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Abstract
The aim of this paper is to develop an algebraic and logical study of certain paraconsistent systems, from the family of the
logics of formal inconsistency (LFIs), which are definable from the degree-preserving companions of logics of distributive
involutive residuated lattices (dIRLs) with a consistency operator, the latter including as particular cases, Nelson logic (NL),
involutive monoidal t-norm based logic (IMTL) or nilpotent minimum (NM) logic. To this end, we first algebraically study
enriched dIRLs with suitable consistency operators. In fact, we consider three classes of consistency operators, leading
respectively to three subquasivarieties of such expanded residuated lattices. We characterize the simple and subdirectly
irreducible members of these quasivarieties, and we extend Sendlewski’s representation results for the case of Nelson
lattices with consistency operators. Finally, we define and axiomatize the logics of three quasivarieties of dIRLs and their
corresponding degree-preserving companions that belong to the family of LFIs.

Keywords: Logics of formal inconsistency, paraconsistent logics, degree-preserving logics, distributive involutive residuated
lattices, Nelson lattices.

1 Introduction

The aim of this paper is to develop an algebraic and logical study of paraconsistent systems definable
from the degree-preserving companions of logics of distributive involutive residuated lattices
(dIRLs) with a consistency operator. The initial motivation comes from different considerations
relating paraconsistency and Nelson’s constructive logic with strong negation.

In the 1950’s, constructive logic with strong negation, nowadays commonly known under the
name of Nelson logic (even also called N3), was formulated by Nelson and Markov as a result of
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2 Logics of formal inconsistency on dIRL

certain philosophical objections to the intuitionistic negation pointed out by Rasiowa [43], see also
her celebrated book [44, Ch. XII]. The criticism concerned its disadvantageous non-constructive
property, namely that the derivability of the formula ¬(α ∧ β) in an intuitionistic propositional
calculus does not imply that at least one of the formulas ¬α, ¬β is derivable.

Although Nelson algebras, the algebraic semantics of Nelson logic developed by Rasiowa [43, 44],
were not originally presented as a subclass of residuated lattices, in 2008 Spinks and Veroff [47, 48]
have shown that Nelson logic is indeed a substructural logic. More precisely, they show that Nelson
algebras are termwise equivalent to certain involutive, bounded, commutative and integral residuated
lattices, called Nelson (residuated) lattices. Busaniche and Cignoli [7] have further contributed to
the algebraic study of Nelson lattices.

A paraconsistent version of Nelson logic was first introduced in [1], where the authors observe
that the weaker system obtained from Nelson logic by deleting the axiom schema ϕ → (∼ϕ → ψ)

could be used to reason under inconsistency without incurring in a trivial logic. Semantics for this
paraconsistent version of Nelson logic have been studied by Odintsov in [38, 39], who calls the logic
N4, in terms of what is known in the literature as Fidel structures [25] and twist-structures [24,
51]. Later on, Busaniche and Cignoli [8] provided another algebraic semantics under the umbrella of
non-integral commutative residuated lattices with involution. More recently, Carnielli and Rodrigues
[15] show that N4 is in fact equivalent to a paraconsistent logic of evidence, called BLE (for basic
logic of evidence), for which they provide a semantics based on non truth-functional evaluations.

Our initial interest also was on paraconsistent variants of Nelson logic, but taking a different
road. Indeed, our idea was to consider paraconsistent logics from the family of logics of formal
inconsistency (LFIs), introduced by Carnielli and Marcos in 2000 (see e.g. [13]), and also studied
e.g. by Avron [2, 3]. LFIs constitute a generalization of da Costa’s C-systems [20, 21]. The main
characteristic of these logics is that they internalize in the object language a notion of consistency by
means of a specific connective ◦ (primitive or definable) in the following sense: although LFIs are
not explosive in general, meaning that for at least a formula ϕ the theory {ϕ, ∼ϕ} is consistent, the
connective ◦ allows to recover the explosion property from a formula ψ and its negation ∼ψ when-
ever they are retained to be consistent, that is to say, whenever ψ falls under the scope of ◦. In other
words, even if {ϕ, ∼ϕ} is not explosive, {ϕ, ∼ϕ, ◦ϕ} trivializes because ◦ϕ states that ϕ is consistent.
It is worth noticing that, in fact, Carnielli and Rodrigues have already introduced in [15] an LFI
based on paraconsistent Nelson logic N4, called LETJ (for logic of evidence and truth), by adding a
consistency-like operation to BLE, their paraconsistent and paracomplete basic logic of evidence.

There is however another approach to define LFIs based on Nelson logic, and more generally,
on logics of involutive residuated lattices. In general, given a quasivariety of bounded residuated
lattices Q, its corresponding logic is given by the usual (non-paraconsistent) truth-preserving notion
of logical consequence |�Q, i.e. a formula ϕ follows from a set of formulas Γ , written Γ |�Q ϕ,
if e(ϕ) = 1 whenever e(ψ) = 1 for all ψ ∈ Γ and for all evaluations e on every algebra A in the
quasivariety Q. A weaker notion of consequence companion of |� is the one called degree-preserving
logical consequence, where a formula ϕ follows from a set of formulas Γ , written Γ |�≤

Q
ϕ if

e(ϕ) ≥ a whenever e(ψ) ≥ a for all ψ ∈ Γ and for all evaluations e on every algebra A ∈ Q

and every element a ∈ A. This weaker notion of logical consequence, firstly introduced in [52],
has been further investigated in e.g. [6, 26, 27]. The point is that, as observed in [22] and unlike
the truth-preserving logics, the degree-preserving companions of a large class of fuzzy logics (i.e.
logics of varieties of prelinear residuated lattices), in particular those with an involutive negation,
are paraconsistent. Interestingly, this is also the case of Nelson logic and, more generally, the logics
of varieties of involutive residuated lattices. However, although the degree-preserving companions
of these logics are paraconsistent, they are not expressive enough to define a consistency connective
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Logics of formal inconsistency on dIRL 3

◦ in its own language (see [22, Corollary 2 and Example 2] and Remark 3.6 below), and hence
they are not LFIs. A further step was made in [19] where the authors introduce a wide class
of LFIs by first expanding (non pseudo-complemented) fuzzy logics with a consistency operator
while preserving the semi-linearity of the logics, and then considering their corresponding degree-
preserving companions.

Given all these antecedents, our initial aim was to follow a similar approach to [19] to expand
the language of Nelson logic by a primitive consistency connective ◦ and to add axioms and rules
encoding suitable postulates in such a way that the corresponding degree-preserving companion of
the logic arising in this way be an LFI. However, in doing so, we realized that, essentially, all the
definitions and results we got for Nelson logic and lattices, as underlying logical and algebraic
framework, remain valid for the more general framework of involutive, distributive (bounded,
commutative and integral) residuated lattices and their logics. Therefore, in this paper, we have
finally chosen to present our algebraic and logical results in this more general setting and only
particularize to Nelson logic when necessary.

The organization of this paper is as follows. In Section 2, the basic notions about varieties of
involutive residuated lattices and their logics are recalled. Section 3 contains the main algebraic
results and it is divided into three subsections, in each of which we will introduce a specific type of
consistency operator and we will present results concerning the so arising quasivarieties. In Section 4
we consider the particular case of Nelson lattices with a consistency operator, for which we prove
structural results and their relation to Heyting algebras with dual pseudocomplement. In particular,
in Subsection 4.2 we also present additional results on subdirectly irreducible and simple Nelson
lattices with a consistency operator. Section 5 considers the logical counterparts of the classes of
algebras studied in Section 3 and their associated LFI over the degree-preserving companions of the
former. In the last subsection of Section 5, we will point out that, besides being LFIs, our logics are
logics of formal undeterminedness1 (LFUs) as well, and we analyse the relationships between these
two notions. We conclude in Section 6 collecting some final remarks and our future work on the
topics of this paper.

2 Preliminary notions

Recall that a commutative, integral, bounded residuated lattice, which we will simply call residuated
lattice, is an algebra A = 〈A, ∧, ∨, ∗, →, 0, 1〉 of type (2, 2, 2, 2, 0, 0) such that 〈A, ∗, 1〉 is a
commutative monoid, 〈A, ∧, ∨, 0, 1〉 is a bounded lattice with least element 0 and greatest element 1
and such that the following residuation condition holds: x ∗ y ≤ z iff x ≤ y → z, where x, y, z denote
arbitrary elements of A and ≤ is the order given by the lattice structure. Since we assume the neutral
element of the monoid reduct coincides with the greatest element of its lattice reduct, we have that
x ≤ y iff x → y = 1.

It is well known that the class RL of residuated lattices forms a variety, which is related to
different and well-known varieties studied in substructural and fuzzy logics literature. In particular,
RL coincides with the variety of FLew algebras of [28]. According to the denotational conventions
of [28], FL refers to the ‘Full Lambek calculus’, which is the base system and associated algebras,
and subindices indicate several axiomatic extensions with properties such as exchange (e) or
weakening (w).

1A logic of formal undeterminedness is a paracomplete logic with a unary determinedness operator that controls the law
of the excluded middle, it is a sort of dual notion of an LFI [35].
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4 Logics of formal inconsistency on dIRL

A residuated lattice is called distributive if its lattice reduct is a distributive lattice, that is to say,
if it satisfies the distributivity equations:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (Dist)

The variety of distributive residuated lattices will be denoted by dRL.
A residuated lattice is called involutive if it satisfies the double negation equation:

∼∼x = x, (Inv)

where ∼x is x → 0. In every involutive residuated lattice, it is possible to prove that x ∗ y = ∼(x →
∼y) and x → y = ∼(x∗∼y). Clearly involutive residuated lattices form a variety that will be denoted
by IRL.2

The variety of distributive and involutive residuated lattices (dIRL algebras for short) will be
henceforth denoted by dIRL.

In this paper we will also consider some proper subvarieties of dIRL, in particular:

- The variety NL of Nelson residuated lattices, defined within IRL by the so-called Nelson
equation:

(((x ∗ x) → y) ∧ ((∼y ∗ ∼y) → ∼x)) → (x → y) = 1. (Nel)

- The variety IMTL of involutive monoidal t-norm based algebras (or IMTL-algebras for
short), which can be defined as the proper subvariety of IRL (and of dIRL) of those algebras
satisfying the prelinearity equation:

(x → y) ∨ (y → x) = 1. (Prel)

- The variety NM of nilpotent minimum algebras (or NM-algebras for short), which is identified
as proper subvariety of IMTL by the following equation:

(x ∗ y → 0) ∨ (x ∧ y → x ∗ y) = 1, (NM)

or equivalently, as shown in [7], the subvariety of NL of those algebras satisfying the
prelinearity equation.

Notice that Nelson, IMTL and NM algebras can be axiomatized directly within IRL without
explicitly requiring the distributivity equations to hold.

In Figure 1 we represent the graph of the above considered subvarieties of RL together with their
characteristic axioms.

2.1 Truth-preserving and degree-preserving logics of residuated lattices

The substructural logic that is complete with respect to the variety of (bounded, commutative,
integral) residuated lattices is the so-called Full Lambek calculus extended with exchange (com-
mutativity) and weakening (integrality), FLew, see e.g. [28].3 The language of FLew consists of
denumerably many propositional variables p1, p2, · · · , binary connectives ∧, ∨, &, → and the truth
constant ⊥. Formulas, which will be denoted by lower case greek letters φ, ψ , · · · , are defined by
induction as usual. Further connectives and constants are definable; in particular, ¬φ stands for

2In the literature, involutive residuated lattices have been called involutive FLew algebras (IFLew algebras), see e.g. [32],
and they are also known as the algebras of the affine linear logic without exponentials, see e.g. [5]. In this paper we shall
adopt the notation IRL algebras to denote them without danger of confusion.

3An equivalent system, called monoidal logic, was previously defined and studied by Höhle in [30].
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Logics of formal inconsistency on dIRL 5

FIGURE 1 Diagram of main varieties of algebras in this paper and their relationships.

φ → ⊥, � stands for ¬⊥ and ψ ↔ φ stands for (ψ → φ) ∧ (φ → ψ). A Hilbert-style calculus for
FLew has the following set of axioms:

Ax1. (φ → ψ) → ((ψ → γ ) → (φ → γ )),
Ax2. (γ → φ) → ((γ → ψ) → (γ → (φ ∧ ψ))),
Ax3. (ψ ∧ φ) → ψ , and Ax4. (ψ ∧ φ) → φ,
Ax5. ψ → (ψ ∨ φ), and Ax6. φ → (ψ ∨ φ),
Ax7. (ψ → γ ) → ((φ → γ ) → ((ψ ∨ φ) → γ )),
Ax8. (ψ&φ) → (φ&ψ),
Ax9. (ψ&φ) → ψ ,

Ax10. (ψ → (φ → γ )) → ((ψ&φ) → γ ),
Ax11. ((ψ&φ) → (ψ → (φ → γ )),
Ax12. ⊥ → ψ , and Ax13. ψ → �.

The only inference rule of FLew is modus ponens:

(MP)
ψ , ψ → φ

φ
.

The logic IRL of involutive residuated lattices is the axiomatic extension of FLew with the double
negation axiom

Ax14. ¬¬φ → φ,

and the logic dIRL of distributive and involutive residuated lattices is the axiomatic extension of IRL
with the following axiom:

Ax15. ϕ ∧ (ψ ∨ χ) → (ϕ ∧ ψ) ∨ (ϕ ∧ χ).
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6 Logics of formal inconsistency on dIRL

This paper will be mainly concerned with the logic dIRL and some of its axiomatic extensions.
Hence, distributivity will always be assumed to hold. In particular we will consider Nelson logic NL
obtained by extending dIRL by the Nelson axiom:

Ax16. (((ψ&ψ) → φ) ∧ ((¬φ&¬φ) → ¬ψ)) → (ψ → φ).

The logic IMTL, as introduced in [23], is the axiomatic extension of the logic MTL (the logic of the
variety of prelinear residuated lattices) with the axiom (Ax14) or, equivalently, obtained by extending
IRL by the prelinearity axiom:

Ax17. (φ → ψ) ∨ (φ → ψ).

Finally, the nilpotent minimum logic NM, introduced also in [23], is the axiomatic extension of IMTL
by the axiom

Ax18. (φ&ψ → ⊥) ∨ (φ ∧ ψ → φ&ψ).

Equivalently, NM can be obtained as the axiomatic extension of Nelson logic NL by the prelinearity
axiom.

We will denote by �L the notion of proof for each logic L ∈ {IRL, dIRL, IMTL, NL, NM} defined
as usual from the corresponding sets of axioms described above and the inference rule of Modus
Ponens (MP).

