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Abstract

We introduce the concept of access-based intuitionistic knowledge which

relies on the intuition that agent i knows ϕ if i has found access to a proof

of ϕ. Basic principles are distribution and factivity of knowledge as well as

�ϕ→ Kiϕ andKi(ϕ∨ψ) → (Kiϕ∨Kiψ), where �ϕ reads ‘ϕ is proved’.

The formalization extends a family of classical modal logics designed in [Le-

witzka 2015, 2017, 2019] as combinations of IPC and CPC and as systems

for the reasoning about proof, i.e. intuitionistic truth. We adopt a formal-

ization of common knowledge from [Lewitzka 2011] and interpret it here as

access-based common knowledge. We compare our proposal with recent ap-

proaches to intuitionistic knowledge [Artemov and Protopopescu 2016; Le-

witzka 2017, 2019] and bring together these different concepts in a unifying

semantic framework based on Heyting algebra expansions.

1 Introduction

Our investigation is inspired by recent approaches to a formal concept of intu-

itionistic knowledge, i.e. formalizations of knowledge that are in accordance with

intuitionistic or constructive reasoning. In particular, we consider Intuitionistic

Epistemic Logic IEL introduced by Artemov and Protopopescu [2] where intu-

itionistic knowledge is explained as the product of verification. Some principles

of that approach are adopted by Lewitzka [11] and incorporated into a family of

modal systems L3–L5 originally introduced in [10]. The resulting epistemic log-

ics are systems for the reasoning about intuitionistic truth, i.e. proof, and a kind

of intuitionistic knowledge based on an informal notion of justification (cf. [12]).

In the present paper, we extend modal logic L5 with the purpose of formalizing

a new concept of constructive knowledge which, in our multi-agent setting, relies
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on the intuition that agent i knows ϕ if i has gained access to a proof of ϕ. This

paradigma also admits a concept of common knowledge that we adopt from [8]

and interpret here constructively. The basic motivation behind this access-based

concept is the idea that to know ϕ, in a constructive sense, means something like

to understand, to become aware of, to effect, ... a proof of proposition ϕ (or, if one

prefers, a solution to problem ϕ), and that the agent possibly has to spent some

effort and ressources to execute this activity. We feel that the intuition of finding

access to a proof of ϕ captures those ideas in some abstract way. In the follow-

ing, we shortly discuss the above mentioned concepts of intuitionistic knowledge

found in the literature and then present the notion of access-based knowledge. In

the subsequent sections, we shall see that all three concepts can be formalized and

studied within a unifying framework of algebraic (and relational) semantics.

1.1 Verification-based knowledge: Artemov and Protopopescu 2016

Artemov and Protopopescu [2] propose an intuitionistic concept of knowledge

which is in accordance with the proof-reading semantics of intuitionistic propo-

sitional logic IPC , i.e. with well-known Brouwer-Heyting-Kolmogorov (BHK)

interpretation. Knowledge is viewed as the product of a verification. The intu-

itive notion of verification generalizes proof as intuitionistic truth in the sense that

a proof is ‘the strictest kind of a verification’. Kϕ means that it is verified that

proposition ϕ holds intuitionistically, i.e. there is evidence that ϕ has a proof (even

if a concrete proof is not delivered nor specified in the process of verification).

Under this interpretation, the following principles hold and represent an axiomati-

zation of IEL in the language of IPC augmented with knowledge operator K:

(i) all schemes of theorems of IPC

(ii) K(ϕ→ ψ) → (Kϕ→ Kψ) (distribution of knowledge)

(iii) ϕ→ Kϕ (co-reflection)

(iv) Kϕ→ ¬¬ϕ (intuitionistic reflection)

Note that (iv) reads ‘Known (i.e. verified) propositions cannot be proved to

be false’. Since the process of verification, in general, does not deliver a concrete

proof, the classical reflection principle (factivity of knowledge) Kϕ → ϕ is not

valid. Modus Ponens is the unique inference rule of the resulting deductive system.

It is shown in [2] that IEL is sound and complete w.r.t. a possible-worlds semantics.

Although the notion of verification is only intuitively given in IEL, it is shown by

Protopopescu [14] that also an arithmetical interpretation can be provided.
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1.2 Adopting a justification-based view: Lewitzka 2017, 2019

Logic L5 was introduced in [10] together with a hierarchy L ( L3 ( L4 ( L5 of

classical Lewis-style modal logics for the reasoning about intuitionistic truth, i.e.

proof. A formula �ϕ reads ‘ϕ is proved (i.e. ϕ has an actual proof)’. Semantics is

given by a class of Heyting algebras where intuitionistic truth is represented by the

top element of the Heyting lattice, and classical truth is modeled by a designated

ultrafilter. Formulas of the form

(1) �ϕ↔ (ϕ ≡ ⊤)

are theorems and express that � is a predicate for intuitionistic truth: �ϕ is clas-

sically true iff ϕ holds intuitionistically (i.e. ϕ denotes the top element of the

underlying Heyting algebra). An essential feature is the definability of an identity

connective by ϕ ≡ ψ := �(ϕ ↔ ψ) such that the identity axioms of R. Suszko’s

basic non-Fregean logic, the Sentential Calculus with Identity SCI (cf. [5]), are

satisfied:1

(i) ϕ ≡ ϕ
(ii) (ϕ ≡ ψ) → (ϕ↔ ψ)
(iii) ϕ ≡ ψ → χ[x := ϕ] ≡ χ[x := ψ].2

ϕ ≡ ψ reads ‘ϕ and ψ have the same meaning (denotation, Bedeutung)’. We

refer to the axioms (i)–(iii) as the axioms of propositional identity, and particularly

to (iii) as the Substitution Principle (SP). Since these axioms are theorems of our

modal systems, we are dealing with specific classical non-Fregean logics which

essentially means that the ‘Fregean Axiom’ (ϕ ↔ ψ) → (ϕ ≡ ψ) does not hold,

i.e. formulas with the same truth value may have different meanings. That is, the

denotation of a formula is generally more than a truth value: it is a proposition,

i.e. an element of a given model. Actually, all our logics extending L5 are specific

non-Fregean theories with the property that for any formulas ϕ,ψ: ϕ ≡ ψ is a

theorem iff ϕ ↔ ψ is intuitionistically valid, i.e. valid in standard BHK semantics

extended by proof-interpretation clauses for additional operators. Thus, in any

model, intuitionistically equivalent formulas denote the same proposition whereas

formulas such as ϕ and ¬¬ϕ have, in general, different meanings. This determines,

in a sense, the ‘degree of intensionality’ of our logics. The highest degree of this

kind of intensionality is achieved in Suszko’s SCI where for all formulas ϕ, ψ it

holds that ϕ ≡ ψ is a theorem iff ϕ = ψ.

1In SCI , the identity connective is a primitive symbol of the object language.
2ϕ[x := ψ] is the result of substituting ψ for any occurrence of variable x in ϕ.
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A further feature of our modal systems is that they contain a copy of IPC and

thus combine IPC with classical propositional logic CPC in the following precise

sense. If Φ ∪ {ϕ} is a set of formulas in the propositional language of IPC , then

(2) Φ ⊢IPC ϕ⇔ �Φ ⊢L �ϕ,

where �Φ := {�ψ | ψ ∈ Φ}. In particular, for any propositional formula ϕ,

ϕ is a theorem of IPC iff �ϕ is a theorem of system L. That is, ϕ 7→ �ϕ is a

‘translation’, actually an embedding, of IPC into classical modal logic L, cf. [10]

(L can be replaced here with any member of the hierarchy L ⊆ L3 ⊆ L4 ⊆ L5 ⊆
‘epistemic extensions’). Obviously, this embedding of IPC into classical modal

systems is simpler than the well-known standard translation of IPC into modal

logic S4 due to Gödel. We argued in [12] that the S5-style system L5 is an ade-

quate system for reasoning about proof showing that it is complete w.r.t. extended

BHK semantics, i.e. w.r.t. intuitionistic reasoning. This semi-formal result is for-

mally confirmed by soundness and completeness of L5 w.r.t. a relational semantics

based on intuitionistic general frames, cf. [12]. For this reason, we consider here

L5 as the basis of our epistemic extensions. In [11], we extended L5 to the epis-

temic logic EL5 taking into account principles coming from IEL. EL5 is further

studied in [12] where its algebraic semantics is complemented by relational seman-

tics. EL5 can be axiomatized in the following way:

(INT) All formulas which have the form of an IPC -tautology

(i) �(ϕ ∨ ψ) → (�ϕ ∨�ψ)
(ii) �ϕ→ ϕ
(iii) �(ϕ→ ψ) → (�ϕ→ �ψ)
(iv) �ϕ→ ��ϕ
(v) ¬�ϕ→ �¬�ϕ
(vi) Kϕ→ ¬¬ϕ (intuitionistic reflection)

(vii) K(ϕ→ ψ) → (Kϕ→ Kψ)
(viii) �ϕ→ �Kϕ (weak co-reflection)3

(TND) ϕ ∨ ¬ϕ (tertium non datur)

The reference rules are Modus Ponens (MP) and Intuitionistic Axiom Necessi-

tation (AN): ‘If ϕ is an intuitionistically acceptable axiom, i.e. any axiom distinct

from (TND), then infer �ϕ.’ Actually, we argued in [12] that all schemes (i)–(viii)

above are intuitionistically acceptable, i.e. sound w.r.t. BHK semantics extended

by constructive interpretations of the modal and epistemic operators, respectively.

