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1Stockholm University, Sweden
2University of Helsinki, Finland
3Tampere University, Finland

4ENS Paris-Saclay, France

Abstract

We study pure coordination games where in every outcome, all players have iden-
tical payoffs, ‘win’ or ‘lose’. We identify and discuss a range of ‘purely rational
principles’ guiding the reasoning of rational players in such games and compare the
classes of coordination games that can be solved by such players with no preplay
communication or conventions. We observe that it is highly nontrivial to delineate
a boundary between purely rational principles and other decision methods, such as
conventions, for solving such coordination games.

1 Introduction

Coordination games ([16]) are games in strategic form with several pure strategy Nash
equilibria with the same or comparable payoffs for every player. In these games, all players
have the mutual interest to select one of these equilibria. In pure coordination games ([16]),
aka games of common payoffs ([17]), all players in the game receive the same payoffs and
thus the players have fully aligned preferences to coordinate with each other in order to
reach the best possible outcome for everyone. In this paper we study one-step pure win-
lose coordination games (WLC games) in which all payoffs are either 1 (i.e., win) or 0 (i.e.,
lose).

Clearly, if players can communicate when playing a pure coordination game with at
least one winning outcome, then they can simply agree on a winning strategy profile, so
the game is trivialised. What makes such games non-trivial is limited (or non-existing)
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possibility of preplay communication amongst the players1, meaning that the players must
make their choices based on individual reasoning—without any contact with the other
players before (or during) playing the game.

There are many natural real-life situations where such coordination scenarios occur.
We give two examples:

(A) two cars driving towards each other (on a narrow street) that can avoid a collision
by swerving either to the right or left,

(B) a group of n people who get separated in a city and must individually decide on a
place where to get together (‘regroup’), supposing the group members do not have
any way of contacting each other.

The notion of convention is an important concept that emerges in the context of coor-
dination. Following Lewis’ seminal book [16], much of the literature on the topic focuses
on social conventions which are not explicit agreements established via communication,
but rather regularities emerging in social behaviour that every individual believes everyone
to follow. If indeed followed by everyone, such conventions help resolve social coordination
problems. For example, most words used in natural languages are examples of naturally
emerged social conventions, whereas using the metric system instead of some other set of
measures is likely to be mainly based on an explicit agreement.

Both types of conventions may be suitable in different situations. For instance, in the
scenario (A) above, a collision could be avoided by using the explicitly agreed convention
(traffic rule) that cars should always swerve to the right, whereas in (B), everyone could
go to a famous meeting spot in the city established by a social convention, e.g., the main
entrance of the main railway station. The main entrance of the main railway station is
an example of a possible focal point (Schelling [25]) that sticks out and therefore may be
likely to emerge as, for example, an obvious meeting point.

In most of this paper we assume that players share no conventions at all, and we also
assume no preplay communication. Thus, in our basic setting, the players play completely
independently of each other and could be assumed to come from entirely different kinds
of cultures, or even from different galaxies for that matter. The principal question in this
paper is the following:

What kinds of reasoning can be accepted as purely rational, based on no com-
munication and no conventions? And which pure win-lose coordination games
can be solved by such reasoning?

Thus we identify “purely rational principles” that every ideally rational player ought to
follow in every WLC game. We also study the hierarchy of games solvable by such prin-
ciples. For instance, it is intuitively clear that coordination by pure rationality is not

1Note that, while the common use of ‘preplay communication’ in game theory means communication
before the given game is played, here we also mean communication before the players are even presented

with the game.
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possible in the example situations (A) and (B) above. However, we will see that there
are many natural coordination scenarios in which it seems clear that rational players can
coordinate successfully by following purely rational reasoning principles, without preplay
communication or conventions.

Initially, we assume only individual rationality, i.e., that every player acts rationally with
the aim to win the game but without assumptions about the other players’ rationality. Later
we additionally assume common belief in rationality, i.e., that every player is individually
rational and that it is commonly believed amongst the players that every player is rational.

Towards the end of the article, we move from pure rationality to the setting with
conventions. Thus, as conventions could indeed arise from preplay communication, we now
move to the setting where the assumption of “no preplay communication” is essentially
banished.2 We consider a special class of conventions that we call structural conventions.
These are conventions only based on structural properties of the game (i.e., essentially
properties invariant under game isomorphisms) rather than on ad hoc features, such as
names of the choices in the game.

All through the paper we make the following assumptions.

• We only consider complete information games, i.e., the game structure is common
knowledge amongst the players.

• It is common knowledge amongst the players that they all have the same goal, which
is to win, i.e., to select together a winning choice profile.

The main outcomes of our study are as follows:

(i) Concerning the scenario with no communication and no conventions, we identify
several different kinds of reasoning principles and provide justifications for them.
These justifications have varying levels of common acceptability. We observe that
the boundary of purely rational principles and other principles is highly nontrivial
to demarcate3. Indeed, the question of what constitutes a purely rational principle
seems open-ended and depends on different background assumptions.

(ii) On the other hand, the class of WLC games that are solvable by using structural
conventions is precisely characterized in Section 5 in terms of structural properties
(involving symmetries) of games.

There exist a wide range of works closely related to the current paper. Indeed, co-
ordination and rationality are natural and relevant topics and have thus been studied in
various different contexts, e.g., in [4], [8], [9], [10], [27]. The theory of focal points has been
extensively developed in the context of coordination, e.g., in [25], [10], [27], [20], [28], [15],
[5], [2]. Conventions have also been studied, e.g., in [16], [26], [10]. Furthermore, we note
the close conceptual relationship of the present study with the notion of rationalisability of

2In particular, we are mainly interested in the scenario where the players can adopt conventions (for
example through negotiations) only before being presented with the particular game to play.

3Schelling shares this view on pure coordination games (see [25], p. 283, n. 16).
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strategies [3], [22], [7], which is particularly important in epistemic game theory. We also
mention two recent relevant works—related to logic—to which the observations and results
in the present paper could be directly applied: in [14], two-player coordination games are
related to a variant of Coalition Logic4, and in [1], coordination scenarios are analysed
with respect to the game-theoretic semantics of Independence Friendly Logic. Finally, the
study on structural conventions with respect to ‘random game graphs’ in [19] adopts the
definitions that were originally conceived in the work leading to the current paper.

This paper is a substantially extended version of the conference paper [12], while [13]
is an extended abstract of a workshop presentation of a part of this work.

2 Pure win-lose coordination games

2.1 The setting

A pure win-lose coordination game G is a strategic form game with n players (1, . . . , n)
whose available choices (moves, actions) are given by sets {Ci}i≤n. The set of winning
choice profiles is presented by an n-ary winning relation WG. For technical convenience
and simplification of some definitions, we present these games as relational structures (see,
e.g., [6]). A formal definition follows.

Definition 2.1 An n-player win-lose coordination game (WLC game) is a relational
structure G = (A,C1, . . . , Cn,WG) where A is a finite domain of choices, each Ci 6= ∅ is a
unary predicate (i.e., a subset of A), representing the choices of player i, s.t. C1∪· · ·∪Cn =
A, and WG is an n-ary relation in A such that WG ⊆ C1 × · · · × Cn. For technical
convenience, here we also assume that the players have pairwise disjoint choice sets, i.e.,
Ci∩Cj = ∅ for every i, j ≤ n such that i 6= j. A tuple σ ∈ C1×· · ·×Cn is called a choice
profile for G and the choice profiles in WG are called winning choice profiles.

We use the following terminology for any WLC game G = (A,C1, . . . , Cn,WG).

• The losing relation of G is the relation LG := C1 × · · · × Cn \ WG. A choice profile
σ ∈ LG is called losing.

• The complementary game of G is the game G := (A,C1, . . . , Cn, LG).

• Let Ai ⊆ Ci for every i ≤ n. The restriction of G to (A1, . . . , An) is the game
G ↾ (A1, . . . , An) := (A1 ∪ · · · ∪ An, A1, . . . , An, WG ↾ A1 × · · · × An).

• For every choice c ∈ Ci of a player i, the winning extension of c in G is the set W i
G(c)

of all tuples τ ∈ C1 × · · · × Ci−1 ×Ci+1 × · · · × Cn such that the choice profile obtained
from τ by adding c to the i-th position is winning. We define the losing extension of c
in G analogously.

4In fact, the initial motivation for the present work came from concerns with the semantics of Alternating
time temporal logic ATL, extending Coalition Logic.
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• A choice c ∈ Ci of a player i is (surely) winning, respectively (surely) losing, if it is
guaranteed to produce a winning (respectively losing) choice profile regardless of what
choices the other player(s) make. Note that c is a winning choice iff W i

G(c) = C1 × · · ·×
Ci−1 × Ci+1 × · · · × Cn. Similarly, c is a losing choice iff W i

G(c) = ∅.