Each of these logics L is algebraizable (as all of them are axiomatic extensions of FLew), and thus
it has an equivalent algebraic semantics given by the corresponding variety of L algebras introduced
before, and which brings the same name. This means that the truth-preserving (finitary) consequence
relation |�L induced by the variety of L algebras, defined as

Γ |�L ϕ iff for every L algebra A and every A evaluation e,
if e(ψ) = 1 for every ψ ∈ Γ , then e(ϕ) = 1,

is such that �L is sound and complete w.r.t. |�L.
Moreover, for each such a logic L, in [6, 27] the authors introduce a companion logic denoted L≤,

whose associated consequence relation, which will be denoted as |�≤
L , has the following semantics:

for every set of formulas Γ ∪ {ϕ},
Γ |�≤

L ϕ iff for every L algebra A, every a ∈ A, and every A evaluation e,
if a ≤ e(ψ) for every ψ ∈ Γ , then a ≤ e(ϕ).

By obvious reasons, L≤ is known as the companion logic of L preserving degrees of truth, or the
degree-preserving companion of L. It is not difficult to show that L and L≤ have the same valid
formulas (i.e. |�L ϕ iff |�≤

L ϕ), and that, for every finite set of formulas Γ ∪ {ϕ}, the following
property holds:

Γ |�≤
L ϕ iff |�L Γ ∧ → ϕ,

where Γ ∧ means γ1 ∧ . . . ∧ γk if Γ = {γ1, . . . , γk} (when Γ is empty then Γ ∧ is taken as �).
As it regards to axiomatization, if L is an axiomatic extension of FLew, then the logic L≤ admits a

Hilbert-style axiomatization having the same axioms as L and the following deduction rules [6]:

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ

(MP-r) if �L ϕ → ψ , then from ϕ and ϕ → ψ , derive ψ
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Logics of formal inconsistency on dIRL 7

Note that (MP-r) is a restricted form of the Modus Ponens rule, as it is only applicable when ϕ → ψ

is a theorem of L. Thus, although L and L≤ share the same theorems, L≤ is in fact a weaker logic
than L.

If the set of theorems of L is decidable, then the above systems of axioms and rules provide a
recursive Hilbert-style axiomatization of L≤.

In the more general case of L being not an axiomatic extension but a finitary Rasiowa-implicative
expansion of FLew (i.e. L may have new inference rules and hence its algebraic semantics may be
a sub-quasivariety of RL), the definition of the degree-preserving companion L≤ keeps being the
same as above. However, the axiomatization needs to be tuned. Assume the new inference rules of L
are as follows:

(Ri) from Γi derive ϕi,

for i ∈ I . Then, following the same idea of [6, Th. 2.12], one can show the following generalized
result about the axiomatization of L≤.

PROPOSITION 2.1
Let L be an expansion of FLew, with the above set of new inference rules {(Ri)}}i∈I . Then L≤ is
axiomatized by the axioms of L, the inference rules (Adj-∧) and (MP-r) and the following restricted
inference rules:

(Ri-r) If �L Γi, then from Γi derive ϕi

for each i ∈ I .

The proof is completely analogous to the one in [6] in the context of expansions of MTL and it is
omitted.

3 Distributive involutive residuated lattices expanded by a consistency
operator

Paraconsistency is the study of logics having a negation operator ∼ that are not explosive with respect
to that negation; that is to say, logics for which there exists at least a formula φ such that the theory
{φ, ∼φ} does not entail any other formula. Therefore, a paraconsistent logic is a logic having at least
a contradictory but non-trivial theory.

Among the plethora of paraconsistent logics proposed in the literature, the LFIs (see, for instance,
[12, 13]) play an important role, since they internalize in the object language the very notion of
consistency4 by means of a specific connective, primitive or not. This generalizes the strategy of da
Costa, who introduced in [21] the well-known hierarchy of systems Cn, for n > 0. Brief ly said, LFIs
have a non-explosive negation ∼, as well as a (primitive or derived) consistency connective ◦, which
allows to recover the explosion law in a controlled way.

Let Σ be a propositional signature, which contains a negation ∼ and a primitive or defined unary
connective ◦, let V = {p1, p2, . . .} be a denumerable set of propositional variables and let L = 〈Σ , �〉
be a Tarskian, finitary and structural logic defined over Σ and V . Then, according to e.g. [12], we
have the following definition.

DEFINITION 3.1
L is said to be a LFI with respect to ∼ and ◦ if the following holds:

(i) ϕ, ∼ϕ � ψ for some ϕ and ψ ;

4A formula φ is named consistent in a paraconsistent logic when {φ, ∼φ} is an explosive theory.
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8 Logics of formal inconsistency on dIRL

(ii) there are two formulas α and β such that

(ii.a) ◦α, α � β;
(ii.b) ◦α, ∼α � β;

(iii) ◦ϕ, ϕ, ∼ϕ � ψ for every ϕ and ψ .

Moreover, in [12], the authors also consider the following stronger notion of LFIs.

DEFINITION 3.2
L is said to be a strong LFI with respect to ∼ and ◦ if the following holds:

(i) if p and q are two different propositional variables then

(i.a) p, ∼p �� q
(i.b) ◦p, p �� q
(i.c) ◦p, ∼p �� q

(ii) ◦ϕ, ϕ, ∼ϕ � ψ for every ϕ and ψ .

Our aim is to consider different possibilities of defining (strong) LFIs over the degree-preserving
logic companion of the logic dIRL. To this end, we will first study suitable expansions of dIRL
algebras by a new consistency operator ◦ in such a way that their degree-preserving companions are
LFIs. Actually, we will consider three different axiomatic definitions of varying strength. Similar
ideas of having LFIs over a degree-preserving logic companion of other class of algebras can be
seen in [19] and [11].

Let A be an involutive residuated lattice and let ◦ : A → A be a unary operation on A. With the
above goal in mind, we consider different properties we may ask to the ◦ operation in order to be a
suitable consistency operator.

It is clear that the minimal properties to require to ◦ to be a consistency operator are:

(◦0) ◦(1) = ◦(0) = 1
(◦1) x ∧ ∼x ∧ ◦(x) = 0

However, these properties turn out to be a weak specification in the sense that, for a given dIRL A,
one can define many operations satisfying the above sets of properties, in particular, one can always
define a minimal operation by letting ◦(x) = 0 for all x ∈ A \ {0, 1}. A natural way out is to require
that ◦ provides the maximum value in A such that (◦1) is satisfied and hence we can define ◦(x) to
be the max{z ∈ A | x ∧ ∼x ∧ z = 0}. In a sense, such an operator, if it exists, can be considered
as the least committed one satisfying (◦1). This is formally achieved by considering the following
additional requirement:

(◦2) if x ∧ ∼x ∧ y = 0 then y ≤ ◦(x)
Since Boolean elements are the prototypical examples of consistent and explosive elements,

another reasonable property one can further require to ◦ is to be a Boolean operator, that is to
say, that for each x ∈ A to require ◦(x) ∨ ∼◦(x) = 1. This can be achieved in at least two ways.

A first possibility is to define ◦(x) as the maximum, among the set B(A) = {x ∈ A | x∧∼x = 0} of
Boolean elements of A, satisfying the condition (◦1) above. In other words, to take ◦(x) = max{z ∈
B(A) | x ∧ ∼x ∧ z = 0}. This amounts to replace (◦2) by the following two new conditions:

(◦3) if x ∧ ∼x ∧ y = 0 and y ∧ ∼y = 0 then y ≤ ◦(x)
(◦4) ◦(x) ∨ ∼◦(x) = 1
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Logics of formal inconsistency on dIRL 9

A second possibility is to consider an operator ◦ such that ◦(x) is, at the same time, both the
max{z ∈ A | x ∧ ∼x ∧ z = 0} and a Boolean element. In fact this latter requirement differs from
max{z ∈ B(A) | x ∧ ∼x ∧ z = 0}. This is achieved by asking ◦ to satisfy the above conditions (◦0),
(◦1), (◦2) and (◦4).

Actually, in this paper, we will study expansions of involutive residuated lattices with these
three types of consistency operators ◦. Namely, besides satisfying (◦0) and (◦1), we will consider
operators:

(i) additionally satisfying (◦2), which we will call maximal consistency operators (max-
consistency operators for short), in Subsection 3.1;

(ii) additionally satisfying (◦3) and (◦4), which we will call maximal Boolean consistency
operators (maxB-consistency operators for short), in Subsection 3.2; and

(iii) additionally satisfying (◦2) and (◦4), which we will call Boolean and maximal consistency
operators (Bmax-consistency operators, for short), in Subsection 3.3.

As one can already anticipate, Bmax-consistency operators are those operators that are both max-
and maxB-consistency operators. We will formally show this in Subsection 3.3.

The following observations on congruences, filters and subdirect product decompositions will be
useful in the rest of the paper.

As is well known, an implicative filter of a (bounded) residuated lattice A is a subset F ⊆ A such
that 1 ∈ F and it is closed under modus ponens: x ∈ F and x → y ∈ F imply y ∈ F.5 For each
implicative filter F, the binary relation θ(F) defined by (x, y) ∈ θ(F) if and only if x → y, y → x ∈ F
is a congruence of the residuated lattice A, and F = {z ∈ A : (z, 1) ∈ θ(F)}. This is actually a one-
to-one correspondence between the lattice of congruences and the lattice of implicative filters for
the variety of bounded residuated lattices.

Moreover, since the classes of expansions of dIRLs with the above types of consistency operators
involve not only equations but also quasi-equations, we will also deal with quasivarieties. In a
quasivariety, congruences that allow for the decomposition of an algebra as a subdirect product
of subdirectly irreducible components are required to satisfy an additional condition: the quotient
of an algebra by a congruence has to belong to the quasivariety, see e.g. [42]. This condition is
automatically satisfied in varieties but not in quasivarieties. Congruences satisfying this condition
are usually called Q-congruences. Similarly, filters that are in a one-to-one correspondence between
Q-congruences are implicative filters ‘closed’ by the quasiequations of the quasivariety and are
called Q-filters.

3.1 Distributive involutive residuated lattices with max-consistency operators

We start by formally defining the first class of dIRLs with a consistency operator, namely with a
max-consistency operator.

DEFINITION 3.3
A dIRL with a max-consistency operator (a dIRLc algebra for short) is a pair (A, ◦) where A is a
dIRL and ◦ : A → A satisfies the following two conditions: for all x, y, z ∈ A,

(◦1) x ∧ ∼x ∧ ◦(x) = 0
(◦2) if x ∧ ∼x ∧ y = 0 then y ≤ ◦(x).

5Recall that an implicative filter of a residuated lattice A can be equivalently defined as a subset F ⊆ A such that 1 ∈ F
and is closed by the monoidal operation ∗ of the residuated lattice.
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10 Logics of formal inconsistency on dIRL

From the definition, it is clear that the class of dIRLc algebras is a quasivariety.
It is easy to check that conditions (◦1) and (◦2) faithfully capture the expected behavior max-

consistency operators as described above.

LEMMA 3.4
Let A be a dIRL algebra, and let ◦ be a unary operation on A. Then (A, ◦) is a dIRLc algebra iff, for
any x ∈ A, ◦(x) = max{z ∈ A | x ∧ ∼x ∧ z = 0}.
PROOF. Clearly, for a given x ∈ A, the set {z ∈ A | x ∧ ∼x ∧ z = 0} is closed by ∨, it has ◦(x) as an
upper bound by (◦2) and moreover ◦(x) belongs to that set by (◦1). �

Conditions (◦1) and (◦2) are also enough to ensure that condition (◦0) also holds in a dIRLc
algebra. This and other easy properties of dIRLc algebras are displayed in the next lemma.

LEMMA 3.5
The following properties hold in a dIRLc algebra (A, ◦):

(i) ◦(x) = ◦(∼x) = ◦(x ∧ ∼x) = ◦(x ∨ ∼x)
(ii) ◦(x) = 1 iff x is Boolean, in particular ◦(1) = ◦(0) = 1.

PROOF. (i) follows from Lemma 3.4 just noticing that ∼∼x = x, and ◦(1) = 1 follows from (◦2) by
taking x = y = 1. (ii) also follows from Lemma 3.4 by noticing that x ∧ ∼x = 0 for any Boolean
element x. �

As an example of a finite dIRLc algebra, let L = {0, a, b, c, d, e, f , 1} and consider the lattice
(L, ∧, ∨) represented in the upper part of Figure 2. Then the algebra L = (L, ∧, ∨, ∗, →, ∼, 0, 1),
where ∗ and ∼ are those specified in the tables of Figure 2 and where x → y = ∼(x ∗∼y), is a dIRL
(it is indeed a finite nilpotent minimum algebra) and (L, ◦) is a dIRLc algebra.

REMARK 3.6
It follows from Lemma 3.4 that if a max-consistency operator is definable in an involutive residuated
lattice it is uniquely determined. Moreover, it also follows that the max-consistency operator is
always definable in every finite involutive residuated lattice. However, it is not always the case in
infinite involutive residuated lattices. Actually, also according to Lemma 3.4 above, such an operator
is definable if and only if all elements of the involutive residuated lattice of the form x ∧ ∼x admit a
pseudo-complement. The following are examples of infinite dIRLs in which the consistency operator
cannot be defined.

(1) Let A be the an algebra over [0, 1]\{ 1
2 } with the nilpotent minimum operations: x∗y = min(x, y)

if x + y > 1 and x ∗ y = 0 otherwise; and ∼x = 1 − x. Let A+ = {x ∈ A | x > 1/2} and
A− = {x ∈ A | x < 1/2} be the sets of positive and negative elements of A respectively. Further, let B
be the nilpotent minimum subalgebra of A×A defined on the sublattice B = (A+×A+)∪(A−×A−).
Take an element (x, 1) ∈ B such that x ∈ A+. An easy computation shows that ◦((x, 1)) does
not exist.

(2) Let A be the 1-generated free MV algebra [17], i.e. up to isomorphism, the algebra of
continuous piecewise linear functions with integer coefficients form [0, 1] to [0, 1] and with
operations defined as follows: for all f , g ∈ A and for all x ∈ [0, 1],

(f ⊕ g)(x) = min{1, f (x) + g(x)} and ∼f (x) = 1 − f (x).

Consider the function f : [0, 1] → [0, 1] defined by the stipulation f (x) = 0 for all x ∈
[0, 1/3)∪(2/3, 1], while f (x) = min{3x−1, −3x+2} on [1/3, 2/3]. A direct computation shows that
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Logics of formal inconsistency on dIRL 11

FIGURE 2 A finite lattice of eight elements together with three operations ∗, ∼ and ◦.

