 `L y : A, with �1 = � [ fx R yg. The

induction hypothesis is �;�1 `L y : A implies �;�1 j= y : A. Assume
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j=ML (�;�). Considering the restriction on the application of 2I , we can

extend � to �0 = � [ fx R zg for an arbitrary z 62 (�;�), and assume

j=ML �0. Since j=ML �0 implies j=ML �1, from the induction hypothesis we

obtain j=ML y :A, that is j=ML z :A for an arbitrary z 62 (�;�) such that

j=ML x R z. We conclude j=ML x :2A by De�nition 3.3.

2E

�1

x :2A

�2

x R y

y :A
2E

where �1 and �2 are the derivations �;�1 `L x :2A and �2 `L x R y, with

� = �1 [ �2. Assume j=ML (�;�). Then, from the induction hypotheses

we obtain j=ML x :2A and j=ML x R y, and thus j=ML y :A by De�nition 3.3.

2

De�nition 3.7 Let L = K + T be a consistent logic, i.e. 6`L x :? for every

label x. A pc (�;�) is L-consistent i� �;� 6`L x :? for every label x. (�;�)

is L-inconsistent i� it is not L-consistent.

When the particular logic is not relevant, we will omit the `L' and simply

speak of consistent and inconsistent pcs.

Fact 3.8 If (�;�) is consistent, then for every lw� x : A either (� [ fx :

Ag;�) is consistent or (� [ fx ::Ag;�) is consistent.

For any logic L = K+T , let �L be the deductive closure of � under T , i.e.

�L = fx R y j � `L x R yg :

Note that �;� `L ' i� �;�L `L ', and that �L might be empty when �

is empty.

De�nition 3.9 A pc (�;�) is maximally consistent i� (1) it is consistent;

(2) � = �L; (3) for every x :A either x :A 2 (�;�) or x ::A 2 (�;�).

Completeness follows by a modi�cation of the standard Henkin-style proof,

where a canonical model MC
L = (wC

L ; r
C
L ; v

C
L) is built to show that4

4We consider only consistent pcs. If (�;�) is inconsistent, then �;� `L x :A for all
x :A, and thus completeness immediately holds for lw�s. Our labelling algebra does not

allow us to de�ne inconsistency for a set of rw�s, but, if (�;�) is inconsistent, the canonical

model built in the following is nonetheless a countermodel to non-derivable rw�s.
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�;� 6`L ' implies �;� 6j= MC
L'.

In standard proofs for unlabelled modal logics the set wC
L is obtained by pro-

gressively building maximally consistent sets of formulae, where consistency

is locally checked within each set (cf. [4]). In our case, given the presence

of labelled formulae and explicit assumptions on the relations between the

labels, i.e. �, we modify the Lindenbaum lemma (Lemma 3.10 below) to ex-

tend (�;�) to one single maximally consistent proof context (��;��), where

consistency is `globally' checked also against the additional assumptions in

�. The elements of wC
L are then built by partitioning �� with respect to

the labels, and accessibility is de�ned by exploiting the information in ��.

Moreover, in standard proofs the way in which wC
L is built depends on the

particular modal logic L, in particular on the accessibility conditions holding

for L. In our case, the proof is completely independent of L: exactly the

same procedure applies for any logic.

In the Lindenbaum lemma for �rst-order logic a maximally consistent

and !-complete set of formulae is inductively built by adding for every for-

mula 9x:P (x) a witness to its truth, namely a formula P (c) for some new

individual constant c. This ensures that if, for every closed term t, P (t) is

contained in the set, then so is 8x:P (x). A similar procedure applies here

in the case of lw�s of the form x :3A. That is, together with x :3A we

consistently add y :A and x R y for some new y, which acts as a witness

world to the truth of x :3A. This ensures that the maximally consistent pc

(��;��) is such that if x R z 2 (��;��) implies z :B 2 (��;��) for every

z, then x :2B 2 (��;��), as shown in Lemma 3.11 below. Note that in the

standard completeness proof for unlabelled modal logics, one shows instead

that for every w 2 wC
L , if 3A 2 w, then wC

L also contains a world accessible

from w that serves as a witness world to the truth of 3A.

Lemma 3.10 Every consistent pc (�;�) can be extended to a maximally

consistent pc (��;��).

Proof We �rst extend the language of the logic L with in�nitely many

new constants for witness worlds. Systematically let w range over labels, v

range over the new constants for witness worlds, and u range over both. All

these may be subscripted. Let l1; l2; : : : be an enumeration of all lw�s in the

extended language. Starting from (�0;�0) = (�;�), we inductively build a

sequence of consistent pcs by de�ning (�i+1;�i+1) to be:

� (�i;�i), if (�i [ fli+1g;�i) is inconsistent; else
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� (�i [ fli+1g;�i), if li+1 is not u :3A; else

� (�i [ fu :3A; v :Ag;�i [ fu R vg), for a v 62 (�i [ fu :3Ag;�i), if li+1 is

u :3A.

Every (�i;�i) is consistent. We show that if (�i[fu :3Ag;�i) is consistent,

then so is (�i [ fu :3A; v :Ag;�i [ fu R vg), for a v 62 (�i [ fu :3Ag;�i);

the other cases follow by construction. Suppose that for any v 62 (�i [ fu :

3Ag;�i), �i [ fu : 3A; v : Ag;�i [ fu R vg `L uj : ?. Then �i [ fu :

3Ag;�i [ fu R vg `L v ::A, and 2I yields �i [ fu :3Ag;�i `L u :2:A,

i.e. �i [ fu :3Ag;�i `L u ::3A. Thus �i;�i `L u :?. Contradiction.

Now let (��;��) = (
S
i�0�i; (

S
i�0�i)L). We show that (��;��) is max-

imally consistent by proving that it satis�es the conditions in De�nition 3.9.

For (1), note that if (
S
i�0 �i;

S
i�0�i) is consistent, so is (

S
i�0�i; (

S
i�0�i)L).