Example 2.2 We present here a 3-player coordination story which will be used as a running
example hereafter. Three robbers, Casper, Jesper and Jonathan5 are planning to quickly
steal a cake from the bakery of Cardamom Town while the baker is out. They have two
possible plans to enter the bakery: either (a) to break in through the front door or (b) to
sneak in through a dark open basement. For (a) they need a crowbar and for (b) a lantern.
The baker keeps the cake on top of a high cupboard, and the robbers can only reach it by
using a ladder.

When approaching the bakery, Casper is carrying a crowbar, Jesper is carrying a ladder
and Jonathan is carrying a lantern. However, the robbers cannot agree whether they should
follow plan (a) or plan (b). While the robbers are quarreling, suddenly Constable Bastian
appears and the robbers all flee to different directions. After this the robbers have to indi-
vidually decide whether to go to the front door (by plan (a)) or to the basement entrance
(by plan (b)). They must take the right decision fast before the baker returns.

The scenario described here can naturally be modeled as a WLC game. We relate Casper,
Jesper and Jonathan with players 1, 2 and 3, respectively. Each player i has two choices
ai and bi which correspond to either going to the front door or to the basement entrance,
respectively. The robbers succeed in obtaining the cake if both Casper and Jesper go to
the front door (whence it does not matter what Jonathan does). Or, alternatively, they
succeed if both Jonathan and Jesper go to the basement (whence the choice of Casper
is irrelevant). This coordination scenario corresponds to the following WLC game G∗ =
({a1, b1, a2, b2, a3, b3}, C1, C2, C3,WG∗), where for each player i, Ci = {ai, bi} and WG∗ =
{(a1, a2, a3), (a1, a2, b3), (a1, b2, b3), (b1, b2, b3)}. (For a graphical presentation of this game,
see Example 2.3 below.)

2.2 Presenting WLC games as hypergraphs

The n-ary winning relation WG of an n-player WLC game G defines a hypergraph on the set
of all choices. We give visual presentations of hypergraphs corresponding to WLC games
as follows. The choices of each player are displayed as columns of nodes starting from the
choices of player 1 on the left and ending with the column with choices of player n. The
winning relation consists of lines that go through some choice of each player6. This kind
of graphical presentation of a WLC game G will be called a game graph (drawing) of G.
(Note that game graphs of 2-player WLC games are simply bipartite graphs.)

5This example is based on the children’s book When the Robbers Came to Cardamom Town by Thor-
bjørn Egner, featuring the characters Casper, Jesper and Jonathan.

6In pictures these lines can be drawn in different styles, to set them apart.
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Example 2.3 The WLC game G∗ in Example 2.2 has the following game graph:

G∗ : a1 a2 a3

b1 b2 b3

We now define several simple types of WLC games and introduce a uniform notation for
them. Since no names of choices are given for these games, each game given here actually
corresponds to a class of games with the same structure. However, in this paper we usually
consider such games to be equivalent7. Let k1, . . . , kn ∈ N.

• G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices and the
winning relation is the universal relation C1 × · · · × Cn.

• G(k1 × · · · × kn) is the n-player WLC game where the player i has ki choices and the
winning relation is the empty relation. Note that with this notation G(k1 × · · · × kn) =
G(k1 × · · · × kn). Some examples:

G(2 × 3) G(1× 3× 1) G(1× 1× 2)

• Let k ∈ N. We write G(Zk) for the 2-player WLC game in which both players have k
choices and the winning relation forms a single path that goes through all the choices
(see below for an example). Similarly, G(Ok), where k ≥ 2, denotes the 2-player WLC

game where the winning relation forms a 2k-cycle that goes through all the choices.
These are exemplified by the following:

G(Z2) G(Z3) G(O2) = G(2 × 2) G(O3)

• Suppose thatG(A) andG(B) have been defined, both having the same number of players.
Then G(A + B) is the disjoint union of G(A) and G(B), i.e., the game obtained by
assigning to each player a disjoint union of her choices in G(A) and G(B), and where the
winning relation for G(A+B) is the union of the winning relations in G(A) and G(B).
Some examples:

7If a player reasons by pure rationality, the names of the choices should not have an effect on that
player’s reasoning. We will discuss further this issue later on.
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G(1× 2 + 1× 0) G(2 × 1 + 1× 2) G(1× 1 + 2× 2) G(Z2 + 1× 1)

• Let m ∈ N. Then G(mA) := G(A + · · ·+ A) (m times). Examples:

G(3(1 × 1× 1))
G(2(2 × 2)) G(2Z2)

• Recall our “regrouping scenario” (B) from the introduction. If there are n people in the
group and there are m possible meeting spots in the city, then the game is of the form
G(m(1n)), where 1n := 1× · · · × 1 (n times).

2.3 On choice domination and Nash equilibria in WLC games

Given a WLC game G = (A,C1, . . . , Cn,WG), we say that a choice c ∈ Ci is at least
as good as (respectively, better than) a choice c′ ∈ Ci if W

i
G(c

′) ⊆ W i
G(c) (respectively,

W i
G(c

′) ( W i
G(c)). A choice c ∈ Ci is optimal for a player i if it is at least as good as any

other choice of i.
Note that a choice c ∈ Ci is better than a choice c′ ∈ Ci precisely when c weakly

dominates c′ in the usual game-theoretic sense (see e.g. [17], [23]). Respectively, a choice
c ∈ Ci is an optimal choice of player i when it is a weakly dominant choice (i.e., a choice
that weakly dominates all other choices).

Note that c strictly dominates c′ (ibid.) if and only if c is a surely winning choice and c′

is a surely losing choice. Thus, strict domination between choices is a too strong concept
in WLC games. Also, the concept of Nash equilibrium (NE) for choice profiles is not very
useful here, because not only every winning choice profile is a NE, but so is also every
losing choice profile which no player can unilaterally convert to a winning one by changing
their choice8. For instance, in the game displayed below, the Nash equilibria are not only
all 4 winning profiles, (a1, a2, a3), (b1, b2, c3), (c1, b2, b3), and (c1, c2, c3), but also the losing
profiles (a1, c2, b3) and (b1, c2, a3).

a1 a2 a3

b1 b2 b3

c1 c2 c3

8In the special case of two-player games, this latter case amounts to choice profiles consisting only of
(surely) losing choices.
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We will not make use of Nash equilibria further in this work.

2.4 Symmetries of WLC games and structural protocols

A protocol is a mapping Σ that assigns to every pair (G, i), where G is a WLC game
and i a player in G, a nonempty set Σ(G, i) ⊆ Ci of choices. Thus, a protocol describes
a global nondeterministic strategy for playing any WLC game in the role of any player.
Intuitively, such protocol represents a global mode of acting in any situation that involves
playing WLC games. Hence, protocols can be informally regarded as global “reasoning
styles” or “behaviour modes”. Thus, a protocol can also be identified with an agent who
acts according to that protocol in all situations that involve playing different WLC games
in different player roles. Note, however, that this correspondence is not bijective, as several
agents may behave according to the same protocol and some protocols might not correspond
to the behaviour of any (actual) agent.

Assuming a setting with no special conventions or preplay communication, a protocol
will only take into account the structural properties of the game and its winning relation.
Thus, it is reasonable to assume that the names of the choices and the names (or ordering)
of the players should be of no relevance. In this section we make this issue precise.

Definition 2.4 An isomorphism9 between games G and G′ is called a choice-renaming.
An automorphism of G is called a choice-renaming of G.

Let G = (A,C1, . . . , Cn,WG) be a WLC game. For a player i, we say that the choices
c, c′ ∈ Ci are i-equivalent, denoted by c ≃i c′, if there is a choice-renaming of G that
maps c to c′. For each i ≤ n, the relation ≃i is an equivalence relation on the set Ci. We
denote the equivalence class of c ∈ Ci by JcKi.

Supposing that a player i does not use names or labels of her choices (or she has no
preferences over them), then she should be indifferent about the choices that are in the
same equivalence class.

Example 2.5 Let A = {a1, b1, c1, a2, b2, c2} and A = {a′1, b
′
1, c

′
1, a

′
2, b

′
2, c

′
2}. Consider the

WLC games G and G′ whose game graphs are given below.

G : a1

b1
c1

a2

b2
c2

G′ : a′1
b′1
c′1

a′2
b′2
c′2

A function π : A → A′, which maps b2 to c′2, c2 to b′2, and x to x′ for all the other choices
x ∈ A, is choice-renaming from G to G′. Note that actually both G and G′ are of the
form G(O3). A function that maps ai to bi, bi to ci, and ci to ai (for i ∈ {1, 2}) is a
choice-renaming of G. Therefore a1 ≃1 b1 ≃1 c1 and a2 ≃2 b2 ≃2 c2.

9Isomorphism is defined as usual for relational structures (see, e.g., [6]).
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Definition 2.6 Consider n-player WLC games

G = (A,C1, . . . , Cn,WG) and G′ = (A,C ′
1, . . . , C

′
n,W

′
G).