∼f (x) = 1 for all x ∈ [0, 1/3) ∪ (2/3, 1] and f (x) = max{3x − 1, −3x + 2} on [1/3, 2/3] so that
f ≤ ∼f and hence f ∧ ∼f = f . Therefore the set {g ∈ A | f ∧ ∼f ∧ g = 0} = {g ∈ A | f ∧ g = 0}.
However, notice that sup{g ∈ A | f ∧ g = 0} is a function h : [0, 1] → [0, 1] such that h(x) = 0
for all x ∈ [0, 1/3) ∪ (2/3, 1] and h(x) = 1 for all x ∈ [1/3, 2/3] and hence it is not continuous and
hence it does not belong to A. As a consequence ◦(f ) is not definable.

Taking into account the observation above on filters in quasivarities, a Q-filter F of a dIRLc
algebra (A, ◦), besides being implicative, has to additionally satisfy the following two conditions:

(F1) if x → y, y → x ∈ F then ◦x → ◦y, ◦y → ◦x ∈ F,
(F2) if x ∨ ∼x ∨ ∼y ∈ F then y → ◦x ∈ F.

We shall call such a filter a ◦-filter. Note that from (F1) it follows in particular that ◦-filters are
closed by ◦: if x ∈ F then ◦x ∈ F as well. Since in every dIRLc algebra (A, ◦), ◦-filters bijectively
correspond to Q-congruences by the maps

F �→ ΘF = {(a, b) ∈ A × A | (a → b) ∧ (b → a) ∈ F}
and

Θ �→ FΘ = {a ∈ A | aΘ1},
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12 Logics of formal inconsistency on dIRL

we will henceforth say that a dIRLc algebra (A, ◦) is simple if it only has two Q-congruences, and
hence if it only has two (trivial) ◦-filters: {1} and A. Furthermore, a quasivariety of dIRLc algebras
will be said to be semisimple provided that all its subdirectly irreducible elements are simple in the
above sense.

LEMMA 3.7
Let A be a subdirectly irreducible dIRL and define ◦ : A → A as ◦(1) = ◦(0) = 1 and ◦(x) = 0
otherwise. Then (A, ◦) is a simple dIRLc algebra.

PROOF. Let us start by showing that ◦ defined as in the statement is a max-consistency operator.
First of all it is immediate to see that (◦1) holds, then let us hence show (◦2). To this end assume
that x ∧ ∼x ∧ y = 0, or equivalently that ∼(x ∧ ∼x ∧ y) = ∼x ∨ x ∨ ∼y = 1. Since A is subdirectly
irreducible, by [41, Theorem 4.1] one has that (∼x ∨ x) ∨ ∼y = 1 if either x ∨ ∼x = 1 or ∼y = 1.
If the former is the case, then x is Boolean. Since A is subdirectly irreducible, it is hence directly
indecomposable. Therefore, [33, Proposition 1.5] implies x ∈ {0, 1}. Then, by definition ◦(x) = 1,
whence necessarily ◦(x) ≥ y. Conversely, if ∼y = 1, then y = 0 ≤ ◦(x).

Finally assume, without loss of generality, that A contains at least an element x distinct from 0 and
1, for otherwise A would be the two element Boolean algebra and (A, ◦) would be obviously simple.
Furthermore, let F �= {1} be a ◦-filter of (A, ◦). Then F must contain x and since F is closed under
◦, by definition of ◦, ◦(x) = 0 ∈ F. Thus, F = A and (A, ◦) is simple. �

The next result provides a generalization to the case of dIRLc algebras of the well-known
result showing that a residuated lattice A is directly indecomposable iff B(A) = {0, 1}, see
[33, Proposition 1.5].

THEOREM 3.8
Let (A, ◦) be a dIRLc algebra. Then (A, ◦) is directly indecomposable iff B(A) = {0, 1}.
PROOF. The right-to-left direction is clear. Indeed, if (A, ◦) were product of two (or more) dIRLc
algebras, say (A1, ◦) and (A2, ◦), denoting by 11, 01 the top and the bottom elements of the first and
by 12, 02 the top and the bottom elements of the second, then (11, 12), (01, 02), (11, 02) and (01, 12)

would be four distinct Boolean elements of A contradicting the fact that B(A) = {0, 1}.
Hence, let us prove the left-to-right direction. First of all observe that if z ∈ B(A), for all x ∈ A

x ∧ z = x ∗ z. The proof is again by reduction ad absurdum. Assume there is z ∈ B(A) \ {0, 1}, and
let us see that [z) is a ◦-filter. It is clear that it is an implicative filter. Let us check that [z) satisfies
the conditions of a ◦-filter:

• First we prove that z ≤ (x → y), (y → x) implies z ≤ (◦x → ◦y), (◦y → ◦x). Since
z ≤ (x → y) we have x ∧ z = x ∗ z ≤ y since z is Boolean. Hence ∼y ≤ ∼(x ∧ z) = ∼x ∨ ∼z.
Also, since z ≤ y → x, we have y ≤ z → x. Then we have the following inequalities:
y ∧ ∼y ∧ (z ∧ ◦x) ≤ y ∧ (∼x ∨ ∼z) ∧ z ∧ ◦x = (y ∧ ∼x ∧ z ∧ ◦x) ∨ (y ∧ ∼z ∧ z ∧ ◦x) ≤
((z → x) ∧ ∼x ∧ z ∧ ◦x) ∨ 0 = ((z ∗ (z → x)) ∧ ∼x ∧ ◦x) ≤ x ∧ ∼x ∧ ◦x = 0.
Therefore, we have z ∧ ◦x ≤ ◦y, i.e. z ≤ ◦x → ◦y. Analogously, one can prove z ≤ ◦y → ◦x.

• Second, we prove that z ≤ x ∨ ∼x ∨ ∼y implies z ≤ y → ◦x. Note that x ∨ ∼x ∨ ∼y =
∼(x ∧ ∼x ∧ y). Then we have:
x ∧ ∼x ∧ (z ∧ y) = (x ∧ ∼x ∧ y) ∧ z = (x ∧ ∼x ∧ y) ∗ z ≤ (x ∧ ∼x ∧ y) ∗ ∼(x ∧ ∼x ∧ y) = 0.
Therefore, z ∗ y = z ∧ y ≤ ◦x, hence, z ≤ y → ◦x.

Analogously, we can prove that [∼z) is a ◦-filter. Then if B(A) \ {0, 1} is non-empty, there exists
z ∈ B(A)\{0, 1} and the ◦-filters [z) and [∼z) are such that [z)∩[∼z) = {1}, while the filter generated
by [z)∪ [∼z) contains z and contains ∼z and hence it contains z∧∼z = 0. Thus it coincides with the
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Logics of formal inconsistency on dIRL 13

entire A. Clearly, their associated Q-congruences, say Θz and Θ∼z, permute Θ∼z(Θz) = Θz(Θ∼z).
Indeed (a, b) ∈ Θ∼z(Θz) iff there exists c ∈ A such that (a → c) ∧ (c → a) ≥ z and (c →
b) ∧ (b → c) ≥ ∼z iff, by the commutativity of ∧ and the ref lexive property of congruences,
(b, a) = (a, b) ∈ Θz(Θ∼z). Thus, they form a nontrivial pair of complementary factor congruences
and (A, ◦) is not directly indecomposable. �

Thus, since every subdirectly irreducible algebra is also directly indecomposable, we also have
the following result.

COROLLARY 3.9
Let (A, ◦) be a subdirectly irreducible dIRLc algebra. Then B(A) = {0, 1}.

When the algebra A is finite or is a connected or disconnected rotation of a residuated lattice,
we can prove more. Connected and disconnected rotations of residuated lattices were studied by
Jenei in [31]. The paper [10] (see also [50]) studies varieties of algebras obtained as connected
or disconnected rotations of residuated lattices from a purely algebraic perspective. There, the
authors introduce a variety of algebras, denoted by IMVR3, whose directly indecomposable
elements are obtained as generalized 3-rotations (in the terminology of [10]) of residuated lattices.
Within directly indecomposable IMVR3 algebras, we can hence identify structures with a negation
fixpoint (corresponding to Jenei’s connected rotations) and structures without a negation fixpoint
(corresponding to Jenei’s disconnected rotations). As for distributivity, in [10, Remark 3.9], it is
observed that any IMVR3 algebra obtained as a generalized 3-rotation of a residuated lattice R
is distributive iff so is R. We will henceforth say that an algebra is a dIMVR3 algebra if it is
a distributive IMVR3 algebra and the corresponding variety will be denoted by dIMVR3. Thus,
every algebra of dIMVR3 is a commutative, integral, bounded, involutive and distributive residuated
lattice, i.e. dIMVR3 as a subvariety of dIRL.

By [10, Theorem 4.6], the domain of every directly indecomposable IMVR3 algebra A can be
partitioned in two sets,

A+ = {x : x ≥ ∼x} and A− = {x : x ≤ ∼x}.
Furthermore, every directly indecomposable IMVR3 algebra satisfies the following conditions: if
x ∈ A+ and y ∈ A−, then (1) x ≥ y and (2) y2 = y ∗ y = 0.

In what follows, dIRLc algebras (A, ◦) where A ∈ dIMVR3 will be called a dIMVR3c algebra.
The next theorem characterizes, in particular, those subdirectly irreducible dIRLc algebras (A, ◦)

in which A is either a finite or a dIMVR3c algebra. It is worth pointing out that the following
characterization does not hold in general for infinite structures. In subsection 4.2, we will give an
example of an infinite dIRLc algebra, which is subdirectly irreducible but not simple.

THEOREM 3.10
Let (A, ◦) be a finite dIRLc algebra or an arbitrary dIMVR3c algebra. Then the following conditions
are equivalent:

(i) B(A) = {0, 1},
(ii) (A, ◦) is a directly indecomposable dIRLc algebra,

(iii) (A, ◦) is a subdirectly irreducible dIRLc algebra,
(iv) (A, ◦) is a simple dIRLc algebra.

As a consequence, the quasivariety of dIMVR3c algebras is semisimple.

PROOF. Due to Theorem 3.8 and Corollary 3.9, we are left to prove only that (iii) implies (iv), since
(iv) implies (iii) in general.
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14 Logics of formal inconsistency on dIRL

In the case of A being finite, towards a contradiction, assume (A, ◦) is not simple. Hence, there
is a ◦-filter F such that F �= A and F �= {1}. Since A is finite, there is 0 < a ∈ A \ {1} such
that F = [a). Since F is a ◦-filter, ◦(a) ∈ F and thus it must be a ≤ ◦(a). But then we have
0 = a ∧ ∼a ∧ ◦(a) = a ∧ ∼a, i.e. a is Boolean, and hence B(A) �= {0, 1} and hence (A, ◦) is not
subdirectly irreducible by Corollary 3.9.

Assume now (A, ◦) is a subdirectly irreducible, and hence a directly indecomposable, dIMVR3c
algebra. We have to show that (A, ◦) is simple. By Theorem 3.8, (A, ◦) is directly indecomposable
iff B(A) = {0, 1}. Therefore, by [33, Proposition 1.5], A is directly indecomposable as a dIMVR3
algebra. Moreover, [10, Theorems 4.6] shows that if a dIMVR3 algebra A is directly indecomposable,
its domain, as mentioned above, can be expressed as A = A+ ∪ A−, where A+ = {x : x ≥
∼x} and A− = {x : x ≤ ∼x}, and satisfying x ≥ y whenever x ∈ A+ and y ∈ A−, and y2 = 0
for every y ∈ A−. Now, if x ∈ A+ then ∼x ∈ A− and thus, 0 = x ∧ ∼x ∧ ◦(x) = ∼x ∧ ◦(x),
from which it follows that ◦(x) ∈ A− as well, and hence (◦(x))2 = 0. Since any ◦-filter F of (A, ◦)

containing an element x �= 1 has to contain ◦(x) as well, it has to contain (◦(x))2 as well, i.e. F must
be such that 0 ∈ F. Therefore, F must be the whole algebra domain A. Thus, we have shown that
(A, ◦) is a simple dIRLc algebra. �

In the light of the Theorem 3.10 above, it is clear that the lattice of Figure 2 together with the
operations of the table of Figure 2 is an example of a finite dIRLc algebra whose Boolean elements
are 0 and 1, and hence it is directly indecomposable, subdirectly irreducible and simple.

3.2 Distributive involutive residuated lattices with a maxB-consistency operator

We now start considering consistency operators that map the elements of a dIRL algebra into Boolean
elements of the same. The next definition introduces dIRLs with a maxB-consistency operator.

DEFINITION 3.11
A dIRL with a maxB-consistency operator (or dIRLmB

c algebra for short) is a pair (A, ◦) where A is
a dIRL algebra and ◦ : A → A satisfies the following conditions: for all x, y, z ∈ A,

(◦1) x ∧ ∼x ∧ ◦(x) = 0
(◦3) if x ∧ ∼x ∧ y = 0 and y ∧ ∼y = 0, then y ≤ ◦(x)
(◦4) ◦(x) ∧ ∼◦(x) = 0

Again, from this definition, it follows that the class of dIRLmB
c algebras is a quasivariety.

Moreover, and similarly to the case of max-consistency operators, also now the conditions (◦1),
(◦3) and (◦4) capture the expected behavior of maxB-consistency operators as described at the
beginning of this Section 3.

LEMMA 3.12
Let A be a dIRL, and let ◦ be unary operation on A. Then (A, ◦) is an dIRLmB

c algebra iff, for any
x ∈ A,

◦ (x) = max{z ∈ B(A) | x ∧ ∼x ∧ z = 0}.

PROOF. Clearly, for a given x ∈ A, the set {z ∈ B(A) | x ∧ ∼x ∧ z = 0} is closed by ∨, it has ◦(x) as
an upper bound by (◦3) and moreover ◦(x) belongs to that set by (◦1) and (◦4). �

From the definition it is easy to prove the following properties of maxB-consistency operators.
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Logics of formal inconsistency on dIRL 15

TABLE 1 Two operators for the
Nelson lattice of Figure 2.

x �x ◦x

0 1 1
a 0 b
b 0 a
c 0 0
d 0 0
e 0 a
f 0 b
1 1 1

PROPOSITION 3.13
The following properties hold in a dIRLmB

c algebra (A, ◦):

(i) ◦(x) = max{z ∈ B(A) | z ≤ x ∨ ∼x}
(ii) ◦(x) = ◦(∼x) = ◦(x ∧ ∼x) = ◦(x ∨ ∼x)

(iii) ◦(x) = 1 iff x ∈ B(A), in particular ◦(1) = ◦(0) = 1
(iv) ◦◦(x) = 1.