Now suppose that (��;��) is inconsistent. Then for some �nite subpc

(�0;�0) there exists a u such that �0;�0 `L u :?. Every lw� l 2 (�0;�0)

is in some (�j ;�j). For each l 2 (�0;�0), let il be the least j such that

l 2 (�j ;�j), and let i = maxfil j l 2 (�0;�0)g. Then (�0;�0) � (�i;�i),

and (�i;�i) is inconsistent, which is not the case. (2) is satis�ed by de�ni-

tion of ��. For (3), suppose that li+1 62 (��;��). Then li+1 62 (�i+1;�i+1)

and (�i [ fli+1g;�i) is inconsistent. Thus, by Fact 3.8, (�i [ f:li+1g;�i)

is consistent, and :li+1 is consistently added to some (�j ;�j) during the

construction, and therefore :li+1 2 (��;��). 2

Lemma 3.11 Let (��;��) be a maximally consistent pc. Then

(1) ��;�� `L ui R uj i� ui R uj 2 (��;��)

(2) ��;�� `L u :A i� u :A 2 (��;��) (deductive closure)

(3) u :B ! C 2 (��;��) i� u :B 2 (��;��) implies u :C 2 (��;��)

(4) ui : 2B 2 (��;��) i� for all uj, ui R uj 2 (��;��) implies uj : B 2

(��;��)

(5) ui : 3B 2 (��;��) i� for some uj, ui R uj 2 (��;��) and uj : B 2

(��;��)

Proof We only treat (4). Suppose that ui : 2B 2 (��;��). Then, by

deductive closure, ��;�� `L ui :2B, and, by 2E, �
�;�� `L ui R uj implies

��;�� `L uj :B for all uj. By deductive closure, conclude ui R uj 2 (��;��)

implies uj :B 2 (��;��) for all uj . For the converse, suppose that ui :2B 62

(��;��). Then ui ::2B 2 (��;��), i.e. ui :3:B 2 (��;��). Hence, by the
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construction of (��;��), there exists a uj such that ui R uj 2 (��;��) and

uj :B 62 (��;��). 2

De�nition 3.12 Given (��;��), we de�ne the canonical model MC
L for the

logic L as follows: wC
L = ffA j u :A 2 ��g j u 2 (��;��)g; (ui; uj) 2 rCL i�

ui R uj 2 ��; vCL (u; p) = 1 i� u :p 2 ��.

The standard de�nition of rCL , i.e. (ui; uj) 2 rCL i� fA j 2A 2 uig � uj ,

is not applicable in our setting, since fA j 2A 2 uig � uj does not imply

`L ui R uj. We would therefore be unable to prove completeness for rw�s,

since there would be cases, e.g. when L = K and � = fg, where 6`L ui R

uj but (ui; uj) 2 rCL , and thus j=MC
L ui R uj. Hence, we instead de�ne

(ui; uj) 2 rCL i� ui R uj 2 ��; note that therefore ui R uj 2 �� implies

fA j 2A 2 uig � uj . Moreover, we immediately have that:

Fact 3.13 ui R uj 2 �� i� �� j=MC
L ui R uj.

The deductive closure of �� ensures not only completeness for rw�s (as

shown in Lemma 3.16 below), but also that the conditions on rCL are satis�ed,

so that MC
L is really a model for L. As an example, we show that if L contains

R conv1 and R conv2, then rCL is convergent. Consider an arbitrary pc

(�;�), from which we build MC
L . Assume (ui; uj) 2 rCL and (ui; uk) 2 rCL .

Then ui R uj 2 �� and ui R uk 2 ��. But �� is deductively closed, and

thus uj R g(ui; uj; uk) 2 �� and uk R g(ui; uj; uk) 2 ��. Hence, there exists

a ul such that (uj; ul) 2 rCL and (uk; ul) 2 rCL .

De�nition 3.14 The degree of an lw� is the number of times ?, ! and 2

occur in it.

Lemma 3.15 u :A 2 (��;��) i� ��;�� j=MC
L u :A.

Proof By induction on the degree of u : A; we treat only the step case

given by ui : 2B. Assume ui : 2B 2 (��;��). Then, by Lemma 3.11,

ui R uj 2 (��;��) implies uj :B 2 (��;��), for all uj . Fact 3.13 and the

induction hypothesis yield ��;�� j=MC
L uj :B for all uj such that �

�;�� j=MC
L

ui R uj , i.e. �
�;�� j=MC

L ui : 2B by De�nition 3.3. For the converse,

assume ui ::2B 2 (��;��). Then, by Lemma 3.11, ui R uj 2 (��;��) and

uj ::B 2 (��;��), for some uj. Fact 3.13 and the induction hypothesis yield

��;�� j=MC
L ui R uj and ��;�� j=MC

L uj ::B, i.e. �
�;�� j=MC

L ui ::2B by

De�nition 3.3. 2

We can now �nally show that:
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Lemma 3.16 L = K + T is complete, i.e.

(1) � j= wi R wj implies � `L wi R wj

(2) �;� j= w :A implies �;� `L w :A

Proof (1) If � 6`L wi R wj, then wi R wj 62 ��, and thus ��
6j=MC

L wi R wj,

by Fact 3.13. (2) If �;� 6`L w : A, then (� [ fw : :Ag;�) is consistent.

Otherwise there exists a wi such that � [ fw ::Ag;� `L wi :?, and then

�;� `L w : A. Therefore, by Lemma 3.10, (� [ fw : :Ag;�) is included

in a maximally consistent pc ((� [ fw ::Ag)�;��). Then, by Lemma 3.15,

(�[fw ::Ag)�;��
j=MC

L w ::A, i.e. (�[fw ::Ag)�;��
6j=MC

L w :A, and thus

�;� 6j=MC
L w :A. 2

By Lemma 3.6 and Lemma 3.16 we immediately have that:

Theorem 3.17 L = K + T is sound and complete.

4 A Topography of Labelled Modal Logics

We have given a particular presentation of i (propositional) modal logics

as Labelled Deductive Systems based on two separate parts: a base logic,

K, and Horn relational theories. Here we consider some alternatives for

de�ning hierarchies of logics and classify them based on their metatheoretic

properties. We organize this investigation around the interface between the

two parts: since the rules for 2 and 3 cannot be sensibly changed, this

amounts to studying how falsum (?) propogates between worlds. We show

that this question directly relates to which kinds of relational theories we

can formalize while retaining completeness.

We start in Section 4.1 with the base logic K we have developed above,

where we have what we call global falsum: ? can propagate from one world

to another (Fact 4.1). We prove that this system preserves duality between

2 and 3 (Proposition 4.2) and that derivations have good normalization

properties (Theorem 4.6) in comparison with what we get from semantic

embedding (Fact 4.10 and Fact 4.12). These good properties, however, mean

that using K we are not able to formalize all modal logics with �rst-order

axiomatizable frames (Theorem 4.11).

In Section 4.2 we consider what happens if we allow ? to propagate

between base logic and labelling algebra in either direction. By doing this,

we loose the good normalization properties of K (Fact 4.12) in exchange for
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a system (Kuf , K with universal falsum) that is essentially equivalent to

semantic embedding in �rst-order logic (Theorem 4.14).

