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Abstract. In this paper we present the computational model of Arg2P,
a logic-based argumentation framework for defeasible reasoning and agent
conversation particularly suitable for explaining agent intelligent be-
haviours. The model is reified as the Arg2P technology, which is pre-
sented and discussed both from an architectural and a technological per-
spective so as to point out its potential in the engineering of intelligent
systems. Finally, an illustrative application scenario is discussed in the
domain of computable law for autonomous vehicles.

Keywords: Arg2P · intelligent systems engineering · explainable in-
telligent systems · logic-based technology · argumentation · defeasible
reasoning · multi-agent systems

1 Introduction

Intelligent systems nowadays can be generally understood as socio-technical
systems composed of human and artificial agents, computational and physical
artefacts, as well as institutions and norms regulating interactions among het-
erogeneous components. The design of intelligent socio-technical systems calls
for non-trivial social and organisational concepts and techniques, typically bor-
rowed from the field of agents and multi-agent systems (MAS henceforth) [54].
În particular, agreement technologies [55] enable intelligent interaction among
autonomous agents aimed at promoting cooperation and collaborative activities
within intelligent systems—such as dialogue, negotiation, argumentation.

Given their their long-term connection with MAS [12, 49], logic-based tech-
nologies have a role to play in that context, in particular when dealing with
interaction—both human-to-agent and agent-to-agent [52]. More specifically,
logic-based agreement technologies can work as a general framework for defeasi-
ble reasoning and agent conversation, where argumentation plays a central role
⋆ Roberta Calegari and Giovanni Sartor have been supported by the H2020 ERC
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[15]. Argumentation is particularly relevant in the legal context [16], especially
when intelligent agents are required not just to agree upon some conclusion, but
also to make their reasoning understandable to humans and other agents—to
explain themselves [18].

However, speaking of logic-based technologies can be tricky here: to the best
of our knowledge, a logic-based technically-mature environment for argumenta-
tion in intelligent systems – both agent-based and accounting for legal aspects –
is not available today [13]. This is why in this work we present the Arg2P tech-
nology3 and its computational model, based on the formal model and its proof
already discussed in [21].4 In order to fit the most advanced application scenarios
for intelligent systems – such as pervasive intelligent systems, or the Internet of
Intelligent Things (IoIT) [3] – the Arg2P framework is specifically designed ac-
cording to the definition of micro-intelligence [53, 11], whose key features are (i)
customisation of the inference methods to be exploited opportunistically in an
integrated and easily-interchangeable way, (ii) situatedness – i.e., the awareness
and reactiveness to the surrounding environment, such as the normative context
– and, (iii) ability to act at the system micro-level, so as to be easily injectable
in disparate contexts and architectures.

Our work here builds over our previous contribution [56], where we discussed
an early prototype of the Arg2P system. First of all, the Arg2P model is extended
to integrate all the major features of the ASPIC+ framework—since previous
versions did not support strict knowledge and exploited a more limited set of
preferences orderings. The implementation has been vastly improved—to cite
just one specific improvement, the query-based mode of the engine has been
completely re-designed for the sake of efficiency. Moreover, here we focus the
discussion on the purposes of the engine, by giving a practical demonstration of
its potentialities in a hypothetical application scenario.

In line with the micro-intelligence definition, the Arg2P framework is a
general-purpose inference engine offering a number of diverse reasoning capa-
bilities – not just defeasible reasoning – to be easily exploited for agent-based
intelligent systems within a wide range of different applications scenarios, as dis-
cussed in [16]. Moreover, its modular architecture offers a neutral ground upon
which different technologies can be integrated to improve the explainability of
intelligent systems. For this reason, in this paper we choose as our running ex-
amples the computable law and legal aspects of autonomous vehicles, as this
allows the relevant aspects of Arg2P to be highlighted in a hot-topic literature
case study [29]. Clearly, a full discussion of the requirements for the specific ap-
plication scenario is out of the scope of this work: so, far from being exhaustive,
the discussion of the application scenario is only illustrative for the purposes of
the engineering of explainable intelligent systems with argumentation.

The work is structured as follows. Section 2 overviews the available tech-
nologies in the argumentation field while introducing the motivations that led

3 http://arg2p.apice.unibo.it
4 For formal accounts and model integration in MAS, which are out of the scope of

this paper, please refer to [17, 19–21, 50, 16].
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to the creation of the Arg2P engine. Section 3 discusses the formal foundations
of the framework, while Section 4 focuses on the framework from an algorith-
mic perspective. Section 5 discusses the architecture and the engine interface;
then, Section 6 reifies the model into a suitable argumentation language for
the operational use of the tool, whereas Section 7 discuss technological details.
Section 8 discusses our running example of computable law and legal aspects
of autonomous vehicles [29] showcasing Arg2P potential in the engineering of
intelligent systems. Section 9 provides for the final remarks.

2 Related works & motivations

Over the last twenty years, argumentation has become increasingly central in
AI research. On the one side, the exploitation of elements from logic and for-
mal deductive reasoning has provided a powerful foundation for computational
models in complex AI settings. On the other side, many significant directions
pursued in recent years have broadened the scope – and brought about new issues
and challenges – of argumentation in AI. In the last decade we have witnessed
a shift in emphasis within computational models of argumentation in AI that
moves from formalisms rooted in classical deductive reasoning towards models
that propose computational foundations to account for the dialogical aspects of
the argumentation process. If, on the one hand, these features make argumen-
tation particularly attractive to applications requiring distributed intelligence,
autonomous components, and synchronous interaction, many open challenges
remain to be faced, both theoretical – such as conceptual integrity and global
model consistency – and pragmatical—such as computational efficiency.

Since a comprehensive survey of existing trends and works in the field is out-
side the scope of this paper, in the following we just recap the main computa-
tional models reified as available technologies that emerged over the last decades.
Our purpose here is (i) to highlight the main features and the limitations of ex-
isting models and technologies when dealing with open and highly-distributed
AI systems, and (ii) to position the Arg2P technology in the research context.
For a more thorough discussion on the subject, we forward the interested reader
to some recent works such as [6] and [25].

2.1 Abstract argumentation

The recent landscape of computational argumentation dates back to Dung’s
foundational work on abstract argumentation theory [35]. Most of the research
efforts in the area have dwelled in the development of technologies based on the
original Dung’s work. Among the others, notable examples are ArguLab [57]
– exposing a direct implementation of labelling algorithms and aimed at the
application in the context of MAS –, ASPARTIX [37] – based on an answer
set programming (ASP) encoding of the argumentation problem –, ConArg [9]
– a constraint-based framework –, and µ-toksia [51]—based on SAT-solver and
winner of the last ICCMA competition. Generally speaking, this strand of works
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focuses on the issues of complexity and efficiency intrinsic to argumentation
theory. Recently, the International Competition on Computational Models of
Argumentation (ICCMA)5 has contributed to increase the general interest in
those sorts of problems.