Notice that if (A, ◦) is a dIRLc algebra and (A, �) is dIRLmB
c algebra, then from Lemmas 3.4

and 3.12 it is clear that �(x) ≤ ◦(x) for all x ∈ A.
In the nilpotent minimum algebra of Figure 2, the corresponding mB-consistency operator �

comes defined as �(0) = �(1) = 1 and �(x) = 0 otherwise. Since this is a different operation
from the operation ◦ in the table of Figure 2, it readily follows that the classes of dIRLc algebras and
dIRLmB

c algebras are different. Indeed, consider again the two unary operations in Table 1. It turns
out that (L, ◦) is a dIRLc algebra but not a dIRLmB

c algebra, while (L, �) is a dIRLmB
c algebra but

not a dIRLc algebra.

REMARK 3.14
Like in the case of a max-consistency operator over a dIRL algebra, a maxB-consistency operator, if
it exists, is unique. Actually, according to Lemma 3.12, the maxB-consistency operator ◦ is definable
on a dIRL if and only if all the elements of the form x ∧∼x have a minimum Boolean element above
them. Since the value of ◦(x) is a maximum of Boolean elements, ◦ is always definable in any dIRL
A such that B(A) is finite. However, the definability of the ◦ operator is not guaranteed when B(A)

is infinite.

In the quasivariety of dIRLmB
c algebras, the corresponding notion of Q-filter is that of an

implicative filter F further satisfying the following two conditions:

(F1) if x → y, y → x ∈ F then ◦x → ◦y, ◦y → ◦x ∈ F
(F3) if x ∨ ∼x ∨ ∼y ∈ F and y ∨ ∼y ∈ F then y → ◦x ∈ F.

We will call them ◦b-filters.
From this we can provide a characterization of subdirectly irreducible dIRLc algebras. To begin

with, we can observe that the same proof of Lemma 3.7 also applies to the case of dIRLmB
c
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16 Logics of formal inconsistency on dIRL

algebras with a unique atom and hence to all finite and subdirectly irreducible dIRL algebras with a
mB-consistency operator as well.

LEMMA 3.15
Let A be a subdirectly irreducible dIRL with a unique atom and define ◦ : A → A as ◦(1) = ◦(0) = 1
and ◦(x) = 0 otherwise. Then (A, ◦) is a simple dIRLmB

c algebra.

Moving from max- to maxB-consistency operators allows us to improve the results shown
in Theorem 3.8 and Theorem 3.10 and, as anticipated, to characterize all subdirectly irreducible
dIRLmB

c algebras.

THEOREM 3.16
Let (A, ◦) be a dIRLmB

c algebra, then the following conditions are equivalent:

(i) B(A) = {0, 1}
(ii) (A, ◦) is a directly indecomposable dIRLmB

c algebra

(iii) (A, ◦) is a subdirectly irreducible dIRLmB
c algebra

(iv) (A, ◦) is a simple dIRLmB
c algebra.

PROOF. That (iv) implies (iii) and (iii) implies (ii) is clear. It is hence left to show that (ii) implies (i)
and (i) implies (iv).

(ii) implies (i). The same proof of Theorem 3.8 applies.
(i) implies (iv). If B(A) = {0, 1} then a simple computation shows that ◦(0) = ◦(1) = 1 and

◦(x) = 0 otherwise since for all x ∈ A \ {0, 1}, x ∧ ∼x �= 0. Then every ◦b-filter F containing an
element x /∈ {0, 1} is equal to A and thus A is simple. �

As a direct consequence of this result we have the following corollary.

COROLLARY 3.17
The quasi-variety of dIRLmB

c algebras is semisimple.

3.3 Distributive involutive residuated lattices with a Bmax-consistency operator

Finally, in this subsection, we consider dIRLs expanded with a Bmax-consistency operator.

DEFINITION 3.18
A dIRL with a Bmax-consistency operator (or dIRLBm

c algebra for short) is a dIRLc algebra (A, ◦)

satisfying the additional condition: for all x ∈ A,

(◦4) ◦(x) ∨ ∼◦(x) = 1.

From the very definition, it is clear that the class of dIRLBm
c algebras constitutes a subquasivariety

of the quasivariety of dIRLc algebras.
We also have a characterization of Bmax-consistency operators similar to the case of max-

consistency operators with the obvious modification.

LEMMA 3.19
Let A a dIRL, and let ◦ be a unary operation on A. Then (A, ◦) is a dIRLBm

c algebra iff, for any
x ∈ A,

◦ (x) = max{z ∈ A | x ∧ ∼x ∧ z = 0} and ◦(x) ∧ ∼◦(x) = 0.
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Logics of formal inconsistency on dIRL 17

Actually, as anticipated, Bmax-consistency operators are just max-consistency operators that are
maxB-consistency operators as well.

LEMMA 3.20
The quasivariety of dIRLBm

c algebras is the intersection of the quasivariety of dIRLc algebras and
the quasivariety of dIRLmB

c algebras.

PROOF. Let (A, ◦) be a dIRLBm
c algebra. We have to show that ◦ is a maxB-consistency operator as

well. Since ◦(x) is Boolean, ◦(x) ∈ {z ∈ B(A) | x ∧ ∼x ∧ z = 0}, i.e. we also have ◦(x) = max{z ∈
B(A) | x ∧ ∼x ∧ z = 0}. Conversely, if ◦ is both a max- and maxB-consistency operator, then it is
clear that ◦(x) = max{z ∈ A | x∧∼x∧ z = 0} and that ◦(x) is Boolean, i.e. ◦ is a Bmax-consistency
operator. �

The following proposition collects basic properties of dIRLBm
c algebras.

PROPOSITION 3.21
For a given dIRLBm

c algebra (A, ◦) and x ∈ A, we have

(i) ◦◦(x) = 1.
(ii) ◦(x) = 1 iff x ∧ ∼x = 0 iff x is a Boolean element.

Again, an analogous result to Lemma 3.7 and Lemma 3.15 for dIRLc algebras and dIRLmB
c

algebras respectively also holds for dIRLBm
c .

LEMMA 3.22
Let A be a subdirectly irreducible dIRL algebra with a unique atom and let ◦ the unary operation on
A defined as ◦(1) = ◦(0) = 1 and ◦(x) = 0 otherwise. Then (A, ◦) is a simple dIRLBm

c algebra.

Since dIRLBm
c algebras are dIRLc algebras fulfilling the additional equation (◦4), the correspond-

ing notions of Q-filters and Q-congruences are the same, and we can obtain similar results as those
obtained for dIRLc algebras and dIRLmB

c algebras. In particular, the following result characterizes
subdirectly irreducible dIRLBm

c algebras.

THEOREM 3.23
Let (A, ◦) be a dIRLBm

c algebra, then the following conditions are equivalent:

(i) B(A) = {0, 1}
(ii) (A, ◦) is a directly indecomposable dIRLBm

c algebra
(iii) (A, ◦) is a subdirectly irreducible dIRLBm

c algebra
(iv) (A, ◦) is a simple dIRLBm

c algebra

PROOF. The same proof of Theorem 3.16 applies. �

3.4 The prelinear case: IMTL algebras

We now turn the attention to the particular case of prelinear dIRL algebras with a consistency
operator ◦. As shown in [23], involutive residuated lattices satisfying the prelinearity equation

(x → y) ∨ (y → x) = 1

are precisely the so-called involutive MTL algebras (or IMTL algebras for short). Let us start showing
a first result concerning IMTL algebras expanded by a Bmax-consistency operator.
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18 Logics of formal inconsistency on dIRL

LEMMA 3.24
Let A be a IMTL algebra that is not a chain. Then there are two elements x, y �= 1 such that x∨y = 1.

PROOF. If A is not a chain, let a, b two uncomparable elements. Then x = a → b and y = b → a
must be different from 1, and by prelinearity, x ∨ y = (a → b) ∨ (b → a) = 1. �

Let us call IMTLBm
c algebras those dIRLBm

c algebras (A, ◦) such that A is a IMTL algebra.

PROPOSITION 3.25
Let (A, ◦) be a IMTLBm

c algebra. Then the following statements are equivalent:

(i) B(A) = {0, 1}
(ii) A is an IMTL chain

(iii) (A, ◦) is a directly indecomposable IMTLBm
c algebra

(iv) (A, ◦) is a subdirectly irreducible IMTLBm
c algebra

(v) (A, ◦) is a simple IMTLBm
c algebra

PROOF. Thanks to Theorem 3.23 it is sufficient to prove the equivalence between (i) and (ii).
(i) implies (ii). By Theorem 3.23, B(A) = {0, 1}. By Lemma 3.24 if A is not a chain there exist

elements x, y �= 1 such that x ∨ y = 1. Moreover, x ∧ ∼x �= 0, since if x ∧ ∼x = 0 then x would
be a Boolean element, a contradiction with the assumption that x �= 1, 0. Moreover, x ∧ ∼x ∧ ∼y ≤
∼x ∧ ∼y = ∼(x ∨ y) = 0, and thus ◦(x) ≥ ∼y. Since B(A) = {0, 1} and ∼y �= 0, it follows that
◦(x) = 1, which contradicts the definition of ◦.

In order to prove that (ii) implies (i), let us show that (ii) implies (v) whence the result will follow
from Theorem 3.23. If A is an IMTL chain, then (v) obviously follows because, over a chain, ◦ is
defined as ◦(0) = ◦(1) = 1 and ◦(x) = 0 otherwise, and thus, a ◦-filter F that contains an element
x �= 1, 0 must contain ◦(x) = 0, hence F = A, whence (A, ◦) is a simple. �

Let us remark that Proposition 3.25 above does not apply to IMTL algebras expanded by max
and maxB-consistency operators. Indeed, consider the IMTL algebra A of Figure 2 expanded by
either its (unique) max or maxB-consistency operator ◦. By Theorem 3.10 and Theorem 3.16, (A, ◦)

is directly indecomposable, subdirectly irreducible, simple and B(A) = {0, 1}; however, its lattice
reduct is not totally ordered. Moreover, it is clear that the same finite algebra A does not admit a
Bmax-consistency operator, while on the other hand, it is always definable on a chain.

It is worth pointing out that Theorem 3.10 applies to this peculiar case and, in particular, to
those IMTLc algebra whose underlying IMTL algebra is either finite or is obtained as rotation of
a prelinear semihoop. The latter class of structures has been largely studied in [37].

Now, we turn our attention to the variety of IMTL� algebras that was defined in [19] and let us
analyse analogies and differences between them and IMTL algebras with a consistency operator ◦.
Indeed, in [19], the authors consider expansions of IMTL algebras with a consistency operator that,
to avoid a notational clash, we will denote here by �. The equations for � are stronger than the
ones we introduced in this paper and in fact they allow us to prove that the variety of IMTL� is
semilinear, that is to say, it is generated by its totally ordered members.

More precisely, a pair (A,�) is an IMTL� algebra if A is an IMTL algebra and the following
equations for � hold:

(B1) x ∧ ¬x ∧ �(x) = 0
(B2) �(x ↔ y) ≤ (�x ↔ �y)
(B3) �(x ∨ y) ≤ �(x) ∨ y
(B4) �(0) = �(1) = 1
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Logics of formal inconsistency on dIRL 19

The variety of IMTL� algebras is shown in [19] to be semisimple, and the simple IMTL� algebras
are those defined over IMTL chains, i.e. all IMTL� algebras are subdirect products of chains, and
chains are simple. As also shown in [19], if A is a IMTL chain, the unique � operator that makes
(A,�) an IMTL� algebra is the one defined as �(0) = �(1) = 1 and �(x) = 0 otherwise.
Hence IMTL�, dIRLc, dIRLmB

c and dIRLBm
c algebras over IMTL chains share the same consistency

operators.
The following is a consequence of Proposition 3.25.

COROLLARY 3.26
The class of IMTLBm

c algebras is a variety that coincides with the variety of IMTL� algebras. Thus,
both are semilinear and semisimple.

PROOF. Let us start showing that the quasivariety of IMTLBm
c algebras is indeed a variety. To this

end notice that by Proposition 3.25, the class of IMTLBm
c algebras is generated by its totally ordered

members. Moreover, following [19], for every IMTLBm
c algebra (A, ◦), the unary operation Δ :

A → A defined by Δ(x) = x ∧ ◦(x) coincides with the Baaz–Monteiro projection operator [4, 36].
These facts show that the algebraic logic of IMTLBm

c algebras is a Δ-core fuzzy logic in the sense
of [18] and hence, for every finite set of formulas {ψ1, . . . , ψk , φ}, it holds {ψ1, . . . , ψk} � φ iff
� (Δψ1 ∧ . . . ∧ Δψk) → φ (see [29, Theorem 2.4.14]). Algebraically, this means that every quasi-
equation describing IMTLBm

c algebras can be written equationally, whence it is indeed a variety.
Finally, the claim follows from Proposition 3.25 above. Indeed, both the variety of IMTLBm

c
algebras and the variety of IMTL� algebras are generated by its totally ordered members. We
already observed that, on IMTL chains, the unique Bmax-consistency operator ◦ coincides with
the �-operator: it maps all non-Boolean elements to 0, and 0 and 1 to 1. Thus the two varieties are
generated by the same structures and hence they coincide. �

In fact the previous result can be proved in a slightly more general setting. To this end consider
the semilinear extension of the quasi-varieties of dIRLc, dIRLmB

c and dIRLBm
c algebras. That is

to say the quasi-varieties obtained from the above ones by replacing (◦2) in Definition 3.3 by the
quasi-equation

(x ∧ ∼x ∧ y) ∨ z = 0 implies (y → ◦(x)) ∨ z = 1

and (◦3) in Definition 3.11 by

(x ∧ ∼x ∧ y) ∨ z = 0 and (y ∧ ∼y) ∨ z = 0 implies (y → ◦(x)) ∨ z = 1.

By general results it follows that every algebra in the semilinear extension of the quasi-varieties
of dIRLc, dIRLmB

c and dIRLBm
c algebras can be represented as a subdirect product of totally ordered

structures in the same classes [16]. Thus, the following corollary easily holds.

COROLLARY 3.27
The semilinear extensions of dIRLc, dIRLmB

c and dIRLBm
c algebras form varieties and they all

coincide with the variety of IMTL� algebras.

PROOF. Over a dIRL-chain, max, Bmax and maxB consistency operators coincide and therefore the
sub-quasivariety generated by them are the same and coincide with the variety of IMTL� algebras.

�
Nevertheless, there are IMTLc algebras that are not subdirect product of chains as the one in

Figure 2 that is simple, hence subdirectly irreducible, but it is not totally ordered. Therefore, the
quasi-varieties of IMTLc and IMTLmb

c algebras are not semilinear.
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20 Logics of formal inconsistency on dIRL

FIGURE 3 Diagram of main classes of algebras with a consistency operator we consider in this paper
and their relationships as expansions of dIRL.

