
ar
X

iv
:1

90
5.

06
83

2v
6 

 [
m

at
h.

L
O

] 
 2

6 
O

ct
 2

01
9

SPACE AND TIME COMPLEXITY FOR INFINITE

TIME TURING MACHINES

MERLIN CARL

Abstract. We consider notions of space complexity for Infinite
Time Turing Machines (ITTMs) that were introduced by B. Löwe
in [15] and studied further by Winter in [20] and [21]. We answer
several open questions about these notions, among them whether
low space complexity implies low time complexity (it does not) and
whether one of the equalities P=PSPACE, P+ =PSPACE+ and
P++ =PSPACE++ holds for ITTMs (all three are false). We also
show various separation results between space complexity classes
for ITTMs. This considerably expands our earlier observations on
the topic in section 7.2.2 of [3], which appear here as Lemma 6 up
to Corollary 9.

1. Introduction

Complexity theory for ITTMs was started by Schindler in [17] with
the observation that, with natural analogues of the classes P and NP for
ITTMs, we have P6=NP for ITTMs. While time complexity for ITTMs
received some further attention, e.g., in [6], a satisfying analysis of
space complexity was hindered by the fact that all but the most trivial
ITTM-computations use the whole tape length ω and thus have the
same space usage.

In [15], Löwe suggested an alternative view: Given that a tape of
length ω can, via coding, simulate tapes of much larger order types,
the complexity of the tape contents during the computations rather
than the number of used cells should be used as a measure of space
usage. This idea was further pursued by Winter in [20] and [21].

One general conjecture in [15] is that sets decidable by computations
that consist entirely of ‘simple’ snapshots can also be decided in short
time, which would mean that time and space complexity for ITTMs
are strongly related.

In this paper, we we will disprove this conjecture by showing that, if
σ denotes the minimal ordinal such that Lσ is Σ1-elementary in L, then,
for any α < σ, there are sets of real numbers that are ITTM-decidable
with extremely simple snapshots, but not with time bounded by α.
As we will also see that uniform time bounds on ITTM-decision times
are always < σ, there seems to be no influence of content complexity
on time complexity for ITTMs. As a byproduct, we obtain that none
of the equalities P=PSPACE, P+ =PSPACE+ and P++ =PSPACE++

1

http://arxiv.org/abs/1905.06832v6


2 MERLIN CARL

holds for ITTMs (these classes will be defined below); this answers an
open question by B. Löwe (see [1], p. 42) and another one by J. Winter
(ebd).

Moreover, we will show that many of the space complexity classes
defined in [15] and [20] are distinct.

2. Preliminaries

For Infinite Time Turing Machines (ITTMs) and basic notions like
writability (of a real number) or decidability (of a set of real num-
bers), we refer to [8], [18], [19]. We will also freely use notions like
writability, clockability, eventual writability, accidental writability, de-
cidability and recognizability, all of which can be found in [8], along
with the following well-known facts about ITTMs:

• (Welch, see [18]) For each x ⊆ ω, there are ordinals λx < ζx <
Σx such that a real number y ⊆ ω is ITTM-writable/eventually
writable/accidentally writable in the oracle x if and only if y ∈
Lλx [x]/Lζx [x]/LΣx [x]; moreover, (λx, ζx,Σx) is lexically minimal
with the property that Lλx [x] ≺Σ1

Lζx [x] ≺Σ2
LΣx[x].

• (Welch, [18]) The supremum of the ITTM-writable ordinals co-
incides with the supremum of the ITTM-clockable ordinals.

• (Hamkins and Lewis, [8], Welch, [18]) For any ITTM-program
P and any x ⊆ ω, P x will either halt in < λx many steps or
run into a strong loop before time Σx. Here, a strong loop
means that a snapshot s is repeated at limit times and that,
between the two occurences of s, all occuring snapshots weakly
majorized s in all components. In particular, if a cell contains
0 in s, then it contained 0 for all snapshots occuring between
the two occurences of s.

• There are no ITTM-recognizable real numbers in LΣ \ Lλ.
• The minimal L-level that contains all ITTM-recognizable real

numbers is Lσ, where σ is minimal with the property Lσ ≺Σ1
L.

• (Folklore) If c ⊆ ω is ITTM-recognizable, then c ∈ Lλc .

A model of transfinite computability that is less well known than
ITTMs are Infinite Time Register Machines (ITRMs), introduced by
Koepke [9]. These will play an important role in several of the proofs
below. For the definition and main results on Infinite Time Register
Machines (ITRMs), we refer to [9], [10].

Lemma 1. Let P be an ITTM-program using a finite number n of
scratch tapes and let x ⊆ ω be such that P x uses only recursive snap-
shots. Then P can be simulated by an ITTM-program Q with a single
scratch tape that uses only recursive scratch tapes.

Proof. Split the tape into n portions and write the ith bit of the jth
tape to the cell with index in+ j. �



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES3

If α is an ordinal, an α-ITRM works like an ITRM, but the bound
on the register contents is α rather than ω. They were suggested by
Koepke in [12], but have received comparably little attention so far
(see, however, [4] and [3] for some recent progress on determining their
computational strength).

Lemma 2. Let α < ωCK
1 , and let P be an α-ITRM-program. Then

there is an ITTM-program Q such that, for any x ⊆ ω, Qx has the
same halting behaviour and output as P x and only produces recursive
snapshots.

Proof. We prove this in general, although only the somewhat simpler
case α = ω will be needed below.

Q will simply simulate P on the input x. To this end, we let Q
use one tape for each register used by P and then use Lemma 1. Fix
a recursive bijection f : ω → α. Now, the ith cell of a scratch tape
will represent f(i). The register content β < α in register k will be
represented by writing 1 to all cells of the kth scratch tape that have
an index i with f(i) < β and 0 to all other cells. Clearly, this will be
a recursive real number.

On a further scratch tape, the active program line is stored by just
writing 1s to the first k cells when k is the active program line and 0
to all other cells.

We show how to simulate each of the register machine commands:

• whether a register contains 0 can be seen by checking the cell
corresponding to 0

• a conditional jump is simulated by writing the new active pro-
gram line to the corresponding scratch tape, from left to right.

• the COPY instruction from register i to register j is simulated
by copying the content of scratch tape i to scratch tape j bit
by bit, from left to right. Clearly, if the contents of both tapes
were recursive to begin with, they will remain so.

• the incrementation operation is carried out on the kth register
by searching through ω for the minimal ι < α such that the
f−1(ι)th cell of the kth tape contains 0 and replacing its content
with 1. Clearly, this can be done with only recursive snapshots,
as f is recursive.

• whether or not the kth tape only contains 1s can be easily tested
with a flag routine. if that is the case, replace them by 0 one by
one, starting from the left. again, this will only use recursive
snapshots.