3Replacing this scheme with �ϕ → Kϕ results in a deductively equivalent system.
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Logic L5 is axiomatized by (INT), (i)–(v) and (TND) along with the same infer-

ence rules where, again, (AN) applies to all axioms but (TND).

Notice that in the more expressive modal language, we are able to weaken the

original axiom of co-reflection from IEL. Of course, the resulting formalization

of knowledge then no longer captures the notion of verification as axiomatized in

IEL. Instead, we proposed in [12] to consider an informal notion of justification

or reason to motivate the new formalization.4 Accordingly, we suppose that ϕ is

known by the agent if he has an epistemic justification, reason for ϕ. What the

agent recognizes or accepts as an epistemic justification depends essentially from

its internal conditions, reasoning capabilities, convictions, etc. Contrary to the

more objective and agent-invariant concept of verification, the notion of justifica-

tion is agent-dependent. We postulate that the agent recognizes at least all actual

proofs, i.e. all effected constructions, as epistemic justifications. This ensures the

validity of weak co-reflection (viii). However, a possible proof as a potential, non-

effected construction is, in general, not accepted by the agent as a reason for his

knowledge. Full co-reflection in its original form ϕ→ Kϕ must be rejected under

this justification-based view.

Of course, a justification does not constitute a proof: classical reflection (fac-

tivity of knowledge), Kϕ → ϕ, must be rejected. Nevertheless, if the agent has

an epistemic justification of proposition ϕ, then ϕ cannot be proved to be false, i.e.

¬¬ϕ holds intuitionistically. Therefore, intuitionistic reflection (vi) from IEL is

adopted. We also assume that if the agent has justifications for ϕ → ψ and for ϕ,

respectively, then he obtains a justification for ψ.5 Thus, we adopt distribution of

knowledge, axiom (vii) above, too.

1.3 Access-based knowledge

We propose here a concept of constructive knowledge which relies on the intuition

that an agent knows a proposition ϕ if he has found an access to a proof of ϕ.

In some specific context, ‘to find an access to a proof’ may be interpreted as ‘to

understand a proof’, ‘to become aware of a proof’, etc. We consider a multi-agent

scenario based on the following ontological assumptions (see also [12]):

We are given a universe of possible proofs, i.e. a universe of potential construc-

tions, mathematical possibilities. The creative subject6 establishes the intuitionis-

4There is a family of sophisticated Justification Logics found in the literature (see, e.g., [1] for an

overview) where justifications along with operations on them are explicitly formalized. These aspects

are not contained in logic EL5. Instead, the notion of justification is understood in a primitive and

completely informal and unspecified way.
5This is an established principle in Justification Logics with a precise formalization, cf. [1].
6This term was used by Brouwer and we adopt it here four our short, informal explanation.
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tic truth of propositions by effecting constructions. These effected constructions

are the actual proofs among the possible proofs, i.e., the established intuitionistic

truths. The universe of possible proofs exists objectively and can be explored by

reasoning subjects.7 A possible proof may be a hypothetical, potential construc-

tion, not necessarily effected by the creative subject. It can be conceived as a set

of conditions on a construction rather than the construction itself (cf. [3, 4]). We

expect that these conditions are not in conflict with effected constructions, i.e. they

are ‘consistent’ with the actual proofs. There is a set I = {1, ..., N} of N ≥ 1
agents distinct from the creative subject. Each agent can obtain knowledge by ac-

cessing possible proofs, where ‘accessing a proof’ is a constructive procedure or

activity that any agent is able to carry out, possibly by spending some effort and

resources. A (possible) proof of the proposition “agent i knows ϕ” is given by a

(possible) proof of ϕ along with an access to that proof found by i. Actual proofs,

i.e. the constructions effected by the creative subject, are immediately available

and thus trivially accessible. That is, each agent’s knowledge comprises at least

intuitionistic truth established by the creative subject. Finally, there is a designated

subset of possible proofs that determines the facts, i.e. the ‘classical truths’.

By the proof predicate on the object language, we may explicitly distinguish

between actual proofs and non-effected, possible proofs. As before, �ϕ reads

classically ‘ϕ has an actual proof (i.e. ϕ is proved)’, and ♦ϕ := ¬�¬ϕ reads ‘ϕ
has a possible proof’.8 In [12], we extended standard BHK interpretation by the

following clause for the modal operator:

• A proof of �ϕ consists in presenting an actual proof of ϕ.9

Since actual proofs are effected, available constructions, every agent i ∈ I has

the same immediate, trivial access to them. We denote this unique, trivial access

by s0. It might be regarded as an access created by the ‘empty action’ (no effort

must be spent). On the other hand, if some proof t is accessed via s0, then t must

be an actual proof. That is, we postulate the following:

• The proofs accessed via s0 (by any agent) are exactly the actual proofs.

7Since we are reasoning about proof in classical logic, i.e. from a classical point of view, we

adopt a platonist perspective which we combine with the constructive approach. Notice that the

BHK interpretation of implication implicitly contains a universal quantification: ‘A proof of ϕ → ψ

consists in a construction u such that for all proofs t: if t is a proof of ϕ, then u(t) is a proof of ψ’.

The range of that universal quantifier is the given universe of possible proofs.
8Of course, �ϕ→ ♦ϕ is a theorem of the Lewis-style systems L ⊆ L3 ⊆ L4 ⊆ L5, cf. [12].
9We assume that the presentation of an actual proof of ϕ involves some proof-checking procedure

which depends only from the given actual proof itself and from ϕ.
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We establish the following proof-interpretation clause for the knowledge oper-

ator:

• A proof of Kiϕ is a tuple (s, t), where s is an access, found by agent i, to a

proof t of proposition ϕ.

If (s, t) is a proof of Kiϕ, then we write also (si, t) instead of (s, t) in order to

emphasize the involved agent. Note that for any i ∈ I and any proposition ϕ, (s0, t)
is a proof ofKiϕ iff t is an actual proof of ϕ. Then the principles �Kiϕ→ �ϕ and

�ϕ→ �Kiϕ are intuitionistically acceptable. In fact, given the presentation of an

actual proof of �Kiϕ, that actual proof must be of the form (s, t), where s is an

access to the actual proof t of ϕ (thus s = s0 is the trivial access). The construction

that maps (s, t) to t yields a proof of the former principle. This also shows that any

actual proof of a formula Kiϕ is of the form (s0, t), where t is an actual proof

of ϕ. Now, one recognizes that the construction that for any actual proof t of ϕ
returns the tuple (s0, t) gives rise to a proof of the latter principle. Consequently,

�(�Kiϕ→ �ϕ) and �(�ϕ→ �Kiϕ) are sound w.r.t. extended BHK semantics,

i.e. �Kiϕ ≡ �ϕ. Of course, Kiϕ and ϕ denote generally different propositions.

It is clear that from a (possible) proof (si, t) of Kiϕ, the (possible) proof t of ϕ
can be extracted. This procedure yields a proof of Kiϕ → ϕ. Hence, classical re-

flection (factivity of knowledge) is intuitionistically acceptable. On the other hand,

intuitionistic reflection ϕ→ Kiϕ, an axiom of verification-based knowledge, must

be rejected (for similar reasons as it is rejected in the justification-based approach

discussed above). In fact, given a (possible) proof t of ϕ, we cannot expect that

agent i has gained any access to t, there is no logical evidence for such an access.

The access-based approach validates the following disjunction property of knowl-

edge: Ki(ϕ ∨ ψ) → (Kiϕ ∨ Kiψ). A BHK proof derives immediately from the

clauses for Ki and disjunction. We postulate the following two Combination Prin-

ciples:

(C1) If s is an access to proof t, and s′ is an access to proof u, and t is a con-

struction converting u into the proof t(u), then any agent which has gained both

accesses s and s′ is able to create a combined access s + s′ to proof t(u). We

assume that s0 + s = s = s+ s0, for any access s and the trivial access s0.

(C2) If t is an access to proof u, and s is an access to proof (t, u), then a

composed access s ◦ t to proof u can be found. That is, if (tj, u) is a proof and

(si, (tj, u)) is a proof, then ((s ◦ t)i, u) is a proof. We assume that s ◦ s = s, for

any access s.

7



(C1) warrants intuitionistic validity of Ki(ϕ → ψ) → (Kiϕ → Kiψ). A

proof is given by the construction that for any proof (s, t) of Ki(ϕ → ψ) returns

the function mapping any proof (s′, u) of Kiϕ to the proof (s + s′, t(u)) of Kiψ.

Principle (C2) warrants the following intuitive epistemic law: ‘If i knows that j
knows ϕ, then i knows ϕ’. That is, KiKjϕ→ Kiϕ is intuitionistically acceptable.

As usual, the fact that everyone in group G = {i1, ..., ik} knows ϕ is expressed

by the formula EGϕ := Ki1ϕ∧ ...∧Kikϕ. Recall that En
Gϕ is recursively defined

by E0
Gϕ := ϕ and Ek+1

G ϕ := EGE
k
Gϕ, for k ≥ 0. Also recall that knowledge

distributes over conjunction. The concept of ‘ϕ is common knowledge among the

agents of group G’, notation: CGϕ, is often informally defined as follows:

(3) CGϕ⇔
∧

n∈N

En
Gϕ

That is, CGϕ is true iff the infinitely many formulas ϕ, EGϕ, E2
Gϕ, ... are true.