A permutation β : {1, ..., n} → {1, ..., n} is called a player-renaming between G and G′

if the following conditions hold:

(1) Cβ(i) = C ′
i for each i ≤ n.

(2) W ′
G = { (cβ(1), . . . , cβ(n)) | (c1, . . . , cn) ∈ WG }.

If there is a player-renaming between two WLC games, the games are essentially the
same, the only difference being the ordering of the players. Furthermore, the game graph
of G′ is simply obtained by permuting the columns of the game graph of G.

Example 2.7 Consider the following WLC games:

G: a1

b1

a2

b2
c2

G′: a1

b1

a2

b2
c2

A permutation β, which swaps 1 and 2, is a player-renaming between G and G′.

Definition 2.8 Consider WLC games G and G′. A pair (β, π) is a full renaming between
G and G′ if there is a WLC game G′′ such that β is a player-renaming between G and G′′

and π is a choice-renaming between G′′ and G′. If G and G′ have the same domain A, we
say that (β, π) is a full renaming of G. We say that choices c ∈ Ci and c′ ∈ Cj in the
same game are structurally equivalent, denoted by c ∼ c′, if there is a full renaming
(β, π) of G such that β(i) = j and π(c) = c′. It is quite easy to see that ∼ is an equivalence
relation on the set A of all choices. We denote the equivalence class of a choice c by [c].

We also make the following observations:

• If c ≃i c
′ for some i, then also c ∼ c′.

• Suppose that there is a sequence G1, . . . , Gn of WLC games such that for every i there
is either a choice-renaming or a player-renaming between Gi and Gi+1. Then it is easy
to show that there is a full renaming from G1 to Gn.

Example 2.9 Consider a WLC game of the form G(1× 2 + 2× 1):

a1

b1
c1

a2

b2
c2

9



Let β be the permutation which swaps (players) 1 and 2, and let π be the bijection

{(a1, c2), (b1, b2), (c1, a2), (a2, c1), (b2, b1), (c2, a1)}.

Now the pair (β, π) is a full renaming of G(1×2+2×1). It is easy to see that ≃1 has the
equivalence classes {a1} and {b1, c1}, and similarly, ≃2 has equivalence classes {c2} and
{a2, b2}. Furthermore, ∼ has the equivalence classes {a1, c2} and {b1, c1, a2, b2}. Likewise,
in the game G∗ from Example 2.2 the relation ∼ has equivalence classes {a1, b3}, {b1, a3},
{a2, b2}.

We say that a protocol Σ is structural if it is “indifferent”with respect to full renamings,
which means that, given any WLC games G, G′ for which there exists a full renaming (β, π)
between G and G′, for any i and any choice c ∈ Ci, it must hold that

c ∈ Σ(G, i) iff π(c) ∈ Σ(G′, β(i)).

Intuitively, this reflects the idea that, when following a structural protocol one acts inde-
pendently of the names of choices and names (or ordering) of player roles.10 Thus, following
a structural protocol, one cannot tell the difference between choices that are structurally
equivalent. Hereafter, unless otherwise specified, we only consider structural protocols.

It is worth noting that if we considered a framework where WLC games were presented
so that the names of the choices and players could always be used to uniquely define an
ordering (of the players and their choices), solving games could be trivialised by using
the pre-negotiated agreement to always choose the lexicographically least tuple from the
winning relation. For more on solving coordination games with names or ordering of
choices, see [11].

3 Purely rational principles in WLC games

In this section we will analyse various principles which players can follow in WLC games.
We will provide justifications for these principles and study which games can be surely
won when such principles are followed. Our aim is to characterize which principles are
“purely rational” in the sense that all ideally rational agents ought to follow them in all
WLC games.

3.1 Purely rational principles

By a principle we mean here any nonempty class of protocols. Intuitively, these are the
protocols “complying” with that principle. Hence principles are simply properties of pro-
tocols and if protocols are regarded as “reasoning styles”, then principles are properties of

10In the definition of WLC games, player roles appear as (naturally ordered) indices i. However, this
presentation is only for technical convenience, and player roles could instead be called, e.g., “white”, “black”
etc.
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reasoning. Likewise, if protocols are identified with agents who behave according to them,
then principles can be seen as norms which agents follow.

Principles that contain only structural protocols are called structural principles. Such
principles are properties of structural protocols and therefore they describe behavior which
is independent of names of the choices and roles of the players.

We are mainly interested in principles which describe “purely rational and perfect rea-
soning” that involves neither preplay communication nor conventions. The principles cor-
responding to such reasoning are defined as follows:

A principle P is called purely rational if P is followed by all ideally rational
agents in every WLC game.

An ideally rational agent always reasons in an optimal, faultless way. Note that we do not
give a formal definition of an ideally rational rational agent. It is taken to be a philosophical
primitive that is central to our study, but yet a notion that we cannot define formally in
this paper11. Note also that, since purely rational principles are indeed followed by all
ideally rational agents, such principles are not based on any particular conventions.

We say that a player i follows a principle P in a WLC game G if she plays according
to some protocol in P. Consider for example the following principles:

P1 := {Σ | Σ(G, i) does not contain any surely losing choices when WG 6= ∅},

P2 := {Σ | Σ(G, i) contains all choices c ∈ Ci such that |W i
G(c)|

is a prime number; if there are no such choices, Σ(G, i) = Ci.}.

If player i follows P1, then she uses some protocol which never selects surely losing choices, if
possible. This seems a principle that any rational agent would follow, so it can be regarded
as a purely rational principle. Likewise, if player i follows P2, then she always plays choices
whose degree (in the game graph) is a prime number, if possible. This principle seems
arbitrary; it could only be some artificial convention, for example.

We say that a principle P solves a WLC game G (or G is P-solvable), if G is won
whenever every player follows some protocol that belongs to P. Formally, this means that
Σ1(G, 1)×· · ·×Σn(G, n) ⊆ WG for all protocols Σ1, . . . ,Σn ∈ P. The class of all P-solvable
games is denoted by s(P).

Hereafter, we will identify (a hierarchy of) principles that can be considered to be purely
rational and will analyse the classes of games that they solve. Since we have argued that
purely rational principles should be structural, for every principle P which we define we
assume that P only consists of structural protocols which satisfy the description of P.

11The reader should note that, because the notion of an ideally rational agent is taken as a conceptual
primitive, it is problematic to formally prove that any of the principles defined in the paper are actually
purely rational. Still, we try to give strong rational justifications for these principles and argue that many
of them should be followed by all ideally rational agents. However, when we proceed to stronger principles,
it becomes harder to give the principles a solid rational justification and to argue that they would be
purely rational. One of our main philosophical aims in the paper is to demonstrate that it is very difficult
to identify the boundary of purely rational principles and other principles.
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Remark 3.1 When defining principles, we give their definition informally by describing
some rational mode of behaviour. For example, the non-losing principle NL in the following
section is defined by the sentence “do not play a losing choice, if possible”. We call this
description the intension of NL, while the extension of NL is the actual set of structural
protocols that satisfy this intension. In this paper we describe the intensions in natural
language but they could be formalized in e.g. some formal logic.

Note that there might be several different intensions that correspond to the same exten-
sion. Also, there may be a principle P (consisting of arbitrary protocols) for which there
is no natural intension. A similar distinction can also be made for protocols: an agent
behaving according to his protocol could have some intension that justifies his behaviour,
but we may not be able to identify this intension by only looking at the (extension of the)
protocol. This also bears a link to the concept of rationalizable strategies [3], [22].

Remark 3.2 We have defined principles as sets of protocols for mainly conceptual reasons
to make a distinction between protocols and their properties. However, for the results
of the current paper, we could have defined principles as protocols simply by forming a
corresponding “union protocol”. That is, given a principle P, we can form the protocol ΣP

by defining ΣP(G, i) =
⋃

Σ∈PΣ(G, i), whence we have s(P) = s({ΣP}). For the principles
defined in this paper, we also happen to have ΣP ∈ P, but generally this does not need to
be the case. Moreover, this correspondence is not bijective since we may have ΣP1

= ΣP2

for some protocols P1 6= P2. With the current definitions, we can also combine principles
in an easy way by simply taking their intersections—that is, a player follows both P1 and
P2 if and only if (s)he follows the principle P1 ∩ P2.

3.2 Basic individual rationality

Hereafter we describe principles by the properties of protocols that they determine. We be-
gin by considering the case where players are individually rational, but there is no common
knowledge about this being the case. It is safe to assume that any individually rational
player would follow at least the following principle.

Fundamental individual rationality (FIR):
Never play a strictly dominated choice12, if possible.

As noted earlier, strict domination is a very strong concept for WLC games. Following
FIR simply means that a player should never prefer a surely losing choice to a surely
winning one. Therefore FIR is a very weak principle that can solve only some quite trivial
types of games such as G(1×2+1×0) (See Figure 1). In general, FIR-solvable games have
a simple description: at least one of the players has (at least one) surely winning choice,
and all non-winning choices of that player are surely losing. Thus, for example all games
of the form G(k × l +m× 0) are FIR-solvable.