Of course, the quasivarietiy of IMTLmB
c algebras is semisimple, but it is an open problem whether

the quasivarietiy of IMTLc algebras is semisimple or whether there exist subdirectly irreducible
algebras that are not simple, as in the general case of dIRL or NL algebras.

As a sort of summary, Figure 3 provides a graphical representation of the main quasivarieties of
algebras expanded with a consistency operator that we have considered in this section, where dashed
arrows stand for expansions and solid arrows denote extensions.

4 The particular case of Nelson lattices with a max-consistency operator

In this section we will focus on expansions of Nelson lattices by means of a max-consistency
operator. In particular we will take advantage of well-developed structural properties for these
algebras in terms of twist-products to both investigate more in details subdirectly irreducible
structures and also to show that Theorem 3.10 does not hold in the general setting of infinite
structures.6

Nelson lattices can be represented by means of Heyting algebras and their Boolean filters, that is
to say, filters F of a Heyting algebra H such that the quotient H/F is a Boolean algebra. This relation
has been investigated by several authors and main contributions in this sense have been provided by
Fidel [24], Vakarelov [51] and Sendlewski [46].

In the following two subsections, after some needed brief preliminaries, we are going to prove
similar representations for Nelson lattices expanded by consistency operators (Subsection 4.1) and,

6Twist-products have been developed also for, in general unbounded, involutive residuated lattices (see [9]). However,
these results, although being more general, do not lead to a complete representation of all (distributive) involutive residuated
lattices. Thus, here we preferred to restrict to Nelson lattices since in this setting we can obtain stronger results.
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Logics of formal inconsistency on dIRL 21

as anticipated in Subsection 3.1, we will also show more results on subdirectly irreducible algebras
(Subsection 4.2).

It is worth to notice that prelinear Nelson lattices precisely correspond to NM algebras and
moreover the twist-product preserves prelinearity. In other words, each NM algebra A can be
uniquely represented by a prelinear Heyting algebra G (aka a Gödel algebra) and a Boolean filter of
G [7, Theorem 6.19]. As a consequence, all the results of this section (with the clear exception of
the counterexample we show in Subsection 4.2) apply to NM algebras with a consistency operator.

Conforming to the previous notation, we will call NLc, NLmB
c and NLBm

c algebras to the Nelson
lattices expanded, respectively, with max-, maxB- and Bmax-consistency operators.

To start with, let us recall the following result, whose formulation is taken from [8].

THEOREM 4.1 ([46]).
Given a Heyting algebra H = (H , ∧, ∨, →H , 0, 1) and a Boolean filter F of H let

N(H, F) := {(x, y) ∈ H × H : x ∧ y = 0 and x ∨ y ∈ F}.
Then we have the following:

(i) N(H, F) = (N(H, F), ∨, ∧, ∗, →, ∼, 0, 1) is a Nelson lattice, where operations are defined
as follows:

(x, y) ∨ (s, t) = (x ∨ s, y ∧ t),

(x, y) ∧ (s, t) = (x ∧ s, y ∨ t),

(x, y) ∗ (s, t) = (x ∧ s, (x →H t) ∧ (s →H y)),

(x, y) → (s, t) = ((x →H s) ∧ (t →H y), x ∧ t),

∼(x, y) = (y, x),

1 = (1, 0),

0 = (0, 1).

(ii) If F1, F2 are Boolean filters of H, then N(H, F1) is a subalgebra of N(H, F2) if and only if
F1 ⊆ F2.

Following the tradition (see [8] for instance), we will include, for every Heyting algebra H, the
improper filter H among the Boolean filters of H. In what follows, the Nelson lattice N(H, H) will
be simply denoted by N(H).

The following result, independently proved by Fidel in [24] and by Vakarelov in [51], can hence
be stated as a corollary of Theorem 4.1 above.

COROLLARY 4.2
For every Nelson lattice A there is a Heyting algebra H such that A is isomorphic to a subalgebra
of N(H).

In what follows we will need a further requirement for the Boolean filter of a Heyting algebra
in order to extend the previous representation to Nelson lattices with consistency operators. Let
us hence recall from [45] that a unary operation � on a Heyting algebra H is called a dual
pseudocomplement, if the following equations are satisfied:

(D1) x ∨ �(x ∨ y) = x ∨ �y,
(D2) x ∨ �1 = x,
(D3) ��1 = 1.
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22 Logics of formal inconsistency on dIRL

In any Heyting algebra H, if the dual pseudocomplement of x ∈ H exists, then it is defined as

�x = min{z ∈ H | z ∨ x = 1}. (1)

Recall from [45] that in every Heyting algebra with dual pseudocomplement, congruences bijectively
correspond to normal filters, that is to say, implicative filters that satisfy the following further
requirement: if x ∈ F, then ¬�x ∈ F as well.

We will make use of the following easy result that is known in the literature, but we provide the
proof for the sake of self-containedness.

LEMMA 4.3
A filter F of a Heyting algebra H is Boolean iff every a ∈ H , a ∨ ¬a ∈ F.

PROOF. Assume that F is Boolean, and hence H/F is a Boolean algebra. Thus for all [a]F ∈ H/F,
[a]F ∨ ¬[a]F = [1]F , i.e. [a ∨ ¬a]F = [1]F and hence a ∨ ¬a ∈ F. Conversely, if a ∨ ¬a ∈ F for all
a ∈ H , the quotient H/F satisfies [1]F = [a ∨ ¬a]F = [a]F ∨ ¬[a]F for all a ∈ H . Therefore, H/F
is a Boolean algebra whence F is Boolean. �

4.1 Representation of Nelson lattices with consistency operators

Thanks to the representation of Nelson lattices in terms of Heyting algebras and Boolean filters,
if A = N(H, F) is a Nelson lattice and ◦ : A → A is a max-consistency operator, by virtue of
Lemma 3.4, ◦ can be equivalently reformulated in the following way: for all (a, b) ∈ A,

◦ (a, b) = max{(z, z′) ∈ A | a ∨ b ∨ z′ = 1}. (2)

Indeed, taking into account how the operations are defined in N(H, F) and that a ∧ b = 0, we have
the following chain of equalities:

◦(a, b) = max{(z, z′) ∈ A | (a, b) ∧ ¬(a, b) ∧ (z, z′) = (0, 1)}
= max{(z, z′) ∈ A | (a, b) ∧ (b, a) ∧ (z, z′) = (0, 1)}
= max{(z, z′) ∈ A | (a ∧ b ∧ z, b ∨ a ∨ z′) = (0, 1)}
= max{(z, z′) ∈ A | (0, a ∨ b ∨ z′) = (0, 1)}
= max{(z, z′) ∈ A | a ∨ b ∨ z′ = 1}.

We are now going to show a representation for NLc algebras in terms of Heyting algebras, Boolean
filters and the dual-pseudocomplement. First, we need to prove the following.

LEMMA 4.4
Let H be a Heyting algebra and let F be a Boolean filter of H. If the dual pseudo-complement of a∨b,�(a ∨ b), exists for all those a, b in H such that a ∧ b = 0 and a ∨ b ∈ F, then the max-consistency
operator ◦(a, b) exists in the Nelson lattice N(H, F) and ◦(a, b) = (¬d, d), where d = �(a ∨ b).

PROOF. Recalling the above equation (2), consider the set D = {(z, z′) ∈ N(H , F) | a ∨ b ∨ z′ = 1}.
It is clear that, by definition, if max D exists, then ◦(a, b) = max D. Besides, we can write D =
{(z, z′) ∈ H × H | z ∧ z′ = 0, z ∨ z′ ∈ F, a ∨ b ∨ z′ = 1}.

Now, for each z′ ∈ H such that a ∨ b ∨ z′ = 1, let us define Dz′ = {(z, z′) | z ∈ H , z ∧ z′ =
0, z ∨ z′ ∈ F}. Hence, it is clear that

D =
⋃

{Dz′ | z′ ∈ H , a ∨ b ∨ z′ = 1}
and Dz′ �= ∅ for each z′ ∈ H such that a ∨ b ∨ z′ = 1. Moreover, it is possible to prove that max Dz′
exists and max Dz′ = (¬z′, z′). Indeed, if (z, z′) ∈ Dz′ then (z, z′) ≤ (¬z′, z′) because, if (z, z′) ∈ Dz′
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Logics of formal inconsistency on dIRL 23

then z ∧ z′ = 0 and then, z ≤ ¬z′. Therefore, max Dz′ = (¬z′, z′). On the other hand, we can see
that max{max Dz′ | z′ ∈ H , a ∨ b ∨ z′ = 1} exists and equals (¬d, d), where, recalling Equation (1),
d = �(a∨b). Indeed, max{max Dz′ | z′ ∈ H , a∨b∨z′ = 1} = max{(¬z′, z′) | z′ ∈ H , a∨b∨z′ = 1}
= (¬ min{z′ | a ∨ b ∨ z′ = 1}, min{z′ | a ∨ b ∨ z′ = 1}) = (¬d, d), where d = �(a ∨ b).

Finally, we are going to show that max D exists and in fact max D = (¬d, d). We have to prove
the following two conditions:

(I) (¬d, d) ∈ D and (II) (f , g) ≤ (¬d, d) for any (f , g) ∈ D.
As for condition (I), we have to check that (i) ¬d ∧ d = 0, which is obvious, (ii) ¬d ∨ d ∈ F,

which follows from Lemma 4.3 and (iii) a ∨ b ∨ d = 1, which also follows because d = �(a ∨ b).
As for condition (II), assume (f , g) ∈ D. Then f ∧ g = 0, f ∨ g ∈ F and a ∨ b ∨ g = 1. From
f ∧ g = 0 it follows that f ≤ ¬g, and from a ∨ b ∨ g = 1 and (1) it follows that g ≥ �(a ∨ b) and
f ≤ ¬g ≤ ¬(�(a ∨ b)). Therefore, (f , g) ≤ (¬(�(a ∨ b)), �(a ∨ b)). �

Therefore, every NLc algebra can be represented as follows.

THEOREM 4.5
Every NLc algebra is of the form (N(H, F), ◦) where H is a Heyting algebra and F is a Boolean
filter of H such that the dual pseudo-complement exists in H for all the elements of F, and for all
(a, b) ∈ N(H , F), ◦(a, b) = (¬�(a ∨ b), �(a ∨ b)).

PROOF. Let us define G = {a ∨ b | a, b ∈ H , (a, b) ∈ A} = {a ∨ b | a, b ∈ H , a ∧ b = 0, a ∨ b ∈ F}
and let us prove that G = F. It is clear that, by definition of G, G ⊆ F. Now, let y ∈ F and write it
as y = y ∨ 0. Then, y ∧ 0 = 0 and that y ∨ 0 = y ∈ F, hence y ∈ G. Hence, F ⊆ G.

Therefore, by Lemma 4.4, if the dual pseudocomplement � exists for all x ∈ F, the max-
consistency operator ◦ exists in N(H, F) and it is in the form ◦(a, b) = (¬�(a ∨ b), �(a ∨ b)).
Conversely, if ◦ exists in N(H, F), then � exists for all a ∨ b ∈ G and hence it exists for all the
elements of the Boolean filter F by the previous argument. �

The last theorem shows under which conditions a Heyting algebra H and a Boolean filter F
of H induces an NLc algebra over the Nelson lattice N(H, F). It is clear that in every finite
Heyting algebra all the elements have a dual pseudocomplement, whence all the elements of
each of its Boolean filters also have. However, this might not be the case for infinite algebras.
In order to see an example, consider the infinite Heyting algebra H depicted in Figure 4. It
is clear that the element x1 does not have a dual pseudocomplement, while all other elements
do have. Then, take the implicative filter F = {yi : i ∈ N}. It is easy to see that F is
Boolean since the quotient algebra H/F is the Boolean algebra {0, 1}. Thus, although the dual
pseudocomplenet is not defined on the whole domain H , Theorem 4.5 ensures that (N(H, F), ◦) is a
NLc algebra.

The final result of this subsection is a direct consequence of Theorem 4.5 above and it extends
Sendewski’s Theorem (see Theorem 4.1 (ii)) to Nelson lattices expanded by a consistency operators.

THEOREM 4.6
Let H be a Heyting algebra and let F1, F2 be two Boolean filters of H. Then (N(H, F1), ◦) is a NLc
subalgebra of (N(H, F2), ◦) iff F1 ⊆ F2.

PROOF. It is an immediate consequence of Theorem 4.5 and of the fact that the value of ◦(a, b) only
depends on a and b. �

Let us close this subsection with a brief comment aimed at clarifying what is the situation for the
two remaining cases: NLmB

c and NLBm
c algebras.
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24 Logics of formal inconsistency on dIRL

FIGURE 4 A Heyting algebra that is not dually pseudo-complemented.

(1) As for NLmB
c algebras, it is easy to see that the Boolean range of the maxB-consistency

operator is characterized, in terms of twist product, by requiring in Theorem 4.5 that the dual
pseudocomplement � exists for all the elements of the Boolean filter F and, in addition, it maps
all elements of F into a Boolean element of H .

(2) As for NLBm
c algebras, on the other hand, we need to define a new unary operator on a

Heyting algebra H, which we denote by �b, called a Boolean dual pseudocomplement, defined by
the following condition: for all x ∈ H ,

�bx = min{z ∈ B(H) | x ∨ z = 1}.

Notice that, similarly to a dual pseudocomplement that assigns a Boolean value to an element of a
Heyting algebra, �b also ranges on the Boolean subalgebra B(H) of H. But notice that the operator�b need not always exist since, for a fixed x in a Heyting algebra H, the set {z ∈ B(H) | x ∨ z = 1}
might not have a minimum in B(H). Again, a variant of Theorem 4.5 holds for NLBm

c algebras
stating that if H is a Heyting algebra and is F a Boolean filter of H, �bx exists for all x ∈ F iff the
maxB-consistency operator ◦ exists in N(H, F). In case it exists, the Bmax-consistency operator ◦
is definable in N(H, F) as follows: for every (a, b), ◦(a, b) = (¬�b(a ∨ b), �b(a ∨ b)).