However, standard formalizations found in the literature (see, e.g., [7, 13]) involve

additionally properties that go beyond that basic intuition. In fact, standard possible

worlds semantics of epistemic logic with common knowledge validates also the

following introspection principle as a theorem of standard axiomatizations:

(4) CGϕ→ CGCGϕ (introspection of common knowledge)

But if we take (3) seriously and understand common knowledge as such an in-

finite conjunction, then principle (4) does not necessarily follow. Of course, in

many ‘natural’ situations, such as the popular example of the moody children (cf.

[7, 13]), common knowledge arises at once after some finite amount of communica-

tion steps, and one may regard (4) as an evident principle in those cases. However,

one may construct examples where common knowledge is actually attained in an

infinite process of communication steps. In [7], p. 416, for instance, an unrealistic

version of the well-known coordinated-attack problem is discussed. If the messen-

ger between the two generals is able to double his speed every time around, and

his first journey takes one hour, then it follows that after exactly two hours he has

visited both camps an infinite number of times delivering each time the message

“attack at down” sent from the other general, and the generals will finally be able

to carry out a coordinated attack because they have attained common knowledge.

We may state that after the two hours of infinitely many journeys, each of the two

generals knows that En
Gϕ, for every natural n (where ϕ is the delivered message).

However, we cannot conclude that the generals do know the infinite collection of

facts {En
Gϕ | n ∈ N} as a single proposition

∧

n∈NE
n
Gϕ. In fact, new knowl-

edge is attained after each finite number of communication steps between the two

8



agents, but there is no further communication beyond the limit step. This example

shows that if CGϕ is attained (possibly by an infinite number of steps), we cannot

expect in general that also KiCGϕ holds for i ∈ G. Thus, principle (4) is not valid.

However, under the assumption that in all known natural situations where com-

mon knowledge arises, it arises in a similar way as in the example of the moody

children, we may accept (4) as an additional axiom. Since our modeling deviates

from the possible worlds approach, we are able to treat both versions of common

knowledge: the basic one which is given by an infinite conjunction in the form of

(3), and the stronger version which extends the basic version by the introspection

principle (4). The axiomatization and semantic modeling of the basic version of

common knowledge is adopted from [8] where it was originally developed in a

general, classical non-Fregean setting. We add here principle (4) and provide a

constructive, access-based interpretation which proves to be sound w.r.t. our ex-

tended BHK semantics. We are not able to represent the infinite conjunction of (3)

in our object language by a fixed-point axiom or similar solutions working in stan-

dard possible worlds semantics. Instead, we propose a semantic characterization

by means of intended models, a solution that we shall discuss in some detail in the

last section.

Definition 1.1. Let G be a group and let t be a (possible) proof. We call an access

s to t a common access in G, or a G-common access, if the following hold:

(a) all agents of G have gained the same access s to t
(b) s is self-referential in G, i.e. for any i, j ∈ G and any proof u, if (si, u) is a

proof, then so is (sj, (si, u)).

The next result shows that the particular choice of proof t in Definition 1.1 is

not relevant.

Lemma 1.2. Let s be a G-common access to t. If some i ∈ G has access s to some

proof u, then s is also a G-common access to proof u.

Proof. If i ∈ G has the access s to proof u, then (si, u) is a proof. Since s is a

G-common access, item (b) of Definition 1.1 implies that (sj, (si, u)) is a proof,

for any j ∈ G. By composition principle (C2) above, ((s ◦ s)j, u) is a proof for

any j ∈ G. Also by (C2), s ◦ s = s. Thus, (sj, u) is a proof, for all j ∈ G. That is,

s is a G-common access to u.

Lemma 1.3. For any group G, the trivial access s0 is a G-common access (to any

actual proof).

Proof. Recall that the proofs accessed via s0 (by any agent) are exactly the actual

proofs. Thus, all agents have access s0 to any actual proof. If (s0, t) is a proof, for

9



some proof t, then t and (s0, t) must be actual proofs. Thus, (s0, t) can be accessed

via s0 (by any agent). By Definition 1.1, s0 is a G-common access, for any G.

A proof-interpretation clause for CGϕ must take into account the respective

version of common knowledge. Let us first consider the basic version of common

knowledge given by the infinite conjunction expressed in (3) above. We consider

two proposals:

• A ‘proof’ of CGϕ consists in an infinite sequence of proofs (tn)n∈N such

that tn is a proof of En
Gϕ.

• A ‘proof’ of CGϕ consists in a proof t of ϕ together with a construction that

for a given proof of En
Gϕ, n ≥ 0, returns a proof of EGE

n
Gϕ = En+1

G ϕ.

Unfortunately, both clauses are problematic from a constructivist point of view.

The first one describes a proof as an infinite object. The second one gives an

inductive definition of a construction that possibly needs an infinite amount of time

to produce all the different proofs of the infinitely many formulas En
Gϕ, n ≥ 0. It

seems that any approach to the basic intuition (3) of common knowledge (without

introspection) involves some form of infinity that makes a constructive treatment

hard or impossible. Therefore, we will focus on the stronger, introspective version

of common knowledge which can be constructively described by the following

simple and finitary clause:

• A proof of CGϕ is a tuple (s, t), where t is a proof of ϕ and s is aG-common

access to t.

Example 1.4. We consider the introspective version of common knowledge. Imag-

ine a math lecture. The lecturer writes a proof of a theorem ϕ on the blackboard. It

is clear that at the end of the lecture, there is common knowledge of ϕ in the group

G of students who listened the lecture. We interpret the situation constructively in

the following way. Let s be the lecture and let t be the proof of ϕ written on the

blackboard. Then all students of group G share the same access s to t. Hence,

condition (a) of Definition 1.1 is satisfied. During the lecture, the students can see

each other listening the lecture. Thus, every student j ∈ G has access via s to the

proof (si, t) of Kiϕ, for any i ∈ G. This yields proofs (sj, (si, t)) of KjKiϕ, for

any j, i ∈ G, and so on ... . Of course, the same arguments apply to any other

statement ψ with proof u presented in lecture s. Then s is self-referential in G in

the sense of Definition 1.1, i.e. condition (b) holds true. Thus, s is a G-common

access to t, and (s, t) is a proof of CGϕ in the sense of the clause for CGϕ above.

10



Next, we present some principles of common knowledge which are sound w.r.t.

extended BHK interpretation.

�ϕ → �CGϕ. Every agent has the trivial access s0 to an actual proof t of ϕ. We

already saw that s0 is self-referential in the group of all agents I . Consequently,

the function that maps any actual proof t of ϕ to the actual proof (s0, t) of CGϕ
gives rise to an actual proof of �ϕ→ �CGϕ.

CGϕ → CGKiϕ, i ∈ G. Suppose (s, t) is a proof of CGϕ. Then, in partic-

ular, (si, t) is a proof of Kiϕ. Since s is self-referential in G, (sj, (si, t)) is

a proof, for every j ∈ G. Thus, (s, (si, t)) is a proof of CGKiϕ. Then the

mapping (s, t) 7→ (s, (si, t)) is an effected construction, i.e. actual proof, for

CGϕ→ CGKiϕ.

CGϕ → CGCGϕ. Let (s, t) be a proof of CGϕ. Then s is a G-common access

to proof t of ϕ. In particular, s is self-referential in G. Thus, for some (for any)

j ∈ G, (sj, (s, t)) is a proof. Then by Lemma 1.2, s is a G-common access to

proof (s, t). By definition, (s(s, t)) then is a proof of CGCGϕ. Thus, the mapping

(s, t) 7→ (s(s, t)) represents an actual proof of CGϕ→ CGCGϕ.

�(ϕ → ψ) → �(CGϕ → CGψ). Let t be an actual proof of ϕ → ψ. Let (s, u)
be a proof of CGϕ. Then t converts u into a proof t(u) of ψ. Each i ∈ G has the

trivial access s0 to t, since t is an actual proof. And each i ∈ G has the access s to

proof u. By combination principle (C1), each i ∈ G gains the access s0 + s = s
to proof t(u). By Lemma 1.2, s then is also a G-common access to t(u). Thus,

(s, t(u)) is a proof of CGψ. Of course, the function ft : (s, u) 7→ (s, t(u)) is an

effected construction, i.e. an actual proof. Then the construction that for any actual

proof t of ϕ→ ψ returns a presentation (including proof-checking) of function ft,
constitutes an actual proof of �(ϕ→ ψ) → �(CGϕ→ CGψ).
Finally, we show that Kiϕ and CGϕ have exactly the same actual proofs, indepen-

dently of i and G. In fact, (s, t) is an actual proof of Kiϕ iff t is an actual proof

of ϕ and s = s0 iff t is an actual proof of ϕ and the trivial access s = s0 is a

G-common access to t iff (s, t) is an actual proof of CGϕ. This shows in particular

that the actual proofs (not all possible proofs) of ϕ, Kiϕ and CGϕ, respectively,

can be converted into each other, i.e. �ϕ ≡ �Kiϕ ≡ �CGϕ holds for all i ∈ I
and all groups G.10 However, ϕ, Kiϕ and CGϕ will denote, in general, pairwise

distinct propositions.

2 The logics of access-based knowledge L5
AC−

N and L5
AC
N

We extend, in the following, system L5 by axioms for knowledge and common

knowledge in an augmented epistemic object language. As before, I = {1, ..., N}

10Cf. Lemma 2.3(b) below.
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is a fixed finite set of N ≥ 1 agents, and groups of agents are always non-empty

subsets G ⊆ I .

