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Abstract. We present the theoretical foundations of the many-valued generalization of a tech-
nique for simplifying large non-clausal formulas in propositional logic, that is called removal of
anti-links. Possible applications of anti-links include computation of prime implicates of large
non-clausal formulas as required, for example, in diagnosis. Anti-links do not compute any nor-
mal form of a given formula themselves, rather, they remove certain forms of redundancy from
formulas in negation normal form (NNF). Their main advantage is that no clausal normal form
has to be computed in order to remove redundant parts of a formula. In this paper, we de�ne
an anti-link operation on a generic language for expressing many-valued logic formulas called
signed NNF and we show that all interesting properties of two-valued anti-links generalize to the
many-valued setting, although in a non-trivial way.

1 Introduction

In this article we present the theoretical foundations of the many-valued generaliza-

tion of a novel technique for simplifying large non-clausal formulas in propositional

logic. This technique, called removal of anti-links (or just anti-links, for short) has

been introduced for the two-valued case in (Ramesh et al., 1997).

Possible applications of anti-links include computation of prime implicates1 of

large non-clausal formulas as required, for example, in logic design (Sasao, 1993)

and diagnosis (de Kleer et al., 1992).

Purely clausal approaches, applied after doing a polynomial time structure pre-

serving clause form transformations (Plaisted and Greenbaum, 1986), cannot be

used here, because such transformations do not preserve models. As a conse-

quence, the set of prime implicates of the resulting clause set and of the original

formula bear no straightforward relationship, see (Ramesh, 1995, Section 3.5.1)

and (Ramesh et al., to appear) for details.

In such settings often binary decision diagrams2 (BDDs) (Bryant, 1986) are

� This research was supported in part within an Acci�on Integrada called \Discrete Function
Manipulation Using Anti-Links" granted by DAAD (Germany) and M.E.C. (Spain).

1 There is a strong duality between implicates and implicants. Therefore, all techniques pre-
sented in this paper can be used as well for the computation of prime implicants.

2 Or, rather, many-valued decision diagrams (Srinivasan et al., 1990) as the present paper deals
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used. In contrast to these, anti-links do not compute any normal form of a given

formula themselves, rather, they remove certain forms of redundancy from formulas

in negation normal form (NNF, cf. De�nition 1). Their main advantage is that no

clausal normal form has to be computed in order to remove redundant parts of a

formula. Although BDD implementations are storing subformulas in hash table

to avoid multiple computations, a full BDD has to be computed for subsumption

checking.

Viewing an NNF formula as a combinational circuit, using anti-links one can

simplify circuits with unbounded nesting depth without having to compute a

bounded depth circuit �rst. This can greatly reduce the size required for interme-

diate representations.

We stress, that anti-links are not intended to replace existing and successful

techniques such as BDDs or dissolution (Murray and Rosenthal, 1993) (they are

not even a complete inference rule for propositional logic), rather, the latter can

be augmented and improved by our analysis.

In this paper, we de�ne an anti-link operation on a generic language for express-

ing many-valued logic formulas called signed NNF and we show that all interesting

properties of two-valued anti-links generalize to the many-valued setting, although

in a non-trivial way.

Contrary to (Murray and Rosenthal, 1993) we do not use the special concept of

semantic graphs for the representation of NNF formulas, but introduce an improved

notation that solely relies on well-known notions like formulas, subformulas, etc.

Before giving the technical details, in the remainder of this section we brie
y
outline our results on an informal level.

Roughly, (two-valued) anti-links work as follows (see Sections 2 and 3 for all

formal de�nitions): Consider the NNF formula below written down in a two-

dimensional notation, where disjunctions are written horizontally and conjunctions

are written vertically (F , G, H , and I , respectively, are arbitrary formulas, while

AX and AY are occurrences of the same literal p in the subformula X and in the

subformula Y ).

X

� � �
AX
^

F _ G

_ � � �
AY _ H

^
I

Y

(1)

Let us call a maximal, disjunctively connected set of literal occurrences a path

through a formula. Two of its paths are schematically displayed in (1).

Observe that all literals on any path through AX , AY , and H occur as well

on some path through F , G, AY , and H , because AX and AY are occurrences of

the same literal. In other words, the latter paths are all subsumed by one of the

with many-valued logic.
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former paths, where subsumption on disjunctive paths coincides with the subset

relation. Generalizing, we have this kind of situation, whenever

1. AX and AY are two di�erent occurrences of the same literal A in a formula,

2. AX and AY are disjunctively connected, and

3. at least one of AX and AY is a conjunct.

If (1){(3) hold, then we call the pair hAX ; AY i a redundant anti-link.3 A redun-

dant anti-link thus always signi�es the presence of subsumed paths in a formula.

If the formula is converted to conjunctive normal form (CNF) such paths become

non-prime implicates. It is, therefore, desirable to get rid of them.

The anti-link operator restructures a formula containing a redundant anti-link

in such a way that exactly the subsumed paths are removed and, in addition, one
occurrence of p is deleted on the (non-subsumed) paths where it occurs twice.

The result of applying the anti-link operator to (1)

F _ G _ I

^

AX _
H

^
I

(without considering the parts of the formula indicated

by \. . . ") is displayed on the right. Observe that none of

the paths containing fF;G;AY ; Hg is present anymore.
Of course, if the input formula is in (signed) CNF,

the anti-link technique is applicable as well (the result,

however, may not be in CNF anymore). It performs

essentially a conjunctive factoring step, i.e., an appli-

cation of the distributive law. While uncontrolled factoring is in general useless,

the anti-link operator leads to a controlled application. Thus it can be very well

bene�cial to sacri�ce CNF in intermediate steps.