FIR has two natural strengthenings that can still be considered purely rational:

12Recall, that a choice a is strictly dominated by a choice b if the choice b guarantees a strictly higher
payoff than the choice a in every play of the game (see e.g. [17], [23]).
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1. Non-losing principle (NL): Never play a losing choice, if possible.

2. Sure winning principle (SW): Always play a winning choice, if possible.

Since losing choices cannot be winning choices, these principles can naturally be put
together by taking their intersection (recall here that principles are simply sets of protocols
that satisfy the given property).

Basic individual rationality (BIR): NL ∩ SW.

Thus, when following BIR, a player plays a winning choice if she has one, else she plays a
non-losing choice. Let us make some observations (see the pictures in Figure 1):

1. NL and SW do not imply each other and neither of them follows from FIR. This can
be seen by the following examples.

• The game G(1×1+1× 1) is NL-solvable but not SW-solvable. This is because neither
of the players has a winning choice, but if each of them chooses their non-losing move
they win.

• The game G(Z2) is SW-solvable but not NL-solvable. This is because both players
have a winning choice, but there are no losing choices. Note that in this game both
players can force winning and thus they both would be sure of winning even without
knowing that the other player follows SW.

2. FIR-solvable games are solvable by both SW and NL. This is because in FIR-solvable
games, at least one player i has a winning choice and all the other choices of that player
are losing. Hence by following either SW or NL, the player i will select a winning choice.

3. Every BIR-solvable game is either NL or SW-solvable. This is because a BIR-solvable
game G is won when every player selects a winning choice, if they have one, or else if
they each play a non-losing choice. If at least one player has a winning choice in G,
then it is SW-solvable, else it is NL-solvable.

G(1 × 2 + 1× 0) G(1 × 1 + 1× 1) G(Z2)

Figure 1: Some BIR-solvable games

Therefore, the sets of games solvable by FIR, NL, SW, BIR form the following lattice:

13



s(FIR) = s(NL) ∩ s(SW)

s(SW)s(NL)

s(BIR) = s(NL) ∪ s(SW)

()

( )

SW-solvable and NL-solvable games have simple descriptions. In SW-solvable games, at
least one player has a surely winning choice. In NL-solvable games, the winning relation
forms a nonempty Cartesian product between all non-losing choices. BIR-solvable games
have (at least) one of these two properties.

Note that in order to follow BIR, the players do not have to make any assumptions on
the behavior or rationality of each other. In fact, the players do not even need to know that
everyone has a mutual goal in the game; that is, following BIR would be equally rational
even in coordination games that are not cooperative.

3.3 Common beliefs in rationality and iterated reasoning

In contrast to individual rationality, the collective rationality allows players to make as-
sumptions on each other’s rationality. Let P be a (purely rational) principle. When all
players believe that everyone follows P, they can reason as follows:

(⋆) Suppose that by following P each player imust play a choice from Ai ⊆ Ci (i.e., Ai is the
smallest set such that Σ(G, i) ⊆ Ai for every Σ ∈ P). By this assumption, the players
may collectively assume that the actually played game13 is G′ := G ↾ (A1, . . . , An), and
therefore all P-compliant protocols should only prescribe choices in G′.

If players have common belief in P being followed, then the reasoning (⋆) above can be
repeated for the game G′ and this iteration can be continued until a fixed point is reached.
By cir(P) we denote the principle of collective iterated reasoning of P which prescribes
that P is followed in the reduced game obtained by the iterated reasoning of (⋆). Note
that after every iteration of (⋆), the sets of choices for each player become smaller (or
remain the same). And since each protocol in any principle P must give nonempty set of
choices for any WLC game, cir(P) cannot make the set of choices empty for any player.
From these observations it is easy to see that s(P) ⊆ s(cir(P)) for any principle P.

When considering principles of collective rationality further, we will apply collective
iterated reasoning of the type described above. It may be argued whether such reasoning
counts as purely rational, so a question arises: if P is a purely rational principle, is cir(P)
always purely rational as well? We will not discuss this issue here. We note, however,
the extensive literature relating common beliefs and knowledge with individual and collec-
tive rationality, see e.g., [7], [16], [21], [29]. See also the following remark on alternative
approaches on common belief on a principle P.

13In fact, the actually played game may be a proper subgame of G′ as the players may also follow other
principles.
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Remark 3.3 It is important to note that when applying (⋆), we simultaneously remove all
the choices (of all players) that are not admissible by P, and thus the result of the repeated
elimination process is unique. However, if we instead eliminated choices of one player at a
time, the result of the iterated elimination process could depend on the order in which the
players are considered. As we will show in Remark 3.12, certain iteration orders may lead
to non-rational results. Hence one could argue that simultaneous elimination of choices is
indeed the most rational way of reasoning when having common belief in a principle P.

Related to collective rationality, consider a situation where player A follows certain
principles, say P1 and P2, but (s)he is not sure which principles the other players follow.
It is now conceivable that A has a strong reason to believe that all the other players follow
P1, but A is not sure if these other players also follow P2. This could be because P1 seems
rationally obvious while P2 is only well justified but not followed by all rational players.
Alternatively, P2 could be a more complex principle and A could be skeptical whether the
other players are smart enough to follow it. Consider a scenario (for example a specific
class of games) where all players reason in the same way so that they have common belief
only in P1 but they in fact all follow both P1 and P2 (but no other principles). The games
that the players can now solve correspond to games solvable with the principle cir(P1)∩P2.

3.4 Basic collective rationality

Here we extend individually rational principles of Section 3.2 by adding common belief in
the principles (as described in Section 3.3) to the picture. We first analyse what happens
with the principles NL and SW. It is easy to see that the collective iterated reasoning of
NL reaches a fixed point in a single step by simply removing the losing choices of every
player. Hence s(NL) = s(cir(NL)). Collective iterated reasoning with SW also reaches a
fixed point in a single step by eliminating all non-winning choices of every player who has
a winning choice. But if even one player has a winning choice, then the game is already
SW-solvable. Therefore s(SW) = s(cir(SW)).

However, even though common belief in NL or SW does not make them stronger by
solving more games, there is a difference on the epistemic level. For example, the game
G(1×1+1× 1) is solvable with NL even without common belief in NL. But if both players
believe that the other player will follow NL, then they will not only win the game, but they
also believe that that game will be won before it is played.

Assuming common belief in BIR, some games which are not BIR-solvable may become
solvable. See the following example.

Example 3.4 The game G(Z2 + 1× 1) cannot be solved with NL or SW. However, if the
players can assume that neither of them selects a losing choice (by NL) and eliminate those
choices from the game, then they (both) have a winning choice in the reduced game and
can win in it by SW.

G(Z2 + 1× 1):
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Thus, we define the following principle:

Basic collective rationality (BCR): cir(BIR).

The example above shows that s(BIR) ( s(BCR), i.e., BCR is stronger than BIR. The
games solvable by BCR have the following characterisation: after removing all surely losing
choices of every player, at least one of the players has a surely winning choice.

It is worth noting that common belief in SW is not needed for solving games with
BCR because a single iteration of cir(NL) suffices. Thus, players could solve BCR-solvable
games simply by believing everyone to follow NL, i.e., eliminating all losing moves, and
then following SW. By this observation, we have s(BCR) = s(cir(NL) + SW). We also
point out that the principle BCR is equivalent to the principle applied in [14] for Strategic
Coordination Logic.

3.5 Principles using optimal choices

If a rational player has optimal choices (i.e., at least as good as all other choices), it is
natural to assume that she selects such a choice. Note that players may have several
optimal choices, or none at all. For example, in the game G(2 × 2) both players have
two optimal choices while in G(Z3) neither of the players has optimal choices. We now
introduce the following principle:

Individual optimal choices (IOC): Play an optimal choice, if possible.

Example 3.5 Recall the WLC game G∗ from Example 2.2. For Casper (who is carrying the
crowbar) it is a better choice to go to the front door than to the basement. Likewise, for
Jonathan (who is carrying the lantern) it is a better choice to go to the basement than to
the front door. Therefore the choice a1 is (the only) optimal choice for player 1 and b3 is
(the only) optimal choice for the player 3. The player 2 (Jesper) does not have any optimal
choices, but if both 1 and 3 play their optimal choices, then the game is won regardless of
the choice of 2. Therefore, the game G∗ is solvable with IOC. But, since no player has
winning or losing choices in this game, it is easy to see that it is not BCR-solvable.

Note that if a player has winning choices, then the set of optimal choices is the set of
winning choices, and therefore IOC ⊆ SW. From the description of BIR-solvable games,
we see that they are also IOC-solvable.

The next example, together with Example 3.5, shows that IOC is incomparable with
BCR with respect to the classes of games that are solvable by these principles.

Example 3.6 Consider the following WLC game GΣ.