However, the abstract argumentation perspective is strongly biased towards
a view wherein the overall aim of argumentation is about deciding the status
of some claim and providing a justification for it, where the nature of “justifi-
cation” is often tailored to some logical reasoning process. Generally speaking,
argumentation is seen there as a somewhat one-sided process in which a single
party merely presents a reasoned justification to a given claim. In many ap-
plications scenarios this can be enough, as for instance in decision-support or
explanation-driven systems [7]. However, a generally-acknowledged objection to
these sorts of approaches is that they totally fail to embrace the dialectical na-
ture of argumentation as a full-fledged discourse and debate, which mostly fits
real-world application scenarios—such as the legal ones. There, argumentation
is seldom a matter of a single party defending a claim: instead, it is usually an
informed exchange of ideas and positions involving many different contributors.
It is then perhaps surprising that the significant computational exploitation of
well-established models for dialogue within philosophical, rhetorical, and linguis-
tic analyses is just a relatively-recent phenomenon.

Although originally explored to a limited extent as a means for interacting
with expert systems, the significant factor motivating nowadays the computa-
tional use of dialogue methods in argumentation can be found in supporting
MAS applications, where the structured argumentation approach [8] seems to
be most appropriate [45]. Indeed, abstract argumentation provides for a formal
model that can hardly be separated from the data structures – that is, their
representation and their interaction with the surrounding context – in real con-
texts. In fact, the application scenario heavily affects the dialogue and its out-
come. Abstract models – and related tools – remain however interesting from the
foundational perspective: efficient solvers can be exploited and integrated into
structured contexts where the dialogue-based interaction of the argumentative
process plays a more visible role.

2.2 Structured argumentation

In the field of structured argumentation, technological developments have not
grown as fast as theoretical ones. Different models and approaches can be found,
and a standard has not emerged yet. Moreover, technology reification is often
neither up-to-date nor easily reachable. In general, works in this area can be
categorised based on two main features: (i) their operation – namely, Dung’s re-
duction or structural reasoning – and (ii) their reference model—namely, DeLP
[40], Carneades [43], ABA [62], and ASPIC [50]. Dung’s reduction labels those
systems performing a mapping from the structured knowledge to an abstract
framework in order to decide the admissibility of the arguments. On the other
5 http://argumentationcompetition.org
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hand, structural reasoning tools do not exploit Dung’s model: instead, they im-
plement other algorithms to set the state of the arguments. In the following we
briefly highlight the main features of each category.

DeLP. DeLP is the oldest one, and comes with a reference implementation6, also
available on the Tweety library.7 However, the tool is quite aged and lays unmain-
tained on the website. The DeLP computational model is inherently structural,
but contains many limitations in terms of abstraction, in particular when com-
pared to the other models. Other interesting extensions have been proposed in
the years [1, 2], but no mature implementation has emerged.

Carneades. The Carneades technology exposes an implementation of its model
[44] offering both Dung’s abstract reasoning and structural reasoning.8 From a
technological point of view, it is one of the best solutions that can be found.
Written in Go 9 and with a recent implementation (even though not recently
updated), Carneades is distributed as a web application and allows evaluations
both in terms of Dung’s model and according to their structured evaluator.
Carneades represents a very promising technology: yet, further efforts should be
devoted to make it practical and effective within the aforementioned challenging
AI context.

ABA. In the ABA category one can find both systems belonging to the struc-
tural reasoning strand – such as proxdd [61], abagraph [31] and grapharg [32]10 –
and to the abstract reductionist strand—such as ABAplus11 and [47]. ABAplus
[4] exploits ASPARTIX as its abstract solver, and offers a pure propositional lan-
guage to encode the knowledge: it does not deal with preferences over rules, and it
only supports preferences over assumptions. Structural reasoning tools leverage
the dispute derivations algorithm, an efficient algorithm to avoid the construc-
tion of the entire argumentation graph in the evaluation of the acceptability of
an argument. Overall, it represents a promising framework for AI applications,
even though not reified in a ready-to-use technology for AI pervasive MAS—in
short, the tool is just a prototype.

ASPIC. Finally, ASPIC is one of the most flexible frameworks – in terms of the
abstraction it provides – in the structured argumentation area and for sure the
most widely known: it allows for the representation of all the main argumen-
tation abstractions and provides all the most common semantics for argument
evaluation. A number of works demonstrate how others models can be reformu-
lated as an ASPIC instantiation [50, 41, 39]. The main implementations available

6 http://lidia.cs.uns.edu.ar/delp\_client/
7 http://tweetyproject.org/
8 http://carneades.fokus.fraunhofer.de/carneades/
9 http://golang.org/

10 http://robertcraven.org/proarg/
11 http://www-abaplus.doc.ic.ac.uk/
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(Toast) [60] is based on an abstract reductionist approach exploiting Dung-O-
Matic12 as its base solver. There have been some attempts to perform structural
reasoning in MAS exploiting ASPIC: among the others, notable examples are
Argue tuProlog [10] and the ASPIC Argumentation Engine13; yet, the resulting
technologies can be classified as just proofs of concept.

2.3 Arg2P motivations

Overall, from a technological perspective, many improvements are required in
order to make existing tools really usable and effective in a distributed environ-
ment, as well as properly documented and easily deployable. For these reasons,
a new trend has recently emerged in the argumentation field, also in relation
to explainability. For instance, [48] discusses how a direct declarative approach
based on ASP can be developed, whereas [24] – implementing [22] – shows how
argument-based entailment can be brought closer to human intuition, by propos-
ing the use of formal discussion as a bridge technology.

In this lively panorama Arg2P lays its roots by sharing most of the motiva-
tions behind the aforementioned technologies, yet putting some more emphasis
on the pervasive scope and interoperability requirements. In particular, the tool
is designed according to the structured argumentation theories discussed above
and provides well-defined semantics for defeasible reasoning and dialogue in open
and dynamic systems.

Arg2P is largely inspired by the aforementioned technologies and methods:
it ensures complete adherence to existing formal models and well-founded se-
mantics and revisits some existing algorithms for the sake of efficiency. However,
with respect to existing tools and technologies, Arg2P aims at stressing its ex-
ploitability in complex systems—in particular the pervasive ones. This is why it
is designed around the concept of micro-intelligence [11]: there, the very foun-
dation of the tool is not to act as a monolithic oracle, but as a lightweight tool
for injecting intelligence and argumentation capabilities into the system when
and where needed.

Moreover, argumentation and defeasible reasoning are not the only facets of
the engine. In fact, in the very essence of the concept of micro-intelligence, there
is the possibility of customising the inference method (easily interchangeable)
according to the contingent application needs. Based on the notion of ecosystem
of logic-based mechanisms as provided by its technical foundation (tuProlog/2P-
Kt [28]), the design of Arg2P as a logic-based technology offers a huge advantage,
where logic programming (LP) itself can become the joining link for diverse ex-
tensions of logic (as deduction, abduction, argumentation, just to name a few)
while ensuring conceptual integrity of the whole framework. Accordingly, it is
designed and developed so as to meet the requirements of observability, inter-
pretability, explicability, accountability, and trustability. Given the requirement
of easy integration with existing AI techniques, the technological aspect is of
12 http://arg-tech.org/index.php/projects/dung-o-matic/
13 http://webspace.science.uu.nl/~prakk101/aspic/
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paramount importance in Arg2P, leading to the selection of highly-interoperable
languages for the implementation. Also, Arg2P is based on a modular architec-
ture allowing for system openness and ease of extension. Finally, the framework
is implemented according to current development practices of continuous inte-
gration and continuous delivery (CI/CD). Overall, Arg2P advances the state of
the art both by offering novel implementation of legal concepts fully integrated
into an inference and argumentation engine – such as the burdens of proof –
and by providing a ready-to-use general purpose argumentation technology for
AI applications adhering to the micro-intelligence concept and based on current
software engineering standard practices.