Definition 2.1. The object language is defined over the following set of symbols:

an infinite set of propositional variables V = {x0, x1, ...}, logical connectives ⊥,

¬, ∨, ∧, →, modal operator � and epistemic operators Ki, for i ∈ I , and CG,

for every group G of agents. Then the set of formulas Fm is the smallest set that

contains V ∪ {⊥} and is closed under the following conditions: ϕ,ψ ∈ Fm ⇒
¬ϕ, (ϕ ∗ψ), �ϕ, Kiϕ, CGϕ ∈ Fm, where ∗ ∈ {∨,∧,→}, i ∈ I , G ⊆ I , G 6= ∅.

We use the following abbreviations: ⊤ := (⊥ → ⊥), ¬ϕ := (ϕ → ⊥),
(ϕ ↔ ψ) := (ϕ → ψ) ∧ (ψ → ϕ), ϕ ≡ ψ := �(ϕ↔ ψ) (propositional identity),

♦ϕ := ¬�¬ϕ.

We consider the following axiom schemes:

(INT) any scheme which has the form of an IPC -tautology11

(i) �(ϕ ∨ ψ) → (�ϕ ∨�ψ)
(ii) �ϕ→ ϕ
(iii) �(ϕ→ ψ) → (�ϕ→ �ψ)
(iv) �ϕ→ ��ϕ
(v) ¬�ϕ→ �¬�ϕ
(vi) Kiϕ→ ϕ (reflection, factivity of knowledge)

(vii) Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)
(viii) Ki(ϕ ∨ ψ) → (Kiϕ ∨Kiψ)
(ix) CG(ϕ → ψ) → (CGϕ→ CGψ)
(x) CG(ϕ ∨ ψ) → (CGϕ ∨ CGψ) (only for introspective common knowledge)

(xi) �ϕ→ �CGϕ
(xii) CGϕ→ Kiϕ, for any i ∈ G
(xiii) CGϕ→ CGKiϕ, for any i ∈ G
(xiv) CGϕ→ CG′ϕ, for any non-empty G′ ⊆ G
(xv) CGϕ→ CGCGϕ (for introspective common knowledge)

(TND) ϕ ∨ ¬ϕ

Except of (TND), all schemes above are intuitionistically acceptable in the

sense that they are sound w.r.t. extended BHK semantics considering the access-

based interpretation of epistemic operators. For most of the epistemic axioms, this

is shown in the last section. In [12], we saw that the modal axioms, in particular

(iv) and (v), are sound w.r.t. extended BHK semantics. For the convenience of the

11It would be sufficient to fix here a finite set of schemes that axiomatize IPC .
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reader, we recall here the argumentation. Before, we show that

(5) �ϕ ∨ ¬�ϕ

is intuitionistically acceptable.12 Of course, either there is an actual proof of ϕ or

there is no such proof. Since an actual proof is immediately available, it can be

decided which one of the two alternatives is the case. In the former case, that ac-

tual proof is available and can be presented (proof-checked). This yields an actual

proof of �ϕ. In the latter case, we conclude that �ϕ has no possible proof at all. In

fact, any (possible) proof of �ϕwould, by the BHK clause, involve an actual proof

of ϕ which, by hypothesis, does not exist. Thus, the identity function on proofs, as

an effected construction, constitutes an actual proof of �ϕ→ ⊥, i.e. of ¬�ϕ. We

have shown that for any proposition ϕ, either we can present an actual proof of �ϕ
or we can present an actual proof of ¬�ϕ, and we are able to indicate which one

of the two alternatives is the case. Thus, (5) is intuitionistically valid.

Soundness of (iv) �ϕ → ��ϕ. Suppose we are given a proof s of �ϕ. By

definition, s consists in the presentation of an actual proof t of ϕ. The presentation

(including proof-checking) depends only from the actual proof t and from ϕ and

no further hypotheses. Thus, s is itself an effected construction, an actual proof.

The presentation of s as an actual proof of �ϕ yields an actual proof u of ��ϕ.

Thus, the construction that converts s into u is an actual proof of �ϕ→ ��ϕ.13

Soundness of (v) ¬�ϕ → �¬�ϕ. Suppose s is a proof of ¬�ϕ. Then

¬�ϕ (i.e. �ϕ → ⊥) must have an actual proof for otherwise, by (5) above,

�ϕ would have an actual proof contradicting that ¬�ϕ has proof s. But then we

may present a witness of an actual proof of �ϕ→ ⊥, namely the identity function

on proofs which is, trivially, an effected construction. Its presentation (including

proof-checking) results in an actual proof t of �¬�ϕ. We have presented a con-

struction that for any possible proof s of ¬�ϕ returns a proof t of �¬�ϕ.

Recall that our basic logic for the reasoning about proof L5 is given by the ax-

iom schemes (INT), (i)–(v) and (TND) plus the inference rules of Modus Ponens

(MP) and Intuitionistic Axiom Necessitation (AN): ‘If ϕ is an intuitionistically ac-

ceptable axiom, i.e. any axiom distinct from (TND), then infer �ϕ.’ We define

L5AC
N as the multi-agent logic of access-based knowledge and introspective com-

mon knowledge with N ≥ 1 agents.14 L5AC
N is given by L5 + (vi)–(xv). That is,

12Actually, �(�ϕ ∨ ¬�ϕ) is a theorem of L5, cf. Theorem 3.7(vii) in [12].
13This shows in particular that any possible proof of �ϕ must be an actual proof of �ϕ which is

in accordance with the fact that ♦�ϕ→ ��ϕ is a theorem of L5, cf. Theorem 3.7(v) in [12].
14Letter ‘A’ refers to ‘access-based knowledge’ while ‘C’ stands for ‘common knowledge’.
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L5AC
N is axiomatized by the complete list of axioms above along with the rules of

(MP) and (AN). The logic L5AC−

N is given in the same way as L5AC
N but without

the schemes (x) and (xv). L5AC−

N is intended to formalize access-based common

knowledge as an infinite conjunction according to (3) without introspection. Ob-

viously, both L5AC
N and L5AC−

N are super-logics of L5. As usual, we define a

derivation of ϕ from a set Φ as a finite sequence of formulas ϕ0, ..., ϕn = ϕ such

that each member of the sequence is an axiom, an element of Φ or the result of an

application of the rules of (MP) or (AN) to formulas occurring at preceding posi-

tions. Recall that (AN) only applies to axioms of the underlying system that are

different from tertium non datur.

Lemma 2.2. For any formulas ϕ, ψ, the following hold in all systems extending

L5:

(a) If ϕ is a theorem derivable without (TND), then �ϕ is a theorem.

(b) The Deduction Theorem holds.

(c) The Substitution Principle (SP) holds: ϕ ≡ ψ → χ[x := ϕ] ≡ χ[x := ψ].
The following are theorems:

(d) �ϕ↔ (ϕ ≡ ⊤) and �ϕ ≡ (ϕ ≡ ⊤)
(e) �(ϕ ∧ ψ) ≡ (�ϕ ∧�ψ) and �(ϕ ∨ ψ) ≡ (�ϕ ∨�ψ)
(f) �(�ϕ ∨ ¬�ϕ)
(g) ¬¬�ϕ ≡ �ϕ and ¬(�ϕ ∧�ψ) ≡ (¬�ϕ ∨ ¬�ψ)
(h) (�ϕ ≡ ⊤) ∨ (�ϕ ≡ ⊥)
(i) �(ϕ→ ♦ϕ) and �(♦ϕ→ �♦ϕ)
(j) �(♦(ϕ ∨ ψ) → (♦ϕ ∨ ♦ψ))

Proof. (a) and (b) can be shown by induction on the length of derivations.

(c): Roughly speaking, it is enough to show that propositional identity is a congru-

ence relation on Fm. (SP) then follows by induction on χ. This is shown for the

logical connectives, the modal operator and the knowledge operator in [9, 10, 11].

We consider here only the new operator of common knowledge. We must show

that (ϕ ≡ ψ) → (CGϕ ≡ CGψ) is a theorem scheme. By axioms (xi), (ix), (ii)

and propositional calculus, we get �(ϕ ↔ ψ) → (CGϕ ↔ CGψ). By item (a),

distribution and axiom (ii), we obtain the assertion.

(d): The first part of (d) is originally shown in [9] for sublogic L. We present here

a simpler derivation: 1. (ϕ ≡ ⊤) ⊢ �(⊤ → ϕ); 2. (ϕ ≡ ⊤) ⊢ �⊤ → �ϕ, by

distribution and (MP); 3. (ϕ ≡ ⊤) ⊢ �⊤, by (AN); 4. (ϕ ≡ ⊤) ⊢ �ϕ, by (MP);

5. ⊢ (ϕ ≡ ⊤) → �ϕ, by Deduction Theorem; 6. ⊢ �(ϕ → (⊤ → ϕ)), by (AN);

7. ⊢ �ϕ → �(⊤ → ϕ), by distribution and (MP); 8. ⊢ �(ϕ → (ϕ → ⊤)), by

(AN); 9. ⊢ �ϕ→ �(ϕ → ⊤), by distribution and (MP); 10. ⊢ �ϕ→ ϕ ≡ ⊤, by

7. and 9.; 12. ⊢ �ϕ ↔ ϕ ≡ ⊤, by 5. and 9. This shows the first part of (d). The

second part now follows by item (a).
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(e): Consider the intuitionistic tautologies (ϕ ∧ ψ) → ϕ and (ϕ ∧ ψ) → ψ, apply

rule (AN), distribution, intuitionistic propositional calculus. The other way round,

consider the intuitionistic tautology ϕ→ (ψ → (ϕ∧ψ)), apply (AN), distribution

and intuitionistic propositional calculus. Finally, apply item (a). The second equa-

tion follows similarly using propositional calculus and axiom (i).