GΣ:

c1

b1

a1

c2

b2

a2
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By following BCR, player 1 chooses either a1 or c1 and player 2 chooses b2, whence the
game is won. However, GΣ is not solvable with IOC since player 1 does not have any
optimal choices (and may thus end up choosing the losing choice b1).

As we saw earlier, if a player does not have optimal choices, following only IOC might
lead to playing a losing choice. In order to avoid pathological cases like this, we should at
least add NL to IOC.

Improved basic individual rationality (BIR+): IOC ∩ NL

Since IOC ⊆ SW, we have BIR+ ⊆ BIR. Note that, unlike BCR, the principle BIR+ is
only based on individual reasoning. However, BIR+ is nevertheless stronger than BCR as
shown by the following proposition.

Proposition 3.7 s(BCR) ( s(BIR+).

Proof Suppose first that G ∈ s(BCR). Then each player i has a nonempty set Ai of
winning choices in the reduced game after removing all losing choices of all the other
players. But now every choice in Ai must be an optimal choice of i in the original game
G. Hence, by following BIR+, the player i will play a choice from Ai (by IOC) while all
the other players play a non-losing choice (by NL), whence the game is won. Therefore
G ∈ s(BIR+) and thus s(BCR) ⊆ s(BIR+). In Example 3.5 we saw that G∗ is solvable
with IOC but not with BCR. Therefore s(BCR) ( s(BIR+). �

We now consider the collective version of IOC:

Collective optimal choices (COC): cir(IOC)

Proposition 3.8 s(BIR+) ( s(COC).

Proof We first show that s(BIR+) ⊆ s(COC). Suppose that a WLC game G is BIR+-
solvable, i.e., the game is won when every player plays an optimal choice, if they have
any, else they play a non-losing choice. Let G′ be the game that is obtained after the first
collective iteration of cir(IOC). Now, all the remaining non-losing choices of every player
in G′ must be winning choices. Since winning choices are also optimal choices, all losing
choices are eliminated in the second iteration of cir(IOC). After that, all combinations of
the remaining choices are winning. Thus, the game is won by following COC.

Now, consider the following WLC game G∗∗.

G∗∗ : a1 a2 a3 a4

b1 b2 b3 b4
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Here only players 1 and 4 have optimal choices a1 and b4, respectively, and no player
has losing choices. Hence we see that G cannot be solved with BIR+. (By following
BIR+, players may end up selecting the choice profile (a1, b2, a3, b4) which is not winning.)
However, after the first iteration of cir(IOC), the players 2 and 3 have optimal choices a2
and b3, respectively. Hence, by following COC, the players end up choosing the winning
choice profile (a1, a2, b3, b4). (Note that we can construct a similar game for 2n players,
where it takes n iterations of cir(IOC) for solving it.) �

Now, let us consider what happens in the special case of 2-player WLC-games. We first
observe that the only optimal choices in a 2-player WLC game G (where WG 6= ∅) are
those that are winning against all non-surely losing choices of the other player. Conse-
quently, when considering 2-player WLC games, we have s(IOC) ∪ s(COC) ⊆ s(BCR). By
combining this with the results of Propositions 3.7 and 3.8, we obtain the following result.

Proposition 3.9 For 2-player WLC games: s(BCR) = s(BIR+) = s(COC).

3.6 Elimination of weakly dominated choices

In game-theory, rationality is usually associated with elimination of dominated strategies.
As noted in Section 3.2, strict domination is a too strong concept for WLC-games. Weak
domination, on the other hand, gives the following principle when applied individually.

Individually rational choices (IRC): Do not play a choice a when there is a better

choice b available. That is, if W i
G(a) ( W i

G(b), then the player i should not play a.

Note that by the definition, IRC ⊆ NL ∩ IOC and therefore s(BIR+) ⊆ s(IRC). The
inclusion here is proper since there are WLC games that are solvable with IRC but not
with BIR+.

Example 3.10 Consider the following WLC game G#.

G#:

c1

b1

a1

d1

c2

b2

a2

d2

In G#, all players have neither losing choices nor optimal choices, and therefore it cannot
be solved with BIR+. But the choice b1 is better than a1, and likewise c1 is better than d1.
(Note that b1 and c1 are not comparable with each other.) Therefore, by following IRC, the
player 1 will play either b1 or c1. With the same reasoning, the player 2 will play either b2
or c2, which leads to a win. Therefore G# ∈ s(IRC).

The COC-solvable game G∗∗ (in the proof of Proposition 3.8) is not solvable with IRC.
(This is because neither of the moves a2 and b2 (respectively a3 and b3) is better than the
other.) On the other hand, the game G# in Example 3.10 is not solvable with COC, and
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therefore IRC is incomparable with COC in the general case. However, in the 2-player case
s(COC) ( s(IRC), since then s(COC) = s(BIR+) by Proposition 3.9.

We next assume common belief in IRC. As commonly known (see e.g. [21]), iterated
elimination of weakly dominated strategies eventually stabilises in some reduced game but
different elimination orders may produce different results (cf. Remark 3.12). However,
when applying cir(IRC), the process will stabilise to a unique reduced game since all weakly
dominated choices are always removed simultaneously. By following the next principle,
players will play a choice within this reduced game.

Collective rational choices (CRC): cir(IRC)

The following example shows that s(IRC) ( s(CRC).

Example 3.11 Consider the following WLC game.

G(Z3):

c1

b1

a1

c2

b2

a2

We first note that b1 is a better choice than a1 and likewise b2 is a better choice than c2.
Therefore, by following IRC, player 1 will play a choice from {b1, c1} and player 2 will
play from {a2, b2}, which does not guarantee winning. However, after eliminating a1 and
c2, then b1 is better than c1 and b2 is better than a2. Thus, by following CRC and doing
one more iteration of cir(IRC), player 1 and 2 have only the choices b1 and b2 which are
winning.

In G(Z3), we needed two iterations of cir(IRC). It is easy to see that in the game G(Z4)
the iterations are done analogously and the fixed point is reached in 3 iterations. Likewise,
we can see that n − 1 iterations of cir(IRC) are needed for solving G(Zn). Therefore, the
numbers of iterations of cir(IRC) form a proper hierarchy of CRC-solvable 2-player WLC

games.

Remark 3.12 As discussed in Remark 3.3, if the iterated process of choice elimination is
performed in a non-simultaneous fashion, the resulting reduced game might be different
depending on the selected elimination order. This can easily lead to reasoning patterns that
may appear sound, but are arguably irrational. For example, in the game G(Z3) above, we
could first eliminate the weakly dominated choice a1 of player 1 and then the choices a2
and c2 of player 2, thereby ending up with the subgame with the choices b1, b2, c1 remaining.
The player 1 could then conclude that b1 and c1 are equally good choices for him. (Note
that neither of these choices is weakly dominated in the original game.) Symmetrically,
we could first eliminate the choice c2 of player 2 and then the choices a1 and c1 of player
1, ending up with the game with the choices b1, a2, b2. Now player 2 could conclude that
the choices a2 and b2 are equally good for him. This way player 1 could end up choosing
c1 (based on the first reduced game) and player 2 choice a2 (based on the second reduced
game), whence the players would not coordinate.
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For an example of even more problematic reasoning leading to irrational results, con-
sider the SW-solvable game G(Z2). Here player 1 could first assume that player 2 is fol-
lowing SW and eliminate the non-surely winning choice of player 2. Since the remaining
choices of player 1 are surely winning in the reduced game, (s)he could then choose either
of them. But similarly, player 2 could assume that player 1 is not playing the non-surely
winning choice whence it would be fine (for player 2) to play any choice. As a result,
the players could end up choosing a non-winning choice profile and lose G(Z2). Since the
reasoning here is clearly faulty, this demonstrates that the elimination of choices “blindly”
in an arbitrary order can lead to irrational behavior.

3.7 Symmetry-based principles

By only following the concept of rationality from game-theory, one could argue that CRC
reaches the border of rational principles. However, we now will define more principles
which are incomparable with CRC but can still be regarded as purely rational, and hence
to be followed by all ideally rational players. These principles are based on symmetries
in WLC games and the assumption that players follow only structural protocols is central
here.

We begin with auxiliary definitions. We say that a choice profile (c1, . . . , cn) exhibits a
bad choice symmetry if Jc1K1 × · · · × JcnKn 6⊆ WG (recall Definition 2.4), and that a choice
c generates a bad choice symmetry if σc exhibits bad choice symmetry for every choice
profile σc that contains c.

Elimination of bad choice symmetries (ECS):
Never play choices that generate a bad choice symmetry, if possible.

Why should this principle be considered rational? Suppose that a player i plays a choice
ci which generates a bad choice symmetry. It is now possible to win only if some tuple

(c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ WG

is eventually chosen. However, due to structural symmetry, the players have exactly the
same reasons to play in such a way that any other tuple in Jc1K1×· · ·×JcnKn is selected—and
that other tuple may possibly be a losing one since Jc1K1 × · · · × JcnKn 6⊆ WG.