3 Model

This section summarises the main staples of the model. An extensive discussion
on the theoretical model is out of the scope of this work, which focuses instead
on the computational and technological aspects of the Arg2P engine. In the
remainder of this section we present just the main aspects of the model, which
are needed in order to understand the computational model and the technology
described in the subsequent sections—for further details on the specific features
of the model we defer readers to [19–21].

Arg2P is a modular rule-based argumentation system enabling representa-
tion, reasoning, and argumentation upon conditional norms, featuring obliga-
tions, prohibitions, and (strong or weak) permissions also according to burdens
of persuasion constraints. The approach is based on common constructs of argu-
ment in computational models that lay their root in Dung’s abstract argumen-
tation [35] and structured argumentation [8].

Given an argumentation graph, the sets of arguments that are accepted or
rejected – that is, those arguments that will survive or not to possible attacks
– are computed according to semantics. For our purposes, here we leverage on
labelling semantics [5]. Accordingly, we endorse {IN, OUT, UND}-labellings where
each argument is associated with one label that is either IN, OUT, or UND, respec-
tively meaning that the argument is accepted, rejected, or undecided. Language
and semantics are extended for dealing with deontic extension and burdens of
proof. In the following a recap of formal accounts of the model is provided.

3.1 Defeasible theories & arguments

Let a literal be an atomic proposition or its negation.

Notation 1 For any literal ϕ, its complement is denoted by ϕ̄. That is, if ϕ is
a proposition p, then ϕ̄ = ¬p, while if ϕ is ¬p, then ϕ̄ is p.

Literals are brought into relation through strict and defeasible rules.
Strict rules are rules in the classical sense: whenever the premises are indis-

putable (e.g., axioms), so is the conclusion.
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Definition 1 (Strict rule). A strict rule r has the form: ρ : ϕ1, ..., ϕn → ψ
with 0 ≤ n, and where

– ρ is the unique identifier for r, denoted by N(r);
– each ϕ1, . . . ϕn, ψ is a literal;
– ϕ1, . . . ϕn are denoted by Antecedent(r) and ψ by Consequent(r).

A strict rule is an expression indicating that if ϕ1, . . . ϕn hold, then without ex-
ception it holds that ψ. Axioms are defined via strict rules with no Consequent(r).

Defeasible rules are rules that can be defeated by contrary evidence.

Definition 2 (Defeasible rule). A defeasible rule r takes the form: ρ :
ϕ1, ..., ϕn,∼ ϕ′1, ...,∼ ϕ′m ⇒ ψ with 0 ≤ n,m′, and where

– ρ is the unique identifier for r, denoted by N(r);
– each ϕ1, . . . ϕn, ϕ′1, ..., ϕ′m, ψ is a literal;
– ϕ1, . . . ϕn,∼ ϕ′1, ...,∼ ϕ′m are also denoted as Antecedent(r) while ψ as Consequent(r);
– ∼ ϕ denotes the weak negation (negation by failure) of ϕ: ϕ is an exception

that would block the application of the rule whose antecedent includes ∼ ϕ.

Generally speaking, a set of Rules representing the knowledge is composed of
the following disjoint subsets:

– Axm a set of axioms, defined via strict rules with no Consequent(r)
– NonAxm a set of non-axiom premises (i.e., the ordinary defeasible premises),

defined via defeasible rules with no Consequent(r)
– StrictRules a set of strict rules
– DefRules a set of defeasible rules

i.e., Rules = {Axm ∪ NonAxm ∪ StrictRules ∪ DefRules}.
A superiority relation ≻ is defined over rules: s ≻ r states that rule s prevails

over rule r.

Definition 3 (Superiority relation). A superiority relation ≻ over a set
of rules Rules is an antireflexive and antisymmetric binary relation over Rules,
i.e., ≻⊆ Rules×Rules.

A theory consists of a set of rules and a superiority relation over defeasible rules
and premises.

Definition 4 (Theory). A defeasible theory is a tuple ⟨Rules,≻⟩ where
Rules is a set of rules and ≻ is a superiority relation over DefRules ∪ NonAxm.

Arguments are built from axioms and premises as well as from strict and defea-
sible rules. Given a defeasible theory, by chaining rules from the theory we can
construct arguments, as specified in the following definition; cf. [50, 23, 63].

Definition 5 (Argument). An argument A constructed from a defeasible the-
ory ⟨Rules,≻⟩ is a finite construct of the form:

1. A : A1, . . . An →r ϕ or
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2. A : A1, . . . An ⇒r ϕ

with 0 ≤ n, where

– A is the argument’s unique identifier;
– A1, . . . , An are arguments constructed from the defeasible theory ⟨Rules,≻⟩;
– all the axioms and non-axioms of a defeasible theory used to build the argu-

ment are called premises and are denoted by Prem(A);
– ϕ is the conclusion of the argument, denoted by Conc(A);
– DefRules(A) is the set of defeasible rules exploited to build argument A;
– DefRules(A) = DefRules(A1) ∪ . . . ∪ DefRules(An)

and

1. r : Conc(A1), . . . ,Conc(An) → ϕ is the top rule of A, denoted by TopRule(A)
or

2. r : Conc(A1), . . . ,Conc(An) ⇒ ϕ is the top rule of A, denoted by TopRule(A).

Notation 2 Given an argument A as in definition 5, Sub(A) denotes the set of
subarguments of A, i.e., Sub(A) = Sub(A1)∪. . .∪Sub(An)∪{A}. DirectSub(A)
denotes the direct subarguments of A, i.e., DirectSub(A) = {A1, . . . , An}.

Definition 6 (Argument properties). An argument A is

– strict if DefRules(A) = ∅
– defeasible if DefRules(A) ̸= ∅
– firm if Prem(A) ⊆ Axm
– plausible if Prem(A) ∩ NonAxm ̸= ∅.

Preferences over arguments can be defined via last link or weakest link principle,
as formalised in the following.

Definition 7 (Last defeasible rules). Let A be an argument.

– LastDefRules(A) = ∅ iff DefRules(A) = ∅
– if A : A1, . . . An ⇒ ϕ, then LastDefRules(A) = {Conc(A1), . . . ,Conc(An) ⇒
ϕ} else LastDefRules(A) = LastDefRules(A1) ∪ . . . LastDefRules(An).

Definition 8 (Last link principle). A preference relation ≻ is a binary
relation over a set of arguments A: an argument A is preferred to argument B,
denoted by A ≻ B, iff

– LastDefRules(A) ≻ LastDefRules(B); or
– LastDefRules(A) = ∅, LastDefRules(B) = ∅ and Prem(A) ≻ Prem(B).