(f): This result is originally proved in [12], Theorem 3.7(vii).

(g): Use (f), i.e. �ϕ ∨ ¬�ϕ, and propositional calculus. Actually, by (a), it is

enough to show that ¬¬�ϕ → �ϕ and ¬(�ϕ ∧ �ψ) → (¬�ϕ ∨ ¬�ψ) derive

without (TND).

(h): Using (f) and axiom (i), one derives ��ϕ ∨ �¬�ϕ. Then (d) along with

propositional caluclus yields (�ϕ ≡ ⊤) ∨ (�ϕ ≡ ⊥).
(i): From ϕ → ¬¬ϕ and the contraposition of theorem �¬ϕ → ¬ϕ we derive

ϕ → ♦ϕ without using (TND). Now, apply item (a). The second assertion is clear

by scheme (v) and item (a).

(j): By (e), (�¬ϕ∧�¬ψ) → �(¬ϕ∧¬ψ) is a theorem. Observe that ¬(ϕ∨ψ) ≡
(¬ϕ ∧ ¬ψ) is a theorem since ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ) is an intuitionistic tautol-

ogy. By the Substitution Principle (SP), we may replace ¬ϕ ∧ ¬ψ by ¬(ϕ ∨ ψ)
in every context. Hence, (�¬ϕ ∧ �¬ψ) → �¬(ϕ ∨ ψ) is a theorem and so is its

contrapositive ¬�¬(ϕ ∨ ψ) → ¬(�¬ϕ ∧�¬ψ). Then by the second assertion of

(g), we derive ¬�¬(ϕ ∨ ψ) → (¬�¬ϕ ∨ ¬�¬ψ), i.e. ♦(ϕ ∨ ψ) → (♦ϕ ∨ ♦ψ).
Note that (TND) does not occur in the derivations. Thus, we may apply item (a)

and obtain (j).

Lemma 2.3. The following are theorems of L5AC
N and of L5AC−

N :

(a) �(ϕ→ ψ) → �(Kiϕ→ Kiψ) and �(ϕ→ ψ) → �(CGϕ→ CGψ)
(b) �ϕ ≡ �Kiϕ and �ϕ ≡ �CGϕ
(c) Ki(ϕ ∧ ψ) ≡ (Kiϕ ∧Kiψ) and Ki(ϕ ∨ ψ) ≡ (Kiϕ ∨Kiψ)
(d) �(KiKjϕ→ Kiϕ)
Moreover, axiom scheme (xiii) is redundant in L5AC

N , i.e. it is derivable from the

remaining axioms.

Proof. (a): �(ϕ → ψ) → �CG(ϕ → ψ) is an instance of scheme (xi). Now,

consider (ix) and (iii) along with applications of rules (AN) and (MP). This yields

the second assertion of (a). Using (xi) and (xii), one derives �ϕ → �Kiϕ. Thus,

�(ϕ → ψ) → �Ki(ϕ → ψ) is a theorem. The first assertion of (a) now follows

in a similar way as the second one.

(b): The derivations of �ϕ↔ �Kiϕ and �ϕ↔ �CGϕ are straightforward. Now,

(b) follows by Lemma 2.2 (a).

(c): We show the second assertion. Ki(ϕ ∨ ψ) → (Kiϕ ∨ Kiψ) is a theorem by

scheme (viii). ϕ → (ϕ ∨ ψ) is an intuitionistic tautology, thus �(ϕ → (ϕ ∨ ψ))
is a theorem. Now, one easily derives Ki(ϕ → (ϕ ∨ ψ)). Then, by distribution of
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knowledge, Kiϕ → Ki(ϕ ∨ ψ) is a theorem. Applying Lemma 2.2 (a) yields the

second assertion of (c). The proof of the first assertion of (c) is straightforward.

(d): Kjϕ→ ϕ is an instance of scheme (vi). By (AN), �(Kjϕ→ ϕ) is a theorem.

Then the first part of (a), together with (MP), yields �(KiKjϕ→ Kiϕ).
Finally, we prove the last assertion. By (a), �(CGϕ → Kiϕ) → �(CGCGϕ →
CGKiϕ) is a theorem. By scheme (xii), (AN) and (MP), CGCGϕ → CGKiϕ is a

theorem. This, thogether with scheme (xv), yields scheme (xiii) CGϕ → CGKiϕ.

By Lemma 2.2 (a), we may apply (AN) to that formula. This shows that L5AC
N

without scheme (xiii) is equivalent to L5AC
N .15

3 Algebraic semantics

It is well-known that the class of all Heyting algebras constitutes a semantics for

IPC .16 A propositional formula ϕ evaluates to the top element of any given Heyt-

ing algebra H, under any assignment of elements of H to propositional variables, if

and only if ϕ is a theorem of IPC . In this sense, the greatest element of any given

Heyting algebra represents intuitionistic truth, and we have strong completeness:

Φ ⊢IPC ϕ if and only if for any Heyting algebra H and any assignment γ ∈ HV , if

Φ is intuitionistically true in H under γ, then so is ϕ. Recall that a Heyting algebra

is a bounded lattice such that for all elements a, b, the subset {c | f∧(a, c) ≤ b}
has a greatest element f→(a, b), called the relative pseudo-complement of a with

respect to b, where f∧ is the infimum (meet) operation and ≤ is the lattice ordering.

For a Heyting algebra H, we use the notation H = (M,f∨, f∧, f⊥, f→), where M
is the universe and f∨, f∧, f⊥, f→ are the usual operations for join, meet, least

element and relative pseudo-complement (implication), respectively. The greatest

element is given by f⊤ := f→(f⊥, f⊥), and the pseudo-complement (negation) of

m ∈ M is defined by f¬(m) := f→(m, f⊥). A subset F ⊆ M of the universe

M is called a filter if the following conditions are satisfied: f⊤ ∈ F ; and for any

m,m′ ∈ M : if m ∈ F and f→(m,m′) ∈ F , then m′ ∈ F (cf. [6]). A filter F is a

proper filter if f⊥ /∈ F . A prime filter is a proper filter F such that f∨(m,m
′) ∈ F

implies m ∈ F or m′ ∈ F , for any m,m′ ∈ M . Finally, an ultrafilter is a max-

imal proper filter. Every ultrafilter satisfies for all elements m ∈ M : m ∈ U or

f¬(m) ∈ U . It follows that U mirrors the classical behaviour of logical connec-

tives and represents, in this sense, classical truth. In particular, every ultrafilter is

prime. Also recall that in any Heyting algebra, for any elements m,m′, the equiv-

alence m ≤ m′ ⇔ f→(m,m′) = f⊤ holds true.

Furthermore, the following facts will be useful:

15Notice that the argument does not work in L5AC
−

N where scheme (xv) is not available.
16It is enough to consider Heyting algebras with the Disjunction Property as in Definition 3.2.
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Lemma 3.1. Let H be a Heyting algebra with universe M . Then the following

hold.

(i) Any proper filter is the intersection of all prime filters containing it.

(ii) Let P be a filter, and a, b ∈ M . Then f→(a, b) ∈ P iff for all prime filters

P ′ ⊇ P : a ∈ P ′ implies b ∈ P ′.

(iii) If the smallest filter {f⊤} is prime, then for all a, b ∈ M : a ≤ b iff for all

prime filters P : a ∈ P implies b ∈ P .

Proof. (i): Let F be a proper filter of H. For every a ∈ M r F , there is a prime

filter Pa containing F such that a /∈ Pa. In fact, by Zorn’s Lemma, there is an

ultrafilter with that property. Then F =
⋂

a/∈F Pa.

(ii): Let P be a prime filter, a, b ∈M . The left-to-right implication of the assertion

is clear by definition of a filter. Suppose f→(a, b) /∈ P . Consider Fa,P := {c ∈
M | f→(a, c) ∈ P}. We claim that Fa,P is a filter. Obviously, f⊤ ∈ Fa,P .

Suppose c ∈ Fa,P and f→(c, d) ∈ Fa,P , for c, d ∈ M . Then f→(a, c) ∈ P
and f→(a, f→(c, d)) ∈ P . Since ((x → y) ∧ (x → (y → z)) → (x → z)
is an intuitionistic tautology, we conclude that f→(a, d) ∈ P , whence d ∈ Fa,P

and Fa,P is a filter. Let c ∈ P . Of course, f∧(a, c) ≤ c. Since f→(a, c) is the

greatest element x such that f∧(a, x) ≤ c, it follows that c ≤ f→(a, c). Thus,

f→(a, c) ∈ P . That is, c ∈ Fa,P . We have shown: P ⊆ Fa,P . Obviously,

a ∈ Fa,P and, by hypothesis, b /∈ Fa,P . By (i), it follows that there is a prime filter

P ′ extending Fa,P such that a ∈ P ′ and b /∈ P ′. We have P ⊆ Fa,P ⊆ P ′. By

contraposition, the right-to-left implication of assertion (ii) follows.