For a typical example of using ECS, suppose that the game graph of G has two (or
more) connected components that are isomorphic to each other. Since no player can detect
a difference between those components, all players should avoid playing choices from them.

Example 3.13 Consider the WLC game G(1× 1 + 2(1× 2)):

c1

b1

a1

e2

d2

c2

b2

a2
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In this game b1 ≃1 c1 and b2 ≃2 c2 ≃2 d2 ≃2 e2. Since all the choice profiles in {b1, c1} ×
{b2, c2, d2, e2} are not winning, we see that both b1 and c1 generate a bad choice symmetry.
Likewise, b2, c2, d2 and e2 generate a bad choice symmetry. Therefore, by following ECS,
the players will choose a1 and a2.

While ECS only considers symmetries between similar choices, the next principle takes
symmetries between players into account. Consider a choice profile ~c = (c1, . . . , cn) and let
Sp
i (~c) := {ci} ∪ (Ci ∩

⋃
j 6=i[cj ]) for each i (recall Definition 2.8). We say that (c1, ..., cn)

exhibits a bad player symmetry if Sp
1(~c) × · · · × Sp

n(~c) 6⊆ WG and a choice c generates a
bad player symmetry if σc exhibits a bad player symmetry for every choice profile σc that
contains c.

Elimination of bad player symmetries (EPS):
Never play choices that generate bad player symmetries, if possible.

Here the players assume that all players reason similarly, or alternatively, each player wants
to play so that she would at least coordinate with herself in the case she was to use her
protocol to make a choice in each player role of a WLC game. Suppose that the players
have some reasons to select a choice profile (c1, . . . , cn). Now, if there are players i 6= j and
a choice c′j ∈ Cj such that c′j ∼ ci, then the player j should have the same reason to play
c′j as i has for playing ci. Hence, if the players have their reasons to play (c1, . . . , cn), they
should have the same reasons to play any choice profile in Sp

1(~c)× · · · × Sp
n(~c). Winning is

not guaranteed if Sp
1(~c)× · · · × Sp

n(~c) 6⊆ WG.
It is worth noting that EPS bears a close resemblance to the notion of superrationality

defined by Hofstadter [24].

Example 3.14 Consider EPS in the case of a two-player game WLC game G. If for a
given choice c ∈ C1, there is a structurally equivalent choice c′ ∈ C2 such that (c, c′) /∈ WG,
then by following EPS, player 1 does not play the choice c (and likewise player 2 does
not play the choice c′). With this kind of reasoning, some CRC-unsolvable games like
G(1× 1 + 1× 2 + 2× 1) below become solvable.

a1

b1
c1

d1

a2

b2
c2

d2

Note also that the game G∗ from Example 2.2 is EPS-solvable since both choices b1 and
a3 generate a bad player symmetry.

Example 3.15 In Example 3.11 we showed that in order to solve G(Zn) by CRC it takes
n − 1 collective iterations and after that the “middle choices” are selected by both of the
players. The game G(Zn) can also be solved by EPS and the players will end up choosing
the same choices as with CRC. This is because every other choice—except the middle
choice—generates a bad player symmetry.
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Finally, we introduce a principle that takes both types of symmetries into account. For
a choice profile ~c = (c1, ..., cn) let Si(~c) := Ci ∩

⋃
j [cj] for each i. We say that (c1, ..., cn)

exhibits a bad symmetry if S1(~c) × · · · × Sn(~c) 6⊆ WG, and a choice c generates a bad
symmetry if σc exhibits a bad symmetry for every choice profile σc that contains c.

Elimination of bad symmetries (ES):
Never play choices that generate bad symmetries, if possible.

It is easy to see from the definition of bad symmetry that if a choice c generates either a
bad choice symmetry or a bad player symmetry, then c also generates a bad symmetry.
Therefore, by using Claim I from Section 5, it is easy to show that s(ECS)∪s(EPS) ⊆ s(ES).

By the definitions of ECS and EPS, it is clear that they can solve all NL-solvable games
and therefore also ES can solve all NL-solvable games. Furthermore, we can show that the
classes of games solvable by ECS, EPS, and CRC are completely independent of each other.
See the table in Figure 2.

Class of games G Example of a game in the class G
s(ECS) \ (s(EPS) ∪ s(CRC)) G(1× 1 + 2(1× 2))
s(EPS) \ (s(ECS) ∪ s(CRC)) G(1× 1 + 1× 2 + 2× 1)

s(CRC) \ (s(ECS ∪ s(EPS))
(s(ECS) ∩ s(EPS)) \ s(CRC) G(1× 1 + 2(2× 2))

(s(ECS) ∩ s(CRC)) \ s(EPS)
(s(EPS) ∩ s(CRC)) \ s(ECS) G(Z3)

Figure 2: Mutual independence of the principles ECS, EPS, and CRC.

The WLC game given on Figure 2 in the class s(CRC) \ (s(ECS ∪ s(EPS)) is also
unsolvable with ES and therefore ES and CRC are incomparable with each other. This
particular game is also SW-solvable, and thus it follows that all symmetry based principles
are incomparable with SW. Since ECS and EPS are incomparable and s(ECS), s(EPS) ⊆
s(ES), it also follows that ES is stronger than both ECS and EPS.

So far we have only presented examples of such ECS-solvable games that contain iso-
morphic connected components. In the following example, we see how ECS can be used
for eliminating moves from a single component. This particular example can also be solved
with EPS (and ES) but not with CRC.

Example 3.16 In the WLC game G(O3 + 1 × 1), there are no weakly dominated choices
and thus it is not CRC-solvable. However, by applying ECS, EPS or ES, players will play
choises d1 and d2 which are winning.
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G(O3 + 1× 1) : a1

b1
c1

d1

a2

b2
c2

d2

Symmetry principles can solve many games whose game graphs consist of several con-
nected components. It is easy to see that none of these kinds of games can be solved with
CRC nor with any other principles we have presented in this paper. However, when con-
sidering games whose graph is connected, it is not obvious whether symmetry principles
could solve any more games than CRC. In the next example we show that, indeed, there
are games, whose graph consists only of a single component, such that symmetry principles
solve them, but they are not solvable by CRC (nor any other principles presented so far).

Example 3.17 In the WLC game G below, there are no weakly dominated choices. However,
by applying ECS, EPS or ES, players will pick choices c1 and c2 which are winning. (Note
here that G is almost of the type of G(O5), the only difference being a single extra edge
that “forms a diagonal of the 10-cycle”.)

G :

e1

d1

c1

b1

a1

e2

d2

c2

b2

a2

3.8 Compatibility of ES and CRC

Recall that ES is the strongest of the symmetry principles and CRC is the strongest of all
the other principles presented in this paper. Since they are incomparable (with respect to
solvable games), it is natural to ask whether they can be combined. We first prove the
following lemma about the relationship between IRC and ES.

Lemma 3.18 Let G = (A,C1, . . . , Cn,WG) be WLC game and let c ∈ Ci for some i ≤ n be
a choice that does not generate a bad symmetry. Then none of the choices d ∈ Ci which
are better than c can generate a bad symmetry.

Proof For the sake of contradiction, assume that there is a choice d ∈ Ci which generates
bad symmetry and which is better than c. We first observe that the following holds (by
the definition of structural equivalence).

If d ∼ d′ for some d′ ∈ Cj (j ≤ n), then there is a choice c′ ∈ Cj (⋆)

such that c ∼ c′ and d′ is better c′.

Because c does not generate a bad symmetry, there is a choice profile ~c of the form
(c1, . . . , c, . . . cn) which does not exhibit a bad symmetry, i.e. S1(~c )×· · ·×Sn(~c ) ⊆ WG. In
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particular ~c ∈ WG. Let ~d := (c1, . . . , d, . . . , cn). Since d is better than c, we have ~d ∈ WG.

Because d generates a bad symmetry, ~d must exhibit a bad symmetry. Therefore there is
a choice profile ~e ∈ S1(~d )× · · · × Sn(~d ) such that ~e /∈ WG.

Now ~e must contain at least one choice d′, for which d ∼ d′, as otherwise we would
have ~e ∈ S1(~c ) × · · · × Sn(~c ) ⊆ WG. Now, by (⋆), for every such choice d′, there is a
choice c′ such that c ∼ c′ and d′ is better than c′. Let ~e [c′/d′] be a choice profile which
is obtained from ~e by replacing every d′, for which d ∼ d′, with a corresponding choice c′.
Since ~e /∈ WG and all choices d′ are better than the corresponding choice c′, we must have
~e [c′/d′] /∈ WG. But this is a contradiction since ~e [c′/d′] ∈ S1(~c )× · · · × Sn(~c ) ⊆ WG. �

We are now ready to show that ES and CRC can be combined simply by taking their
intersection.