Definition 9 (Weakest link principle). A preference relation ≻ is a bi-
nary relation over a set of arguments A: an argument A is preferred to argument
B, denoted by A ≻ B, iff

– A and B are strict and Prem(A) ≻ Prem(B); else
– A and B are firm and DefRules(A) ≻ DefRules(B); else
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– Prem(A) ≻ Prem(B) and DefRules(A) ≻ DefRules(B).

In the same way as ASPIC+, Arg2P introduces two alternatives to be used in
the above definitions to compare set of rules: namely, the elitist and democratic
superiority relations.

Definition 10 (Elistist superiority relation). Given two set of defeasible
rules/premises A and B, A ≻ B iff ∃X ∈ B s.t. ∀Y ∈ A we have that Y ≻ X.

Definition 11 (Democratic superiority relation). Given two set of defea-
sible rules/premises A and B, A ≻ B iff ∀X ∈ B, ∃Y ∈ A s.t. Y ≻ X.

3.2 Defeat

Rebuts, undermining, and undercutting are defined as usual—see [50].

Definition 12 (Defeat). An argument A defeats an argument B iff A under-
cuts, rebuts or undermines B, where:

– A undercuts B iff Conc(A) = ¬N(r) for some B′ ∈ Sub(B) such that B′’s
top rule r is defeasible;

– A rebuts B iff Conc(A) = ¬ϕ for some B′ ∈ Sub(B) of the form B′′
1 , . . . , B

′′
n ⇒

ϕ;
– A undermines B iff Conc(A) = ¬ϕ for an ordinary premise ϕ of B.

Defeat with burdens of persuasion The burden of persuasion allows a re-
sponse on the acceptability of an argument to be obtained even in circumstances
that would normally be uncertain. Generally speaking, the burden of persuasion
specifies which party has to prove a statement to a specified degree (the standard
of proof) on the penalty of losing on the issue. Whether this burden is met is
determined in the final stage of a proceeding, after all evidence is presented. The
burden of persuasion for a claim can be defined – under a logical perspective –
as the task of ensuring that in the final stage of the proceeding there exists a
justified argument for the claim.

Let us first identify burdens of persuasion, i.e., those literals whose proof
requires a convincing argument. We assume that such literals are consistent—it
cannot be the case that there is a burden of persuasion both on ϕ and ϕ.

Definition 13 (Burdens of persuasion). Let BurdPers, the set of burdens
of persuasion, be a set of literals such that if ϕ ∈ BurdPers then ϕ ̸∈ BurdPers.
We say that an argument A is burdened with persuasion if Conc(A) ∈ BurdPers.

We now consider possible collisions between arguments, i.e., those cases in which
an argument A challenges an argument B: (a) by contradicting the conclusion
of a B’ subargument, or (b) by denying (the application of) the top rule of a B’
subargument or by contradicting a weak negation in the body of the top rule of
a B’ subargument. Note that our notion of rebutting corresponds to the notion
of successful rebutting in [58].
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Definition 14 (bp-rebut). Argument A bp-rebuts argument B iff ∃B′ ∈
Sub(B) such that Conc(A) = Conc(B′) and

1. Conc(A) ̸∈ BurdPers, and B′ ̸≻ A, or
2. Conc(A) ∈ BurdPers and A ≻ B′.

According to definition 14.1, for an unburdened argument A to rebut B by con-
tradicting the latter subargument B′, it is sufficient that B′ is non-superior to
A. According to 14.2 for a burdened argument A to rebut B by contradicting B′,
it is necessary that A is superior to B′. Thus, burdens of persuasion supplement
priorities in deciding conflicts between arguments having opposed conclusions.
They dictate the outcome of those conflicts when priorities do not already deter-
mine which argument is to prevail: when two arguments contradict one another,
the one burdened with persuasion will fail to bp-rebut the other, while the latter
will succeed in bp-rebutting the first.

Undercutting is defined as both the case when the attacker excludes the
application of the top rule of the attacked argument (by denying the rule’s
name) and the case when it contradicts a weakly-negated literal in the body of
that rule.

Definition 15 (bp-undercut). A undercuts B iff ∃B′ ∈ Sub(B) such that:

1. Conc(A) = ¬N(r) and TopRule(B′) = r; or
2. Conc(A) = ϕ and ∼ ϕ ∈ Antecedent(TopRule(B′))

Finally, we have the notions of bp-defeat and strict bp-defeat that are defined on
the basis of bp-rebutting and undercutting. As one can see from the definition
below, the difference w.r.t. the usual notion of defeat pertains to bp-defeat.

Definition 16 (bp-defeat).

1. A bp-defeats B iff A bp-rebuts B or A undercuts B
2. A strictly-bp-defeats B iff A bp-defeats B and B does not bp-defeats A .

3.3 Argumentation graphs, labelling & bp-labelling

In an argumentation graph, arguments are connected according to the defeat
relation.

Definition 17 (Argumentation graph). An argumentation graph con-
structed from a defeasible theory T is a tuple ⟨A,⇝⟩, where A is the set of
all arguments constructed from T , and ⇝ is defeat relation over A.

Notation 3 Given an argumentation graph G = ⟨A,⇝⟩, we write AG, and ⇝G

to denote the graph’s arguments and attacks respectively.

Now, let us introduce the notion of the {IN, OUT, UND}-labelling of an argumen-
tation graph, where each argument in the graph is labelled IN, OUT, or UND,
depending on whether it is accepted, rejected, or undecided, respectively.
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Definition 18 (Labelling). Let G be an argumentation graph. An {IN, OUT, UND}-
labelling L of G is a total function AG → {IN, OUT, UND}.

Notation 4 Given a labelling L, we write IN(L) for {A|L(A) = IN}, OUT(L) for
{A|L(A) = OUT} and UND(L) for {A|L(A) = UND}.

Grounded and complete semantics are defined as usual c.f. [35]:

Definition 19 (Complete Labelling). Let G be an argumentation graph. A
complete labelling of G is a {IN, OUT, UND}-labelling L where every IN-labelled
argument is legally IN, every OUT-labelled argument is legally OUT and every UND-
labelled argument is legally UND, i.e., it holds that:

1. an argument A is labelled IN iff all its attackers are labelled OUT, and
2. an argument A is labelled OUT iff it has at least one attacker that is labelled

IN.

Definition 20 (Grounded Labelling). Let G be an argumentation graph. The
grounded labelling of G is a complete {IN, OUT, UND}-labelling L where IN(L) is
minimal.

We now specify the notion of bp-labelling, namely, a labelling which takes into
account a set of burden of persuasion BurdPers.