4.2 More on subdirectly irreducible and simple NLc algebras

In the light of the results of the previous subsection, we are now in position to add some results
on subdirectly irreducible NLc algebras. In particular this subsection is devoted to show that
Theorem 3.10 cannot be extended to infinite Nelson lattices with a max-consistency operator. To
this end, consider a Heyting algebra with dual pseudocomplement H = (H , ∧, ∨, →H , �, 0, 1)

and a normal Boolean filter FB of H (recall how normal filters are defined at the beginning
this section). Since H has a dual pseudocomplement, also FB has it as well, and hence the
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max-consistency operator ◦ can be defined on N(H, FB) as in Lemma 4.4: for all (a, b) ∈ N(H, FB),
◦(a, b) = (¬�(a ∨ b), �(a ∨ b)). Now define the following subset of N(H, F):

G = {(a, b) ∈ N(H, FB) | a ∈ FB}. (3)

Then the following holds.

LEMMA 4.7
The set G is a ◦-filter of (N(H, FB), ◦). Furthermore if FB is proper then so is G.

PROOF. Let us start showing that G is an implicative filter, and to this end let us prove that G is
closed under ∗. If (a, b), (a′, b′) ∈ G, then a, a′ ∈ FB, whence a ∧ a′ ∈ FB as well. Therefore,
(a, b) ∗ (a′, b′) = (a ∧ a′, (a →H b′) ∧ (a′ →H b)) ∈ G.

Second, let us prove that G satisfies conditions (F1) and (F2). As for the former, assume that
(a, b) → (a′, b′), (a′, b′) → (a, b) ∈ G and let us show that ◦((a, b) → (a′, b′)), ◦((a′, b′) →
(a, b)) ∈ G. For all (x, y), (z, k) ∈ N(H, FB), (x, y) → (z, k) ∈ G iff (x →H x′), (y′ →H y) ∈ FB,
therefore

a →H a′, b′ →H b, a′ →H b, b →H b′ ∈ FB.

In addition a∨b, a′∨b′ ∈ FB because (a, b), (a′, b′) ∈ N(H, FB), whence ¬�(a∨b), ¬�(a′∨b′) ∈ FB
since FB is normal. Therefore one immediately has (i) ¬�(a ∨ b) →H ¬�(a′ ∨ b′) ∈ FB and (ii)
¬�(a′ ∨ b′) →H ¬�(a ∨ b) ∈ FB. Furthermore, by hypothesis a ↔H a′, b ↔H b′ ∈ FB, whence
(iii) �(a ∨ b) ↔H �(a′ ∨ b′) ∈ FB. Therefore, ◦(a, b) → ◦(a′, b′) = (¬�(a ∨ b), �(a ∨ b)) →H
(¬�(a′ ∨ b′), �(a′ ∨ b′)) = (¬�(a ∨ b) → ¬�(a′ ∨ b′), ¬�(a ∨ b) ∧ �(a′ ∨ b′)) ∈ G by (i) and by
(ii) ◦(a′, b′) → ◦(a, b) ∈ G as well. Thus (F1) holds.

As for (F2), assume that (a, b) ∨ ¬(a, b) ∨ ¬(c, d) ∈ G, or equivalently by definition of G,
that a ∨ b ∨ d ∈ FB. Thus, in order to prove that (c, d) → ◦(a, b) ∈ G, we need to show (i)
c →H ¬�(a ∨ b) ∈ FB and (ii) �(a ∨ b) →H d ∈ FB. Now, since (a, b) ∈ N(H, FB), a ∨ b ∈ FB and
¬�(a ∨ b) ∈ FB because FB is normal. Therefore, c →H ¬�(a ∨ b) ∈ FB. As to prove (ii), notice
that every Heyting algebra satisfies ¬x∨y ≤ x →H y, and hence �(a∨b) →H d ≥ ¬�(a∨b)∨d ≥
¬�(a ∨ b) ∈ FB.

Finally, let us observe that if FB is proper, i.e. if {1} �= FB �= H , then by definition {1} �= G �=
N(H, FB) and hence G is proper as well. �
LEMMA 4.8
Let H be a Heyting algebra with dual pseudocomplement and FB a Boolean filter of H. Then, for
every proper ◦-filter G of N(H, FB), the set F(G) = {a ∈ FB | ∃b ∈ H , (a, b) ∈ G} is a proper
normal filter of H.

PROOF. The fact that F(G) is an implicative filter is immediate. Thus, let us assume that a ∈ F(G).
By definition, it means that (a, b) ∈ G for some b ∈ H . Since (a, b) ≤ (a, 0) and (a, 0) clearly
belongs to N(H, FB), (a, 0) ∈ F(G) as well. Therefore, ◦(a, 0) = (¬�a, �a) ∈ G because G is a
◦-filter, and hence ¬�a ∈ F(G) proving that F(G) is normal.

It is easy to see that if G is proper, then F(G) is proper as well. �
THEOREM 4.9
Let H be a Heyting algebra with dual pseudocomplement and FB a Boolean filter of H. Then G =
{(a, b) ∈ N(H, FB) | a ∈ FB} is a proper ◦-filter of (N(H, FB)) iff FB is proper and normal.
Furthermore, if FB is the minimal filter of H, then G is the minimal filter of N(H, FB).
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26 Logics of formal inconsistency on dIRL

PROOF. In the light of Lemma 4.7 and Lemma 4.8, in order to prove the first part of the claim,
it is enough to observe that if G is defined as in (3) and F(G) is as in Lemma 4.8, then indeed
F(G) = FB. Therefore, let us prove the last claim and assume that G is not minimal. Thus, let R be
a ◦-filter of N(H, FB) such that R ⊂ G. Then F(R) ⊂ F(G) = FB and FB would not be minimal, a
contradiction. �

As an application of this last result, let us now show that Theorem 3.10 fails for general infinite
structures, i.e. there exist NLc algebras that are subdirectly irreducible but not simple. To this end,
consider the following example that we have elaborated from an insight provided by Taylor in a
personal communication and that can be found in [49, Figure 8.1 of page 99].

EXAMPLE 4.10
Let Z = {ω} ∪ X ∪ Y being X = {xi : i ∈ N} and Y = {yi : i ∈ N} and the following diagram of the
partial order on Z:

.

Let us topologize X in the following manner: U ⊆ X is open iff either ω �∈ U or ω ∈ U and X \U
is finite. Topologize Y similarly. Therefore, U is open in Z if only if U ∩ X and U ∩ Y are open in
X and Y , respectively. Let H be the set of coplen upsets of Z. A direct computation shows those are
the following subsets of Z:

Type (1): subsets U not containing ω and containing finite subsets of elements of X and Y and
satisfying the condition that if yi ∈ U then xi, xi−1 ∈ U (in particular if y1 ∈ U then x1 ∈ U as the
particular case of i = 1).

Type (2): subsets U containing ω and containing all elements of X and Y except, at most, a finite
subset of them and satisfying the condition that if yi ∈ U then xi, xi−1 ∈ U .

Using the standard construction for Priestley duality is possible to see that H = (H , ∩, ∪, →H
, ¬, ∅, Z) is a Heyting algebra in which the dual pseudocomplementation � is indeed definable.
Moreover, let us observe the following facts:

• the pseudocomplement is defined as ¬D = D →H ∅.
• the atoms of H are the subsets {xi} for i ∈ N.
• the antiatoms of H are the subsets {ω} ∪ X ∪ (Y \ {yi}) for every i ∈ N.

As proved in [45], the congruences of H are in one-to-one correspondence with normal filters,
i.e. lattice filters F closed by a combination of the two pseudocomplementations, i.e. if U ∈ F, then
¬�(U) ∈ F.

By the result about Pristley duality we can prove that the normal filters of H are (i) the one
containing only the maximum {Z}, (ii) the one containing all subsets of type (2) and (iii) the full
algebra H. Then H has only three congruences that form a three element chain and thus it is
subdirectly irreducible but not simple.
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Logics of formal inconsistency on dIRL 27

In order to be self-contained let us sketch the proof of this fact:

(1) Compute the normal filter F generated by the antiatom D = {ω} ∪ X ∪ (Y \ {y1}). Since�D = {y1, x1} and ¬�(D) = {ω}∪X ∪(Y \{y1, y2}), we deduce that {ω}∪X ∪(Y \{y2}) ∈ F
and, recursively, we obtain that all antiatoms belong to F, and so F consists of all subsets of
type (2)

(2) Compute the normal filter generated by any subset of type (1). It is easy to see that it is the
full Heyting algebra.

(3) Then the set of congruences of H has exactly three congruences: the identity, the one
corresponding to the normal filter F and the full algebra.

Also notice that the normal filter F defined in (1) above is indeed Boolean, because an easy
computation shows that the quotient H/≡F is the two-element Boolean algebra.

Then let us consider the NLc algebra (N(H, F), ◦). Notice that N(H, F) = {(D, E) ∈ H × H :
D ∩ E = ∅, D ∪ E ∈ F} is indeed the set of pairs (D, E) such that D is of type (1) and E ⊆ ¬D.
By Theorem 4.9, the ◦-filters of (N(H, F), ◦) are the singleton {(Z, ∅)}, the set F = {(D, E) ∈
R(H , F) : D ∈ F} and the full Nelson lattice N(H, F). Thus the ◦-congruences of (N(H, F), ◦) form
a three-element chain and hence our NLc algebra is subdirectly irreducible but not simple.

REMARK 4.11
The residuated lattice of the last example is not an IMTL algebra, i.e. is not prelineal, it does not
satisfy the equation (x → y) ∨ (y → x) = 1 as the following example shows: take A = {xi} and
B = {xi−1}, two atoms of the Nelson lattice. Then an easy computation shows that

• A → B = {w} ∪ X ∪ Y \ {xi, yi, yi+1},
• A → B = {w} ∪ X ∪ Y \ {xi−1, yi, yi−1}.

Therefore, (A → B) ∨ (B → A) = {w} ∪ X ∪ Y \ {yi}, which is not the maximum of the lattice, and
thus the residuated lattice is not prelinear.

5 Adding consistency operators to the logic dIRL and its paraconsistent
companions
Let us recall from Section 2.1 the logic dIRL, the logic corresponding to the variety of dIRLs, that
can be presented as the axiomatic extension of FLew with the following axioms:

(Inv) φ → ¬¬φ,
(Dist) ϕ ∧ (ψ ∨ χ) → (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

and its degree-preserving companion dIRL≤. Since the residual negation ¬ in dIRL is involutive, and
hence it does not prove the pseudo-complementation axiom, i.e. ��NL ϕ ∧ ¬ϕ → ⊥, the logic dIRL≤

satisfies

ϕ, ¬ϕ ��dIRL≤ ⊥
and hence it is paraconsistent with respect to the residual negation ¬. However, dIRL≤ is not an LFI
since we cannot define, in its language, a consistency connective ◦ satisfying

◦ ϕ, ϕ, ¬ϕ �dIRL≤ ψ

for every ϕ and ψ . This has been the main motivation in the previous sections for the algebraic study
of expansions of dIRL algebras with suitable consistency operators. With this background, in this
section, we will consider the logical counterparts of those expansions, namely the expansion of the
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28 Logics of formal inconsistency on dIRL

logic dIRL with three classes of consistency operators ◦ whose degree-preserving companions will
turn out to be LFIs.

5.1 dIRL logic with a max-consistency operator

In this section we start by defining the expansion of the logic dIRL with a new connective ◦ whose
algebraic interpretation corresponds to a max-consistency operator.

DEFINITION 5.1
The logic dIRLc is the expansion of the logic dIRL in a language that incorporates a new unary
connective ◦ with the following additional axiom:

(A1) ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ)

and inference rules:

(CNG)
ϕ ↔ ψ

◦ϕ ↔ ◦ψ
(Max)

ϕ ∨ ¬ϕ ∨ ¬ψ

ψ → ◦ϕ .

Clearly, the axiom (A1) and the rule (Max) are the logical counterparts of conditions (◦1) and
(◦2) in dIRLc algebras, respectively, while the rule (CNG) enforces ◦ to be congruent w.r.t. logical
equivalence.

Some observations follow:

(i) Both ◦� and ◦⊥ are derivable in dIRLc, it suffices in (Max) to take ψ = � and then ϕ = �
(resp. ϕ = ⊥).

(ii) The rule of necessitation for ◦:
ϕ

◦ϕ

is also derivable. Indeed, assuming ϕ, we can derive ϕ → � and � → ϕ in dIRLc. As a
matter of fact, ϕ → � and ϕ → (ψ → ϕ) both are theorems of RL (and hence a theorem
of dIRLc a fortiori). Thus, ϕ �dIRLc ϕ ↔ �.

(ii) Now, by (CNG) with ψ = �, ϕ ↔ � �dIRLc ◦ϕ ↔ ◦� and since by the above (i) ◦� is a
theorem of dIRLc, by ◦ϕ ↔ ◦� and ◦� we get ◦ϕ by modus ponens.

LEMMA 5.2
The following derivabilities hold in dIRLc:

(i) ϕ ∨ ¬ϕ �dIRLc ◦ϕ

(ii) �dIRLc ◦ϕ → ¬ϕ ∨ ϕ

(iii) ϕ ∨ ¬ϕ ��dIRLc ◦ϕ

PROOF.

(i) It follows by using the rule (Max) with ψ = �.
(ii) Notice that in dIRLs the inequality ∼x ∨ y ≤ x → y holds true, and hence, since dIRL is

sound and complete with respect to dIRL algebras, (¬ϕ ∨ ψ) → (ϕ → ψ) is a theorem
in dIRL. Therefore, since ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ) is logically equivalent to ¬ϕ ∨ ϕ ∨ ¬ ◦ ϕ and,
by the previous observation, in dIRLc the latter logically implies ◦ϕ → ¬ϕ ∨ ϕ. Hence
dIRLc � ◦ϕ → ¬ϕ ∨ ϕ.

(iii) Direct from (i) and (ii). �
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Logics of formal inconsistency on dIRL 29

It is easy to check that, due to the presence of the rule (CNG) for ◦, dIRLc is a Rasiowa implicative
logic, hence it is algebraizable, and its equivalent algebraic semantics is given by the quasi-variety
of dIRLc algebras studied in Section 3.1.

PROPOSITION 5.3
dIRLc is strongly complete w.r.t. the class of dIRLc algebras.

Now, thanks to results on dIRLc algebras in Section 3.1, we can prove that dIRLc is a conservative
expansion of dIRL.

PROPOSITION 5.4
dIRLc is a conservative expansion of dIRL, i.e. if Γ ∪ {ϕ} is a set of formulas in the language of
dIRL, i.e. without the connective ◦, then Γ �dIRLc ϕ iff Γ �dIRL ϕ.