Note that the simulation will be automatically correct at limits.
�

We recall the Jensen-Karp-theorem from Jensen and Karp, [14]:



4 MERLIN CARL

Theorem 3. Let φ be a Σ1-formula (possibly using real parameters)
and let α be a limit of admissible ordinals such that Vα |= φ. Then
Lα |= φ.

We will write WO for the set of real numbers that encode well-
orderings. As usual, we will denote the next admissible ordinal after
an ordinal α by α+ and the next limit of admissible ordinals after α by
α+ω. A basic result about ITRMs is that WO is ITRM-decidable, see
Koepke and Miller [10].

Moreover, we recall the following statement from [2]:

Theorem 4. Every ITRM-recognizable real number is contained in Lσ.
Moreover, for any α < σ, there is an ITRM-recognizable real number
in Lσ \ Lα.

The basic notions of space complexity theory for ITTMs were defined
by B. Löwe in [15], while those of time complexity for ITTMs were given
by Schindler in [17]. We give a brief summary.

Definition 5. Let X ⊆ P(ω).

• For f : P(ω) → On, we say that X belongs to TIMEITTM

f if and
only if there is an ITTM-program P that decides X and halts
in < f(x) many steps on input x. If f is constant with value
α, we will write TIMEITTM

α . PITTM then denotes TIMEITTM

ωω . If

f is the function x 7→ ωCK,x
1 , we write PITTM

+ for TIMEITTM

α .

If f is the function x 7→ ωCK,x
1 + ω + 1, we write P ITTM

++ for
TIMEITTM

α .
• For f : P(ω) → On, we say that X belongs to SPACEITTM

f

if and only if there is an ITTM-program P that decides X
and such that all snapshots occuring during the computation
of P x for any x ⊆ ω are contained in Lf(x)[x]. If f is con-
stant with value α, we will write SPACEITTM

α . If P is a pro-
gram witnessing this, we also say, by a slight abuse of nota-
tion, that P decides X ‘with snapshots in Lα’.1 PSPACEITTM

then denotes SPACEITTM

ωω . If f is the function x 7→ ωCK,x
1 ,

we write PSPACEITTM

+ for SPACEITTM

α . If f is the function

x 7→ ωCK,x
1 + ω + 1, we write PSPACEITTM

++ for SPACEITTM

α . If
X can be decided by an ITTM-program P that only uses re-
cursive snapshots on all inputs, we say that X is SPACEITTM

REC

or that X is ITTM-decidable with recursive snapshots.

Throughout the paper, we fix a natural enumeration (Pi : i ∈ ω) of
the ITTM-programs.

1Note that this means that deciding X ‘with snapshots in Lα allows the snapshots
to come from Lα[x] for all inputs x ⊆ ω.



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES5

3. The connection between space and time complexity

for ITTMs

We now consider the question whether the fact that a set X ⊆ P(ω)
can be decided by an ITTM using only ‘simple’ snapshots implies that
X is also quickly decidable. Up to Corollary 9, the following is con-
tained in chapter 7 of the forthcoming monograph [3]. We include
proofs for the sake of being self-contained.

We will now show that, for any α < σ, there are sets X ⊆ P(ω),
such that X is ITTM-decidable with recursive snapshots, but does not
belong to TIMEITTM

α . For α = ωω, this answers a question in [15] in
the negative, namely whether SPACEITTM

REC
⊆TIMEITTM

ωω .

Lemma 6. [Cf. [3], Lemma 7.2.19] Let α < ωCk

1 . If X ⊆ P(ω) is α-
ITRM-decidable, then X is ITTM-decidable with recursive snapshots.
In particular, if a real number x is ITRM-recognizable, then {x} is
ITTM-decidable with recursive snapshots.

Proof. The first claim is an easy consequence of Lemma 2, and the
second claim is an easy consequence of the first.

�

Remark: Note that recursiveness is really an understatement when
measuring the complexity of the snapshots occuring during the pro-
cedure just described. One can hardly imagine anything simpler that
goes beyond only allowing finitely many 1s on the tape.2

Lemma 7. [Cf. [3], Lemma 7.2.20]
Let x be a real number such that x /∈ Lα+ω . Then x /∈TIMEITTM

α .

Proof. By contraposition. Suppose that {x} ∈TIMEITTM

α . Let P be
an ITTM-program that recognizes x with uniform time bound α. In
particular, the computation of P in the oracle x halts in < α many
steps. The statement that there is a halting computation of P in some
oracle with output 1 is Σ1 and holds in Vα+ω and hence in Vα+ω . By
the Jensen-Karp theorem 3, it follows that x ∈ Lα+ω , a contradiction.

�

Theorem 8. [Cf. [3], Theorem 7.2.21] Let α < σ. Then TIMEITTM
α +SPACEITTM

REC
.

Proof. Since α < σ, we have α+ω < σ. Thus, Theorem 4 implies
that there is an ITRM-recognizable real number x ∈ Lσ \ Lα+ω . Then
{x} ∈SPACEITTM

REC
\TIMEITTM

α by Lemma 7 and Lemma 6. �

Since Lω+1 contains all recursive real numbers, we have:

Corollary 9. [Cf. [3], Corollary 7.2.22] Let α < σ. Then TIMEITTM
α +SPACEITTM

ω+1 .

2Only allowing finitely many 1s on the tape leads to a weak version of ITTMs
studied in [11]; there, it is shown that the subsets of ω computable by such a
machine is L

ω
CK

1

∩P(ω).



6 MERLIN CARL

3.1. Upper Bounds for Time and Space Complexity. The above
result leaves open the possibility that some version of "low space com-
plexity implies low time complexity" holds for sets that can be decided
by ITTMs with a uniform time bound ≥ σ. Clearly, any such nontriv-
ial bound will be < ω1. If we knew that no such bound exists between
σ and ω1, the question could be regarded as completely settled in the
negative. We will now show that the result above is optimal in the
sense that all meaningful instances of TIMEITTM

α and SPACEITTM

α have
α < σ. Thus, any time bound that can occur at all can occur as the
minimal decision time bound for a set that is ITTM-decidable with re-
cursive (and much simpler) snapshots. Consequently, there seems to be
no connection of the desired kind between time and space complexity
for ITTMs.

Definition 10. For an ordinal α, let us say that TIMEITTM

α or SPACEITTM

α

is "inhabited" if and only if TIMEITTM

α \
⋃

ι<αTIMEITTM

ι 6= ∅ or SPACEITTM

α \⋃
ι<αSPACEITTM

ι 6= ∅, respectively.

Theorem 11. (1) If TIMEITTM

α is inhabited, then α < σ.
(2) If SPACEITTM

α is inhabited, then α < σ.