In the many-valued case we still work with an NNF formula that is classical

with respect to conjunctions and disjunctions. The di�erence comes in at the

literal level: we use signed literals (sometimes called universal literals), that is

expressions of the form S:p, where S is a subset of some truth value set and p is

an atom.

It is not obvious how to extend the anti-link technique to the many-valued

case; there are several possible approaches. Careful analysis reveals that, while

condition (2) for anti-links can be left unchanged, conditions (1) and (3) have to

be suitably altered.

1'. AX and AY are two di�erent occurrences of signed literals SX :p and SY :p,

respectively, with SX \ SY 6= ;.

The main idea for handling many-valued anti-links is to replace the occur-

rence of SY :p with the equivalent formula (SX \ SY ):p_ (SY nSX):p, to replace the
occurrence of SX :p with (SX \ SY ):p_ (SXnSY ):p, and then to apply the classical

results to the resulting two di�erent occurrences of (SX \ SY ):p. Obviously, mak-
ing the replacement can destroy property (3), which must be changed as well; this

is discussed in detail in Section 4.
3 The phrase \anti-link" is motivated by the fact that a link is a pair of complementary and

conjunctively connected literals.
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In Section 5 we give an extended example. The paper is closed by pointing out

the next stages of work.

2 Prerequisites and Concepts Related to Anti-Links

Definition 1. Let � be a propositional signature that is a countable set of

propositional variables fp; q; : : :gwhich are also called atoms. LetN = fi1; : : : ; ing
be a �nite set of truth values disjoint with �. If p 2 � and S � N , then
the expression S:p is called a signed literal.4 Signed literals of the form ;:p,
respectively, N :p are identi�ed with the expressions false, respectively, true .

Signed formulas in negation normal form (NNF formulas, for short) are

inductively de�ned as the smallest set with the following properties:

1. signed literals, and true , false are NNF formulas;

2. if F1; : : : ; Fm are NNF formulas, so are F1 ^ � � � ^ Fm and F1 _ � � � _ Fm.

If N = f0; 1g, then we speak also of a classical NNF formula. In this case

we abbreviate signed literals as follows: f0g:p with p, f1g:p with p.

Definition 2. The subformulas of an NNF formula G are de�ned as the smallest
set having the following properties:

1. if G is a signed literal then its only subformula is G itself;

2. if G = F1^� � �^Fm (G = F1_� � �_Fm) then, for any fi1; : : : ; irg � f1; : : : ; mg,
Fi1 ^ � � � ^ Fir (Fi1 _ � � � _ Fir) is a subformula of G;

3. if F is a subformula of H and H is a subformula of G, then F is also a

subformula of G.

Definition 3. Let G, H be subformulas of an NNF formula F . We say that

G and H are disjunctively (conjunctively) connected|d-(c-)connected, for

short|if there exists a subformula X_Y (X^Y ) of F such that G is a subformula

of X and H is a subformula of Y .

A partial disjunctive path through an NNF formula F is a set of mutually

d-connected occurrences of true and literals in F (occurrences of false are omitted).

A disjunctive path|d-path, for short|through F is a partial d-path through F

which is maximal and does not contain true . The set of all d-paths through an

NNF formula F is denoted with dp(F ). (Partial) conjunctive paths are de�ned

dually (using c- instead of d- and true , false exchanged). They are denoted cp(F ).

Observe that paths are de�ned as sets of literal occurrences A and do not contain

the constants true and false. `(A) denotes the literal of which A is an occurrence.

4 As signed literals are the only kind of literals we deal with, we often simply say \literal"
instead of \signed literal".
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The set f`(A) : A 2 �g of literals on a path � is denoted with `(�). One may

think of a literal occurrence as a uniquely labelled subformula.

The above de�nition of paths is the same as in (Murray and Rosenthal, 1993;

Ramesh et al., 1997). In the following a di�erent, but equivalent de�nition of paths

through a formula will be convenient. As we make use of some results on paths

contained in the papers mentioned above, we formally state their equivalence:

Lemma 1. Let F be an NNF formula.

dp(F ) =

8>>>><
>>>>:

; if F = true

f;g if F = false

ffFgg if F is a literal

f
Sm
i=1 �i j �i 2 dp(Fi) for 1 � i � mg if F = F1 _ � � � _ FmSm
i=1 dp(Fi) if F = F1 ^ � � � ^ Fm

cp(F ) =

8>>>><
>>>>:

f;g if F = true

; if F = false

ffFgg if F is a literalSm
i=1 cp(Fi) if F = F1 _ � � � _ Fm
f
Sm
i=1 �i j �i 2 cp(Fi) for 1 � i � mg if F = F1 ^ � � � ^ Fm

Proof. A straightforward induction on the depth of F .

There are two di�erent notions of subsumption: either paths are simply sets of

literal occurrences or else the signs inside their literals are taken into account.

Definition 4. Let �, �0 be d-paths through a formula F . � classically sub-

sumes �0 i� `(�) � `(�0). � MV-subsumes �0 i� for each S:p 2 `(�) there are
fS1:p; : : : ; Sm:pg � `(�

0) such that S �
Sm
i=1 Si.

Let F , G be NNF formulas. Then F classically subsumes G i� for each

� 2 dp(G) there is a �0 2 dp(F ) such that �0 classically subsumes �. F MV-

subsumes G i� for each � 2 dp(G) there is a �0 2 dp(F ) such that �0 MV-

subsumes �.