Definition 21 (bp-labelling). A bp-labelling of an argumentation graph G,
relative to a set of burdens of persuasion BurdPers, is a {IN, OUT, UND}-labelling
s.t. ∀A ∈ AG with Conc(A) = ϕ

1. A ∈ IN(L) iff ∀B ∈ AG such that B bp-defeats A : B ∈ OUT(L)
2. A ∈ OUT(L) iff

(a) ϕ ∈ BurdPers and ∃ B ∈ AG such that
– B bp-defeats A and
– B ∈ IN(L) or B ∈ UND(L)

(b) ϕ ̸∈ BurdPers and ∃ B ∈ AG such that
– B bp-defeats A and
– B ∈ IN(L)

3. A ∈ UND(L) otherwise.

Burdens of persuasion affect conditions for rejection, as specified in Definition
21(2)(a). The rejection (the OUT labelling) of an argument burdened of persua-
sion may be determined by any counterargument B that is accepted (IN) or also
is uncertain (UND). On the contrary, as specified in 21(2)(b) the rejection of an
argument that is not burdened with persuasion requires a defeating counterargu-
ment B that is IN. Note that the semantic just described does not always deliver
a single labelling. Multiple labelling may exist when arguments rebut each other,
none of them being burdened with persuasion. If one of these arguments is la-
belled IN the other is labelled OUT and vice versa. In order to address that, we
focus on IN-minimal labelling, i.e., on the labelling where both such arguments
are labelled UND. Let us call such a labelling a grounded bp-labelling.

Definition 22 (Grounded bp-labelling). A bp-labelling L of an argumen-
tation graph G is a grounded bp-labelling iff UND(L) is maximal.
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3.4 Deontic rules and conflict

Our deontic extension focuses on basic concepts of deontic reasoning—namely,
obligations, prohibitions, and permissions. Obligations are at the core of our
deontic system, and prohibitions are viewed as a by-product of obligations. As
stated in [59], in this context we can say that something is prohibited is equiva-
lently expressed by stating that its opposite is obligatory. Also, permissions can
be reloaded in terms of obligations: permission to do something expresses that
the opposite is not obligatory. Accordingly, and for the sake of simplicity, the
attention is restricted to a propositional language which is supplemented with
a single deontic operator O which indicates an obligation. Hence, we assume a
language whose literal statements are enhanced with the following definition of
deontic literal statements:

Definition 23 (deontic literal statement). A deontic literal statement
is a statement of the form Oγ or ¬Oγ such that γ is a plain literal statement.
Prohibitions and permissions are captured by assuming that a prohibition Fγ is
equivalently expressed by the obligation Oγ, and a permission Pγ is syntactically
equivalent to ¬Oγ.

Deontic operators extend the semantics of the rule by enabling the definition
of the so-called normative rules, i.e., containing either normative concepts or
deontic operators. The definition of these rules affects and enlarge the conflict
relation of the argumentation framework. According to the deontic semantics,
deontic conflicts have to be considered, too, namely conflicts of the form (γ, γ̄)
or (Oγ,Oγ̄) or (¬Oγ,Oγ) or (Oγ,¬Oγ) as depicted in the deontic square in
Fig. 1. Detailed formal accounts of the adopted deontic extensions are discussed

Fig. 1. Deontic square of compatibility relation

in [59]—our model fully adheres to that semantics.

4 Computational model & algorithms

The main and distinguishing aspect of the engine is represented by its design,
which aims at providing two distinct ways of use:
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1. the graph-based mode providing as output the entire argumentation graph
according to the specified semantics—i.e., the labellings of the entire set of
facts and rules given as input;

2. the query-based mode providing as output the evaluation of a single query
given as input and according to a given semantics—i.e., enabling defeasible
reasoning on arguments starting from certain premises.

While the former mode can be considered as the traditional approach of ar-
gumentation tools, the latter makes the engine framework a fit choice for the
aforementioned AI pervasive scenarios. Given the state of the art advancement
in the computational model of the query mode operation, in the following, the
discussion will focus only on that latter topic, first facing complexity issues and
then detailing the steps of the algorithm.

4.1 Computational complexity

In the graph-based modality, computation is performed in two distinct steps.
First, all the arguments have to be derived from the argumentation theory;
then, the labelling on the resulting argumentation graph can be computed. From
the perspective of computational efficiency, the process is highly expensive. The
engine performs an exhaustive search on the knowledge base to derive the argu-
mentation trees from facts and rules. Intuitively, the computational cost of the
procedure is bound to the number of inference steps to perform—i.e., for every
new node in the argumentation tree, the entire rule base has to be examined
again to verify the existence of another inference step. Consequently, the cost
of the transformation grows both with the rule base dimension and with argu-
ments’ articulation, thus making it difficult to use the procedure when a large
set of data is available. Of course, correct implementations can help to mitigate
the efficiency problems – for instance, exploiting caching or high-performance
data structures – but the procedure is inherently inefficient.

As for the labelling algorithm, at the moment, the engine allows for different
semantics to be computed, according to the model defined in Section 3. Their
complexity is a well-known problem in the literature – grounded semantic is
the only one having polynomial complexity [46] –, however, we have not yet
explored which algorithmic measure should be adopted in order to improve the
computation. Up to now, we focus on the improvement of the query-based mode.

To ensure efficiency in this second operation mode – currently available only
for grounded semantic – we exploit an algorithm inspired to the one introduced
in DeLP [40] and discussed in the following. The structured reasoning algorithm
avoids the entire argumentation graph construction for the evaluation of a single
query. The algorithm delivers – in the average case – a much more efficient way
to verify the admissibility of an argument when compared with the standard
graph mode. The argumentation graph needs not be entirely derived: instead, it
can be explored only as required to verify the state of the queried claim. In the
case of fully-connected graphs, depending on arguments configuration, it could
be necessary to derive all the arguments to have a response, and in these cases –
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the worst – the algorithm complexity would be the same as that of the standard
procedure. Nevertheless, in general, this operation mode potentially avoids the
evaluation of whole portions of the argumentation graph, thus hugely increasing
the efficiency of the computation.

4.2 Structured reasoning algorithm

The algorithm used to evaluate a single claim (or query) is inspired by the dialec-
tical trees from DeLP [40]. Starting from the given claim, arguments A1, ..., An

sustaining that claim are constructed and evaluated. Then, starting from A1,
conflicting arguments – built by need – are recursively inspected to determine
their admissibility.

Listing 1.1. Structured evaluation algorithm for grounded semantic
Evaluate(A, Chain ):

if(∃ B ∈ Attacker(A): Evaluate(B, A ∩ Chain) = IN)
return OUT

if(∃ B ∈ Attacker(A): B ∈ Chain)
return UND

if(∃ B ∈Attacker(A): Evaluate(B, A ∩ Chain) = UND)
return UND

return IN

Listing 1.1 shows conditions under which the argument A1 is evaluated.
There, function Attacker(A1) returns a conflicting argument based on the no-
tion of defeat defined in Subsection 3.2. The evaluated conditions are three—note
that the order is important to guarantee the soundness of the algorithm:
1. if a conflicting argument labelled as IN exists, then A1 is OUT;
2. if a cycle in the route from the root to the leaves (Chain) exists, then A1

argument is UND;
3. if a conflicting argument labelled as UND exists, then also the A1 argument

is UND.

The second condition behaviour is in accordance with Dung’s grounded seman-
tic, which is why this algorithm only works for the grounded semantics. The
structured evaluation under different semantics will be explored in future works.

If none of the above conditions is met then the A1 argument is labelled IN.
Indeed, the states on which such conditions are not met are only two: there are
no conflicting arguments – the argument is a leaf in the dialectical tree – or the
conflicting arguments are all OUT. All arguments A2, ..., An are then evaluated
repeating the same procedure.