Proof. The argument for (1) is due to Philipp Schlicht (personal com-
munication), the argument for (2) is completely analogous. We only
give the argument for (2) and leave the adaptation to (1) to the reader.

Suppose that X ∈SPACEITTM
α and let P be an ITTM-program that

decides X and produces only snapshots in Lα[x] for each input x. Thus,
the statement φ that expresses “There is a countable ordinal α such
that, for every x, P x halts and produces only snapshots in Lα[x]” is
true in V . Since computations are unique, “P x halts and only uses
snapshots in Lα[x]” is ∆1. Since countable ordinals and halting ITTM-
computations (which have countable length) can be encoded by real
numbers, φ can be expressed as a Σ1

2-statement.
By Shoenfield absoluteness, φ holds in L. By standard descriptive

set theory (see e.g. [16]), the Σ1
2-statement φ can be expressed as a

Σ1-statement. By Σ1-elementarity, φ thus holds in Lσ. Consequently,
there is α′ ∈ Lσ such that Lσ believes that P x halts and produces only
snapshots in Lα′ [x] for all x. By absoluteness of computations, this
implies that, for all x ∈ Lσ, P

x halts and produces only snapshots in
Lα′ [x]. Clearly, as α′ ∈ Lσ, we have α′ < σ.

It thus suffices to show that α′ ≥ α. If not, there is some real
number y such that P y halts and produces snapshots outside of Lα′ [y].
Therefore, the statement that there is such a real number, which is Σ1

in the countable parameter α′, holds in V , and thus in L, and thus
in Lσ. Hence, there is a real number y ∈ Lσ such that P y halts and
produces a snapshot outside of Lα′ [y], a contradiction.

�



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES7

Remark 12. In Winter [20], the notation PHK
α used for TIMEITTM

α

and the notation PSPACEHK

α for SPACEITTM

α ;3 with this notation,
it was asked in [1] (p. 42, question 1) for which ordinals we have
PHK

α (PSPACEHK

α . In [20], it is shown that PHK

α ⊆PSPACEHK

α for all
α > ω (Proposition 5.7). The question is thus when we have inequality.
In [20], this is shown for α ∈ (ω, ωCK

1 ] (Theorem 5.14) and certain suc-
cessor ordinals (Theorem 5.16). Clearly, we have PHK

ω1
=PSPACEHK

ω1
,

as both coincide with the set of ITTM-decidable sets. For countable α,
Theorem 11 implies that both classes only make sense when α < σ. For
these values of α > ω, Corollary 9 tells us that PHK

α *PSPACEHK
ω+1 ⊆PSPACEHK

α

and thus in particular that PHK

α 6=PSPACEHK

α . Thus, the proper inclu-
sion relation in question holds for all relevant values of α.

3.2. Space and Time Complexity with Dependency on the In-

put. In [20], p. 78, it was asked whether P(PSPACE, P+ (PSPACE+

and P++ (PSPACE++ hold for ITTMs. (The weak inclusions are both
shown in [20].) We will now answer the first two questions in the pos-
itive by showing that WO belongs to SPACEITTM

ω+1 (and thus both to
PSPACE and PSPACE+), but not to P+.

Lemma 13. WO is decidable with recursive snapshots and thus be-
longs in particular to SPACEITTM

ω+1 , but WO does not belong to P+. In
particular, we have P+ +PSPACE.

Proof. That WO is decidable with recursive snapshots follows from the
fact that ITRMs can decide WO (see [10], Theorem 6).

To see that WO does not belong to P+, recall the well-known fact
that there are real numbers x such that x ∈ L

ω
CK,x
1

and L
ω

CK,x
1

believes

that x codes a well-founded ordering, but this is in fact false, see e.g.
[7].

Now suppose that WO is decidable by an ITTM-program P that
uses < ωCK,x

1 many steps on input x. By a slight modification of P , we
obtain a program Q that works with the same time bound and outputs
1 on input x if and only if x codes a well-ordering and otherwise outputs
an ill-founded sequence for x. To see this, let x ⊆ ω be given. We run
P on x. If the output is 1, we halt. Otherwise, we use P to test for
each i ∈ ω whether the ordering coded by x below i is a well-ordering,
continue up to the first i0 for which the answer is "no" (which must
necessarily exist by assumption) and write it to the output tape. We
then similarly look for the first i1 that is smaller than i0 in the sense of
the ordering coded by x such that the ordering below i1 is ill-founded
and write it to the output tape. Clearly, this will generate an ill-
founded sequence for x, and it is easy to see that the time bound ωCK,x

1

3The “HK” stands for Hamkins-Kidder, reminding that it was J.Hamkins and J.
Kidder who originally invented ITTMs, which are therefore also called Hamkins-
Kidder-machines.



8 MERLIN CARL

is still obeyed (the function mapping i to the time it takes P to check
whether the ordering below i is well-founded is Σ1 over L

ω
CK,x
1

and

hence bounded).
Thus, if there was such a program P , then L

ω
CK,x
1

would have to

contain an ill-founded sequence for x whenever x codes an ill-founded
ordering. But this contradicts the statement just made.

�

We now turn to the question whether P++ (PSPACE++, which
will be treated by an application of the idea of time-bounded halting
problems used in Winter [20] to show a few other such strict inclusions.4

Below, if x ⊆ ω, n(x) will denote the largest natural number k
satisfying k ⊆ ω if there is one, and 0 if there is none.

Theorem 14. The set X := {x ⊆ ω : P x
n(x) does not terminate in <

ωCK,x
2 many steps} (where Pn denotes the nth ITTM-program as usual)

is ITRM-decidable and thus ITTM-decidable with recursive snapshots,
but does not belong to P++.

Proof. To decide whether x ∈ X for some given x ⊆ ω on an ITRM,
compute a code for L

ω
CK,x
3

and use it to evaluate the Σ1-statement that

P x
n(x) terminates in < ωCK,x

2 many steps.
To see that X does not belong to P++, suppose for a contradiction

that P is an ITTM-program that decides X and runs for < ωCK,x
2 many

steps on input x ⊆ ω. We modify P a bit to an ITTM-program Q that
works as follows: On input x, it uses P to decide whether or not x ∈ X.
If x ∈ X, i.e. if P x

n(x) halts in < ωCK,x
2 many steps, then Qx enters an

infinite loop; otherwise, Qx halts. As P x runs for < ωCK,x
2 many steps

by assumption, Qx will halt in < ωCK,x
2 many steps in the latter case.

Let n ∈ ω be such that Q = Pn and pick x ⊆ ω such that n(x) = n.