A path or a formula properly subsumes (classically or MV-) another i� it

subsumes the latter, but not vice versa.

A d-path is tautological i� it contains signed literals S1:p; : : : ; Sm:p such thatSm
i=1 Si = N .

Two NNF formulas are classically (MV-)path equivalent i� they classically

(MV-)subsume each other.

It is obvious that classical subsumption (path equivalence) implies MV-sub-

sumption (path equivalence).
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Example 1. Let N = f0; 1; 2; 3g. Consider d-paths � = ff0; 1g:p; f2g:p; f3g:qg
and �0 = ff0; 2g:pg. Neither classically subsumes the other, but �0 properly MV-

subsumes �.

The NNF formula F = f0; 1g:p classically (and thus MV-) subsumes G =

(f0g:p ^ f3g:qg) _ f0; 1g:p. G does not classically subsume F , but it MV-subsu-

mes F . Hence, F and G are MV-, though not classically, path equivalent.

Definition 5. Relative to a signature � and a truth value set N one de�nes an

(MV) interpretation as a function I : �! N .

An interpretation I satis�es a signed literal S:p if I(p) 2 S. It satis�es a
d-(c-)path i� it satis�es at least one (all) of the literals occurring on it. No inter-

pretation satis�es false and all interpretation satisfy true . Satisfaction is extended

to complex NNF formulas in a natural way:

I satis�es F i�

�
F = F1 ^ � � � ^ Fm and I satis�es all Fi
F = F1 _ � � � _ Fm and I satis�es at least one Fi

A formula is satis�able i� there exists a satisfying interpretation for it. Two

formulas are logically equivalent i� they are satis�ed by exactly the same inter-

pretations.

Observe that for classical NNF formulas our notion of satisfaction coincides

with the usual one. The following lemma is obvious.

Lemma 2. I satis�es an NNF formula F i� it satis�es all literals in one of its

c-paths i� it satis�es at least one literal in each of its d-paths.

Lemma 3. If two NNF formulas are classically or MV-path equivalent, then they

are also logically equivalent.

Proof. Classical path equivalence implies MV-path equivalence, so assume the

latter of F , G. We show that every interpretation that satis�es F also satis�es G,

the other direction is symmetric.

Assume I satis�es F and I does not satisfy G. Then there is a d-path �

through G which is not satis�ed by I. Because F MV-subsumes G, there is a

d-path �0 through F which MV-subsumes �.

By the previous lemma I satis�es at least one literal, say L , in each d-path

 of F , in particular, I satis�es an L�0 = S:p in �0, hence I(p) 2 S. Because �0

MV-subsumes �, there are fS1:p; : : : ; Sm:pg � `(�) such that S �
Sm
i=1 Si. Thus

I(p) 2 Si for some i. But then I satis�es a literal in �|contradiction.

Given an occurrence of a subformula G of an NNF formula F and an NNF

formula H , FfG  Hg denotes the result of replacing this occurrence of G in F

by H .
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Lemma 4. Let G be a subformula of F and let H be an MV-path equivalent of G.

Then FfG Hg is an MV-path equivalent of F .

Let G be a subformula of F and let H be an NNF formula such that dp(G) =

dp(H). Then dp(FfG Hg) = dp(F ).

Proof. Using Lemma 1 one proves with a straightforward induction on the formula

structure using dp(H) instead of dp(G) preserves MV-path equivalence.

The second claim is an immediate consequence of Lemma 1.

Lemma 5. For all S; S0 � N , and atoms p:

1. (S [ S0):p is MV-path equivalent to S:p _ S0:p;

2. ;:p is MV-path equivalent to false;

3. N :p is MV-path equivalent to true .

Proof. Straightforward from the de�nitions.

Finally we need some special terminology:

Definition 6. Given an NNF formula F , a subformula with respect to a set �

of literal occurrences is obtained from F by deleting all literal occurrences not

in �.

Let G be a subformula of an NNF formula F . A d-path � in dp(F ) passes

through an occurrence of G i� the subset of � which consists of literal occurrences

in G is a d-path through G. c-paths passing through a formula occurrence are

de�ned dually.

Definition 7. Let G be an NNF formula. The c-extension and the d-extension

of a subformula occurrence H in G, denoted by CE(H) resp. DE(H), are induc-

tively de�ned as follows:

1. CE(G) = DE(G) = G.

2. If M is the occurrence of a conjunction F1 ^ : : :^ Fm (m > 1) in G then

CE(Fi) = CE(M) and DE(Fi) = Fi (1 � i � m) :

3. If M is the occurrence of a disjunction F1 _ : : :_ Fm (m > 1) in G then

CE(Fi) = Fi and DE(Fi) = DE(M) (1 � i �m) :

Note, that the operators CE and DE have an implicit second argument that

is always the entire formula G in which the �rst argument occurs. Contrary to

that the operators CPE and DPE (see the following de�nition) have an explicit

second argument, that does not have to be the entire formula.
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Definition 8. Let X and H be arbitrary occurrences of subformulas in an NNF

formula.5 The c-path complement of H with respect to X , written CC(H;X),

is the subformula of X with respect to all literals in X that lie on c-paths that

do not pass through H . If no such literal exists, CC(H;X) = false. The c-path

extension of H with respect to X , written CPE(H;X), is the subformula of X

containing all literals that lie on c-paths that pass through H . If no such literal

exists, CPE(H;X) = false.