5 Architecture & API

The engine is designed in a fully-modular way, as depicted in Fig. 2. Every
function inside the framework – e.g., graph building, argument labelling – is
sealed within the corresponding module. From a software engineering perspec-
tive, modularity highly improves the upgradability and flexibility – in terms of
feature addition or maintenance – of the whole system. In the following, we
describe each component in detail.
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Fig. 2. Arg2P architecture

5.1 Engine interface

The Engine Interface module is the main pillar of the framework: it manages
all the interaction with external entities (both software agents and humans) by
providing a set of API to perform operations. Accordingly, the module hides all
the complexity of the framework, but, at the same time, ensures all the custom
semantic features to be set. The module exposes only the two usage predicates –
answerQuery and buildLabelSets – transparently coordinating the core modules.

The predicate buildLabelSets builds the argument labelling and the state-
ment labelling according to the theory. It first builds the argumentation graph,
then evaluates arguments and statements. In particular, IN, OUT, and UND sets are
created by classifying both arguments and statements accordingly to the speci-
fied labelling semantics—respectively, INArg, OUTArg, and UNDArg for arguments
and INFact, OUTFact, and UNDFact for statements. The IN set includes admissible
arguments; the OUT set includes the rejected ones; the UND includes those for
which it was not possible to affirm the admissibility or not—possibly due to lack
of or contrasting information. There are three variants for this predicate:

– buildLabelSets/2 – buildLabelSets([-INArg,-OUTArg, -UNDArg],
[-INFact,-OUTFact,-UNDFact]) – returns both the sets of statements and
arguments;

– buildLabelSets/3 – buildLabelSets(-IN, -OUT, -UND) – where the output
sets refer only to the statements clustering;

– buildLabelSets/0, which does not provide any output, but performs the ar-
gumentation graph construction and evaluation in background, and prints
argument and statement sets as plain text.

The predicate answerQuery(+Goal, -Yes, -No, -Und) requests the evaluation
of the given Goal. The output corresponds to the set of facts matching the goal,
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distributed in the three sets IN, OUT, and UND always accordingly to the labelling
semantics.

Finally, the engine interface provides flags for customising the resolution
process. According to the description provided in Section 3:

– argumentLabellingMode(MODE) sets the desired labelling semantics by means
of on-purpose flags: namely, grounded, complete, bp_grounded_partial,
and bp_grounded_complete (details in [5, 20]); future works will also in-
volve further semantics implementations.

– orderingPrinciple(MODE) sets the strategy for the preference propagation
over arguments: the admissible values are last and weakest; the flag reflects
the propagation strategies of definition 8 and definition 9, respectively;

– orderingComparator(MODE) sets the superiority relation to exploit for ar-
gument ranking: implemented strategies are democrat and elitist, both
presented in [50], and normal from [36];

– queryMode, if present, enables the structured evaluation of answerQuery/4,
i.e., exploiting the pseudo-DeLP algorithm (the flag can be enabled only for
grounded semantic);

– autoTransposition,when selected, enables the automatic computation of
the base theory closure under transposition [23] before starting the evaluation
process;

– unrestrictedRebut disables the restriction on rebut attack relation: by de-
fault, rebut attack relation is restricted—i.e. arguments having a strict rule
as a top rule cannot be rebutted [23]; so, if the user selects this flag, the
restriction does not hold anymore.

Two more flags are introduced in the interface, preparing the engine for future
extensions and customisations:

– graphBuildMode(MODE) sets the argumentation modality of the framework
(for instance, base, argumentation over preferences, meta-argumentation);
currently, according to the above-discussed model, only base can be selected,
but future works will be devoted to new modalities implementation;

– analogously for the statementLabellingMode(MODE) with respect to the
statements labelling step; currently the only implemented modality is base—
i.e. arguments’ labels transfer to their claims;

5.2 Core modules

In addition to the Engine Interface module, other modules depicted in Fig. 2
bear different responsibilities. In particular, they can be. split into three distinct
groups of modules according to their purpose.

First, we have the group of the support modules, bearing transversal respon-
sibilities w.r.t. the entire framework. The Language parser is currently the sole
module belonging to this group: its role is to convert the rules from the argu-
mentation language of the framework (Section 6) to an internal representation
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more efficiently exploitable by the engine. Moreover, the exploitation of a dis-
tinct internal representation enforces the framework flexibility, decoupling the
user and the technical language thus encouraging a continuous evolution of both
the language and the computational mechanisms.

Then, the second group – the actual core of the engine – contains the Abstract
Reasoner and the Structured Reasoner modules. As mentioned above, the engine
exposes two distinct operation modes – i.e. graph and query-based mode. These
two modules are responsible for orchestrating these functionalities: the former
is held by the Abstract Reasoner module while the latter by the Structured
Reasoner.

These two modules are not designed as monolithic entities but can leverage
on other sub-modules, categorisable in a third group—namely, the algorithmic
group. Each module belonging to this group is focused on a single algorithmic
responsibility. In particular, existing algorithmic modules are:

• Graph Builder builds the argumentation graph starting from a rule-base
encoded with the engine internal representation

• Grounded Labeller, in charge of computing grounded labelling of the argu-
mentation graph, according to Dung’s notions of grounded semantics

• Complete Labeller, in charge of computing complete labelling of the argu-
mentation graph, according to Dung’s notions of complete semantics

• BP Labeller builds the second stage burden of persuasion labelling starting
from the grounded labelling

• Statement Labeller carries out the statements labelling according to labelling
of the arguments.

It follows that, by simply adding or changing a module, the user can completely
change the behaviour of the engine and adapt it to contingent and domain-
specific requirements (such as supporting a new semantic) offering an alterna-
tive customised implementation for a building block, or supporting a custom
argumentation language.

6 Language

The engine adopts an ASPIC+-like syntax – introduced in [50] – and exposes all
the main features of this framework. With respect to the original notation, the
argumentation language has been extended with a specific notation for dealing
with deontic operators and burdens of persuasion constraints.

In the following the language predicates reifying the above-described model
are discussed.

6.1 Rules & premises

Strict rules can be expressed exploiting the −> operator, with the notation:

label : premise1 , . . . , premisen −> conclusion.
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where label is the identifier (unique name) of a rule and premise1 , . . . , premisen
are the premises that entails the conclusion. Accordingly, axioms take the form:

label : −> conclusion.

(label : [] −> conclusion.) (this form is also permitted)

Defeasible rules are expressed by the => operator:

label : premise1 , . . . , premisen => conclusion.

Accordingly, defeasible premises take the form:

label : => conclusion.

Note that in the case of defeasible rules the rule

label : [] => conclusion.

even if admissible, is not equal to a premise, i.e., can affect differently the ordering
relation over arguments and can be undercut by other rules.

Premises and conclusions can take any form containing compound terms,
variables, and strong negations.

6.2 Attack relations

The binary attack relation between arguments – which underpins rebutting and
undermining (rebutting on premises) attacks – can be reached via term negation.
Two types of negations are available:

• −term, to indicate a strong negation (contrary), that captures a notion of
negation as definite falsity—i.e., the strong negation of a formula entails its
intuitionistic negation;

• ∼ (term) to indicate weak negation (negation as failure).

Weak negation is allowed only inside rules premises, representing an exception
to the universal rule. Moreover, strong and weak negations cannot be nested.