(iii): Suppose {f⊤} is a prime filter. The equivalence a ≤ b⇔ f→(a, b) = f⊤ is a

well-known property of Heyting algebras. The assertion now follows from (ii).

Definition 3.2. A model M is given by a Heyting algebra expansion

M = (M,TRUE , f∨, f∧, f⊥, f→, f�, (fKi
)i∈I , (fCG

)∅ 6=G⊆I)

with universe M whose elements are called propositions, a designated ultrafilter

TRUE ⊆ M which is the set of classically true propositions, and additionally

unary operations f�, fKi
, fCG

such that the following truth conditions are satis-

fied:

(i) M has the Disjunction Property: for all m,m′ ∈ M , f∨(m,m
′) = f⊤ implies

m = f⊤ or m′ = f⊤. That is, the smallest filter {f⊤} is prime.

(ii) For all m ∈M :

f�(m) =

{

f⊤, if m = f⊤

f⊥, else
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(iii) For every prime filter F ⊆M , and for all i ∈ I and all groups G, the following

conditions (a)–(e) are fulfilled:

(a) The set BELi(F ) := {m ∈M | fKi
(m) ∈ F} is a filter.

(b) The set COMMONG(F ) := {m ∈M | fCG
(m) ∈ F} is a filter.

(c) For every ultrafilter U ⊇ F : BELi (F ) ⊆ U ; in particular, BELi(F ) is a

proper filter and BELi(TRUE ) ⊆ TRUE .

(d) COMMONG(F ) ⊆ BELi(F ), whenever i ∈ G.

(e) For any m ∈ M : if m ∈ COMMONG(F ) then fKi
(m) ∈ COMMONG(F ),

whenever i ∈ G.

(f) COMMONG(F ) ⊆ COMMONG′(F ), whenever G′ ⊆ G.

Notice that the definition involves a relational structure given by the set of

prime filters which can be viewed as ‘worlds’ ordered by set-theoretical inclusion.

Actually, this yields a relational semantics based on intuitionistic general frames

(cf. [6]) with some additional structure regarding the epistemic ingredients. This

kind of relational semantics was explicitly defined and studied for the logics L5,

EL5 and IEL in [12] where also its equivalence to algebraic semantics is shown.

Considering Definition 3.2 above and following the constructions presented in [12],

that frame-based semantics extends straightforwardly to a semantics with common

knowledge equivalent to the algebraic conditions given in Definition 3.2. For space

reasons, we skip here the details. Intuitively, BELi(F ) is the set of propositions

known by agent i at ‘world’ F , and COMMONG(F ) is the set of propositions

that are common knowledge in G at ‘world’ F . Intuitionistic truth is represented

by ‘world’ {f⊤}, the smallest prime filter; and classical truth is determined by a

designated ‘maximal world’ TRUE . Observe that f�(m) is true at ‘world’ F (i.e.

f�(m) ∈ F ) iff m is true at the ‘root world’ {f⊤} iff m is true at all ‘worlds’ (i.e.

is contained in all prime filters). Thus, regarding the modal operator, we actually

have a S5-style Kripke model combined with the properties of an intuitionistic

Kripke model for constructive reasoning.

Lemma 3.3. Let M be a model. We have fKi
(f⊤) = f⊤ = fCG

(f⊤), for all i ∈ I
and all ∅ 6= G ⊆ I . Moreover, the operations fKi

and fCG
are monotonic on M ,

i.e. m ≤ m′ implies fKi
(m) ≤ fKi

(m′) and fCG
(m) ≤ fCG

(m′).

Proof. By truth condition (i), {f⊤} is a prime filter. Now, consider F = {f⊤}
and m = f⊤ in truth conditions (iii)(a) and (iii)(b). Then the first assertion of

the Lemma follows. Suppose m,m′ ∈ M and m ≤ m′. By Lemma 3.1(iii),

it is enough to show: fKi
(m) ∈ F implies fKi

(m′) ∈ F , for all prime filters

F . Let F be a prime filter. Then fKi
(m) ∈ F implies m ∈ BELi(F ) implies

m′ ∈ BELi(F ) implies fKi
(m′) ∈ F . The assertion regarding the operators fCG

follows similarly.
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Definition 3.4. Let M be a model. In the following, we consider the truth condi-

tions given in Definition 3.2.

• M is an L5AC−

N -model if, instead of (iii)(c), the following stronger condition

(c)* is satisfied: For every prime filter F and every i ∈ I , BELi(F ) is a

prime filter and BELi(F ) ⊆ F .

• M is an L5AC
N -model if condition (c)* holds, COMMONG(F ) is a prime

filter, for every prime filter F , and the following additional truth condition

(g) is fulfilled for every prime filter F , every group G and every m ∈M :

(g) If m ∈ COMMONG(F ), then fCG
(m) ∈ COMMONG(F ).

• The Heyting algebra reduct of M with ultrafilter TRUE and operators f�
and fK (i.e. I = {1}, single-agent case) is called an EL5-model. Only the

conditions (i), (ii), and (iii)(a) and (c) are relevant.

• The Heyting algebra reduct of M with ultrafilter TRUE and operator f� is

called an L5-model. Of course, only the conditions (i) and (ii) are relevant.

• The Heyting algebra reduct of M with operator fK (single-agent case:

I = {1}) is said to be an algebraic IEL-model if the following additional

truth condition of intuitionistic co-reflection (IntCo) is satisfied:

(IntCo) F ⊆ BEL(F ), for every prime filter F , where BEL(F ) := BEL1 (F ).
Besides that condition, only (i), (iii)(a) and (iii)(c) are relevant.

Algebraic semantics for L5 and EL5 is originally presented in [10] and [11,

12], respectively, in essentially the way as formulated in the next Theorem 3.5.

Algebraic semantics of IEL, in the form as presented in [11], is also described in

Theorem 3.5 below.

Theorem 3.5. A Heyting algebra expansion

M = (M,TRUE , f∨, f∧, f⊥, f→, f�, (fKi
)i∈I , (fCG

)∅ 6=G⊆I)

with ingredients as before is a model in the sense of Definition 3.2 if and only if the

following conditions are fulfilled for all m,m′ ∈M , all i ∈ I and all groups G:

(A) M has the Disjunction Property

(B)

f�(m) =

{

f⊤, if m = f⊤

f⊥, else

(C) fKi
(f→(m,m′)) ≤ f→(fKi

(m), fKi
(m′))

(D) fCG
(f→(m,m′)) ≤ f→(fCG

(m), fCG
(m′))
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(E) fCG
(m) ≤ fKi

(m), whenever i ∈ G
(F) fCG

(m) ≤ fCG
(fKi

(m)), whenever i ∈ G
(G) fCG

(m) ≤ fC
G′
(m), whenever G′ ⊆ G

(H) fCG
(f⊤) = f⊤

(I) fKi
(m) ≤ f¬(f¬(m)).

– M is an L5AC−

N -model if instead of (I) the stronger condition (I)* fKi
(m) ≤ m

holds, and for all m,m′ ∈M : fKi
(f∨(m,m

′)) ≤ f∨(fKi
(m), fKi

(m′)).
– M is an L5AC

N -model if it is an L5AC−

N -model and for all m,m′ ∈ M and all

groups G, fCG
(f∨(m,m

′)) ≤ f∨(fCG
(m), fCG

(m′)) and introspection of com-

mon knowledge fCG
(m) ≤ fCG

(fCG
(m)) are satisfied.17

– The appropriate reduct of M is an EL5-model if we drop common knowledge

and consider the single agent case I = {1} and only the conditions (A), (B), (C)

and (I), and fK(f⊤) = f⊤ instead of (H)

– The appropriate reduct of M is an L5-model if we exclude all epistemic ingredi-

ents and consider only the conditions (A), (B).

– The appropriate reduct of M is an IEL-model if we drop common knowledge,

consider the single agent case I = {1} and the condtions (A), (C), (I), and addi-

tionally (IntCo): m ≤ fK(m), for all m ∈M .

Theorem 3.5 is useful for model constructions. It hides the relational struc-

ture on prime theories which is often not relevant for the construction of an alge-

braic model. The proof of Theorem 3.5 is straightforward and relies essentially on

Lemma 3.1(iii) and filter properties.

Definition 3.6. Given a model M, an assignment is a function γ : V → M that

extends in the canonical way to an ‘homomorphism’ γ∗ : Fm → M . We simplify

notation and write γ instead of the uniquely determined γ∗. The tuple (M, γ) is

called an interpretation. We consider two kinds of satisfaction relations between

interpretations and formulas. If M is an IEL-model, then we define

(M, γ) �IEL ϕ :⇔ γ(ϕ) = f⊤,

where ϕ belongs here to the sublanguage Fme ⊆ Fm, i.e. the language of IEL.

If L ∈ {L5, EL5, L5AC−

N , L5AC
N } and M is an L-model, then we define

(M, γ) �L ϕ :⇔ γ(ϕ) ∈ TRUE ,

where ϕ is any formula of the underlying object language of the respective logic.

If the context it allows, we omit the index L. Of course, the satisfaction relations

extend to sets of formulas in the usual way.