In the development of anti-link operations, we will use operations that are the

duals of CC and CPE. We use DC for the d-path complement and DPE for

the d-path extension operators. Their de�nitions are straightforward by duality

(but note that then the base case is de�ned as DC(H;X) = DPE(H;X) = true).

Example 2. In (2) on page 9,

DC(AX ; X) = B DC(AY ; Y ) = E _ CY
DPE(AY ; Y ) = AY CE(AX) = AX

DC(CE(AX); X)) = B DPE(AX ; X) = AX _ CX
CC(AY ; Y ) = false

3 Anti-Links in Two-Valued Logic

In this section we restate formally the discussion of the introduction on two-valued

anti-links. It is partly taken from (Ramesh et al., 1997), where also proofs of all the

results in this section can be found. All formulas in this section are classical NNF

formulas. Likewise, subsumed means always classically subsumed, path equivalent

means classically path equivalent, etc.

Definition 9. A disjunctive (conjunctive) anti-link is a pair hAX ; AY i of dis-
junctively (conjunctively) connected occurrences of the same literal p = `(AX) =

`(AY ) in an NNF formula F such that AX occurs in X , AY occurs in Y , and X_Y
(X ^ Y ) is a subformula of F .

In the rest of the paper we deal mainly with disjunctive anti-links; thus, when

we write \anti-link" the intended meaning is always \disjunctive anti-link".

The following theorem relates subsumed paths to both kinds of anti-links. The

theorem is immediate for classical CNF formulas; there is an obvious dual theorem

regarding subsumed c-paths that is immediate for DNF formulas.

Theorem 1. Let F be an NNF formula in which a non-tautological d-path �

subsumes a distinct d-path �0 in F . Then F contains either a disjunctive anti-link

or a conjunctive anti-link.

5
H usually is (but does not have to be) a subformula with respect to some set of literal

occurrences of X.
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3.1 Redundant Anti-links

Unfortunately, the presence of anti-links does not imply the presence of subsumed

paths, and hence the converse of the above theorem is not true.

It turns out, however, that it is possible to identify such disjunctive anti-links

which do imply the presence of subsumed paths:

Definition 10. An anti-link hAX ; AY i is called redundant if CE(AX) 6= AX or

if CE(AY ) 6= AY .

Definition 11. Let hAX ; AY i be an anti-link in F , where M = X _ Y is the

smallest subformula of F containing the anti-link (the unique subformula of F
containing the anti-link such that no proper subformula of M contains the anti-

link). DP (hAX ; AY i; F ) is de�ned as the set of all d-paths ofM which pass through

both CE(AX)� fAXg
6 and AY or through both CE(AY )� fAY g and AX .

Example 3. Consider the following formula F = X _ Y :

X
AX _ CX

^
B

_
AY
^

E _ CY

Y
(2)

The two occurrences of A in F form a redundant anti-link.

We proceed to show that DP (hAX ; AY i; F ) consists solely of subsumed paths:

Since CE(AX)� fAXg = true there are no paths through it. Therefore, the only

paths in DP (hAX ; AY i; F ) are those which go through CE(AY )�fAY g = E_CY
and AX . Since DPE(AX ; X) = AX _ CX , there is only one such d-path, namely

� = fAX ; CX ; E; CY g (indicated by a line). � is subsumed by �0 = fAX ; CX; AY g
(with literal set fA;Cg). In the example, the smallest subformula of F containing

the anti-link is F itself. Notice that when F is a proper subformula of a formula G,

then every d-path  in G containing � is subsumed by a corresponding d-path  0

di�ering from  only in that  0 contains �0 instead of �.

In general, one or both of the literals in a redundant anti-link hAX ; AY i is an
argument of a conjunction, and DP (hAX ; AY i; F ) 6= ;. In the above example,

the two occurrences of C are both arguments of disjunctions, and thus comprise a

non-redundant anti-link for which accordingly DP (hCX; CY i; F ) = ;.
Although only redundant anti-links contribute directly to subsumed d-paths,

non-redundant anti-links do not prohibit the existence of subsumed paths. How-

ever, such non-redundant anti-links do not themselves provide any evidence that

such paths are in fact present.

Theorem 2. Let hAX ; AY i be a redundant anti-link in an NNF formula F . Then

each d-path in DP (hAX ; AY i; F ) is properly subsumed by a d-path through F

that contains the anti-link.
6
CE(AX)� fAXg is used here and in the future as a shorthand for CE(AX )fAX  trueg.
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3.2 An Anti-Link Operator

The identi�cation of redundant anti-links can be done easily by checking to see if

CE(AX) 6= AX or CE(AY ) 6= AY . After identifying a redundant anti-link, it is

possible to remove it using the disjunctive anti-link dissolvent (DADV) oper-

ator de�ned below; in the process, all d-paths in DP (hAX ; AY i; F ) are eliminated,
and the two occurrences of the anti-link literal are collapsed into one.

Definition 12. Let hAX ; AY i be an anti-link and let M = X _Y be the smallest

subformula containing the anti-link. Then

DADV (hAX ; AY i;M) =

DC(AX ; X) _ DC(AY ; Y )

^

DC(CE(AX); X) _ DPE(AY ; Y )

^

DPE(AX ; X) _ CC(AY ; Y )

Example 4. Consider again formula (2) from Example 3. In Example 2 we com-

puted DC(AX ; X) and DC(AY ; Y ), so the upper conjunct in DADV is (B _
E _ CY ). For the middle conjunct use DC(CE(AX); X) and DPE(AY ; Y ) which

yields (B _ AY ). Finally, in the lower conjunct, DPE(AX ; X) and CC(AY ; Y )

give (AX _ CX). The result is:

DADV (AX ; AY ;M) =

B _ E _ CY
^

B _ AY
^

AX _ CX

We point out that although DADV produces a CNF formula in the above

simple example, in general it does not. In particular, the above formula can be

simpli�ed as the consequence of easily recognizable conditions, and the resulting

formula is not in CNF. For the details, see Case 1 of Section 3.4.