Finally, in Section 4.3 we investigate the properties of Klf (K with local

falsum), the base logic we get by restricting ?E in K so that all references

are local to one world. Here, unlike in K, we cannot propagate ? freely

from one world to another (Proposition 4.16). We argue that though cer-

tain modal logics can be formalized in extensions of Klf , the system lacks

basic properties, such as duality between 2 and 3 (Proposition 4.18) or nor-

mal form derivations (Theorem 4.20), which we might look for in a `good'

formalization.

4.1 Global Falsum

We begin by observing that in K, and therefore in K + T , ? propagates

`globally' between all worlds. We call this property global falsum, and as an

immediate consequence of ?E (where no assumptions are discharged) we

have:

Fact 4.1 The rule
x :?
y :?

gf is derivable in K.

Where possible, we follow Prawitz [16]; like him, we introduce some restric-

tions to simplify the development. We consider the (functionally complete)

?;!;2 fragment of the system given in Section 2.1, where we restrict ap-

plications of ?E to the case where the consequence x :A is atomic (i.e. A is

atomic). These restrictions are justi�ed by the two following propositions.

Proposition 4.2 The connectives 2 and 3 are interde�nable in K.

Proof We de�ne 3A as :2:A, and show that the rules for 3 are derivable.

y :A x R y

x :3A
3I ;

y :A

[x :2:A]1 x R y

y ::A
2E

y :?
:E

x :?
gf

x ::2:A
:I1

(1)
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x :3A

[y :A] [x R y]
�
z :B

z :B
3E

;

x ::2:A

[y :A]1 [x R y]2

�
z :B [z :B ! ?]3

z :?
! E

y :?
gf

y ::A
:I1

x :2:A
2I2

x :?
:E

z :B
?E3

(2)

Dually, we can take 3 as primitive and derive the rules for 2. 2

Proposition 4.3 If �;� `K x :A, then there is a derivation of x :A from

�;� in the ?;!;2 fragment of K, where the consequences of applications

of ?E are atomic.

Proof Substitute applications of 3I and 3E as in (1) and (2). We show

that any application of ?E with a non-atomic consequence can be replaced

with a derivation in which ?E is applied only to lw�s of smaller degree.

By Proposition 4.2, there are two possible cases, depending on whether the

conclusion is x :A! B or x :2A.

Case one:

[x : (A! B)! ?]
�
y :?

x :A! B
?E

;

[x :A]3 [x :A! B]1

x :B
! E

[x :B ! ?]2

x :?
! E

x : (A! B)! ?
! I1

�
y :?

x :B
?E2

x :A! B
! I3

Case two:

[x :2A! ?]
�
y :?

x :2A
?E

;

[x :2A]1 [x R y]3

y :A
2E

[y :A! ?]2

y :?
! E

x :?
gf

x :2A! ?
! I1

�
y :?

y :A
?E2

x :2A
2I3

22



Conclude by successively repeating the transformation. 2

An immediate consequence of this is the equivalence of the restricted and

the unrestricted ND system. We will therefore refer to both of them as K.

De�nition 4.4 Any lw� x :A in a derivation is the root of a tree of rule

applications leading back to assumptions. The lw�s in this tree other than x :

A we call side lw�s of x :A in the derivation. A maximal lw� in a derivation

is an lw� which is both the conclusion of an introduction rule and the major

premise of an elimination rule. A maximal lw� can be removed from a

derivation by a reduction step. Two possible con�gurations (for ! and 2)

result in a maximal lw� in a derivation. They, and their corresponding

reduction steps are:

[x :A]1

�1

x :B
x :A! B

! I1
�2

x :A
x :B

! E

;

�2

x :A
�1

x :B

(3)

[x R y]1

�
y :A

x :2A 2I
1

x R z
z :A

2E

;

x R z
�[z=y]
z :A

(4)

where �[z=y] is obtained from � by systematically substituting z for y, with

a suitable renaming of the variables to avoid clashes. Note that we only

show the part of the derivation where the reduction actually takes place; the

missing parts remain unchanged.

De�nition 4.5 A derivation is in normal form (is a normal derivation) if

it contains no maximal lw�s.

Theorem 4.6 Every derivation of x :A from �;� in K reduces to normal

form.

Proof If � is a derivation of x : A from �;� in K, then from the set of

maximal lw�s of � pick some y :B which has the highest degree and has

maximal lw�s only of lower degree as side lw�s. Let �0 be the reduction

of � at y :B. �0 is also a derivation of x :A from �;� in K and no new

maximal lw� as large, or larger than y :B has been introduced. Hence, by a
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�nite number of similar reductions we obtain a derivation of x :A from �;�

in K containing no maximal lw�s. 2

Since derivations in a Horn relational theory TH cannot introduce maximal

lw�s (and all the rw�s are of the form x R y), by minor modi�cations to

the above, e.g. substitute �2

xRz
for x R z in (4), we immediately have:

Corollary 4.7 Every derivation in K + TH reduces to normal form.

De�nition 4.8 A is a subformula of B i� (1) B is A; or (2) B is B0
! B00

and A is a subformula of B0 or B00; or (3) B is 2B0 and A is a subformula

of B0. We say that a derivation �;� ` x :A has the subformula property

if for all lw�s y :B used in the derivation, B is either a subformula, or the

negation of a subformula of some formula in fB0
j z :B0

2 � [ fx :Agg. We

will sometimes speak loosely of x :A being a subformula of y :B, meaning A

is a subformula of B.

Fact 4.9 If � is a normal derivation in K or K + TH, then � satis�es the

subformula property.

So far, we have considered extensions of K with Horn relational theories.

There is, however, no reason why we should not have relational theories that

make use of an arbitrary logic. We just have to extend the language and

add appropriate rules and axioms. However, irrespective of which logic we

allow in the labelling algebra, the rules of K dictate that the only way that

derivations there can contribute to lw� derivations is via propositions of the

form x R y, thus our normalization theorem for K in fact extends to K plus

an arbitrary relational theory T .5 To summarize:

Fact 4.10 In the logic K + T the two parts of the proof system are rigor-

ously separated: lw� judgements can depend on rw� judgements, but not vice

versa. Thus any normal derivation of an lw� in K + T is structured as a

central derivation in the base logic K `decorated' with normal subderivations

in the relational theory T , which attach onto the central derivation through

instances of 2E.6

5Normalization and subformula property for derivations of rw�s in a �rst-order re-

lational theory T can be easily shown by adapting standard results for �rst-order logic
(cf. [16]).

6When 3 is added explicitly, then the T -subderivations attach onto the central K-

derivation also through instances of 3I.
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[� � ;]
...
;

�
;E

[�1]...
�2

�1 � �2
� I

�1 � �2 �1
�2 � E

�

8x(�)
8I

8x(�)

�[t=x]
8E

Where, in 8I , x must not occur free in any open assumption on which �

depends.