Then Qx halts in < ωCK,x
2 many steps if and only if P x

n(x) does not halt

in < ωCK,x
2 many steps, which, as Pn(x) = Pn = Q, is true if and only if

Qx does not halt in < ωCK,x
2 many steps, a contradiction. �

Remark: The same technique works for any ITRM-computable func-
tion f instead of x 7→ ωCK,x

1 , such as x 7→ ωCK,x
n for any n ∈ ω,

and in particular, it works for f(x) = ωω and f(x) = ωCK,x
1 . Thus,

P(PSPACE and P+ (PSPACE+ can both be shown by similar argu-
ments. The point of treating Lemma 13 separately was to give WO as
a particularly natural example.

4However, on p. 78 of [20], the author conjectures that such techniques are not
helpful in resolving P++ (PSPACE++. It turns out that, in combination with the
ITRM-ITTM-simulation idea, they are. We regard this as a good example how the
investigations of different models of infinitary computability can fruitfully interact.
(Note that ITRMs were only introduced over a year after [20] was defended.)



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES9

We also remark that it was already observed by Winter that the com-
plement of WO has a low nondeterministic ITTM-space complexity, see
[20], Proposition 7.18.

4. Relations between space complexity classes for ITTMs

We have seen above that there are sets with arbitrarily large uniform
ITTM-decision times that are decidable with recursive snapshots. We
know that WO has no countable bound on the decision times, but is
ITTM-decidable with recursive snapshots.

One may thus wonder: Do recursive snapshots restrict ITTMs at all?
We show that this is indeed the case, and moreover, we will show that
for any α < λ, there are ITTM-decidable sets that are not contained
in SPACEITTM

α . To this end, we will show that, for any α < λ, one can
decide uniformly in n and x whether a given ITTM-program Pn will
produce a snapshot outside of Lα in the input x and also whether P x

n

will halt. Before we proceed, we will briefly explain the guiding idea.
As we recalled above, any ITTM-program on input x will either halt

in < λx many steps or run into a strong loop by time Σx. It thus
seems that there is an easy way to solve the ITTM-halting problem on
an ITTM: Given Pn and x, just run P x

n and keep track of all occuring
snapshots in the following way: Whenever a snapshot s occurs, write
it to some portion of the scratch tape. If some later snapshot falls
below s in any component, delete s. Thus, if a snapshots appears that
is already stored (i.e. it has appeared, but was not deleted), we know
that P x

n is strongly looping and will thus halt. If this does not happen,
then P x

n does halt, which will eventually also be noticed.
Clearly, there must be something wrong with this argument. It is

not hard to see what: In general, there is no way to store all occur-
ing snapshots on ‘some portion of the scratch tape’: We do not know
beforehand how many different snapshots (in the order-type of their
appearance in the computation) there will be and thus do not know in
how many portions to split the scratch tape. Moreover, there may be
too many to do this effectively.

On the other hand, if it is somehow ensured that all occuring snap-
shots can be stored, then the above works fine. Indeed, this is the idea
both behind the solution of the ITRM-halting problem on ITTMs due
to Koepke and Miller [10] and the ITTM-halting problem on OTMs
(see Löwe, [15]), which have tapes of proper class length On and can
thus store any amount of ITTM-snapshots.

Now, if we know that all snapshots of a computation P x
n are recursive,

we can simply split the scratch tape into ω many portions and then,
for each arising snapshot s, look for the minimal index i of a (classical)
Turing program Ti that computes s. Then, we can store s in the ith
component of the scratch tape.



10 MERLIN CARL

In fact, we can do the above for any ITTM-program Pn and any input
x as long as only recursive snapshots occur. Once this is violated, we
can easily notice this and halt with an output indicating this.

Moreover, this approach works for any set S of snapshots as long as
there is an ITTM-computable bijection f : ω → S. (We may even let S
depend on the input x and write Sx, as long as the required bijections
are ITTM-computable uniformly in x.) As this is the case for Lα for
all α < λ, we obtain the following:

Definition 15. For x ⊆ ω, let Rx denote the set of ITTM-programs
that use only recursive snapshots in the oracle x. Let R denote the set
of ITTM-programs (equivalently, their indices) that use only recursive
snapshots in any real oracle.

Lemma 16. There is an ITTM-program H such that the following
holds: Given n ∈ Rx, we have Hx(n) ↓= 1 if and only if P x

n ↓ and oth-
erwise, Hx(n) ↓= 0. Intuitively, H solves the ITTM-halting problem
for programs with recursive snapshots, uniformly in the oracle.

Proof. Recall from above that any ITTM-program in any oracle either
halts or enters a strong loop.

Now, given n and x as in the statement of the lemma, H proceeds
as follows: Let P x

n run. For any snapshot that occurs, find the smallest
i such that the ith Turing program computes the snapshot (this exists
by assumption). Now keep track of the occuring snapshots as follows:
For each i ∈ ω, mark the ith scratch tape cell with 1 to indicate that
the real number r computed by the ith Turing program has occured
as a snapshot during the computation of P x

n and that after that, no
snapshot has arisen so far that is smaller than r in any component. If
a snapshot appears that is smaller than r in any component, reset the
content of the ith scratch tape cell to 0.

If i occurs as the index of a program generating the current snapshot
while there is a 1 on the ith cell, we know that P x

n has entered a
strong loop and P x

n will not halt; in this case, we halt with output 0.
Conversely, if P x

n does not halt, such a loop exists and will eventually
be found. Thus, the program H halts with output 0 on the input (n, x)
when P x

n ↑.
On the other hand, when P x

n halts, then let H(n, x) halt with output
1. Clearly, H is as desired. �

Lemma 17. Rx is ITTM-writable, uniformly in x.

Proof. To decide whether n ∈ ω belongs to Rx, let H(n, x) run and
in parallel, run P x

n and check for each snapshot that occurs during
the computation whether or not it is recursive (this is easily possible
on an ITTM). When a non-recursive snapshot is detected, halt with
output 0. Otherwise, P x

n uses only recursive snapshots and thus, the
H will successfully detect either a strong loop or the halting of P x

n . In



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES11

both cases, we can be sure that only recursive snapshots will occur and
return 1. �

Corollary 18. If X ⊆ P(ω) is ITTM-semidecidable with recursive
snapshots, then X is ITTM-decidable.

Proof. Let P be an ITTM-program with recursive snapshots that semide-
cides X. Then H can be used to determine whether P halts on a given
input x ⊆ ω, and thus whether x ∈ X. �

Theorem 19. There is a set X ⊆ P(ω) such that X is ITTM-decidable,
but not with recursive snapshots.

Proof. For x ⊆ ω, let n(x) be maximal such that n ⊆ x, if this n is a
natural number, and let n(x) = 0 when x = ω.

Now let X be the set of x ⊆ ω such that n(x) ∈ Rx (i.e. P x
n(x) only

generates recursive snapshots) and P x
n(x) does not halt with output 1

(i.e. it either halts with an output different from 1 or it does not halt
at all).