3.3 Correctness of DADV

Theorem 3 below states that DADV (hAX ; AY i; F ) is logically equivalent to F and

does not contain the d-paths of DP (hAX ; AY i; F ).

Theorem 3. LetM = X_Y be the smallest subformula containing hAX ; AY i, an
anti-link in the NNF formula F . Then DADV (hAX ; AY i;M) is logically equivalent

toM and FfM  DADV (hAX ; AY i;M)g, i.e., the result of applying the anti-link
operator, di�ers in d-paths from F as follows: d-paths in DP (hAX ; AY i; F ) are
not present, and any d-path of F containing the anti-link is replaced by a path

with the same literal set having only one occurrence of the anti-link literal.
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Theorem 3 gives us a method to remove anti-links and some subsumed d-paths:

Simply identify a redundant anti-link hAX ; AY i and the smallest subformula M

containing it, and then replace M by DADV (hAX ; AY i;M). The cost of per-

forming DADV (hAX ; AY i;M) is proportional to the size of the formula replacing

M , and this is linear in M . Also, c-connected literals in M do not become d-

connected in DADV (hAX ; AY i;M). Thus truly new disjunctive anti-links are not

introduced. However, parts of the formula may be duplicated, and this may give

rise to additional copies of anti-links not yet removed.

Nevertheless, persistent removal of disjunctive anti-links is a terminating pro-

cess, because at each step

1. if the removed anti-link is redundant (in which case DP (hAX ; AY i;M) 6= ;),
then the number of d-paths is strictly reduced;

2. else, if the anti-link is not redundant, then the d-paths in the formula remain

unchanged with the exception of those going through the anti-link on which

one literal occurrence is deleted.

This proves:

Theorem 4. Finitely many applications of the DADV operation will result in a

formula without disjunctive anti-links, and termination of this process is indepen-

dent of the choice of anti-link at each step.

Although we can remove all the redundant disjunctive anti-links in the formula,

this process can introduce new conjunctive anti-links. Such anti-links may indicate

the presence of subsumed d-paths, but the su�cient requirement for redundancy

is much stronger as in De�nition 10, see (Ramesh et al., 1997, Section 3.7).

3.4 Simplifications

Obviously, DADV (hAX ; AY i;M) can be syntactically larger than M = X _ Y .
Under certain conditions we may use simpli�ed alternative de�nitions for DADV .

These de�nitions result in formulas which are syntactically smaller than those that

result from the general de�nition. The following is a list of possible simpli�cations.

1. If

CE(AX) = AX (and CE(AX) 6= X) ;

then DC(CE(AX); X) = DC(AX ; X). Therefore by (possibly non atomic)

factoring on DC(AX ; X) and observing that (DC(AY ; Y ) ^ DPE(AY ; Y ))
has the same d-paths as Y , DADV (hAX ; AY i;M) becomes

DC(AX ; X) _ Y

^
DPE(AX ; X) _ CC(AY ; Y )



12 Bernhard Beckert et al.

It turns out that this rule applies to (2) in Example 3; the simpli�ed rule for

this case results in the following formula:

B _
A

^
E _ C

^

A _ C

2. If

CE(AX) = X ;

then DC(CE(AX); X) = true , DPE(AX ; X) = AX and DC(AX ; X) = (X �
fAXg). Hence DADV (hAX ; AY i;M) becomes

X � fAXg _ DC(AY ; Y )

^

AX _ CC(AY ; Y )

3. If both Case 1 and Case 2 apply, then CE(AX) = X = AX , and the above

formula simpli�es to

AX _ CC(AY ; Y ) :

Note that in all the above versions of DADV , the rôles of X and Y can be

interchanged.

4 Anti-Links in Many-Valued Logic

By de�nition, an anti-link in classical logic consists of two occurrences of the

same literal. In many-valued logics the de�nition has to be more general, because

there are redundancies as well if literals are not identical but consist of the same

propositional variable and non-disjoint truth signs:

Definition 13. A disjunctive (conjunctive) many-valued anti-link consists

of disjunctively (conjunctively) connected occurrences AX and AY of literals in a

many-valued formula in NNF such that

1. `(AX) = SX :p and `(AY ) = SY :p for some atom p and SX ; SY � N ;

2. SX \ SY 6= ;.
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4.1 Redundant Anti-Links in Many-Valued Logics

The analogue of Theorem 1 holds for many-valued anti-links, i.e., if a formula

contains subsumed d-paths this implies the presence of anti-links; and the converse
of the theorem is not true: only redundant anti-links indicate the existence of

subsumed d-paths.

The classical anti-link operator, when applied to a redundant anti-link, reduces

a formula in two ways. First, if the anti-link literal AX is a conjunct, d-paths

that go through the other anti-link literal AY and through CE(AX) � fAXg are
removed (cf. Figure 1 on page 18). These paths are of the form

� = �CE [ �r [ fAY g

(where �CE is the part going through CE(AX)� fAXg and �r is the rest of the
path except AY ). Such a path � is classically subsumed by a path

�0 = fAXg [ �r [ fAY g

in the formula, because `(�0) � `(�) for a classical anti-link. �0 is identical to �

except that it goes through AX instead of CE(AX) � fAXg (and, thus, through
both anti-link literals).