PROOF. The right-to-left direction is obvious. Thus, assume Γ ��dIRL ϕ, then there is a subdirectly
irreducible dIRL algebra A and an A evaluation of formulas e such that e(ψ) = 1 for all ψ ∈ Γ and
e(ϕ) < 1. By Lemma 3.7, the unary operation ◦ on A defined as ◦(1) = ◦(0) = 1 and ◦(x) = 0
otherwise makes (A, ◦) a simple dIRLc algebra. Then e can be extended in the obvious way to an
(A, ◦) evaluation e′ agreeing with e on the formulas not containing the connective ◦. Therefore, we
have e′(ψ) = 1 for all ψ ∈ Γ and e′(ϕ) < 1, i.e. Γ ��dIRLc ϕ. �

Now we move to the logic dIRL≤
c , the degree-preserving companion of the logic dIRLc.

DEFINITION 5.5
The degree-preserving companion of logic dIRLc is the logic dIRL≤

c defined by the following axioms
and rules:

• Axioms of dIRL≤
c are those of dIRLc

• Rules of dIRL≤
c are the following:

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ

(MP-r) if �dIRLc ϕ → ψ , then from ϕ and ϕ → ψ , derive ψ

(CNG-r) if �dIRLc ϕ ↔ ψ , then from ϕ ↔ ψ derive ◦ϕ ↔ ◦ψ

(Max-r) if �dIRLc ϕ ∨ ¬ϕ ∨ ¬ψ , then from ϕ ∨ ¬ϕ ∨ ¬ψ derive ψ → ◦ϕ.

We will denote by �≤
dIRLc

its corresponding notion of proof. By Proposition 2.1, this axioma-
tization is sound and complete w.r.t. the semantical consequence relation |�≤

dIRLc
, defined in the

obvious way.
Observe that the rules (MP-r), (CNG-r) and (Max-r) are restricted in the sense that the premises

are required to satisfy an extra condition, to be theorems of the logic.
Now we can check that dIRL≤

c is in fact a strong LFI in the sense of Definition 3.2.

PROPOSITION 5.6
The logic dIRL≤

c is a strong LFI w.r.t. the negation ¬ and the consistency operator ◦.

PROOF. By the above-mentioned completeness of dIRL≤
c w.r.t. |�≤

dIRLc
, it is enough to check the

conditions (i.a), (i.b), (i.c) and (ii) in Definition 3.2 for the semantical consequence relation |�≤
dIRLc

.
If p, q are two different propositional variables, then we have the following:

(i.a) any evaluation e such that e(p) > 0 and e(q) = 0 is such that e(p ∧ ¬p) > e(q) and hence
p, ¬p �|�≤

dIRLc
q;
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30 Logics of formal inconsistency on dIRL

(i.b) any evaluation e such that e(p) = e(◦p) = 1 and e(q) = 0 is such that e(p ∧ ◦p) > e(q), and
hence p, ◦p �|�≤

dIRLc
q;

(i.c) any evaluation e such that e(¬p) = e(◦p) = 1 and e(q) = 0 is such that e(¬p ∧ ◦p) > e(q),
and hence ¬p, ◦p �|�≤

dIRLc
q; and

(ii) any evaluation e is such that e(p ∧ ¬p ∧ ◦p) = 0 and hence p, ¬p, ◦p |�≤
dIRLc

⊥. �
In the context of LFIs, it is a desirable property to recover the classical reasoning by means of

the consistency connective ◦ (see [13]). Specifically, let CPL be classical propositional logic. If L
is a given LFI such that its reduct to the language of CPL is a sublogic of CPL, then a derivability
adjustment theorem (DAT) for L with respect to CPL is as follows: for every finite set of formulas
Γ ∪ {ϕ} in the language of CPL, there exists a finite set of formulas Θ in the language of L, whose
variables occur in formulas of Γ ∪ {ϕ}, such that

(DAT) Γ �CPL ϕ iff ◦(Θ) ∪ Γ �L ϕ.

When the operator ◦ enjoys the propagation property in the logic L with respect to a set X of classical
connectives, i.e. when

◦ ϕ1, . . . , ◦ϕn �L ◦#(ϕ1, . . . , ϕn),

for every n-ary connective # ∈ X and formulas ϕ1, . . . , ϕn built with connectives from X , then the
DAT takes the following, simplified form: for every finite set of formulas Γ ∪ {ϕ} in the language
of CPL,

(PDAT) Γ �CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ �L ϕ

where {p1, . . . , pm} is the set of propositional variables occurring in Γ ∪ {ϕ}.
In particular, checking whether dIRL≤

c satisfies the propagation property for the connectives X =
{⊥, ∧, &, →} amounts to check the following conditions:{ �dIRLc ◦⊥

�dIRLc (◦ϕ ∧ ◦ψ) → ◦(ϕ#ψ), for each binary # ∈ X .

In Proposition 5.8 below we will show that the operator ◦ of dIRLc satisfies the propagation
property with respect to all connectives of logic dIRL.7 Our proof is algebraic and for that we will
need the claims proved in the next lemma.

LEMMA 5.7
The following equations hold in the quasivariety of dIRLc algebras:

(i) x ∧ ∼x ∧ ∼y ∧ ◦(x ∨ (y ∧ z)) = 0
(ii) (x ∗ y) ∨ ((∼x ∨ ∼◦(x)) ∧ y) = y.

PROOF.

(i) By (◦1), we know that the equation (x ∨ y) ∧ ∼(x ∨ y) ∧ ◦(x ∨ y) = 0 holds, i.e. we have
(x∨y)∧∼x∧∼y∧◦(x∨y) = 0. But since x≤(x∨y) we also have that x∧∼x∧∼y∧◦(x∨y) = 0.
Now, by replacing y by y∧z in the former equation, we get x∧∼x∧∼(y∧z)∧◦(x∨(y∧z)) = 0,
and since ∼(y ∧ z) ≥ ∼y, we finally get x ∧ ∼x ∧ ∼y ∧ ◦(x ∨ (y ∧ z)) = 0.

7The proof of the propagation property for the monoidal conjunction and is in fact a re-elaboration of a proof found by
the automated theorem-prover Prover9 [34].
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(ii) We start from the equation x ∨ ∼x ∨ ∼ ◦ (x) = 1, we multiply by y in both sides and get the
following equations:
y ∗ (x ∨∼x ∨∼◦(x)) = y, (x ∗ y)∨ y ∗ (∼x ∨∼◦(x)) = y, y = (x ∗ y)∨ (y ∗ (∼x ∨∼◦(x))) ≤
(x ∗ y) ∨ (y ∧ (∼x ∨ ∼◦(x))) ≤ y ∨ y = y.
Hence (x ∗ y) ∨ (y ∧ (∼x ∨ ∼◦(x))) = y. �

PROPOSITION 5.8
The logic dIRLc satisfies the following conditions:

• �dIRLc ◦⊥, and
• �dIRLc (◦ϕ ∧ ◦ψ) → ◦(ϕ#ψ), for # ∈ {∧, ∨, &, →},

and thus, in dIRL≤
c the consistency connective ◦ satisfies the propagation properties w.r.t. all

connectives of the logic dIRL.

PROOF. The first condition is satisfied since ◦⊥ is a theorem of the logic, as observed above after
Def. 5.1. The proof is algebraic, so we have to prove that, for any dIRLc algebra (A, ◦), the following
condition holds: ◦(x) ∧ ◦(y) ≤ ◦(x#y), for all # ∈ {∧, ∨, ∗}. As for the lattice operations ∧ and ∨,
we have

◦(x ∧ y) = max{z | (x ∧ y) ∧ ∼(x ∧ y) ∧ z = 0}
= max(max{z | x ∧ y ∧ ∼x ∧ z = 0}, max{z | x ∧ y ∧ ∼y ∧ z = 0})
≥ max(max{z | x ∧ ∼x ∧ z = 0}, max{z | y ∧ ∼y ∧ z = 0})
= ◦(x) ∨ ◦(y) ≥ ◦(x) ∧ ◦(y).

◦(x ∨ y) = max{z | (x ∨ y) ∧ ∼(x ∨ y) ∧ z = 0}
= max(max{z | x ∧ ∼x ∧ ∼y ∧ z = 0}, max{z | y ∧ ∼x ∧ ∼y ∧ z = 0})
≥ max(max{z | x ∧ ∼x ∧ z = 0}, max{z | y ∧ ∼y ∧ z = 0})
= ◦(x) ∨ ◦(y) ≥ ◦(x) ∧ ◦(y).

Next, let us show that ◦(x) ∧ ◦(y) ≤ ◦(x ∗ y). By (◦2), it is enough to prove that (x ∗ y) ∧ ∼(x ∗ y) ∧
◦(x) ∧ ◦(y) = 0. To do so, by (i) of Lemma 5.7, we can start from the equation

u ∧ ∼u ∧ ∼v ∧ ◦(u ∨ (v ∧ t)) = 0,

and make the following substitutions: replace u by x ∗ y, v by ∼(x ∧ ◦(x)) and t by y, and get

x ∗ y ∧ ∼(x ∗ y) ∧ ∼(∼(x ∧ ◦(x))) ∧ ◦(x ∗ y ∨ (∼(x ∧ ◦(x)) ∧ y)) = 0,

i.e. x ∗ y ∧∼(x ∗ y)∧ x ∧◦(x)∧◦(x ∗ y ∨ (∼(x ∧◦(x))∧ y)) = 0. But x ∗ y ≤ x and by (ii) of Lemma
5.7, x ∗ y ∨ (∼(x ∧ ◦(x)) ∧ y) = y, and hence we finally get x ∗ y ∧ ∼(x ∗ y) ∧ ◦(x) ∧ ◦(y) = 0, as
claimed.

Finally, since by (ii) of Proposition 3.13, we have ◦(x) = ◦(∼x), and x → y = ∼(x ∗ ∼y), the
propagation property for →, i.e. ◦(x) ∧ ◦(y) ≤ ◦(x → y), directly follows as well. �

Finally, we are interested in investigating whether we can expect some form close to (PDAT) for
the logic dIRL≤

c . Next theorem provides a result in this direction showing that it is possible to recover
classical logic derivations inside the LFI logic dIRL≤

c .

THEOREM 5.9 (PDAT like for dIRL≤
c ).

Let Γ ∪ {ϕ} be a finite set of formulas in the language of CPL and let {p1, . . . , pm} the set of
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32 Logics of formal inconsistency on dIRL

propositional variables appearing in Γ ∪ {ϕ}. Then, there is a natural k > 0 such that

Γ �CPL ϕ iff Γ �≤
dIRLc

(

m∧
i=1

◦(pi))
k → ϕ.

PROOF. Assume Γ �CPL ϕ, or equivalently, �CPL Γ ∧ → ϕ. First of all, observe that we also have

{pi ∨ ¬pi i = 1, 2, . . . , m} �dIRL Γ ∧ → ϕ,

since the class of Boolean subalgebras of dIRLs is in fact the whole class of Boolean algebras.
Then by the local deduction-detachment theorem of dIRL, there is a natural k > 0 such that �dIRL
(
∧m

i=1(pi ∨ ¬pi))
k → (Γ ∧ → ϕ), and thus this theorem is also valid in dIRLc. But this implies, by

(iii) of Lemma 5.2, �dIRLc (
∧m

i=1(◦pi))
k → (Γ ∧ → ϕ) and hence Γ �dIRL≤

c
(
∧m

i=1 ◦(pi))
k → ϕ

as well.
Conversely, assume �dIRLc (

∧m
i=1(◦pi))

k → (Γ ∧ → ϕ), and let e be any evaluation on the
two-element Boolean algebra 2. Since 2 is a dIRLc algebra with ◦(0) = ◦(1) = 1, we have
e((

∧m
i=1 ◦pi)

k → (Γ ∧ → ϕ)) = 1. But then we necessarily have e(Γ ∧ → ϕ) = 1, because
e(

∧m
i=1 ◦pi) = 1. Therefore, Γ ∧ → ϕ is a CPL tautology and so Γ �CPL ϕ. �

Note that, in the above formulation of the PDAT theorem for dIRLc, the natural number k depends
on the formulas Γ ∪ {ϕ} involved, and hence it is not possible to fix such exponent k in advance.
However, if we replace the logic dIRLc by any of its axiomatic extensions L validating the n-potency
axiom

ϕn → ϕn+1

for some n, then one can be more precise and state the PDAT theorem for L≤
c : for any set of formulas

Γ ∪ {ϕ}, the following condition holds:

Γ �CPL ϕ iff Γ �≤
dIRLc

(

m∧
i=1

◦(pi))
n → ϕ.

In particular, when L is Nelson logic or its prelineal extension NM logic, which are 2-potent logics,
we can take n = 2 in the previous expression.

5.2 dIRL logic with a maxB-consistency operator

In this section we consider the logic dIRLmB
c corresponding to the quasivariety of dIRLmB

c algebras
and its paraconsistent degree preserving companion (dIRLmB

c )≤. The content is mostly parallel to
the previous section, only some details change. In particular we get a simpler PDAT theorem due to
the fact that the consistency connective is Boolean in this case.

DEFINITION 5.10
The logic dIRLmB

c is the expansion of the logic dIRL, in a language that incorporates a new unary
connective ◦, with the following additional axioms:

(A1) ¬(ϕ ∧ ¬ϕ ∧ ◦ϕ)

(A2) ◦ϕ ∨ ¬◦ϕ
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and inference rules:

(CNG)
ϕ ↔ ψ

◦ϕ ↔ ◦ψ (MaxB)
¬(ϕ ∧ ¬ϕ ∧ ψ), ψ ∨ ¬ψ

ψ → ◦ϕ .

Analogously to the case of dIRLc, thanks to Lemma 3.7, we also have that dIRLmB
c is a

conservative expansion of dIRL.
We can check now that dIRLmB

c keeps validating the same properties in Lemma 5.2 for dIRLc,
plus a new one.

LEMMA 5.11
The logic dIRLmB

c enjoys the following properties:

(i) ϕ ∨ ¬ϕ �dIRLmB
c

◦ϕ

(ii) dIRLmB
c � ◦ϕ → ¬ϕ ∨ ϕ

(iii) ϕ ∨ ¬ϕ ��dIRLmB
c

◦ϕ

(iv) dIRLmB
c � ◦◦ϕ.

PROOF. (i), (ii) and (iii) are as in Lemma 5.2. As for (iv), using (Max) with ψ = �, we have
¬(◦ϕ ∧ ¬◦ϕ) � ◦◦ϕ, but the premise is in fact Axiom (A2). �

Again, as in the case of the logic dIRLc, it is easy to check that, due to the (Cong) rule for
◦, dIRLmB

c is a Rasiowa implicative logic and hence it is algebraizable. The equivalent algebraic
semantics is now given by the quasi-variety of dIRLmB

c algebras.
We now introduce the degree-preserving companion of dIRLmB

c .