Clearly, X is ITTM-decidable: First, we can decide Rx by Lemma
17. Then, we can use H to determine whether P x

n(x) will halt. If not,
output 1. Otherwise, run P x

n(x) and output 0 when the output is 1 and
otherwise output 1.

Now suppose that n ∈ R is such that Pn decides X. Pick x ⊆ ω such
that n(x) = n. Then x ∈ X ↔ P x

n ↓= 1 ↔ P x
n(x) ↓= 1 ↔ x /∈ X, where

the last implication is an equivalence because P x
n uses only recursive

snapshots by assumption. This contradiction shows that Pn cannot
exist. �

In the investigations of space complexity for ITTMs, there seems
to have been no result so far showing that there are ITTM-decidable
problems that are not in SPACEITTM

α for any α > ω. We note that the
above proof can be generalized to yield some information about this.

Theorem 20. Let α < λ. Let Xα be the set of all real numbers x
such that all snapshots of P x

n(x) belong to Lα[x] and P x
n(x) does not halt

with output 1. Then Xα is ITTM-decidable, but does not belong to
SPACEITTM

α .

Proof. Since α < λ, there is an ITTM-writable code for Lα. Thus,
there is an ITTM-program Pα−test that decides P(ω)∩Lα[x], uniformly
in x. Moreover, there is a uniformly in x ITTM-computable bijection
f : ω → P(ω)∩Lα[x]. We thus obtain the obvious analogues of Lemma
16 and Lemma 17, and thus of Theorem 19. �

To the best of our knowledge, no nontrivial proper inclusion relations
between the classes SPACEITTM

α are known so far for different values
of α bigger than ω. (Clearly, we have SPACEITTM

α ⊆SPACEITTM

β for
α < β, see e.g. [20]). We will now investigate the above construction a



12 MERLIN CARL

bit further, which will allow us to show that SPACEITTM
α (SPACEITTM

λ

for all α < λ.

Lemma 21. Let P be an ITTM-program, x ⊆ ω, α < λx, and suppose
that P x produces a snapshot that is not contained in Lα[x]. Then,
letting τ be the first time at which such a snapshot appears in the
computation of P x, τ + ω is clockable in x and consequently, we have
τ < λx.

Proof. First, compute a code for Lα[x]. We can then use this to test
for a given snapshot whether it is contained in Lα[x]. Now let P x run
and test for each snapshot whether it is contained in Lα[x]. Once this
fails, halt. �

Lemma 22. Let P be an ITTM-program, x ⊆ ω, α < λx and suppose
that P x only uses snapshots in Lα[x]. Then P x either halts in < λx

many steps or runs into a strong loop in < λx many steps.

Proof. We start by computing a code c for Lα[x]. Each occuring snap-
shot is coded in c by some natural number. Now, as in the solution of
the halting problem for ITTMs with recursive snapshots, we can run
P x and store the snapshots that have occured so far by the natural
numbers coding them in c and thus detect strong loops in the same
way. As soon as a strong loop is detected, halt. Thus, there is a clock-
able ordinal after the first repitition in the strong loop of P x. On the
other hand, if P x halts, it does so in < λx many steps. �

Theorem 23. Let ω < α < λ. Then there is a set X ⊆ ω such that
X is ITTM-decidable with snapshots in Lλ, but not with snapshots in
Lα. Thus, we have SPACEITTM

α (SPACEITTM

λ .

Proof. Let X := {n ∈ ω : P n
n generates a snapshot outside of Lα ∨

P n
n only produces snapshots in Lα and runs into a strong loop∨P n

n ↓6=
1 and uses only snapshots in Lα}. (Note that each natural number is
a set of natural numbers and thus also a real number.)

Suppose that X was decidable by the program Pn using only snap-
shots in Lα. Then n ∈ X ↔ P n

n ↓= 1 ↔ n /∈ X, a contradiction. Thus,
X is not decidable with snapshots in Lα.

Clearly, X is ITTM-decidable. We show that this decision procedure
only uses snapshots in Lλ. First, testing whether x ⊆ ω is an element of
ω can be done using a finite amount of memory, and thus with recursive
snapshots, and in particular with snapshots in Lω+1 ⊆ Lα. Now, given
that x ∈ ω and thus that λx = λ, we know from Lemma 21 and Lemma
22 that P x

n will produce a snapshot outside of Lα, halt or loop before
λ. In the latter two cases, all occuring snapshots will thus be contained
in Lλ. Moreover, each initial segment (before the second loop, if the
computation is looping) of the computation of P x

n will be an element
of Lλ and hence so will be the lists of natural numbers representing the



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES13

snapshots that are used in the decision procedure. In the first case, we
know from Lemma 21 that the first snapshot outside of Lα will occur
in < λ many steps and thus also be contained in Lα.

Thus, the whole decision procedure indeed only uses snapshots in Lλ,
hence X ∈SPACEITTM

λ . As X /∈SPACEITTM

α by the argument above,
we have SPACEITTM

λ \SPACEITTM

α 6= ∅, as desired.
�

4.1. Separating Space Complexity Classes for ITTMs. The next
natural questions are now whether there are sets that are ITTM-decidable,
but not with snapshots in Lλ (i.e. whether SPACEITTM

λ equals the class
of ITTM-decidable sets) and whether there are proper inclusions be-
tween the classes SPACEITTM

α for different infinite values of α < λ.
The former question will be answered below as a consequence of the

more general Corollary 30. For the time being, we offer a partial result.
To this end, we introduce notions that we believe to be interesting in
their own right.

Definition 24. Let X,C be sets of real numbers. We say that X
is ITTM-semidecidable with snapshots in C if and only if there is an
ITTM-program P that semidecides X and produces only snapshots in
C on any input x. If C = Lα for some α ∈ On, we write sSPACEITTM

α

for the set of sets that are ITTM-semidecidable with snapshots in C.

Proposition 25. There is an ITTM-semidecidable set X that is not
ITTM-semidecidable with snapshots in Lλ. Thus, sSPACEITTM

λ (sSPACEITTM

ω1
.

Proof. Let X be the set of x ⊆ ω such that P x
n(x) runs into a strong

loop and generates only snapshots in Lλ.
Suppose for a contradiction that Pn is an ITTM-program that semide-

cides X and uses only snapshots in Lλ on any input. Let x ⊆ ω be such
that n(x) = n. Then P x

n(x) does by definition not generate snapshots

outside of Lλ. Moreover, we have x /∈ X ↔ P x
n(x) ↓↔ P x

n ↓↔ x ∈ X, a
contradiction. Hence X is not ITTM-decidable with snapshots in Lλ.