17Note that introspection along with (E) and (I)* implies fCG
(m) = fCG

(fCG
(m)). In this sense,

common knowledge is a fixed point. Also notice that (F) follows from introspection of common

knowledge, (E) and monotonicity of fCG
.
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The relation of logical consequence is defined as usual. If L is one of the logics

IEL, L5, EL5, L5AC−

N , L5AC
N , and Φ ∪ {ϕ} is a set of formulas of the respective

object language, then Φ L ϕ :⇔ for every interpretation (M, γ), where M is an

L-model, (M, γ) �L Φ implies (M, γ) �L ϕ.

4 Soundness and Completeness

We consider the logics IEL and L5AC
N and show that they are sound and complete

w.r.t. their respective classes of algebraic models. Soundness and completeness of

L5AC−

N , EL5 and L5 then follows similarly.

Theorem 4.1. For any Φ ∪ {ϕ} ⊆ Fme, Φ ⊢IEL ϕ implies Φ IEL ϕ.

Proof. It is enough to show that all axioms of IEL are true, i.e. denote the top

element in every algebraic IEL-model under every assignment. This is clear for

formulas having the form of an intuitionistic tautology. The validity of the remain-

ing axioms follows from the conditions (C), (I) and (IntCo) of Theorem 3.5.

Weak completeness of IEL w.r.t. algebraic semantics is shown in [11]. For

the convenience of the reader, we outline here a proof which is based on the al-

ternative definition of algebraic IEL-models given in Definition 3.4. We consider

the Lindenbaum-Tarski algebra of IEL. Its elements are the equivalence classes ϕ
modulo logical equivalence in IEL, for ϕ ∈ Fme. By IPC and epistemic axioms

of IEL it follows that the operations f∗(ϕ,ψ) := ϕ ∗ ψ, ∗ ∈ {∨,∧,→}, f⊥ := ⊥
and fK(ϕ) := Kϕ are all well-defined. This yields a Heyting algebra M with op-

erator fK and lattice ordering ϕ ≤ ψ⇔ ⊢IPC ϕ→ ψ. In [2], it is shown that IEL

has the Disjunction Property. Thus, M has the Disjunction Property, i.e. f⊤ is the

smallest prime filter. We show that the conditions (iii)(a) and (iii)(c) of Definition

3.2 are satisfied. For every prime filter F , the set BEL(F ) := {ϕ | fK(ϕ) ∈ F} is

a filter because of the distribution axiom of IEL and the fact that ⊤ → K⊤ is a the-

orem which ensures that fK(⊤) = K⊤ = ⊤ = f⊤ ∈ F and thus f⊤ ∈ BEL(F ).
Hence, (iii)(a) holds. Now suppose F is a prime filter and U is an ultrafilter such

that F ⊆ U . Since Kϕ → ¬¬ϕ is a theorem of IEL, we have Kϕ ≤ ¬¬ϕ.

Then ϕ ∈ BEL(F ) implies fK(ϕ) ∈ F implies ¬¬ϕ ∈ F implies ϕ ∈ U . Hence,

BEL(F ) ⊆ U . Thus, the truth conditions of an algebraic IEL-model as established

in Definitions 3.4 and 3.2 are satisfied. Let γ ∈MV be the assignment x 7→ x. By

induction on formulas, one shows γ(ϕ) = ϕ for every formula ϕ ∈ Fme. Then

(M, γ) � ϕ iff γ(ϕ) = ϕ = f⊤ = ⊤ iff ⊢IEL ϕ↔ ⊤ iff ⊢IEL ϕ.

Corollary 4.2. For every formula ϕ ∈ Fme, ⊢IEL ϕ⇔ IEL ϕ.
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Theorem 4.3. Let L be the logic L5, EL5, L5AC−

N or L5AC
N . For any set Φ∪ {ϕ}

of the respective object language, Φ ⊢L ϕ implies Φ L ϕ.

Proof. It suffices to consider logic L5AC
N . Let M be an L5AC

N -model and γ ∈
MV an assignment. We show that all axioms denote classically true propositions,

i.e. elements of ultrafilter TRUE . This is clear for (TND). We claim that the

remaining axioms denote the top element of the Heyting lattice. Then follows that

also rule (AN) is sound. Of course, all intuitionistic tautologies and substitution-

instances denote f⊤. Note that all other axioms are of the form: ϕ → ψ. Since

γ(ϕ → ψ) = f→(γ(ϕ), γ(ψ)) = f⊤ iff γ(ϕ) ≤ γ(ψ), it is enough to show that

(*) γ(ϕ) ≤ γ(ψ) holds true. For this purpose, it might be more comfortable to use

Theorem 3.5 instead of the model definitions. Concerning the axioms (i)–(v), (*)

follows from condition (B): for any m ∈ M , either f�(m) = f⊤ or f�(m) = f⊥.

Referring to axiom (xi), (*) follows by truth condition (B) along with the first

assertion of Lemma 3.3: fCG
(f⊤) = f⊤. Concerning the remaining axioms, (*)

follows from corresponding conditions given in Theorem 3.5. Finally, rule (MP)

is sound because TRUE is a filter. The assertion of the Theorem now follows by

induction on derivations.

Completeness of the logics L5 and EL5 w.r.t. algebraic semantics is shown in

[10] and [11], respectively. Following the same strategy, we sketch out a complete-

ness proof of L5AC
N w.r.t. the class of L5AC

N -models. It is enough to show that every

consistent set of formulas is satisfied by some interpretation based on an L5AC
N -

model. Let Φ ⊆ Fm be consistent. By Zorn’s Lemma, Φ has a maximal consistent

extension Ψ . We construct a model for Ψ . Let ≈Ψ be the relation on formulas de-

fined by ϕ ≈Ψ ψ :⇔ Ψ ⊢ ϕ ≡ ψ. Using the Substitution Principle (SP), one shows

that ≈Ψ is a congruence relation on the resulting ‘algebra of formulas’, where the

connectives, modal and epistemic operators are viewed as operations on Fm (cf

[10, 11]). For ϕ ∈ Fm, we denote by ϕ := ϕΨ the congruence class of ϕ modulo

≈Ψ. Then the setsM = {ϕ | ϕ ∈ Fm} and TRUE = {ϕ | ϕ ∈ Ψ} along with the

following operations on M : f⊥ := ⊥, f⊤ := ⊤, f�(ϕ) := �ϕ, fKi
(ϕ) := Kiϕ,

fCG
(ϕ) := CGϕ, f∗(ϕ,ψ) := ϕ ∗ ψ, where ∗ ∈ {∨,∧,→}, are all well-defined.

We claim that this yields an L5AC
N -model M. Clearly, M is based on a Heyting

algebra: all IPC -theorems of the form ϕ↔ ψ are contained in Ψ . Then rule (AN)

implies Ψ ⊢ ϕ ≡ ψ, i.e. ϕ = ψ, hence all equations that determine a Heyting al-

gebra are satisfied. TRUE ⊆ M is an ultrafilter because Ψ is maximal consistent.

By Lemma 2.2(d), for any m ∈M : f�(m) ∈ TRUE iff m = f⊤. The axioms (iv)

and (v) then ensure truth condition (ii) of a model, cf. Definition 3.2. Truth condi-

tion (i), the Disjunction Property, now follows by axiom (i). From Lemma 2.3(b) it

follows that Ki⊤ and CG⊤ are theorems. This, along with the distribution axioms,

implies that the sets BELi(F ) and COMMONG(F ) are filters, for any prime filter
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F of the Heyting algebra. Also the remaining truth conditions (iii)(c)–(g) of an

L5AC
N -model follow straightforwardly from corresponding axioms. As in similar

situations, it might be more comfortable to use Theorem 3.5 here to verify all these

conditions. Let γ ∈MV be the assignment defined by x 7→ x. Then γ(ϕ) = ϕ, for

every ϕ ∈ Fm. Thus, ϕ ∈ Ψ ⇔ ϕ ∈ TRUE ⇔ γ(ϕ) ∈ TRUE ⇔ (M, γ) � ϕ.

In particular, (M, γ) � Φ ⊆ Ψ . Hence, every set consistent in L5AC
N is satisfied by

an L5AC
N -model; and analogously for L5, EL5 and L5AC−

N .

Theorem 4.4 (Completeness). Let L be the logic L5, EL5, L5AC−

N or L5AC
N . For

any set Φ ∪ {ϕ} of the respective object language, Φ L ϕ implies ΦL ⊢ ϕ.

5 Intended Models

Intuitively, by an intended model we mean a model where common knowledge has

its intended meaning, i.e. CGϕ is true iff
∧

n∈NE
n
Gϕ is true, for any formula ϕ

and any group G.18 Since infinite conjunctions cannot be expressed in the finitary

object language, our axiomatization ensures only that truth of CGϕ implies the

truth of all En
Gϕ, n ∈ N. Thus, a non-intended model is a model where for some

formula ϕ, En
Gϕ is true for every n ∈ N, but CGϕ is false. Both intended as well

as non-intended models exist as we shall see at the end of this section.

We would like to point out here that it is not unusual that the intended properties

of a formalized concept are not completely captured by the axiomatization but are

instead represented by a standard model or by certain intended models. The phe-

nomenon is well-known from classical first-order logic. Compactness arguments

generally show that a given first-order theory with infinite models has also models

with counter-intuitive or unexpected properties, non-standard elements, etc. The

existence of such non-intended (or non-standard) models is unproblematic as long

as enough intended and meaningful models exist.

In the following, we characterize intended L5AC−

N - and L5AC
N -models. For this

purpose, we adopt and apply some notions and results from [8] where common

knowledge is axiomatized and modeled in essentially the same way, although this

is done in a general, classical non-Fregean setting. In this section, by a model we

always mean an L5AC−

N - or an L5AC
N -model.