Undercut attacks can be expressed exploiting the notation:

label2 : premise1 , . . . , premisen => undercut(label1 )

where label1 is the identifier of a defeasible rule in the theory. So, for instance,
let r1 be a rule stating that things that look of a certain colour (let it be red) are
usually of that colour. And let r2 be a rule stating that objects illuminated by
a coloured light (let it be red) look of that colour even if they are of a different
colour. The corresponding knowledge and the undercutting relation between the
two rules can be expressed as:

r1 : look(Object ,Colour) => colour(Object ,Colour).

r2 : illuminated(Object ,Colour) => undercut(r1).

The reason is that there is a counter-argument that can undercut the original
argument by attacking the connection between the claim and the reason.
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6.3 Deontic expressions

The formalism includes permissions, prohibitions, and obligations; the corre-
sponding logic is captured by defeasible rule schemata, modelling basic deontic
inference. In the language we have:

• p(term) to indicate permission;
• o(term) to indicate obligation.

Note that we introduced the p functor to lighten the notation, but it perfectly
fits the model discussed in Subsection 3.4 since a permission Pγ is syntactically
equivalent to ¬Oγ .

Prohibitions can be defined exploiting strong negation: −p(term). Conse-
quently, a lack of prohibition can be defined as exploiting two strong negations:
−o(−term). This is the only exception to negations nesting prohibition (in gen-
eral not allowed by the argumentation language).

6.4 Superiority relation & burden of persuasion

It is possible to denote preferences by using the following notation:

sup(ruleName1 , ruleName2 )

This proposition states that the rule (non-axiom premise) with identifier equal
to ruleName1 is superior to the one with identifier ruleName2 .

The burden of persuasion on a proposition can be expressed as follows:

bp(term1 , . . . , termn)

The structure of terms reflects the one seen for standard rules: compound terms,
variables and strong negations are therefore allowed.

7 Technology

The Arg2P technology engine is built on the top of the tuProlog/2P-Kt engine
[26, 33, 27] and provides a lightweight implementation of an ASPIC+-like system
for structured argumentation. The engine is available as a standalone application
(Arg2P Java IDE), and as a 2P-Kt library (Kotlin library) [27, 28]14. All the
release are available on the Arg2P GitHub repository.15

The technological aspects of Arg2P are of particular relevance for under-
standing how Arg2P differs w.r.t. others available technologies. Given the final
aim of our research – that is, to provide a comprehensive and innovative tool for
spreading intelligence and argumentation capabilities in nowadays challenging
AI context such as IoIT [3] – we devote our attention to computational logic as
14 https://github.com/tuProlog/2p-kt
15 https://github.com/tuProlog/arg2p-kt/releases
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the foundation for our work. With respect to available LP languages, Prolog rep-
resents the most successful one as a well-defined language coming with several
implementations. For this reason, logic-based technologies are typically either
built on top or as extensions of the Prolog language. However, existing solutions
mostly work as monolithic entities tailored upon specific inference procedures,
unification mechanisms, or knowledge representation techniques. Instead, con-
sidered the ultimate goal of our research, we require a technology supporting
and enabling the exploitation of all the manifold contributions from LP. For
this reason we choose to build Arg2P on the top of tuProlog—and in particular
on 2P-Kt, a reboot of the tuProlog project offering a general, extensible, and
interoperable ecosystem for LP and symbolic AI [27].

Leveraging on 2P-Kt – and thanks to its architecture (detailed in Section 5)
–, the Arg2P engine offers a neutral ground upon which different technologies can
be integrated for building transparent and explainable systems. The rationale
behind this choice is to enable the incremental addition of novel functionalities
to the engine, possibly targeting other argumentation/conversation strategies,
while supporting as many programming platforms as possible. In the follow-
ing the main key technology features, reflecting the desired requirements, are
summarised.

Interoperability & portability. The interoperability requirement is guaranteed by
the choice of Prolog – tuProlog in particular – as the main technological foun-
dation of the solver. Indeed, the exploitation of the Prolog paradigm ensures
the maintenance of the maximum degree of standardisation thanks to the ISO
standard.16 Besides, the Kotlin-based engine of 2P-Kt – devoted to heavy-
interconnected and pervasive contexts – enables the system to run in more
disparate environments. Accordingly, the Arg2P framework natively supports
interoperability with JVM, JavaScript and Android platforms.

Modularity & customisation. The entire Arg2P framework is a collection of
tuProlog compatible libraries—thus enforcing system modularity, as discussed
in Section 5. 2P-Kt features are exploited to allow external libraries to be in-
cluded during the evaluation process. The software organisation through distinct
libraries ensures on the one hand the modularity and separation of concerns –
fundamental pillars of a solid, easily maintainable and extensible technology –;
on the other hand, it offers the simplicity of customisation in presence of domain-
specific requirements. As a consequence, the Arg2P engine makes it possible to
exploit diverse programming paradigms and technologies for any system com-
ponent. In the current implementation, Arg2P acts as a meta-interpreter that
accepts theories in a well-defined argumentation language, then, once translated
in Prolog, provides the solutions. Consequently, it would be quite easy – for
example – to add a distinct module exploiting a SAT-solver to compute the
labelling over an entire argumentation graph.

16 https://www.iso.org/standard/21413.html
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Light-weightness & generality. In contrast to the current trend of building highly-
specialised systems, the Arg2P framework places itself as a highly-general tool
to be injected in most disparate environments for the most different application
purposes. As shown in [12], the MAS community is gazing for interoperable and
general-purpose logic-based technologies: there, the Arg2P engine, along with
2P-Kt, provides a technological substrate supporting agents’ reasoning and con-
versation via manifold strategies. Moreover, thanks to the deep customisability of
tuProlog, the Arg2P engine can be potentially exploited also within constrained
systems with strict requirements in terms of available computational resources
and limited memory footprint—as in the case of the typical IoIT scenarios [3].

8 Application scenarios & discussion

The Arg2P framework has been designed to satisfy the needs of applications
where distributed intelligence, autonomy, and interpretability are key require-
ments. In the following, some examples in the fields of computable law for au-
tonomous vehicles are discussed to show the effectiveness of Arg2P in distributing
intelligence and reasoning capabilities over AI applications. The complete guide
of the examples, containing the corresponding theories and the detailed instruc-
tions for their execution within the framework can be found on the GitHub
repository with the examples.17

The examples do not include a comprehensive analysis of the selected applica-
tion domain: instead, they mean to underline the available features of the Arg2P
engine and its ability to adapt to different contexts. Accordingly, we briefly re-
cap those notions the reader needs to understand the examples: for a complete
overview of the application scenario (computable law of autonomous vehicles),
its requirement analysis, and design, please refer to [29] and related outcomes.
In addition, readers can refer to some well-known works in literature, such as
[42]. However, we also explicitly mention the requirements in the discussion of
the examples whenever possible and useful.

In this scenario, involving autonomous cars and relative legal computation,
vehicles are capable of communicating with each other and with the road infras-
tructure. Cities and roads are suitably enriched with sensors and virtual traffic
signs able to dynamically interact with cars to provide information and supervi-
sion. Accordingly, self-driving cars need to (i) exhibit some degree of intelligence
for making autonomous decisions; they need to (ii) interact with the context that
surrounds them, (iii) have humans in the loop, (iv) respond to the legal setting
characterising the environment and the society, and (v) offer explanations when
required—e.g., in case of accidents to determine causes and responsibilities.