On the other hand, X is ITTM-semidecidable: Given x ⊆ ω, we let
P x
n(x) run. For every snapshot s generated, we run all ITTM-programs

simultaneously, waiting for one to halt with output s. If this happens,
the index of that program is used to store s as in the solution to the
halting problem for ITTMs with recursive snapshots above. Since we
use the index of the machine that halts first (the minimal one if there
is more than one) with output s, the same snapshot will always receive
the same index. Thus, if P x

n(x) generates only recursive snapshots, we
will either eventually observe that it halts or find a witness for a strong
looping, as in the solution to the halting problem above. In the former
case, we enter an endless loop, in the latter case, we halt. On the other
hand, if P x

n(x) does generate snapshots outside of Lλ, the search for
an ITTM-program that generates s will not terminate, and hence our



14 MERLIN CARL

procedure does not halt. Thus, our procedure halts on input x if and
only if x ∈ X, as desired. �

We now consider the problem of separating the classes SPACEITTM

α

for different values of α. It is natural to attempt adapting the sep-
aration of SPACEITTM

λ from the set of ITTM-decidable sets to this
purpose. We first consider a seemingly unrelated question; the desired
separation will result as a by-product.

The proof of the unrelatedness of space and time complexity for
ITTMs above relied on decidable singletons. Is there also a singleton
set {x} with the property that {x} is ITTM-decidable, but not, say,
with recursive snapshots? Indeed, there is. In fact, much more holds,
as we will now show.

Theorem 26. Let α < λ. Then there is a real number x such that x
is ITTM-recognizable, but not with snapshots in Lα. In fact, x can be
taken to be ITTM-writable.

Proof. Let x ∈ (Lζ \ Lλ) ∩ P(ω) be such that x ∈ Lλx . (One can
e.g. take x to be an eventually writable code for some ordinal in the
interval [λ, ζ).) Then x is not ITTM-recognizable and a fortiori not
ITTM-recognizable with snapshots in Lα.

As the eventually writable real numbers are closed under ITTM-
writability, we have λx ≤ ζ . Now, for each n ∈ ω, by Lemma 22 and
Lemma 21, Lλx contains one of the following:

(1) A partial computation of P x
n that contains a snapshot outside

of Lα[x].
(2) A strong loop of P x

n .
(3) A terminating computation of P x

n with output 6= 1.
(4) A terminating computation of P x

n with output 1.

In cases (1)-(3), we thus know that Pn does not recognize x with
snapshots in Lα. In case 4, we know that the Σ1-formula ∃xP x

n ↓= 1
holds in Lζ , and thus, as Lλ ≺Σ1

Lζ , it also holds in Lλ. Thus, Lλ

contains some y such that P y
n ↓= 1. As x /∈ Lλ by assumption, we have

y 6= x. Thus, Pn outputs 1 on two different inputs and therefore also
does not recognize x. Moreover, as λ ≤ λx, we have x, y ∈ Lλx , so in
case (4), Lλx contains two different real numbers for which Pn outputs
1. In other words, Lλx witnesses that x is not ITTM-recognizable with
snapshots in Lα.

Thus, LΣ satisfies the Σ1-formula that there are x ⊆ ω and an L-
level Lβ such that, for every n ∈ ω, Lβ contains one of (1)-(4), thus
witnessing that x is not ITTM-recognizable with snapshots in Lα.

As Lλ ≺Σ1
LΣ, the same holds in Lλ. Thus, there is a real number

r in Lλ that is not ITTM-recognizable with snapshots in Lα. Since
r ∈ Lλ, r is ITTM-writable and thus a fortiori ITTM-recognizable.
Thus, r is as desired. �



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES15

As a corollary, we obtain that many of the complexity classes SPACEITTM
α

with α < λ are distinct:

Corollary 27. For all α < λ, there is β ∈ (α, λ) such that SPACEITTM

α (SPACEITTM

β .

Proof. Given α < λ, the proof of Theorem 26 shows how to obtain
an ITTM-writable real number x that is not ITTM-recognizable with
snapshots in Lα, i.e. such that {x} /∈SPACEITTM

α .
Let β be the writing time of x. Then β < λ. In order to de-

termine whether some y ⊆ ω given in the oracle is equal to x, it
suffices to write x and then to compare it to y bit by bit. The bit-
by-bit-comparison can be done with finitely many memory bits be-
sides x and y. Writing x, on the other hand, only requires snap-
shots in Lβ . Thus, x is ITTM-recognizable with snapshots in Lβ , i.e.
{x} ∈SPACEITTM

α (SPACEITTM

β .

Thus, we have SPACEITTM
α (SPACEITTM

β . �

Relativizing the above proof, we obtain a more general statement:

Lemma 28. Let c be ITRM-recognizable. Then there are cofinally in
λc many ordinals α such that SPACEITTM

α is inhabited.

Proof. Let c be ITRM-recognizable. Then c is in particular ITTM-
recognizable and thus we have c ∈ Lλc .

We claim that no element of LΣc \ Lλc is ITTM-recognizable. Oth-
erwise, if s ∈ LΣc \ Lλc was recognizable by the ITTM-program Q, we
could let the universal ITTM-program U run in the oracle c, test each
snapshot with Q and halt once s shows up. This program would halt
after ≥ λc many steps in the oracle c, a contradiction.

Let d be the <L-minimal code for λc. Then d ∈ Lζc , and thus
c⊕d ∈ Lζc . Moreover, d is not writable in c, so we have c⊕d ∈ Lζc\Lλc .
Consequently, c ⊕ d is not ITTM-recognizable. Moreover, we have
λc⊕d ≤ ζc < Σc.

Now fix α ∈ (ω, λc).
As in the proof of Theorem 26, Lλc⊕d will witness that c ⊕ d is not

recognizable by an ITTM-program that uses only snapshots in Lα.
Thus, the statement that there are a real number d and an ordinal
δ such that Lδ witnesses that c ⊕ d is not ITTM-recognizable with
snapshots in Lα holds in LΣc . Clearly, this statement is Σ1 in the
parameters α and c, which are both contained in Lλc .

As Lλc ≺Σ1
LΣc , the same statement holds in Lλc . Thus, there

are d′, Lδ′ ∈ Lλc such that Lδ′′ witnesses that c ⊕ d′ is not ITTM-
recognizable with snapshots in Lα. Consequently, we have {c⊕d′} /∈SPACEITTM

α .
We now show that there is β < λc such that {c⊕ d′} ∈SPACEITTM

β .

It then follows that, for some η > α, SPACEITTM

η must be inhabited,
as desired. As d′ ∈ Lλc , d′ is writable in the oracle c; let Q be an
ITTM-program such that Qc write d′.