Figure 4: The rules of NDR

This enforced separation between the base logic and the labelling algebra is

in the philosophical spirit of LDSs, and it also provides extra structure that

is pragmatically useful: since derivations of rw�s use only the resources of

the labelling algebra, we may be able to employ theory speci�c reasoners

successfully to automate proof construction. However, in exchange for this

extra structure there are limits to the generality of the formulation.

Consider an extension of the labelling algebra to a full �rst-order theory.

To keep distinct the syntax of the base logic from the labelling algebra,

we will use connectives from boolean logic | ; (falsum), � (implies), 8

| for compound relational formulae in the labelling algebra; as notation,

we henceforth assume that the possibly subscripted variable � ranges over

such rw�s. First-order properties of R are now added as axioms (or rules)

directly in their full form, and the �rst-order relational theory TF is obtained

by extending NDR (the �rst-order ND system of R) with a collection CR

of such axioms. For example, for restricted (i; j;m;n) convergency and for

irre
exivity we add:

8x8y8z((x Ri y \ x Rj z) � 9u(y Rm u \ z Rn u))
rconv (schematic)

8x(� (x R x))
irrefl

The rules of NDR are given in Figure 4; rw�s over other connectives (e.g. �

(negation), \ (and), [ (or), 9) and corresponding rules are de�ned as usual,

and we will explicitly use them in the following. We have:

Theorem 4.11 There are modal logics corresponding to Kripke frames with

accessibility relation de�ned by a collection CR of �rst-order axioms which

are not correctly represented in K + TF with TF = NDR + CR.
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Proof We give an example. According to [21, p.173], the Kripke frame

de�ned by

C � f 8x8y8z((x R y \ x R z) � (y R z [ z R y)) g

corresponds to the modal logic with axiom schema

:2(2A! B)! 2(2B ! A) :

If we assume that A and B are di�erent sentence letters, then a normal

proof of this in K +NDR + C must have the form

[x ::2(2A! B)]1 [x R y]2 [y :2B]3

�
y :A

y :2B ! A
! I3

x :2(2B ! A)
2I2

x ::2(2A! B)! 2(2B ! A)
! I1

What might � be? We can use Fact 4.9 to explore all the possibilities.

Since A is atomic, � must end in an application of an elimination rule; by

examining the possibilities we see that it must be an application of ?E, since

clearly it is not possible to derive y :A directly from the available hypotheses

using other elimination rules. Thus the only possible form for � is

[x ::2(2A! B)]1

[y :2B]3

[x R y]2 [y ::A]4 [x R z]5 [z :2A]6

�R

y R z

z :B
2E

z :2A! B
! I6

x :2(2A! B)
2I5

x :?
:E

y :A
?E4

where �R is a derivation purely in the relational theory NDR + C. But

x R y; x R z 6` y R z in NDR + C,

soK+NDR+C cannot prove the characteristic axiom for the frames de�ned

by C, i.e. K +NDR + C is not complete with respect to the semantics. 2

Clearly, if R were also symmetric, then x R y; x R z ` y R z. Hence, this

particular counter-example to completeness does not hold for extensions of
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the logic KB, for which, however, other counter-examples can be devised

in a similar way. Note also that incompleteness can be shown by means

of other modal formulae, but the provability of the corresponding modal

axiom is philosophically the �rst requirement to be ful�lled by the addition

of a relational rule. For instance, by similar reasoning, we can show that

x :2A! 3A does not follow from K +NDR + f8x9y(x R yg).

4.2 Universal Falsum

The reason for the incompleteness of K + TF in the proof of Theorem 4.11

is easy to �nd; we could imagine replacing �R above with

[y ::A]4
[z :2A]6

[x R y]2 [x R z]5 [y R z � ;]7
...

z R y

y :A
2E

y :?
:E

;
?

y R z
;E7

since we can show that

x R y; x R z; y R z � ; ` z R y in NDR + C.

What we need is some rule ? to allow us to propagate falsum not only

between worlds, like gf , but also between the base logic and the relational

theory; i.e. collapsing x :? and ; together. We can add rules

x :?
;

uf 1
;

x :?
uf2

to K to get the system Kuf which has what we call a universal falsum.

Clearly with universal falsum we loose the separation between the two the-

ories described in Fact 4.10.

Fact 4.12 In the logic Kuf (and, a fortiori, in Kuf + TF ) the two parts

of the proof system are not separated: lw� judgements can depend on rw�

judgements, and vice versa.

In fact, we can show that Kuf + TF , unlike K + T , is essentially equivalent

to the usual semantic embedding of modal logics in �rst-order logic.
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De�nition 4.13 (�)� is a translation of labelled propositional modal logic

into �rst-order logic:

(;)� ; ?

(x R y)� ; R(x; y)

(�1 � �2)
�
; (�1)

�
! (�2)

�

(8x(�))� ; 8x((�)�)

(�)� ; f(�)� j � 2 �g

(x :?)� ; ?

(x :p)� ; P (x)

(x :A! B)� ; (x :A)� ! (x :B)�

(x :2A)� ; 8y(R(x; y)! (y :A)�)

(�)� ; f(x :A)� j x :A 2 �g

Theorem 4.14 Let CR be an arbitrary collection of �rst-order axioms about

R, and ' an arbitrary lw� or rw�. We have that �;� ` ' in Kuf +NDR+

CR i� CR; (�)
�; (�)� ` (')� in �rst-order logic.

Proof Since reasoning about labels is directly translated, we only treat the

case when ' in an lw�. Left to right is simple, since we can �nd derived

rules in �rst-order logic corresponding to each rule of Kuf ; e.g.

[x R y]1
...

y :A

x :2A
2I1

;

[R(x; y)]1
...

(y :A)�

R(x; y)! (y :A)�
! I1

8y(R(x; y)! (y :A)�)
8I

[� (x :2A)�]

(5)

The other direction is trickier. However, we know that derivations in �rst-

order logic can be normalized [16, p. 40], thus we can assume � is a normal

derivation of CR; (�)
�; (�)� ` (x : A)�, and observe that it is possible to

translate this derivation directly into Kuf + NDR + CR; e.g. if we reverse

; in (5), we can see that since a normal derivation of (x :2A)� must have

exactly the form (the sequence of introduction rules) given there, and, by

induction, the same translation can be performed on the subderivation of

(y :A)� from [(x R y)�], it is possible to translate this into a derivation in

Kuf +NDR + CR. We can do the same with the elimination rules. All we

have to do is, occasionally, insert extra rules translating between falsum for

rw�s and falsum for lw�s. 2

Under the assumption (cf., for instance, [12]) that semantic embedding in

�rst-order logic is sound and complete with respect to the appropriate Kripke

semantics, we have that:

Corollary 4.15 Kuf + TF is sound and complete.
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4.3 Local Falsum

In the rules of K, rw�s interact with lw�s through the 2E rule and this

changes the label of the major premise. But this is not the only rule which

changes worlds; ?E, as we have discussed, also has this property. To com-

plete our investigation of alternative formulations, we consider the other end

of the spectrum from universal falsum where, by restricting ?E, falsum is

local and cannot move arbitrarily between worlds:

[x :A! ?]
...

x :?
x :A ?Elf

Call Klf the system obtained from K by replacing ?E with its restricted

form ?Elf . Note that in Klf we can propagate ? forwards indirectly: given

x :? we have x :2?, and thus y :? when x R y; i.e.

x :?
x :2?