In the many-valued case, where `(AX) = SX :p and `(AY ) = SY :p, this type of

reduction is possible i� SX � SY , because then a path �0 = fAXg [ �r [ fAY g
MV-subsumes a path � = �CE [ �r [ fAY g. The same type of reduction can be

found if AY is a conjunct instead of AX and|in the many-valued case|provided

SY � SX .
These considerations justify the following de�nitions:

Definition 14. A many-valued anti-link hAX ; AY i, where `(AX) = SX :p and

`(AY ) = SY :p, is redundant if either one of the following conditions holds:

� AX is a conjunct, i.e. CE(AX) 6= AX , and SX � SY

� AY is a conjunct, i.e. CE(AY ) 6= AY , and SY � SX .

Definition 15. Let hAX ; AY i be a many-valued anti-link in F , where `(AX) =

SX :p and `(AY ) = SY :p, and M = X _ Y is the smallest subformula containing
the anti-link. Then

DPMV (hAX ; AY i; F ) =

8>>>>>>><
>>>>>>>:

DP (hAX ; AY i; F ) if SX = SY
f� 2 dp(F ) j � passes through

CE(AX)� fAXg and AY g if SX ( SY
f� 2 dp(F ) j � passes through

CE(AY )� fAY g and AXg if SY ( SX
; otherwise
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The following theorem is the many-valued version of Theorem 2 (and the proof

for Theorem 2 given in (Ramesh et al., 1997) can easily be adapted):

Theorem 5. Let hAX ; AY i be a redundant many-valued anti-link in an NNF for-

mula F . Then each d-path in DPMV (hAX ; AY i; F ) is properly MV-subsumed by

a d-path through F that contains the anti-link.

The second type of reduction of the (classical) anti-link operator is to remove

one anti-link literal occurrence AY from all paths that go through both anti-link

literals AX and AY , which is justi�ed by the fact that `(AX) = `(AY ). In the

many-valued case this second reduction is only possible if SY � SX or SX � SY .

4.2 A Many-Valued Anti-Link Operator

It is not obvious how to extend the anti-link technique to the many-valued case;

there are several possible approaches. Careful analysis shows that the following is a

successful method for developing a many-valued anti-link operator for simplifying

signed NNF formulas from the classical operator.

The following assertions are obvious for all sets SX and SY of truth values:

1. SX = (SX \ SY ) [ (SX n SY ).

2. SX :p is MV-path equivalent to (SX \ SY ):p _ (SX n SY ):p.

3. If SX � SY , then SX :p is identical to (SX \ SY ):p.

Therefore, given a formula F in NNF that contains an anti-link hAX ; AY i,
where `(AX) = SX :p, `(AY ) = SY :p, the result of replacing AX by (SX \ SY ):p _
(SX n SY ):p if SX 6� SY and replacing SY :p by (SX \ SY ):p_ (SY n SX):p if SY 6�
SX is a formula F 0 that is MV-path equivalent to F .

F 0 contains a classical anti-link: the two occurrences of (SX \ SY ):p. Thus, the
classical anti-link operator can be applied to F 0 if F 0 is viewed as a classical NNF

formula over the signature consisting of the many-valued literals (including their

signs) that occur in F 0.

The result of this application is a formula F 00 that is classically path equivalent

to F 0 and thus MV-path equivalent to F . By de�nition of the classical anti-

link operator, F 00 is constructed by replacing the smallest subformula M 0 in F 0

containing the anti-link by M 00 = DADV (hAX ; AY i;M
0).

M 00 (and thus F 00) can be expressed in terms of the original formula; the result

is a d-path equivalent formula that can be seen as the result of applying a many-

valued anti-link operator to the original formula, and in fact we use it as the

de�nition of our operator:

Definition 16. Let hAX ; AY i be a many-valued anti-link in an NNF formula F ,

where `(AX) = SX :p and `(AY ) = SY :p, and let M = X _ Y be the smallest



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 15

subformula of F containing the anti-link. Then

MVDADV (hAX ; AY i;M) =

DC(AX ; X) _ DC(AY ; Y )

^
T _ DPE(AY ; Y )

^
DPE(AX ; X) _ S

where

T =

�
DC(CE(AX); X) if SX � SY
DC(AX ; X) otherwise

and

S =

�
CC(AY ; Y ) if SY � SX
Y fAY  (SY n SX):pg otherwise

As in the classical case, the cost of computing MVDADV (hAX ; AY i;M) is

linear in M .

The following theorem, that states correctness of the many-valued anti-link

operator is the analogue of Theorem 3.

Theorem 6. Let M = X _ Y be the smallest subformula containing hAX ; AY i, a
many-valued anti-link in the NNF formula F , where `(AX) = SX :p and `(AY ) =

SY :p. Then MVDADV (hAX ; AY i;M) is MV-path equivalent toM and di�ers in

d-paths from M as follows:

1. d-paths in DPMV (hAX ; AY i;M) are not present;

2. any d-path � of M containing the anti-link is replaced by �0 = � n fAY g if
SY � SX , and else by �0 = (� n fAY g) [ fA

n

Y g, where A
n

Y is an occurrence

of (SY n SX):p.

Proof. The proof follows closely the description given at the beginning of this
section of how the many-valued anti-link operator can be constructed from the

classical one.

1st case: SX = SY
In this case, where both SX � SY and SY � SX , the de�nition of MVDADV

is identical to that of DADV , and the theorem follows immediately from the

correctness of the classical operator (Theorem 3).