16 MERLIN CARL

By assumption, c is ITRM-recognizable and thus ITTM-recognizable
with recursive snapshots. Now, given z = z0 ⊕ z1 ⊆ ω in the oracle,
we first use this fact to test, using only recursive snapshots, whether
z0 = c. If not, we halt with output 0. Otherwise, we know that z0 = c
and we run Qz0 . By the choice of Q, the output must be d′, which
can now be compared to z1 bit by bit using only a finite amount of
memory. Now, if τ is the halting time of Qc, then τ < λc and the
procedure just described only uses snapshots in Lτ+ω. Thus, we have
{c⊕ d′} ∈SPACEITTM

τ .
Taken together, we have {c⊕ d′} ∈SPACEITTM

τ \SPACEITTM
α , as de-

sired. �

Theorem 29. There are cofinally in σ many α such that SPACEITTM

α

is inhabited. Thus, for every α < σ, there is β ∈ (α, σ) such that
SPACEITTM

α (SPACEITTM

β .

Proof. Recall from above that there are cofinally in σ many ordinals
α that have ITRM-recognizable codes. Now pick such an ordinal τ
above α along with an ITRM-recognizable code c for τ and use Lemma
28. �

The proof of Lemma 28 further yields many specific separation re-
sults concerning space complexity classes for ITTMs:

Corollary 30. Let c be ITRM-recognizable and α < λc. Then

SPACEITTM
α (SPACEITTM

λc (SPACEITTM
σ

Proof. Let α < λc. Then pick η ∈ (α, λc) as in the proof of Lemma 28.
Moreover, use Theorem 29 to pick β ∈ (λc, σ) such that SPACEITTM

λc (SPACEITTM

β .
Then we have

SPACEITTM

α (SPACEITTM

η ⊆SPACEITTM

λc (SPACEITTM

β ⊆SPACEITTM

σ ,

as desired. �

Corollary 31. For each α < σ, we have SPACEITTM

α (SPACEITTM

σ .

Proof. Pick β as in Lemma 29. Then SPACEITTM

α (SPACEITTM

β ⊆SPACEITTM

σ .
�

5. Nondeterministic ITTM-complexity

We conclude with some observations on the nondeterministic ana-
logues of TIMEITTM

α and SPACEITTM
α . This study was started in Löwe

[15] and continued by Winter [20] (see the discussion in the last sec-
tion).

We begin by observing that WO has a high time complexity even if
nondeterminism is allowed.

Proposition 32. WO/∈NTIMEITTM
α for all countable α.



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES17

Proof. Suppose otherwise, and let α be countable such that WO be-
longs to NTIMEITTM

α . Moreover, let c be a real number coding α and
let P be a nondeterministic ITTM-program that decides WO. Now,
for any x ⊆ ω, the statement ‘There is a computation of P x of length
α that halts with output 1’ is Σ1

1 in the parameter c and character-
izes WO. However, it is well-known that WO is not Σ1

1 in any real
parameter, see, e.g., [16]. �

Corollary 33. NTIMEITTM

α +SPACEITTM

ω+1 for α countable.
In particular, NTIMEITTM

α 6=NSPACEITTM
α for α > ω countable.

Proof. The first claim follows from the last Proposition and the fact
that WO belongs to SPACEITTM

ω+1 . The second is an easy consequence
of the first. �

If we knew that NTIMEITTM

α ⊆NSPACEITTM

α holds in general, we
could conclude that a proper inclusion relation holds for all α. However,
this is only known for recursive α and open for all other values of α
(see [20]).

In fact, it is quite conceivable that this inclusion fails for some values
of α: The ability of a nondeterministic ITTM to ‘guess’ an arbitrary
real number allows to nondeterministically decide various sets with a
uniform time bound, while it is not clear at all how to do this with any
space bound. The following proposition provides a wealth of potential
counterexamples.

Proposition 34. For x ⊆ ω, {x} belongs to NTIMEITTM

α for some α
if and only if x ∈ Lσ.

Moreover, Lσ ∩P(ω) belongs to NTIMEσ.

Proof. Let x ∈ Lσ. Pick β < σ such that x ∈ Lβ and such that, for
some Σ1-statement φ, β is minimal with Lβ |= φ. Let c be the <L-
minimal real number that codes Lβ . Then {c} is ITTM-decidable in
< σ many steps, see [5]. Thus, {x} is nondeterministically decidable
in < σ steps as follows: Given the input y ⊆ ω, first use ω many steps
to guess a real number d. Then verify whether d = c. If not, reject.
Otherwise, x is coded in c by some fixed natural number j and it takes
< σ many steps to check whether y = x relative to c.

To decide whether x ∈ Lσ, guess again a real number in ω many
steps, then verify whether it codes some minimal L-level Lβ satisfying
some Σ1-statement φ and containing x. If not, reject, otherwise accept.

�

5.1. An alternative approach to nondeterminism. Above, we
considered nondeterministic ITTM-complexity classes defined via non-
deterministic ITTMs. Another natural definition, used by Schindler in
[17] and also used in Löwe [15] and [20] would be that a set X belongs

to NTIMEITTM,∗
f if and only if there is a set Y ⊆ P(ω) × P(ω) such



18 MERLIN CARL

that Y belongs to TIMEITTM

f and X = {x ⊆ ω : ∃y ⊆ ω(x, y) ∈ Y }

(and similarly for NSPACEITTM,∗
f ). Let us denote by NDECITTM,∗ the

set of sets that are nondeterministically ITTM-decidable in this sense.
With this definition, the argument for the inequality of NTIMEα and
NSPACEα still works; however, it is now possible to prove a rather
strong inclusion result:

Theorem 35. For all α < ω1, we have NDECITTM,∗ ⊆NSPACEITTM,∗
ω+1 .

Proof. Suppose that X is nondeterministically decidable by the ITTM-
program P . Let Y = {(x, c) : c codes an accepting P -computation on
input x}. Then Y is ITRM-decidable and thus belongs to SPACEITTM

ω+1

and moreover, X is the projection of Y to its first component. Hence
X belongs to NSPACEITTM,∗

ω+1 . �

6. Further Work

The idea of the space complexity measures studied above is that the
complexity of a snapshot is the index of the first L-level (relativized
to the input) at which it appears. One natural alternative proposal

(also to be found in [15]) would be to take ωCK,s
1 as a measure for the

complexity of the snapshots s (another possibility would be λx; note
that the input does not count when measuring snapshot complexity).
Clearly, when all snapshots are contained in a certain L-level, then the
corresponding ωCK,s

1 ’s will also be ‘small’; in particular, if a compu-

tation uses only recursive snapshots, then we will have ωCK,s
1 = ωCK

1

for any occuring snapshot. It is then not hard to see that the central
results of this paper, such as Theorem 8, Corollary 9, Theorem 11,
Lemma 13, Theorem 14, Theorem 23, Theorem 26, Theorem 29 and
Corollary 30, will go through when one (re)defines the space usage of

a computation as the supremum of ωCK,s
1 for all occuring snapshots s

and SPACEITTM
α as the set of sets that are decidable by programs with

space usage < α on any input, as it is proposed in [15]. However, this
is not clear for the proposal to use λs as a measure for the complexity
of s. (Observe that, if x is e.g. Cohen-generic over LΣ+1, we would
have λx = λ even if x is very high up in the constructible hierarchy
or not constructible at all.) It this thus possible that some interesting
new phenomena may show up with this notion of space complexity.