?Elf

x R y

y :?
2E

But we cannot propagate ? to an arbitrary world:

Proposition 4.16 There is no derivation of y :? from x :? in K lf .

To show this we prove:

Lemma 4.17 If there are no applications of ?E in a derivation in K then

normalization of the derivation cannot introduce one.

Proof By examining the transformations involved in reducing a derivation

to normal form. 2

Proof [of Proposition 4.16] Since Klf is a fragment of K, a derivation � of

y :? from x :? in Klf would have a normal form �0 in K. Since any such

derivation needs to make use of ?E, which, by Lemma 4.17, must already

be present in the un-normalized form of �, no such derivation can exist in

Klf . 2

In the same way, we can prove that, since gf is not derivable, Proposition 4.2

fails for Klf .
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Proposition 4.18 The connectives 2 and 3 are not interde�nable in K lf .

We need:

Lemma 4.19 A normal form derived rule in K suitable for the substitution

(1) in Proposition 4.2 involves a step application

[x :A! ?]
...

y :?

x :A
?E

where we are not able to assume that y R x.

Proof By examination of the possible normal derivations. 2

Proof [of Proposition 4.18] Consider case (1) in the proof of Proposition 4.2.

Assume � is a suitable derivation in Klf , then, since � is also a derivation

in K, it has a normal form �0 in K. However, by Lemmata 4.17 and 4.19

such a derivation in Klf does not exist, since �0, and thus �, must contain

unrestricted applications of ?E. 2

Proposition 4.18 shows that Klf is not in general suitable for formaliz-

ing modal logics, since we are not able to propagate falsum to inaccessible

worlds. However it is easy to show that in fact we only ever have to deal with

worlds accessible in some way from each other. Given, as we have observed,

that we can propagate ? forwards in Klf , if R is symmetrical we also have

a backwards propagation:

x :?
x :2? ?Elf

y R x

x R y
R symm

y :?
2E

Thus Klf can be used to formalize certain logics after a fashion (if the re-

lational theory TF is inconsistent or if R is universal , so that x R y for all

x; y, then we get this much more simply).7 However the resulting formaliza-

tion is fundamentally unsatisfactory, since it lacks important metatheoretic

properties that we get in K; namely, we have:

7Given that S5 is correct with respect to the class of universal frames [4, p.178], it
is possible to prove that �;� ` x :A in KT5 i� �;� ` x :A in K lfT5, since, when R

is universal, 2 and 3 are interde�nable, and ?E and ?Elf are interderivable (but the

derivations are not normal).
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Theorem 4.20 Derivations in Klf do not have normal forms satisfying the

subformula property.

Proof As we observed above, there is a derivation of y : ? from x R y

and x : ? in Klf . However, there cannot be a normal one satisfying the

subformula property. 2

5 Implementation and its Correctness

5.1 Implementation

We have used Paulson's Isabelle system [15] to implement and interactively

construct derivations with the modal logics we presented. The logical basis

of Isabelle is a natural deduction presentation of minimal implicational pred-

icate logic with universal quanti�cation over all higher-types [14].8 We call

this metalogic M; to prevent object/meta confusion we use � to represent

Isabelle's universal quanti�er and ) for implication.

An object logic is encoded in Isabelle by declaring a theory, which con-

sists of a signature and axioms, which are formulae in the language of M.

The axioms are used to establish the validity of judgements, which are as-

sertions about syntactic objects declared in the signature [10]. Derivations

are constructed by deduction in the metalogic.

In our work, we declare a theory MK, which encodes K. The signature

of MK declares two types label and o, which denote labels and unlabelled

modal formulae, respectively. Connectives and modal operators are declared

as typed constants over this signature, i.e. box of type o ) o. There are

two judgements, which correspond to predicate symbols in the metalogic: L

and A, which stand for `Labelled Formula' and `Accessibility'. L(x :A) and

A(x R y) respectively express the judgements that x :A is a provable lw� and

that x R y is a provable rw�. The axioms for L are a direct axiomatization

of the rules in Figure 1.

Figure 5 contains our entire Isabelle declaration for the theory MK .

Some brief explanations are in order (further details on Isabelle syntax and

8Isabelle's logic also contains equality (that of the �-calculus under �, �, and �-

conversion), but we do not need to consider this, since, in the analysis of derivations

in the metalogic, we shall identify terms with their �� normal forms. This is possible
as terms in our metatheories are terms in the simply-typed �-calculus (with additional

function constants) and every term can be reduced to a normal form that is unique up to

�-conversion.
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K = Pure +

types (* Definition of type constructors *)

label,o 0

arities (* Addition of the arity `logic' to the existing types *)

label, o :: logic

consts (* Logical Connectives and Judgements L and A) *)

False :: "o"

--> :: "[o, o] => o" (infixr 25)

box :: "o => o" ("[]_" [50] 50)

dia :: "o => o" ("<>_" [50] 50)

L :: "[label, o] => prop" ("(_ : _)" [0,0] 100)

A :: "[label, label] => prop" ("(_ R _)" [0,0] 100)

rules (* Axioms representing the object-level rules *)

FalseE "(x:A --> False ==> y: False) ==> x:A"

impI "(x:A ==> x:B) ==> x:A --> B"

impE "x:A ==> x:A --> B ==> x:B"

boxI "(!!y. (x R y ==> y:A)) ==> x:[]A"

boxE "x:[]A ==> x R y ==> y:A"

diaI "y:A ==> x R y ==> x:<>A"

diaE "x:<>A ==> (!!y. y:A ==> x R y ==> z:B) ==> z:B"

end

Figure 5: Isabelle Encoding of K
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theory declarations can be found in [15]). First, we shall use typewriter font

for displaying concrete Isabelle syntax which has come from actual Isabelle

sessions. Pure encodes Isabelle's metalogic M. The operators !! and ==>

are concrete syntax in Isabelle for universal quanti�cation (�) and impli-

cation ()) in M respectively. The use of mix�x operators, declared with

information for Isabelle's parser, allows us to abbreviate box with [], dia

with <>, L(x:A) with x:A, and A(xRy) with xRy. Note that in axioms, free

variables are implicitly outermost universally quanti�ed. Finally, comments

are added between `(*' and `*)'.