2nd case: SX ( SY
The set of paths in M can be separated into four disjoint subsets: the set of paths

that (a) do not go through AY , (b) go through AY but not through CE(AX),

(c) go through AY and through CE(AX) � fAXg, (d) go through both anti-link

literals AX and AY (cf. Figure 1).

Because of SX ( SY the formulaM 0 is constructed fromM by replacing AY by

(SX \ SY ):p _ (SY n SX):p. Paths that do not go through AY remain unchanged;
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in paths that contain AY this is replaced by occurrences A\

Y of (SX \ SY ):p and

A
n

Y of (SY n SX):p. Thus, dp(M
0) = (a)[ (b0) [ (c0) [ (d0) where

(b0) = f(p n fAY g) [ fA
\

Y ; A
n

Y g j p 2 dp(M) goes through AY
and not through CE(AX)g

(c0) = f(p n fAY g) [ fA
\

Y ; A
n

Y g j p 2 dp(M) goes through AY
and through CE(AX)� AXg

(d0) = f(p n fAY g) [ fA
\

Y ; A
n

Y g j p 2 dp(M) goes through AY
and through AXg

Because A\

Y is part of a disjunction, CE(A\

Y ) = A\

Y in M 0; therefore the set (c0)

is identical to DP (hAX ; A
\

Y i;M
0). This means that (c0) is|according to Theo-

rem 3|the set of paths that is removed when the classical anti-link operator is

applied to the anti-link hAX ; A
\

Y i inM
0 (recall that SX :p is identical to (SX \ SY ):p

by SX � SY ). In addition, by applying the classical operator, the second occur-

rence A\

Y is removed from the paths going through the anti-link, i.e., from all

paths in (d0). The set of paths in the result M 00 of applying DADV to M 0 is thus

dp(M 00) = (a)[ (b0) [ (d00) where

(d00) = f(p n fAY g)[ fA
n

Y g j p 2 dp(M) goes through AY
and through AXg

According to the de�nition of the classical anti-link operator,M 00 has the form

M 00 =

DC(AX ; X
0) _ DC(A\

Y ; Y
0)

^
DC(CE(AX); X

0) _ DPE(A\

Y ; Y
0)

^
DPE(AX ; X

0) _ CC(A\

Y ; Y
0)

Because

1. X = X 0;

2. DC(A\

Y ; Y
0) is identical to DC(AY ; Y ) since the disjunctive complement DC

consists of those paths that do not contain the anti-link literal;

3. CC(A\

Y ; Y
0) = Y fAY  (SY n SX):pg using the de�nition of the conjunctive

complement and since Y 0 = Y fAY  ((SX \ SY ):p _ (SY n SX):p)g;

the only di�erence betweenM 00 andMVDADV (hAX ; AY i;M) is thatM 00 contains

the subformula DPE(A\

Y ; Y
0) in its middle part instead of DPE(AY ; Y ). This

di�erence only a�ects the paths in the subset (b0) of dp(M 00). Instead of the two

occurrences A\

Y and A
n

Y they contain AY in MVDADV (hAX ; AY i;M).

This, �nally, shows that dp(MVDADV (hAX ; AY i;M)) consists of the paths in

(a), (b), and (d00). The paths in DPMV (hAX ; AY i;M) = (c) have been removed,
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and in the paths in (d) (the paths going through hAX ; AY i) the occurrence AY has

been replaced by A
n

Y ; this concludes the proof of the second part of the theorem

for this case.

It remains to be shown that MVDADV (hAX ; AY i;M) is MV-path equivalent

toM : This, however, is obvious using Theorem 5 and the fact that for any  paths

� =  [ AX [AY , �
0 =  [ AX [A

n

Y subsume each other provided SX � SY .

3rd case: SY ( SX
The proof for this subcase proceeds analogously to that for the previous subcase.

The only di�erences are:

� If SY ( SX , then Y
0 = Y and therefore CC(AY ; Y

0) = CC(AY ; Y ), etc.

� AX is replaced by the disjunction (SX \ SY ):p_ (SY n SX):p to construct M
0

from M . Therefore, A\

X (the occurrence of (SX \ SY ):p in M
0) is a disjunct.

This implies CE(A\

X) = A\

X and DC(CE(A\

X); X
0) = DC(AX ; X).

4th case: otherwise

The proof for this subcase is a combination of the proofs for the two previous

subcases.

Observing the de�nition of disjunctive paths, the result of Theorem 6 for the

smallest subformula M containing the anti-link can easily be extended to any

formula containing an anti-link.

Corollary. Let M = X _ Y be the smallest subformula containing hAX ; AY i, a
many-valued anti-link in the NNF formula F . Then the result

FfM  MVDADV (hAX ; AY i;M)g

of applying the many-valued anti-link operator to F is MV-path equivalent to F

and di�ers in d-paths from F in the same way asMVDADV (hAX ; AY i;M) di�ers

from M .

As in the classical case iterative application of the many-valued anti-link oper-

ator is a terminating process:

Theorem 7. Finitely many applications of the MVDADV operation will result

in a formula without many-valued disjunctive anti-links, and termination of this

process is independent of the choice of anti-link at each step.

Proof. We use the following complexity measure j � j for the size of a many-valued
formula F , that in the classical case is identical to the sum of the lengths of all

d-paths of F :

jF j =
X

�2dp(F )

X
S:p2�

jSj ;
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X

CE(AX )

AX
^

CE(AX)� fAXg

.

.

.

_

Y

AY

.