DEFINITION 5.12
The degree-preserving companion of logic dIRLmB

c is the logic (dIRLmB
c )≤ defined by the following

axioms and rules:

• Axioms of (dIRLmB
c )≤ are those of dIRLmB

c
• Rules of (dIRLmB

c )≤ are those of dIRL≤
c but replacing the rule (Max-r) by the following rule:

(MaxB-r) if �dIRLmB
c

¬(ϕ ∧ ¬ϕ ∧ ψ) and �dIRLmB
c

ψ ∨ ¬ψ , then from ¬(ϕ ∧ ¬ϕ ∧ ψ) and
ψ ∨ ¬ψ derive ψ → ◦ϕ

We will denote by �≤
dIRLmB

c
its corresponding notion of proof. As in the previous subsection,

by Proposition 2.1, this axiomatization of (dIRLmB
c )≤ is sound and complete w.r.t. the semantical

consequence relation |�≤
dIRLmB

c
, defined in the obvious way, and moreover (dIRLmB

c )≤ is a strong LFI

as well. The proof is the same of Proposition 5.6 and it is omitted.

PROPOSITION 5.13
The logic (dIRLmB

c )≤ is a strong LFI w.r.t. to the negation ¬ and the consistency operator ◦.

As in the case of the logic dIRLc, the ◦ connective in the logic dIRLmB
c nicely propagates through

the rest of connectives X = {⊥, ∧, ∨, &, →}. This is shown next, after a previous lemma, formally
similar to Lemma 5.8, but this one is much easier to prove.
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LEMMA 5.14
The following provability holds in dIRLmB

c :

ϕ ∨ ¬ϕ, ψ ∨ ¬ψ �dIRLmB
c

(ϕ#ψ) ∨ ¬(ϕ#ψ)

for every binary connective # ∈ X .

PROOF. Using a semantic argument, it holds since the binary connectives ∧, ∨, &, → are closed
under Boolean values in every evaluation over any dIRLmB

c algebra. �
PROPOSITION 5.15
dIRLmB

c satisfies the following conditions:

• �dIRLmB
c

◦⊥, and
• �dIRLmB

c
(◦ϕ ∧ ◦ψ) → ◦(ϕ#ψ), for every # ∈ {∧, ∨, &, →},

and thus, in (dIRLmB
c )≤ the consistency connective ◦ satisfies the propagation property w.r.t. all the

connectives in X = {⊥, ∧, ∨, &, →}.
PROOF. Straightforward from the above lemma, taking into account that, by (iii) of Lemma 5.11,
ϕ ∨ ¬ϕ ��dIRLmB

c
◦ϕ. �

This propagation property for ◦, together with the fact that ◦ϕ is a Boolean formula for any ϕ,
allows us to formulate the following PDAT theorem for (dIRLmB

c )≤ in simpler terms.

THEOREM 5.16 (PDAT for (NLmB
c )≤ ).

Let Γ ∪ {ϕ} be a finite set of formulas in the language of CPL and let {p1, . . . , pm} the set of
propositional variables appearing in Γ ∪ {ϕ}. Then

Γ �CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ �≤
dIRLmB

c
ϕ.

PROOF. The proof is essentially the same as in Theorem 5.9 for dIRL≤
c . The only difference is that

now (
∧m

i=1 ◦(pi))
n turns out to be equivalent to just

∧n
i=1 ◦(pi) since this is a Boolean formula, and

this conjunction can be moved back to the premise as the set of formulas {◦p1, . . . , ◦pm}. �

5.3 dIRL logic with a Bmax-consistency operator

Finally, we consider in this section the logic resulting from expanding the logic of dIRLs with a
Bmax-consistency connective and its paraconsistent degree-preserving companion. Both of them
are very similar to the case of maxB-consistency connective of previous section.

DEFINITION 5.17
The logic dIRLBm

c is the axiomatic extension of dIRLc with the following additional axiom:

(A4) ◦ϕ ∨ ¬◦ϕ.

It is clear that dIRLBm
c is thus algebraizable, with equivalent algebraic semantics given by the

quasivariety of dIRLBm
c algebras.

PROPOSITION 5.18
dIRLBm

c is strongly complete w.r.t the class of dIRLBm
c algebras.
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Actually, by definition, the logic dIRLBm
c is an extension of dIRLc, but it is also an extension of

dIRLmB
c , as the dIRLc’s rule (Max) is stronger than the dIRLmB

c ’s rule (MaxB), and hence the latter
is derivable in dIRLBm

c . As a consequence, all the properties that have been shown for dIRLc and
dIRLmB

c also hold for dIRLBm
c .

This has also impact on the properties of the corresponding degree-preserving companion of
dIRLBm

c .

DEFINITION 5.19
The degree-preserving companion of logic dIRLBm

c is the logic (dIRLBm
c )≤ defined as the axiomatic

extension of dIRL≤
c with the axiom (A4).

Of course, as in the previous cases, the logic (dIRLBm
c )≤ is a strong LFI (details are omitted).

Moreover, it follows that the consistency connective ◦ in (dIRLBm
c )≤ also satisfies the same

propagation properties and the same PDAT theorem as for (dIRLmB
c )≤.

THEOREM 5.20 (PDAT for (dIRLBm
c )≤).

Let Γ ∪ {ϕ} be a finite set of formulas in the language of CPL and let {p1, . . . , pm} be the set of
propositional variables appearing in Γ ∪ {ϕ}. Then, the following condition holds:

Γ �CPL ϕ iff {◦p1, . . . , ◦pm} ∪ Γ �≤
dIRLBm

c
ϕ.

5.4 Logics of formal undeterminedness

In this final subsection, we would like to emphasize that the logics dIRL≤
c , (dIRLmB

c )≤ and (dIRLBm
c )≤

are not only LFIs but also Logics of Formal Undeterminedness (LFUs), the latter being introduced
in [35].

LFUs are in a sense dual to LFIs, since in the same way that a consistency operator in an LFI
controls the explosion in the presence of a contradiction, a ‘determinedness’ operator ◦ in an LFU
controls the law of the excluded middle, namely: given a paracomplete logic L, i.e. such that ��L
ϕ ∨ ∼ϕ, if ◦ is a determinedness operator in L, then ◦ϕ �L ϕ ∨ ∼ϕ. More formally, we have the
following definition.

DEFINITION 5.21
Let L = 〈Σ , �〉 be a Tarskian, finitary and structural logic defined over a signature Σ with a
disjunction ∨, a negation ∼ and a primitive or defined unary connective ◦. Then L is said to be
a LFU with respect to ∼ and ◦ if the following holds:

(i) � ϕ ∨ ∼ϕ, for some ϕ;
(ii) there is a formula ϕ such that

(ii.a) ◦ϕ � ϕ;
(ii.b) ◦ϕ � ∼ϕ;

(iii) ◦ϕ � ϕ ∨ ∼ϕ, for every ϕ.

It turns out that, as we will formally show below, the consistency operator ◦ of any of the logics
dIRLc, dIRLmB

c and dIRLBm
c is a determinedness operator as well, and hence all these explosive

logics are LFUs. Moreover, this is also the case for the paraconsistent logics dIRL≤
c , (dIRLmB

c )≤

and (dIRLBm
c )≤. This is clear for the explosive logics dIRLc, dIRLmB

c and dIRLBm
c due to (i) of
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36 Logics of formal inconsistency on dIRL

Lemma 5.2, but also for the logics (dIRLmB
c )≤ and (dIRLBm

c )≤ since in these logics ◦ϕ is a Boolean
formula. It is not so obvious in the case of the logic dIRL≤

c , where checking condition (iii) above

◦ϕ �≤
dIRLc

ϕ ∨ ∼ϕ,

amounts to check the validity of the inference

�dIRLc ◦ϕ → ϕ ∨ ∼ϕ.

But this follows from observing that the formula (∼δ ∨ γ ) → (δ → γ ) is a theorem in dIRL, and
that ∼◦ϕ ∨ (ϕ ∨ ∼ϕ) is a theorem of dIRLc, as it is an equivalent rewriting of the axiom (A1).

In algebraic terms, we can analyse the above observations as follows: if a operator ◦ on a dIRL
algebra satisfies the basic equation we imposed for a consistency operator, i.e.

(◦1) x ∧ ∼x ∧ ◦(x) = 0

then the following inequality is valid as well:

(◦d) ◦(x) ≤ x ∨ ∼x.

As a matter of fact, we have the following lemma.

LEMMA 5.22
Let A be a dIRL algebra and let ◦ : A → A be a unary operation. Then (◦1) implies (◦d).

PROOF. In every residuated lattice x ∗ y ≤ x ∧ y and hence, by (◦1), one has ◦(x) ∗ (x ∧ ∼x) ≤
◦(x) ∧ (x ∧ ∼x) = 0 and hence ◦(x) ≤ ∼(x ∧ ∼x). By the involutive property of ∼, then, ◦(x) ≤
∼(x ∧ ∼x) = x ∨ ∼x. Therefore, it is clear that (◦1) implies (◦d). �

This means in particular that all the three logics dIRL≤
c , (dIRLmB

c )≤ and (dIRLBm
c )≤, besides being

LFIs, are LFUs as well. In other words, these logics are strict LFIUs, as coined in [14]. Therefore,
in these logics, the operator ◦ is in fact a classicality operator in the sense of Omori in his recent
paper [40].

On the other hand, the other implication (◦d) implies (◦1) does not hold in general, since (◦d) is
equivalent to ◦(x) ∗ (x ∧ ∼x) = 0, which, in general, is strictly weaker than (◦1). However, it indeed
holds true if we require ◦(x) be Boolean.

LEMMA 5.23
Let A be a dIRL algebra and let ◦ : A → A be a unary operation such that the following equation
holds:

◦(x) ∨ ∼◦(x) = 1

Then (◦d) implies (◦1).

PROOF. It follows by easily checking that the following equations hold in any dIRL algebra: x →
(x ∧ y → x ∗ y) = 1 and ¬x → (x ∧ y → x ∗ y) = 1, and hence the equation (x ∨ ¬x) → (x ∧ y →
x ∗ y) = 1 holds as well. Therefore, if ◦(x) ∨ ∼◦(x) = 1, then we have ◦(x) ∧ y → ◦(x) ∗ y = 1,
for every y. In particular, taking y = x ∧ ∼x, we get ◦(x) ∧ (x ∧ ∼x) → ◦(x) ∗ (x ∧ ∼x) = 1, i.e.
◦(x) ∧ (x ∧ ∼x) ≤ ◦(x) ∗ (x ∧ ∼x), as desired. �

Therefore, being LFI turns out to be equivalent to being LFU if we replace (◦1) by (◦d) in the
logics (dIRLmB

c )≤ and (dIRLBm
c )≤, but not in (dIRLc)

≤.
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6 Concluding remarks

In this paper we have been concerned with introducing LFIs upon the class of substructural logics
having subvarieties of dIRLs as algebraic semantics. To do so, we have first introduced and studied,
from an algebraic point of view, dIRLs expanded with three suitable types of consistency operators.
Particular attention has been paid to the subvariety of Nelson lattices. Then, the corresponding truth-
preserving and degree-preserving logics have been axiomatized, the latter being paraconsistent and
falling within the class of LFIs.

At this point there are several observations we deem interesting to discuss. The first one concerns
with our request for the involutive lattices to be distributive. In fact, although distributivity is
quite often a necessary request (see for instance the proofs of Theorem 3.8 and Theorem 5.9)
it is questionable if similar results could be obtained getting rid of that property. Besides being
more general, avoiding distributivity might frame the results of this paper in the setting of affine
linear logic without exponentials of which (not necessarily distributive) involutive residuated lattices
provide an algebraic semantics.

The second one is in fact an open problem. In Section 4.2 we have shown an example of dIRLc
algebra (in fact a NLc algebra) that is subdirectly irreducible but not simple. It would be interesting
to know whether there exists a subdirectly irreducible IMTLc algebra that is not simple as well.

The third observation concerns the status of the modus ponens rule in the logics dIRL≤
c , (dIRLmB

c )≤

and (dIRLBm
c )≤. By the very definition of degree-preserving logics, modus ponens is not a valid rule

in any of them, only a restricted version where the implication is a theorem holds. However, in the
logics (dIRLmB

c )≤ and (dIRLBm
c )≤, due to the PDAT theorems for them (Theorems 5.16 and 5.20

resp.), it is clear that assuming the propositions involved are consistent guarantee the validity of the
following modus ponens-like inference:

{ϕ, ϕ → ψ , ◦ϕ, ◦ψ} � ψ .

The situation in the logic dIRL≤
c is different, as even this weaker form of modus ponens is not valid.

Indeed, take the dIRLc algebra L depicted in Figure 2 and an evaluation e on L such that e(ϕ) = e and
e(ψ) = a, and hence e(◦ϕ) = ◦(e) = b and e(◦ψ) = ◦(a) = b. A simple computation also shows
that e(ϕ → ψ) = c. Then we have e(ϕ)∧e(ϕ → ψ)∧e(◦ϕ)∧e(◦ψ) = e∧c∧b∧b = b �≤ a = e(ψ).
Therefore,

{ϕ, ϕ → ψ , ◦ϕ, ◦ψ} ��≤
dIRLc

ψ .

Nevertheless, such a ‘witnessed form’ of modus ponens holds in dIRL≤
c if we replace the residual

implication ϕ → ψ by the material implication ¬ϕ ∨ ψ . In fact, using axiom (A1), it is not difficult
to check that ϕ ∧ (¬ϕ ∨ ψ) ∧ ◦ϕ ∧ ◦ψ is logically equivalent to ϕ ∧ ψ ∧ ◦ϕ ∧ ◦ψ , which logically
implies ψ . Therefore, the following pattern of inference

{ϕ, ¬ϕ ∨ ψ , ◦ϕ, ◦ψ} �≤
dIRLc

ψ

is indeed valid in dIRL≤
c .

We finish with two further questions for future research. We have seen that, in the prelinear
case, the quasivarieties of IMTLmB

c and IMTLBm
c algebras are in fact varieties, since in these

algebras the Baaz–Delta connective Δ is definable as Δ(x) = x ∧ ◦(x). Thus, a first question to
be investigated is whether the quasivarieties of dIRLc, dIRLmB

c and dIRLBm
c algebras are actually

varieties or, otherwise, proper quasivarieties. A second question is to study an alternative way of
defining LFIs related to dIRL logics without relying on the degree-preserving companions. The idea
would be to start from the work by Busaniche and Cignoli [8] on the algebraic characterization of
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the paraconsistent Nelson logic N4 in terms of a certain variety of non-integral involutive residuated
lattices with a constant, and try to generalize it to the logic dIRL, and then adding a suitable
consistency operator.
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