Proposition 3.19 In every WLC game it is possible to follow both the principle ES and the
principle CRC, i.e., CRC ∩ ES 6= ∅.

Proof Let G be a WLC game and let i be a player in G. We first note that if all choices
of i generate a bad symmetry, then the principle ES does not set any restrictions and thus,
by following CRC, the player i also trivially follows CRC ∩ ES.

Suppose then that i has at least one choice c which does not generate a bad symmetry.
Now, by Lemma 3.18, there cannot be any choice d which is better than c such that d
generates a bad symmetry. Therefore it follows, by induction on the steps of the choice
elimination process, that the iteration of IRC cannot remove all choices of i which do not
generate bad symmetry. Hence in the reduced game, obtained by CRC, there must still be
at least one choice which does not generate a bad symmetry. Now i will follow CRC ∩ ES
by selecting any such choice. �

As shown by the following example, s(CRC) ∪ s(ES) ( s(CRC ∩ ES). And therefore
CRC ∩ ES is the strongest of all the principles we have presented so far.

Example 3.20 Consider the following WLC game:

G† :

d1

c1

b1

a1

e2

d2

c2

b2

a2

By following CRC in G†, the player 1 will not play the choice c1 and the player 2 will not
play d2 or e2. And by following ES, the player 1 will play neither the choice a1 nor b1 and
likewise the player 2 will play neither the choice a2 nor b2. Therefore G† cannot be surely
won by following either CRC or ES alone. But by following CRC ∩ ES, the player 1 will
select d1 and the player 2 will select c2, whence the game is surely won.
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It is important to note that, by following CRC ∩ES, the principle ES is applied to the
original game and not to the reduced game that is obtained by iterating IRC. If we applied
ES to the reduced game instead, this would lead to to a different kind of principle that
allows (arguably) irrational choices. See the following example.

Example 3.21 Consider the following WLC game:

G(2(1× 1) + Z3) :

e1

d1

c1

b1

a1

e2

d2

c2

b2

a2

By iterating IRC on G(2(1× 1) + Z3), the choices c1, c2, e1 and e2 are eliminated and we
obtain the following reduced game:

d1

b1

a1

d2

b2

a2

Since all the choices in this reduced game generate a bad symmetry, the game is not
solvable by ES. However, by following CRC∩ES in G(2(1×1)+Z3), the players will select
the choice profile (d1, d2) and win. (In this particular example, the same result is obtained
by following ES alone as all the other choice profiles exhibit a bad symmetry.)

Notice that the choice profile (d1, d2) does not exhibit a bad symmetry in the original
game, but it exhibits a bad symmetry in the reduced game after the iteration of IRC. By this
example, we claim that it is questionable to apply ES in any reduced game that is obtained
by eliminating choices that are excluded by other principles.

4 On the limits of pure rationality

How far can we go up the hierarchy of purely rational principles? This seems a genuinely
difficult question. In this section we will first study the compatibility of purely rational
principles and then present two simple principles which are naturally justified, but go
beyond pure rationality. Finally we will present a complete hierarchy (with respect to
solvable games) of all principles defined in this paper and discuss whether one can identify
a strongest purely rational principle.

4.1 Merging purely rational principles

Since we have defined that purely rational principles are followed by all ideally rational
players, it is clear that purely rational principles are closed under intersections. That is, if
P1 and P2 are purely rational, then P1 ∩P2 is purely rational, too. This gives us a method
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to identify which principles cannot be purely rational: if P1 or P2 are incompatible, in sense
that P1 ∩ P2 = ∅, then it must be that at least one of P1 and P2 is not purely rational.
However, even if the (extensions of) P1 and P2 are incompatible in this way, sometimes it
may be that the intensions (recall Remark 3.1) behind both P1 and P2 seem rational. See
the following example.

Example 4.1 For each each positive integer k, consider the following principle Pk :

If the game contains two or more copies of G(k × k) as disjoint components,
then do not choose from these components, if possible.

This may seem a purely rational principle for all k, as it is obvious that if there are two or
more disjoint components k × k in a game, then choosing from such a component means
that a win cannot by guaranteed due to the same symmetry-based idea as the one used in the
justification of ECS. However, for example P2 and P3 are not compatible, as for example
in the game G(2(2× 2) + 2(3× 3)), following both P2 and P3 would leave the players with
no choices at all. (Note, however, that the symmetry principle ECS deals with all Pk, for
all k, simultaneously).

Even if the extensions of the principles P1 and P2 are incompatible, it is still possible
that the informal background intuition of each of their intensions is rational and thus P1

and P2 can be combined in some natural way by taking both of the intensions into account.
Suppose, e.g., that the intension of P1 is “do not play choices of type A, if possible” and
the intension of P2 is “do not play choices of type B, if possible” (as in the example above).
Now we can naturally combine these intensions into a new intension: “do not play choices
of type A or B, if possible”. The resulting principle will now prescribe any choice in those
games where all choices are “bad” due to being either of type A or B.

From these observations we point out that we may not be sure that (the extension of)
a princinciple P is purely rational unless we know that it is compatible with all purely
rational principles. Nevertheless, we may still know that the intuition behind the intension
of P is rationally justified.

4.2 Probabilistic reasoning vs. Occam razor

We now mention—without providing precise formal definitions—two structural principles
for which it may seem somewhat controversial to claim them purely rational in our sense,
but they are definitely meaningful and natural nevertheless.

The first one is the principle of probabilistically optimal reasoning (PR). Informally
put, this principle prescribes to always play a choice that has as large winning extension as
possible. Such choices have the highest probability of winning, supposing that all the other
players play randomly (but not if the others follow PR, too: consider e.g. G(1×2+2×1)).
Note, however, that following PR can violate the symmetry principles, as demonstrated
by the game G(2(2× 2) + 1× 1). So, its application should be suitably restricted, as part
of its formulation, to be only applied when none of the so far discussed principles of pure
rationality apply.
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With PR one can solve games like G(1× 1 + 2 × 2) that are unsolvable with all other
principles presented here. However, in G(1 × 1 + 2 × 2) one could also reason (perhaps
less convincingly) that both players should pick their choices from the subgame G(1 × 1)
since that is the ‘simplest ’ (and, also the only ‘unique’) winning choice profile. We call this
kind of reasoning the Occam razor principle (OR). Its intuitive and inevitably imprecise
formulation is “If there is one simplest way to coordinate, make that choice.” This principle
relates to the idea of focal points [20], [25], [28]. Different technically precise formulations
are possible, but it is not easy to see which one of them (if any) would best capture the
spirit of the principle.

Note that G(1×1+2×2) can be won if both players follow PR or if both follow OR, but
not if one follows PR while the other follows OR. Moreover, in this game it is impossible
for a player to follow both PR and OR. Hence, at least one of these principles is not purely
rational. Actually, it can be argued that neither of them is purely rational.

Remark 4.2 Consider a setting where players have good reasons to assume that all the
other players are playing randomly. (One could argue that they can make this assumption
“by default” if there is no common belief in rationality.) Now, if a player does not have a
winning choice, then winning is not guaranteed. Therefore it makes sense to “optimize the
expectation of winning” and therefore follow the principle PR. If all the players happen to
reason this way, then games like G(1× 1 + 2× 2) are in fact won.

However, if we assume common belief in rationality, then it seems obvious that the play-
ers can no longer assume that the other players play randomly. Therefore the justification
for following PR becomes questionable, and thus, it is no more clear whether following PR
is rational in games like G(1×1+2×2). One could even argue, based on this observation,
that common belief in rationality can sometimes be harmful for the players. This is because
the use of PR was based on the assumption that the other players are playing randomly,
and this is no longer the case if they are assumed to be rational.

4.3 Hierarchy of rationality principles with respect to solvable games

The partially ordered diagram in Figure 3 presents the hierarchy of solvable games with
the rationality principles that we have presented in this paper. The principles that only
use individual reasoning are put in normal (single) frames and the ones that use collective
reasoning have double frames. Note that the diagram in Figure 3 is complete in the sense
that no new lines can be added to it (neither in the general nor in the 2-player case).

It is natural to ask whether there exists a strongest purely rational principle. That is, a
principle P which is followed by all ideally rational players and which can solve more games
than any other purely rational principle. Such a principle indeed exists, since we can simply
take the intersection of all purely rational principles to obtain a principle which is purely
rational and which can solve all games that are solvable by some purely rational principle.
Alternatively, we obtain the (same) strongest purely rational principle by forming a set of
all protocols corresponding to all ideally rational players (recall that rational players can
be identified with the protocols that they follow).
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(

s(FIR)

s(SW)s(NL)

s(BIR)

s(BCR)

s(IOC)

s(BIR+)

s(COC)

s(IRC)

s(CRC)

s(CRC ∩ ES)

s(ECS) s(EPS)

s(ES)

Figure 3: Hierarchy of rationality principles with respect to solvable games. Normal lines represent proper
inclusions in both the general and 2-player case. Double lines represent proper inclusions in the general
case—in the 2-player case there is an identity. Dashed lines represent proper inclusions in the 2-player
case—in the general case the two sets are not comparable.