.

.

(a); (d)
(b); (c); (d)

(a); (b) (a)

(a); (c)

Fig. 1. The di�erent types of paths if SX ( SY (see proof of Theorem 6).

where jSj is the cardinality of S. This measure is �nite for all formulas in �nitely-

valued logics.7

The second part of the corollary implies

jFfM  MVDADV (hAX ; AY i;M)gj < jF j ;

even if the anti-link is not redundant (note that SX \ SY 6= ; by De�nition 13).

This implies the termination of the process of applying the anti-link operator

iteratively, because at each step the complexity measure strictly decreases.

Since the anti-link operator is not symmetric, there are always two possibilities

for its application (by interchanging AX and AY ). How to choose is not obvious;

note that in both cases the number of d-paths in the result is the same. Other

things have to be considered, for example the syntactic size of the result. In general,

applications are preferable that make use of the simpli�ed versions of MVDADV

described in the following subsection.

4.3 Simplifications

Similar to the classical operator (see Section 3.4), the MVDADV operator can

be simpli�ed in certain cases. Here S and T are the same subformulas as in

De�nition 16.

1. If

SX 6� SY or CE(AX) = AX ;

then

MVDADV (hAX ; AY i;M) =

DC(AX ; X) _ Y

^
DPE(AX ; X) _ S

7 The theorem holds for in�nitely-valued logics as well; to prove this, however, a more elaborate
complexity measure has to be used.
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2. If

SX � SY and CE(AX) = X ;

then

MVDADV (hAX ; AY i;M) =

X � fAXg _ DC(AY ; Y )

^
AX _ S

3. If

CE(AX) = AX = X ;

then

MVDADV (hAX ; AY i;M) = AX _ S

5 Extended Example

We apply the many-valued anti-link operator to the formula

F =

S1:p

^
B

_ C

^
D

_
S2:p _ G

^
H

F contains six paths and seven literals. In the left parts of Figures 2 and 3 the

result of applying the many-valued anti-link operator to hAX ; AY i is shown, where
`(AX) = S1:p and `(AY ) = S2:p, i.e., F = X_Y . The formulas on the right are the
result when the second possibility is used, where `(AX) = S2:p and `(AY ) = S1:p,

i.e., F = Y _X .

If S1 � S2, S2 6� S1 the anti-link is redundant. By applying the many-valued

operator, the MV-subsumed path fB;C;AY ; Gg (resp. fB;C;AX; Gg) is removed.
In case `(AX) = S2:p, `(AY ) = S1:p, the �rst simpli�ed version ofMVDADV (see

Section 4.3) can be used. The two possible results are shown in Figure 2. They

both have the same �ve paths. However, the formula on the right, that results

from using the simpli�ed version ofMVDADV is syntactically smaller: it consists

of nine instead of twelve literals.

If S2 � S1, S1 6� S2, the anti-link is not redundant, and the number of paths
is not reduced. The formula on the left in Figure 3, that is the result of applying

MVDADV if `(AX) = S1:p, `(AY ) = S2:p, is syntactically smaller, because in

that case the occurrence AY can be removed from paths going through the anti-

link. In the formula on the right AY has been replaced by (SY n SX):p in paths

through the anti-link.

The two possible results of applying the anti-link operator to either hAX ; AY i or
to hAY ; AXi have always identical d-paths (except the one going through the anti-
link). However, as the example shows, they can be quite di�erent syntactically.
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DC(AX;X)

B _ C

^
D

_

DC(AY ;Y )

H

^
DC(CE(AX );X)

D _

DPE(AY ;Y )

S2:p _ G

^

DPE(AX ;X)

S1:p _ C _

Y fAY (SY nSX):pg

(S2 n S1):p _ G

^
H

Y

S1:p

^
B

_ C

^
D

_

DC(AX;X)

H

^
CC(AY ;Y )

C

^
D

_

DPE(AX;X)

S2:p _ G

Fig. 2. The two possible results of applying the anti-link operator to F if S1 � S2.

DC(AX;X)

B _ C

^
D

_

Y

S2:p _ G

^
H

^

DPE(AX ;X)

S1:p _ C _

CC(AY ;Y )

G

^
H

Y

S1:p

^
B

_ C

^
D

_

DC(AX;X)

H

^
Y fAY (SY nSX ):pg

(S1 n S2):p
^
B

_ C

^
D

_

DPE(AX ;X)

S2:p _ G

Fig. 3. The two possible results of applying the anti-link operator to F if S2 � S1, S1 6� S2.

Here the result is larger than the original formula F , but in general it does not

have to be; and in all cases MVDADV (hAX ; AY i; F ) is much smaller than the

result of transforming F to disjunctive normal form which contains 19 literals.

Summary and Future Work

We extended the concept anti-links from classical to many-valued logic and de�ned

a many-valued anti-link operator. This operator can be employed so as to strictly

reduce the number of d-paths in a many-valued NNF formula. Anti-link operations

remove subsumed paths without any direct subsumption checks. This is signi�cant
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for computing prime implicates, since such computations tend to be dominated by

subsumption checks.

Anti-link techniques are not restricted to many-valued formulas in NNF. Prin-

cipally, they can be adapted to work with other normal forms as well, for example,

XOR-normal form (Sasao, 1993) or normal forms based on T-norms and S-norms

(Gottwald, 1993), as well as with other logics such as modal logics. Necessary con-

ditions are that path subsumption and the subset relation coincide, and that an

adequate distributivity law can be formulated for the chosen logical connectives.

The details will be subject of forthcoming work.
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