Logics L = K+T are formed by extendingMK with appropriate theories

MT , which encode T . The axioms for A are given by directly translating

Horn relational rules to axioms in M: each rule corresponds to an iterated

(Curried) implication where the assumptions of the rule together imply the

conclusion.

Theories in Isabelle correspond to instances of an abstract datatype in

the ML programming language and Isabelle provides means for creating

elements of these types, extending them, and combining them. We use these

facilities to combine and extend our modal theories. This is best illustrated

by an example. KT is obtained by extending K with the axiom R_refl; this

is speci�ed as follows.

KT = K +

rules

R_refl "x R x"

end

Again, recall that outermost quanti�ers are left implicit, so the above is

shorthand for adding !! x. x R x as an axiom to K. Similarly, K4 is formed

by extending K with R_trans.

K4 = K +

rules

R_trans "x R y ==> y R z ==> x R z"

end

We may now obtain KT4, i.e. S4, by similarly extending KT (or K4 or K).
Alternatively, we may apply an ML-function merge_theories to KT and K4.
As remarked above, KT4 inherits theorems and derived rules from its an-
cestor logics. As an example, consider the KT4-theorem x:[]A <-> [][]A.
x:[]A --> [][]A and x:[][]A --> []A are theorems of K4 and KT, re-
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spectively:

[x :2A]3
[x R y]2 [y R z]1

x R z
R trans

z :A
2E

y :2A
2I1

x :22A
2I2

x :2A! 22A
! I3

[x :22A]1 x R x
R refl

x :2A
2E

x :22A! 2A
! I1

(6)

In Appendix A, we show how these theorems are interactively proved in
Isabelle in their corresponding theories and then applied to show that the
following equivalence is a theorem of KT4.

x :2A! 22A x :22A! 2A

x :2A$ 22A
$ I

(Note that this requires adding a de�nition of $ to our theory, which can

be done in the standard way.)

As a further example of theory de�nition, K2 is obtained by extending

K with the constant function symbol g and with the axioms R_conv1 and

R_conv2:

K2 = K +

consts

g :: "[label,label,label] => label"

rules

R_conv1 "x R y ==> x R z ==> y R g(x,y,z)"

R_conv2 "x R y ==> x R z ==> z R g(x,y,z)"

end

In the appendix we use this theory to prove x :32A! 23A, (see the proof

in Section 2.4), which is K2's characteristic axiom. The examples we work

through in Isabelle should help convince the reader that the approach we

have taken to interactive theorem proving for modal logics is both simple

and 
exible. In particular, it supports the hierarchical structuring of theories

and inheritance of theorems between them.

5.2 Correctness

When one logic encodes another, correctness of the encoding must be shown.

A technique established with the Edinburgh LF [10] is to demonstrate a

correspondence between derivations in the object-logic and derivations in
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the metalogic by considering certain normal forms for derivations in the

metalogic. In what follows, we write L(�) and A(�) for the sets fL(x1 :

A1); : : : ;L(xn :An)g and fA(x1 R y1); : : : ;A(xm R ym)g.

De�nition 5.1 ML is faithful (with respect to L) i� (1) L(�);A(�) `ML

L(x :A) implies �;� `L x :A, and (2) L(�);A(�) `ML
A(x R y) implies

�;� `L x R y. ML is adequate (with respect to L) i� the converses of (1)

and (2) hold.

Lemma 5.2 ML is faithful.

Proof Following Prawitz, call a thread a sequence of formulae in a derivation

tree leading from some assumption to the root. A branch in a derivation

is the initial segment of a thread ending at either the �rst minor premise

of a ! E rule encountered, or the conclusion of the derivation if no such

minor premise occurs. We use the fact [16] that derivations in ML have

an expanded normal form in which there are no maximal formulas and each

branch leads to a minimum formula of the form L(x :A) or A(x R y).

The proof proceeds by induction on the size of the expanded normal

form of ML-derivations of L(x :A) and of A(x R y) from L(�) and A(�).

In the base case, if L(x :A) follows from an assumption in L(�), then x :A

is an assumption in �, so trivially �;� `L x :A. The situation is similar for

a proof of A(x R y) from an assumption in A(�).

In the step case, a branch begins with an axiom followed by a sequence

of elimination rules. We proceed by showing that the application of each

axiom in ML corresponds to an object level inference in L. All of the cases

are simple and we give two representative cases below: the axiom boxI from

MK and a Horn axiom fromMT .

In the case of boxI, let x : A be z : 2B for some z and B. The ML-

derivation must have the structure shown at the top of Figure 6, where

�E� stands for two consecutive applications of �E. It contains an ML-

derivation of �y(A(z R y) ) L(y : B)) from L(�) and A(�), which, by

expanded normal form, consists of an ML-derivation of L(y :B) from L(�)

and A(� [ fz R yg), where y is not free in the assumptions, followed �rst

by a ) I , discharging the assumption A(x R y), and then by a �I . An

L-derivation of y : B from � and � [ fz R yg, where y is not free in the

assumptions, is given by the induction hypothesis. Applying 2I gives an

L-derivation of z :2B from � and �.

Alternatively, consider a Horn axiom which is part of the relational the-

ory corresponding to MT . The ML-derivation must comprise a sequence
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�x�A((�y(A(x R y))

L(y :A)))) L(x :2A))

�y(A(z R y) ) L(y :B))) L(z :2B)
�E�

[A(z R y)]1
...

L(y :B)

A(z R y)) L(y :B)
) I1

�y(A(z R y) ) L(y :B))
�I

L(z :2B)
) E

�x�y�z(A(x R y))

(A(x R z))A(y R g(x; y; z))))

A(u R v)) (A(u R w))A(v R g(u; v; w)))
�E�

...
A(u R v)

A(u R w))A(v R g(u; v; w))
) E

...
A(u R w)

A(v R g(u; v; w))
) E

Figure 6: The metalevel derivations formalizing 2I and R conv1

of �E steps, one for each quanti�er, followed by a sequence of ) E steps,

one for each premise. For concreteness, consider the axiom R conv1, where

x R y is v R g(u; v; w) for some u; v; w. The ML-derivation must have the

structure shown at the bottom of Figure 6, where �E� stands for three con-

secutive applications of �E. L-derivations of u R v and u R w from � and �

are given by induction hypotheses. Applying R conv1 gives an L-derivation

of v R g(u; v; w) from � and �. 2

Lemma 5.3 ML is adequate.