A topic that was not considered here in detail was the relation of the
nondeterministic variants of the respective ITTM-complexity classes.
Such concepts were considered in [20], where it is e.g. shown that
NTIMEITTM

α ⊆NSPACEITTM

α for α ∈ (ω, ωCK

1 ) (Proposition 7.21). The
question whether this holds in general appears to be open. It may be
worthwhile to see whether the methods developed in this paper can
also shed light on these classes.



SPACE AND TIME COMPLEXITY FOR INFINITE TIME TURING MACHINES19

We conclude with some questions suggested by, but left open in this
paper.

Question 36. Define "writable with recursive snapshots" and "clock-
able with recursive snapshots" in the obvious way, along with "writable/clockable
with snapshots in Lα, where we imagine that the output is written to
an extra "write only"-tape t, the contents of which do not count in
measuring space complexity. What is the supremum of the ordinals
that are clockable/writable with recursive snapshots/snapshots in Lα?

Question 37. Although we know now that there are many proper
inclusions among the classes SPACEITTM

α for different α < λ, we do
not know where they are. We do e.g. not know whether we can have
SPACEITTM

α =SPACEITTM
α+1 for any α ∈ (ω, λ) or whether such inclu-

sions are always proper. In the former case, it would be interesting to
see what the next strictly larger stage after a given α is.

The same questions can of course be asked concerning SPACEITTM

α

for α ∈ [λ, σ), i.e. for α below λc for an ITRM-recognizable c.

Question 38. Which of the above results have analogues for α-ITTMs
or Ordinal Turing Machines (OTMs)?

Finally, the notion of semidecidable complexity, i.e. the "sSPACE"-
classes introduced above, clearly yields as many questions as the orig-
inal notion of decidable complexity.

References

[1] I. Dimitriou (ed.), BIWOC Report, Hausdorff Cen-
tre for Mathematics, Bonn (2007) Available online
http://www.math.uni-bonn.de/ag/logik/events/biwoc/index.html

[2] M. Carl. The distribution of ITRM-recognizable reals. Annals of Pure and Ap-
plied Logic 165(9) (2012)

[3] M. Carl. Ordinal Computability. An Introduction to Infinitary Machines. De
Gruyter (2019)

[4] M. Carl. Resetting α-register machines and ZF−. Preprint, arXiv:1907.09513v3
(2019)

[5] M. Carl, P. Schlicht, P. Welch. Uniform Time Bounds for ITTM-decidable sets.
Unpublished Notes (2019)

[6] V. Deolalikar, J. Hamkins, R. Schindler. P6=NP∩co-NP for Infinite Time Turing
Machines. Journal of Logic and Computation, vol. 15(5), pp. 577–592 (2005)

[7] R. Gostanian. The next admissible ordinal. Annals of Mathematical Logic 17,
pp. 171–203 (1979)

[8] J. D. Hamkins, A. Lewis. Infinite Time Turing Machines. Journal of Symbolic
Logic 65(2), 567–604 (2000)

[9] M. Carl, T. Fischbach, P. Koepke, R. Miller, M. Nasfi, G. Weckbecker. The
basic theory of infinite time register machines. Archive for Mathematical Logic,
vol. 49(2), 249–273 (2010)

[10] P. Koepke, R. Miller. An enhanced theory of infinite time register machines.
In Logic and Theory of Algorithms. A. Beckmann et al, eds., Lecture Notes in
Computer Science 5028, pp. 306-315 (2008)

http://www.math.uni-bonn.de/ag/logik/events/biwoc/index.html
http://arxiv.org/abs/1907.09513


20 MERLIN CARL

[11] U. Matzner. Ordinalzahltheoretische Berechnungsmöglichkeiten. Bachelor the-
sis, Bonn (2016)

[12] P. Koepke. Ordinal Computability. In Mathematical Theory and Computa-
tional Practice. K. Ambos-Spies et al. (eds.), Lecture Notes in Computer Science
5635, pp. 280–289 (2009)

[13] P. Koepke. Turing Computations on Ordinals. Bull. of Symbolic Logic, Volume
11(3) (2005)

[ORM] P. Koepke, R. Siders. Register computations on ordinals. Archive for Math-
ematical Logic vol. 47, pp. 529–548 (2008)

[14] R. Jensen, C. Karp. Primitive Recursive Set Functions. Axiomatic Set Theory
(Proc. Sympos. Pure Math., Vol. 8(1), Univ. California, Los Angeles, Calif.) pp.
143–176 Amer. Math. Soc., Providence, R.I. (1967)

[15] B. Löwe. Space Bounds for Infinitary Computations. In: A. Beckmann et al.
(eds.), Logical Approaches to Computational Barriers, Lecture Notes in Computer
Science 3988, pp. 319-329 (2006)

[16] R. Mansfield, G. Weitkamp. Recursive Aspects of Descriptive Set Theory. Ox-
ford logic guides, vol. 11, Oxford science publications (1985)

[17] R. Schindler. P6=NP for infinite time Turing machines. Monatshefte für Math-
ematik vol. 139, pp. 335-340 (2003)

[18] P. Welch. Characteristics of discrete transfinite time Turing machine models:
halting times, stabilization times, and Normal Form theorems. Theoretical Com-
puter Science, vol. 410, pp. 426–442 (2009)

[19] P. Welch. The length of Infinite Time Turing Machine computations. Bull.
Lond. Math. Soc. vol. 32(3), pp. 129-136 (2000)

[20] J. Winter. Space complexity in Infinite Time Turing Machines. Master’s thesis,
Universiteit van Amsterdam. (2007)

[21] J. Winter. Is P=PSPACE for Infinite Time Turing Machines? In: M.
Archibald, V. Brattka, V. Goranko, B. Löwe (eds.) ILC 2007. LNCS 5489, pp.
126-137. Springer (2009)


	1. Introduction
	2. Preliminaries
	3. The connection between space and time complexity for ITTMs
	3.1. Upper Bounds for Time and Space Complexity
	3.2. Space and Time Complexity with Dependency on the Input

	4. Relations between space complexity classes for ITTMs
	4.1. Separating Space Complexity Classes for ITTMs

	5. Nondeterministic ITTM-complexity
	5.1. An alternative approach to nondeterminism

	6. Further Work
	References