However, even though there really exists a strongest purely rational principle, we cannot
define it explicitly, unless we know all the ideally rational players (which we have taken as
a primitive notion). Of the principles presented in this paper, CRC ∩ ES is the strongest
one which could be claimed to be purely rational, but we leave it open whether this prin-
ciple could be strengthened any further by intersecting it with some other purely rational
principles14.

5 Coordination with structural conventions

and structurally unsolvable games

So far we have presented several principles with different levels of justification for being
purely rational and therefore naturally applicable without any preplay communication be-
tween the players. However, in general, many structural principles lack a rational justifica-
tion and they may even look completely arbitrary. Such principles can be called structural
conventions. Even though possibly arbitrary, structural conventions could nevertheless be
explicitly agreed upon by a group of players. Alternatively, they could also be considered to

14It is also conceivable that CRC ∩ ES may turn out not purely rational due to being incompatible with
some other principle that is found to be purely rational. But even if this was the case, we could still
argue that the informal background intuitions behind CRC and ES are purely rational, even if their formal
extensions (i.e., the corresponding sets of protocols) are not (cf. Section 4.1).
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emerge naturally with little or no explicit negotiations. (Even highly arbitrary conventions
could conceivably be followed in different, possibly hypothetical, communities or cultures.)

We now discuss briefly how WLC games can be solved if the players can negotiate
(communicate) before they are presented with the WLC game they are to play. We make
the assumption that via preplay communication, the players can agree on which structural
principles they will use in the game. Thus the assumption here is that the players can
discuss the details of different games only up to structural equivalence. This assumption
is natural, e.g., in scenarios where there is no obvious reason for preferring some names
of potential game choices with the expense of others. It can even be plainly impossible
to distinguish structurally equivalent choices. In these kinds of scenarios it is natural to
assume reasoning only up to structural equivalence.

Even when entirely arbitrary structural principles (i.e., structural conventions) are al-
lowed, there exist WLC games that cannot be solved. Games that cannot be solved with
any structural principle are called structurally unsolvable. Probably the simplest non-
trivial example of such a game is G(2(1 × 1)). Next we will characterise the class of all
structurally unsolvable WLC games.

We say that G is structurally indeterminate if all choice profiles in WG exhibit a bad
symmetry (recall the definition of the principle ES). For example, the game G(1× 2 + 2×
1 + 3× 3 + 3× 3) is structurally indeterminate because every choice profile exhibits a bad
symmetry. On the other hand, the game G(1×2+2×1+3×3+4×4) is not structurally
indeterminate, as none of the winning choice profiles with nodes of degree 3 or 4 exhibit a
bad symmetry.

Theorem 5.1 No structural principle can solve a structurally indeterminate game.

Proof For the sake of contradiction, suppose that there is a structural principle P and
a structurally indeterminate WLC game G such that G ∈ s(P). Let Σ be any protocol in
the principle P. Since P is a structural principle, Σ must be a structural protocol. Since
P′ ⊆ P implies s(P) ⊆ s(P′), the also the singleton principle {Σ} solves G.

Let (u1, . . . , un) ∈ Σ(G, 1) × · · · × Σ(G, n). Since G is structurally indeterminate,
(u1, . . . , un) must exhibit a global losing symmetry. Therefore there is a choice profile
(u′

1, . . . , u
′
n) ∈ U1 × · · · ×Un such that (u′

1, . . . , u
′
n) /∈ WG. Since Σ is a structural protocol,

we must have (u′
1, . . . , u

′
n) ∈ Σ(G, 1) × · · · × Σ(G, n). Since (u′

1, . . . , u
′
n) /∈ WG, we have

Σ(G, 1)× · · · × Σ(G, n) 6⊆ WG. Therefore {Σ} does not solve G, which is a contradiction.
�

The characterisation given by the theorem above is optimal in the sense that all games
that are not structurally indeterminate, can be solved by some structural principle. This
follows from the following even stronger result.

Theorem 5.2 There exists a protocol Σ such that the principle {Σ} solves all WLC games
that are not structurally indeterminate.
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Proof The idea is simply to define a protocol that chooses, on an arbitrary input (G, i) =
((A,C1, . . . , Cn,WG), i), where G is not structurally indeterminate, a node from a tuple of
WG that does not exhibit global losing symmetry. The only difficulty is that there may
be several such tuples in G, and these tuples do not necessarily form a Cartesian product.
We next briefly describe how to circumvent this problem. Informally, we will just consider
different linear orderings of the input structure (as well as structures obtained from it by
a player renaming) and choose the lexicographically smallest suitable tuple.

Firstly, we use the encoding of relational structures by binary strings given in Chapter
6 of [18]. Within this standard encoding scheme, every string encoding of a structure
requires a linear ordering of the domain of the encoded structure. The linear order then
defines a lexicographic order of the tuples of the structure. The order is used for encoding
each relation Ci (with C1 first and Cn last) and also WG. We note that a single structure
will typically have several encodings, as different linear orderings of the domain can define
different encoding strings. Non-isomorphic structures will never share the same encoding.

Now, given an input (G, i) = ((A,C1, . . . , Cn,WG), i), we do the following. We first
define the finite set G that contains exactly all structures that can be obtained from G by a
player renaming, including G itself. We will below refer to the structures in G as renamings
of G. We note that no two structures in G are isomorphic, but all structures in G share the
same domain. Then—having defined G—we investigate the finite set S that that contains,
for every linear ordering <A of A and every structure in G, the binary encoding of that
structure with respect to <A. We choose the string s ∈ S with the least binary number.
Let Gs ∈ G be a structure encoded by s. Using s, we choose the lexicographically smallest
tuple ~c from the winning relation of Gs that does not exhibit global losing symmetry.15

Thus, altogether, we obtain a renaming Gs of G together with the tuple ~c ∈ WGs
that does

not exhibit global losing symmetry.
Let cj denote some coordinate of ~c such that there exists a full renaming (β, π) from Gs

to G that associates the player role number j with the player role number i. There may
be several such coordinates j and several renamings (β, π) for j. Let D be the subset16 of
the domain of G that contains exactly all choices ci of player i in G that can be obtained
by such renamings (β, π) and coordinates j. The desired protocol outputs D on the input
(G, i). �

As discussed above, structural conventions may be quite artificial and arbitrary, and
certainly cannot always be considered purely rational. It seems very difficult to separate,
in a natural and commonly acceptable way, all purely rational principles from structural
conventions.

15There can be more than one linear ordering <A leading to the string s, so there can be many ways to
choose the tuple ~c. This will not be a problem for us; we will see that it makes no difference which tuple
~c we choose. Note that there will always be an isomorphism connecting different such tuples ~c.

16It will become clear that D is independent of which tuple ~c we chose.
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6 Concluding remarks

We have proposed and studied a hierarchy of principles of rational coordination that can
be applied in rational players’ reasoning about how to act in pure coordination scenarios.
To make our study precise we have formalised such scenarios as WLC games and have
compared the scope of applicability and strength of the various principles in terms of the
classes of WLC games solvable by them. One major conclusion we draw is that the very
questions of what is rational reasoning and what are rational choices in pure coordination
games without preplay communication or conventions, appears to be very subtle and non-
trivial. In particular, it seems very difficult to separate purely rational principles from
others that can be employed in rational players’ reasoning when there is no purely rational
solution. On the other hand, there is a precise technical description of the class of WLC

games that are solvable when structural conventions are enabled.
A number of conceptual and technical issues arising from the present study remain open

for further exploration.

• To begin with, in this paper we have focused on scenarios where players look for
choices that guarantee winning if a suitable rational principle is followed. But it is
very natural to ask how players should act in a game which seems not solvable by
any purely rational principle17. If players cannot guarantee a win, it is natural to
assume that they should at least try to maximize somehow their collective chances
of winning, say, by considering protocols involving some probability distribution over
their choices.

• Another natural extension of the present framework is to consider non-structural
principles based on limited preplay communication and use of various types of non-
structural conventions based on some additional features of the game representation,
e.g., partial priority orders of players, colours of choices, etc. For a general exploration
of WLC games with enriched game representation see [11].

• Studying pure dis-coordination games and games involving combinations of coordi-
nation and dis-coordination types of players are major potential directions for further
work.

Finally, to provide contrast with the theoretical work presented in this paper, in the
future we plan to run empirical experiments on people’s behaviour WLC games.

17We note that if players were ultimately interested only in guaranteeing a win in WLC-games, even
the non-losing principle NL could be questioned. This is simply because, in structurally unsolvable games
(such as G(2(1× 1) + 1× 1)), winning is not guaranteed by any structural principles—regardless whether
players follow NL or not. This demonstrates that rational players should, of course, not only be interested
in guaranteeing a win when that is possible.
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