Proof By induction on the structure of the L-derivations of x : A and of

x R y from � and �. The base cases are trivial, and we treat only the step

cases.

First, we consider the propositional and the modal rules (i.e. the rules

of K) individually. For example, for 2I , let x : A be z : 2B, and 2I is

applied to an L-derivation of y : B from � and � [ fz R yg, where y

is not free in the assumptions. An ML-derivation of L(y : B) from L(�)

and A(� [ fz R yg), where y is not free in the assumptions, i.e. an ML-

derivation of �y(A(z R y) ) L(y : B)) from L(�) and A(�), is given by

induction hypothesis. Conclude by building an ML-derivation like that at

the top of Figure 6.

In second case, a relational rule has been applied. Consider the case of

R conv1. x R y is v R g(u; v; w), and R conv1 is applied to L-derivations
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of u R v and u R w from � and �. ML-derivations of A(u R v) and

A(u R w) from L(�) and A(�) are given by induction hypotheses. Conclude

by building an ML-derivation like that at the bottom of Figure 6. 2

By Lemma 5.2 and Lemma 5.3 we have that:

Theorem 5.4 ML is faithful and adequate.

6 Related Work

Our work combines an LDS presentation of modal logics with a logical

framework to provide a natural deduction presentation of modal logics in

a uniform way based on their semantics. Here we compare this with re-

lated work in natural deduction, Labelled Deductive Systems, and semantic

embedding.

6.1 Natural Deduction

Prawitz [16] discusses a rule for necessitation (2) introduction in S4 and S5

with the `non-local' side condition that all the supporting assumptions are

modal (i.e. the main connective is 2), in the case of S4, or modal formulae

and their negation, in the case of S5. However, such a rule cannot be for-

malized by a pure proof rule, e.g. one that may be applied in any context of

assumptions; hence it cannot be directly encoded within a logical framework.

A solution to this problem is given, as mentioned earlier, in [2, x4.4], where

the proof system is factored into two ordinary pure single-conclusioned con-

sequence relations. Unfortunately, the result is far removed from the stan-

dard presentations based on accessibility relations or characteristic axioms.

Also there is no attempt to modularize structure or correctness: only a par-

ticular modal logic is analyzed and it is not apparent how to generalize the

results in a uniform way.

Another approach to the formalization of `non-local' conditions in a logi-

cal framework is to manage assumptions explicitly with sequents, e.g. [7, 24].

The Isabelle system distribution contains such an encoding due to Martin

Coen which uses several auxiliary judgements to give complex encodings of

T , S4, and S4:3. Similar problems would result from trying to formalize

directly the kind of pre�xed tableaux systems suggested, for example, by

Fitting [7].
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6.2 Labelled Deductive Systems

Our work is inspired by the LDS approach proposed by Gabbay, and fur-

ther developed for modal logics, in parallel with our work, by Russo [18].

Gabbay introduces LDSs as a general and unifying methodology for pre-

senting almost any logic [8]. To support this generality his LDS metatheory

and presentations are based on a notion of diagrams and logic data-bases,

which are manipulated by rules with multiple premises and conclusions. For

example [8, p.57] presents the rule for 3E as

s :3B

create r, s < r and r :B

the application of which updates a modal data-base with the two new con-

clusions (a rule to the same e�ect is given in [18]). The formal details are

quite di�erent from our proposal, where the rule for 3E given in Figure 1

is represented in the metalevel of Isabelle by the following axiom, which

directly formalizes a natural deduction rule:

�x�z�A�B(L(x :3A)) (�y(L(y :A)) A(x R y))) L(z :B))) L(z :B)) :

There is another di�erence between our work and theirs that is worth

emphasizing. In our work, we have identi�ed an important property of the

structured presentation of logics, their combination, and extension. Namely,

there is tension between modularity and extensibility: a narrow interface be-

tween the base logic and labelling algebra provides a better (more modular)

metatheory, but can limit the degree to which we can make use of extensions

to the labelling algebra. In our approach, the use of a metalogic with di�er-

ent judgements serves to separate the base logic and the labelling algebra.

This separation is critical: it is only when we attempt to modularize and

separate these two theories formally and de�ne a precise interface between

them that we see that only limited modularity (i.e. there are limits to the

relational theories) is actually possible.

Of course, in implementing particular LDSs Gabbay and Russo can

similarly separate theories. The precise nature of this would be re
ected in

the rules they choose for propagating results between data-bases. It should

be the case that if their rules enforce a similar separation, then they will

encounter similar limitations to those reported here. That is, the problems

we identify have some generality and should appear in other frameworks

where theories are separated and results are communicated in a limited way

between them.
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The kind of labelled natural deduction encoding we employ is closest to

the work of Simpson [20]. However his focus, proof techniques, and applica-

tions are based on using LDSs to investigate intuitionistic versions of modal

logics, and his correctness considerations are quite di�erent. Moreover, his

relations have no independent theory with which one can work.

Note that the universal falsum approach is adopted explicitly in [18].

Simpson's approach is di�erent, and di�cult to compare: he treats rw�s

only as assumptions in inferences of lw�s via his `geometric' rules, which are

derivable in our systems. An example of an approach in which, like with

local falsum, local inconsistency does not imply global inconsistency, is the

work of Giunchiglia and Sera�ni [9], who show that particular `multicontext

systems', where (indexed) formulae are translated between contexts using

`bridge rules', de�ne the same classes of provable formulae as certain stan-

dard modal logics. However their approach is, in general, radically di�erent

from ours, and not comparable.

6.3 Translation and Semantic Embedding

We conclude by mentioning work on translating modal logics into �rst-order

logics, e.g. [12, 13]. As sketched in De�nition 4.13, these approaches typically

label all subformulae with worlds and combine the modal and relational

theory in a theory suitable for standard �rst-order provers. The emphasis is

on automatic, but not necessarily `natural', theorem proving. Moreover, by

design, there is no separation between the relational theory, any kind of base

modal theory, and �rst-order logic itself; i.e. there is precisely one falsum

from which one can conclude arbitrary relational or labelled formulae.

7 Conclusions

We have given a modular presentation and correctness proofs for implement-

ing a large and well-known class of propositional modal logics in the Isabelle

logical framework. Our approach is based on relational theories comprised

of (Horn clause) axioms formalizing the accessibility of worlds in Kripke

frames, and it demonstrates, we think, that they �t particularly well into

the logical framework setting, capture a large class of standardly consid-

ered propositional modal logics, and have pleasant metatheoretic properties

(e.g. one can use induction on their structure to show faithfulness and ade-

quacy across an in�nite set of extensions). We may use similar techniques
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to present quanti�ed modal logics, which will be dealt with in a forthcoming

companion paper [3].