Definition 5.1. Let M be a model. For every i ∈ I and every group G, we put

BELi := BELi(TRUE) and COMMONG := COMMONG(TRUE), which are

the sets of propositions known by agent i, and the sets of propositions that are

common knowledge in G, respectively.

18Of course, this basic intuition also holds for our stronger introspective notion of common knowl-

edge which additionally has the property: CGϕ↔ CGCGϕ.
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Definition 5.2. Let M be a model, G be a group. We say that a set X ⊆ M of

propositions is closed under G if the following hold:

(a) X ⊆
⋂

i∈G BELi , i.e. the propositions of X are known by all agents of G,

(b) if m ∈ X and i ∈ G, then fKi
(m) ∈ X.

By GREATESTG we denote the greatest set closed under G, i.e. the union of all

sets which are closed under G.

Formally, the set COMMONG represents common knowledge in G. On the

other hand, the set GREATESTG captures the concept of common knowledge in

G in an intuitive way. Do these two sets coincide? By the definitions, we have:

Lemma 5.3. Let M be a model. For any group G, COMMONG is closed under

G. In particular, COMMONG ⊆ GREATESTG ⊆
⋂

i∈GBELi .

Relative to an interpretation (M, γ), common knowledge given as an infinite

conjunction according to (3) is expressed in the following way: (M, γ) � CGϕ
⇔ for all r ≥ 0 and for all sequences (i1, ..., ir) of agents of G, it holds that

(M, γ) � Ki1Ki2 ...Kirϕ.19

If ϕ ∈ Fm denotes the proposition m ∈M , i.e. γ(ϕ) = m, then that is equivalent

to: fCG
(m) ∈ TRUE ⇔ for all r ≥ 0 and for all sequences (i1, ..., ir) of agents

of G, it holds that fKi1
(fKi2

(...(fKir
(m))...)) ∈ TRUE .20

Definition 5.4. Suppose M is a model. Let m ∈ M and G be a group. We call

the set XG,m given by all elements fKi1
(fKi2

(...(fKir
(m))...)), where r ≥ 0 and

(i1, i2, ..., ir) is any sequence of agents of G, the closure of m under G or the

G-closure of m.

Lemma 5.5. Let M be a model. For any m ∈ M , fCG
(m) ∈ TRUE implies

XG,m ⊆ TRUE .

Proof. Let fCG
(m) ∈ TRUE , i.e. m ∈ COMMONG . Applying successively

truth condition (iii)(e) of a model (Definition 3.2), one recognizes that any element

fKi1
(fKi2

(...(fKir
(m))...)) belongs to COMMONG , where i1, ..., ir ∈ G and

r ≥ 0. Hence, XG,m ⊆ COMMONG ⊆ TRUE , and the assertion follows.

The next result, also adopted from [8], gives a sufficient and necessary condi-

tion for common knowledge having the intended meaning in a given model (inde-

pendently of the fact whether we are dealing with the basic notion or with intro-

spective common knowledge).

19Of course, repetitions of agents are allowed in the sequences. For r = 0, we define

Ki1Ki2 ...Kirϕ := ϕ.
20Again, for r = 0 we let fKi1

(fKi2
(...(fKir

(m))...)) := m.
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Theorem 5.6 ([8]). Let M be a model, G be a group. The following conditions

are equivalent:

(i) COMMONG = GREATESTG

(ii) For any m ∈M , fCG
(m) ∈ TRUE iff XG,m ⊆ TRUE .

Proof. Let COMMONG = GREATESTG . By Lemma 5.5, we know that for

any m ∈ M , fCG
(m) ∈ TRUE implies XG,m ⊆ TRUE . Suppose m ∈ M and

XG,m ⊆ TRUE . Then the G-closure of m, XG,m, is closed under G in the sense

of Definition 5.2. Since GREATESTG is the greatest set closed under G, we

have m ∈ XG,m ⊆ GREATESTG = COMMONG . Hence, fCG
(m) ∈ TRUE

and (i) ⇒ (ii) holds true. Now, suppose (ii) holds true and m ∈ GREATESTG .

Since GREATESTG is closed under G, we have fKi1
(fKi2

(...(fKir
(m))...)) ∈

GREATESTG , for any r ≥ 0 and any sequence (i1, i2, ..., ir) of agents of G.

Thus, XG,m ⊆ GREATESTG ⊆ TRUE . By (ii), fCG
(m) ∈ TRUE , i.e. m ∈

COMMONG . Thus, GREATESTG ⊆ COMMONG and (i) follows.

Definition 5.7. A model is said to be an intended model if for each group G,

COMMONG = GREATESTG .

Corollary 5.8. Let M be a model. Suppose that for all m ∈M and all groups G,

the G-closure of m is finite (and thus its infimum exists) and the following holds:

fCG
(m) ∈ TRUE ⇔

∧

XG,m ∈ TRUE . Then M is an intended model.

Example 5.9. Simple examples of models are given by linearly ordered Heyting

algebras. Note that such Heyting algebras always have the Disjunction Property;

actually, all proper filters are prime. We modify and extend an example from [11].

It is based on the Heyting algebra over the closed interval M := [0, 1] of reals

with its usual linear ordering and the unique ultrafilter TRUE = (0, 1]. To agents

i = 1, 2, ..., N we assign elements b(1) < b(2) < ... < b(N) ∈ (0, 1), respec-

tively, and consider the prime filters BELi = {m ∈ M | b(i) ≤ m}. Then

BEL1 ) BEL2 ) ... ) BELN are the sets of propositions known by agent i,
respectively. We define fKi

(m) := m if m ∈ BELi , and fKi
(m) := 0 other-

wise. Then follows that BELi(F ) = F ∩ BELi , for any prime filter F . Thus,

each BELi(F ) is a filter contained in F , in accordance with the truth conditions

(iii)(a) and (iii)(c)* of Definitions 3.2 and 3.4. For each group G and m ∈ M ,

we define fCG
(m) := fKiG

(m), where iG ∈ G is the greatest number referring

to an agent of G. Then common knowledge in G is given by COMMONG =
BELiG =

⋂

{BELj | j ∈ G} and COMMONG(F ) = BELiG (F ) for any prime

filter F . Of course, we put f�(1) := 1 and f�(m) := 0 for 0 ≤ m < 1. Now

one recognizes that all truth conditions of an L5AC
N -model are satisfied (use the
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Definitions 3.2 and 3.4 or/and Theorem 3.5). It is an intended model since for each

G, COMMONG is the greatest set closed under G: it is clear that COMMONG

is closed under G; and it is the greatest set with that property because for any

m ∈ M r COMMONG , we have m /∈ BELiG . Unfortunately, common knowl-

edge in G is trivial in the sense that it coincides with ‘everyone in G knows’:

EGϕ is true iff CGϕ is true. We modify the model in the following way. We only

change common knowledge in the group G = {1, ..., N} of all agents and leave

all other definitions as before. Let c be a real number such that b(N) < c < 1.

Then we consider COMMONG := {m ∈ M | m ≥ c} ( BELN and de-

fine fCG
(m) := m if m ∈ COMMONG , and fCG

(m) := 0 otherwise. Again,

one verifies that the resulting structure is an L5AC
N -model. Since COMMONG

is a proper subset of BELN , common knowledge in G is no longer trivial, i.e. it

is strictly stronger than ‘everyone knows’. However, the resulting model is not

an intended one: COMMONG ( GREATESTG = BELN . Finally, we con-

struct an intended model with non-trivial common knowledge. For i = 1, ..., N ,

the sets BELi are defined as before. For the singleton group G = {1}, we put

COMMON{1} := BEL1 , and for any m ∈ M : fG(m) := fK1
(m), with fK1

defined as below. For all other groups G, we define, with the same real number

c as above, COMMONG := P := {m ∈ M | m ≥ c}, and fCG
(m) := m if

m ∈ P , and fCG
(m) := 0 otherwise. Thus, all groups distinct from the single-

ton group {1} have exactly the same common knowledge given by the prime filter

P = {m ∈ M | m ≥ c} ( BELN . The fKi
, i = 1, ..., N , are now defined in the

following way:

fKi
(m) =











b1, if m ∈ BELi r P

m, if m ∈ P

0, else

Notice that for any agent i 6= 1, m /∈ P implies fKi
(m) /∈ BELi . Thus, for

all groups G 6= {1}, P = {m ∈ M | m ≥ c} is the greatest closed set under

G. And for G = {1}, BEL1 = COMMON{1} is the greatest set closed under

G. Hence, the eventual model is an intended model. Of course, f� is defined as

before. Similarly as in the previous example, one checks that all truth conditions

of an L5AC
N -model are satisfied. Common knowledge in any group distinct from

the singleton {1} is not trivial, i.e. it is stronger than ‘everyone knows’: P is

a proper subset of each BELi . This model can be transformed into an intended

L5AC−

N -model modifying for some G 6= {1} the function fCG
in the following

way: Let d be a real such that 0 < d < c. Then define fCG
(m) := m − d

if m ∈ COMMONG = P , and fCG
(m) := 0 otherwise. Now there are some

m ∈ COMMONG such that fCG
(m) /∈ COMMONG . Hence, the model cannot

be an L5AC
N -model. But the truth conditions of an L5AC−

N -model are still satisfied.
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