Our work has also identi�ed an important property of the structured

presentation of logics, their combination, and extension. Namely, there is

tension between modularity and extensibility: a narrow interface between

the base logic and labelling algebra can limit the degree to which we can

make use of extensions to the labelling algebra. As a consequence, there are

important design decisions in implementing LDSs whose resolution requires

predicting the range of possible applications.
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A Isabelle Proof Session

In this appendix we illustrate Isabelle proofs for the examples sketched in

Section 5.1. Some brief background is required; see [15] for a full account.

Background

Isabelle manipulates rules . A rule is a formula

!! v1 ... vm. A1 ==> ... ==> (An ==> A)

which is also displayed as follows:

!! v1 ... vm. [| A1; ...; An|] ==> A

Rules represent proof states where A is the goal to be established and the Ai

are the subgoals to be proved. Under this view, an initial proof state has the

form A ==> A, i.e. it has one subgoal, namely A. The �nal proof state is itself

the desired theorem. Isabelle supports proof construction through higher-

order resolution which is roughly analogous to resolution in Prolog. That is,

given a proof state with subgoal B and a rule as above, then (treating the vi

as variables for uni�cation) we higher-order unify A with B. If this succeeds,

then the uni�cation yields a substitution s and the proof state is updated

replacing B with the subgoals s(A1),...,s(An). This resolution step can

be justi�ed by a sequence of proof steps in the metalogic. Although rules are

formalized in a natural deduction style, they may be read as intuitionistic

sequents where the Ai are the hypotheses. Isabelle has procedures which

apply rules in a way that maintains this `illusion' of working with sequents.

Derivations

We now work through the examples given in Section 5.1. To prove the

equivalence of 2A and 22A in S4 we begin by proving the left-to-right

direction in the subtheory K4. Our proof corresponds to the �rst proof-tree

given in (6), read bottom up; the following proof is taken verbatim from an

Isabelle session with the exception of minor pretty-printing and omission of

diagnostic output. We begin with the desired goal.

> goal K4.thy "x:[]A --> [][]A";

x : []A --> [][]A

1. x : []A --> [][]A

42



On the �rst line state the theory we are using and the theorem to be proved.

Isabelle responds with the next 2 lines which give the goal to be proved, and

what subgoals must be established to prove it. We proceed by applying

our rule for implication introduction impI, which was declared in Figure 5.

The command br directs Isabelle to apply this using resolution to the �rst

subgoal. Isabelle responds with the new subgoal.

> br impI 1;

x : []A --> [][]A

1. x : []A ==> x : [][]A

If we read the proof state as a sequent, we must now show x : [][]A under

the assumption x : []A. We proceed with two applications of boxI, each of

which gives us new relational assumptions, followed by boxE:

> br boxI 1;

x : []A --> [][]A

1. !!y. [| x : []A; x R y |] ==> y : []A

> br boxI 1;

x : []A --> [][]A

1. !!y ya. [| x : []A; x R y; y R ya |] ==> ya : A

> be boxE 1;

x : []A imp [][]A

1. !!y ya. [| x R y; y R ya |] ==> x R ya

The theory K4 extends K with the transitivity of R. We apply transitivity

using the command be to unify one of its assumptions against an assumption

in our subgoal.

> be R_trans 1;

x : []A --> [][]A

1. !!y ya. y R ya ==> y R ya

This leaves only one remaining goal, which is proved by assumption (ba).

> ba 1;

x : []A --> [][]A

No subgoals!
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We can now name this theorem (LeftToRight) and use it in subsequent

proofs (Isabelle provides unknowns, written with a ? pre�x, that may be

instantiated later during uni�cation).

> val LeftToRight = result();

val LeftToRight = "?x : []?A --> [][]?A"

The proof of the converse direction in the theory KT directly mirrors

the second proof-tree in (6); we give it here without further comment.

> goal KT.thy "x:[][]A --> []A";

x : [][]A --> []A

1. x : [][]A --> []A

> br impI 1;

Level 1

x : [][]A --> []A

1. x : [][]A ==> x : []A

> be boxE 1;

x : [][]A --> []A

1. x R x

> br R_refl 1;

x : [][]A --> []A

No subgoals!

> val RightToLeft = result();

val RightToLeft = "?x : []?A --> ?A"

Having proved both directions, we may now combine them to prove the

equivalence in KT4.

> goal KT4.thy "x:[]A <-> [][]A";

x : []A <-> [][]A

1. x : []A <-> [][]A

> br iffI 1;

x : []A <-> [][]A

1. x : []A --> [][]A

2. x : [][]A --> []A
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> br LeftToRight 1;

x : []A <-> [][]A

1. x : [][]A --> []A

> br RightToLeft 1;

x : []A <-> [][]A

No subgoals!

A �nal example is the derivation of the characteristic axiom forK2 based

on the extension of K given in Section 5.1. The proof directly follows that

given in Section 2.4.

> goal K2.thy "x: <>[]A --> []<>A";

x : <>[]A --> []<>A

1. x : <>[]A --> []<>A

> br impI 1;

x : <>[]A --> []<>A

1. x : <>[]A ==> x : []<>A

> br boxI 1;

x : <>[]A --> []<>A

1. !!y. [| x : <>[]A; x R y |] ==> y : <>A

> be diaE 1;

x : <>[]A --> []<>A

1. !!y ya. [| x R y; ya : []A; x R ya |] ==> y : <>A

> br diaI 1;

x : <>[]A --> []<>A

1. !!y ya. [| x R y; ya : []A; x R ya |] ==> ?y3(y, ya) : A

2. !!y ya. [| x R y; ya : []A; x R ya |] ==> y R ?y3(y, ya)

> be boxE 1;

x : <>[]A --> []<>A

1. !!y ya. [| x R y; x R ya |] ==> ya R ?y3(y, ya)

2. !!y ya. [| x R y; ya : []A; x R ya |] ==> y R ?y3(y, ya)

> be R_conv2 1;
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x : <>[]A --> []<>A

1. !!y ya. x R ya ==> x R ya

2. !!y ya. [| x R y; ya : []A; x R ya |] ==> y R g(x, y, ya)

> ba 1;

x : <>[]A --> []<>A

1. !!y ya. [| x R y; ya : []A; x R ya |] ==> y R g(x, y, ya)

> be R_conv1 1;

x : <>[]A --> []<>A

1. !!y ya. [| ya : []A; x R ya |] ==> x R ya

> ba 1;

x : <>[]A --> []<>A

No subgoals!
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