8.1 Example 1: Autonomous cars

First of all, we consider a very simple scenario in the context of autonomous
cars: a road equipped with two traffic lights, one for the vehicles and one for the
17 https://github.com/tuProlog/JLC-SpecialIssue2021-arg2p-examples
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pedestrians. The goal of the system is to autonomously manage intersections
accordingly to traffic light indications. A complication should be taken into ac-
count, that is: an authorised vehicle could – during emergencies – ignore traffic
light prescriptions. In that case, other vehicles must leave the way clear for the
authorised vehicle.

Listing 1.2 encodes the rules in the Arg2P system, whereas Listing 1.3 encodes
the corresponding arguments.

Listing 1.2. Example 1 theory
r1 : on_road(V), traffic_light(V, red) => o(stop(V)).
r2 : on_road(V), traffic_light(V,green) => p(-stop(V)).
r3 : on_road(V), authorised_vehicle(V), acoustic_signals(V, on), light_signals(V, on)=> emergency(V).
r4 : on_road(V), emergency(V),traffic_light(V, red) => p(-stop(V)).
r5 : on_road(V), emergency(V1), prolog(V \== V1), traffic_light(V, green) => o(stop(V)).

sup(r4 , r1).
sup(r5 , r2).

f0 :-> authorised_vehicle(ambulance ).
f1 :-> on_road(car).
f2 :-> on_road(ambulance ).
f3 :-> on_road(pedestrian ).
f4 :=> acoustic_signals(ambulance , on).
f5 :=> light_signals(ambulance , on).
f6 :=> traffic_light(ambulance , red).
f7 :=> traffic_light(car , red).
f8 :=> traffic_light(pedestrian , green).

Listing 1.3. Arguments from Listing 1.2
A0 : f4 =⇒ acoustic_signals(ambulance , on) A8 : f8 =⇒ traffic_light(pedestrian , green)
A1 : f0 =⇒ authorised_vehicle(ambulance) A9 : A3 ,A6,r1 =⇒ o(stop(ambulance ))
A2 : f5 =⇒ light_signals(ambulance , on) A10 : A4,A7 ,r1 =⇒ o(stop(car))
A3 : f2 =⇒ on_road(ambulance) A11 : A5 ,A8 ,r2 =⇒ p(-stop(pedestrian ))
A4 : f1 =⇒ on_road(car) A12 : A3,A1,A0,A2 ,r3 =⇒ emergency(ambulance)
A5 : f3 =⇒ on_road(pedestrian )] A13 : A5 ,A12 ,A8,r5 =⇒ o(stop(pedestrian ))
A6 : f6 =⇒ traffic_light(ambulance , red) A14 : A3,A12 ,A6 ,r4 =⇒ p(-stop(ambulance ))
A7 : f7 =⇒ traffic_light(car , red)

Fig. 3. Example 1 grounded argumentation graph in Arg2P IDE
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Rules r1 and r2 represent fundamental constraints: if the traffic light is
red, road users – e.g. pedestrians, cars, etc. – have to stop; otherwise they can
proceed. Rules r3 and r4 model the concept of a vehicle in an emergency, giving
it permission to proceed even if the light is red. Rule r5 imposes other road
users the obligation to stop if aware of another vehicle in an emergency state.18
Finally, two preferences are specified—the first on the rule r4 over r1 and the
second on r5 over r2. These preferences assign a higher priority to emergency
situations – r4 and r5 – over ordinary ones—r1 and r2. Facts from f0 to f8
depict a situation in which there are three users on road: a car, an ambulance and
a pedestrian. The ambulance has its acoustic and light indicators on—stating
an emergency situation. The traffic light is red both for the ambulance and the
car, and green for the pedestrian.

With respect to permissions and obligations, the only argument that can be
built about the car is A10, declaring the obligation to stop—A10 via r1. For the
pedestrian and the ambulance, the situation is more faceted. In both cases, two
conflicting arguments can be built: one stating the permission to proceed for the
pedestrian and for the ambulance – A11 and A14 respectively – and one stating
the obligation to stop—A13 and A9 respectively. These arguments rebut each
other: yet, taking into account the preferences over r4 and r5, the acceptability
of the arguments stating the obligation to stop for the pedestrian and the per-
mission to cross for the ambulance can be established (Fig. 3). Essential to this
outcome is the emergency state of the ambulance (A12): if it were not possible
to prove the emergency of the situation – it is required for an authorised vehicle
to have both acoustic and light signals on –, then the vehicle would have to stop
(A9) leaving free the pedestrian to proceed (A11).

Listing 1.4. Example 2 theory
r6 : -stop(V), p(-stop(V)) => legitimate_cross(V).
r7 : -stop(V), o(stop(V)) => -legitimate_cross(V).
r8 : harms(P1 , P2), -careful(P1) => responsible(P1).
r9 : harms(P1 , P2), -careful(P2) => responsible(P2).
r10 : -legitimate_cross(V), user(P, V) => -careful(P).
r11 : high_speed(V), user(P, V) => -careful(P).
r12 : legitimate_cross(V), -high_speed(V), user(P, V) => careful(P).
r13 : witness(X), claim(X, low_speed(V)) => -high_speed(V).
r14 : witness(X), claim(X, high_speed(V)) => high_speed(V).

bp(careful(P)).

f9 :-> user(pino , pedestrian ).
f10 :-> user(lisa , ambulance ).
f11 :-> -stop(ambulance ).
f12 :-> -stop(pedestrian ).
f13 :-> harms(lisa , pino).
f14 :-> witness(chris).
f15 :-> witness(john).
f16 :=> claim(chris , low_speed(ambulance )).
f17 :=> claim(john , high_speed(ambulance )).

18 The prolog(...) term is a special Arg2P notation that allows using as a premise
a Prolog expression. In this case, it is used to avoid the unification between the
variable Z and Y, which would lead to emergency vehicles having the obligation to
stop at their own passage.
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Listing 1.5. Arguments from Listing 1.2 and 1.4
A0 : f4 =⇒ acoustic_signals(ambulance , on) A19 : A16 ,A2 ,r13 =⇒ -high_speed(ambulance)
A1 : f0 =⇒ authorised_vehicle(ambulance) A20 : A8,A11 ,r1 =⇒ o(stop(ambulance ))
A2 : f16 =⇒ claim(chris , low_speed(ambulance )) A21 : A9 ,A12 ,r1 =⇒ o(stop(car))
A3 : f17 =⇒ claim(john , high_speed(ambulance )) A22 : A10 ,A13 ,r2 =⇒ p(-stop(pedestrian ))
A4 : f13 =⇒ harms(lisa , pino) A23 : A8,A1 ,A0 ,A5,r3 =⇒ emergency(ambulance)
A5 : f5 =⇒ light_signals(ambulance , on) A24 : A7,A22 ,r6 =⇒ legitimate_cross(pedestrian)
A6 : f11 =⇒ -stop(ambulance) A25 : A18 ,A14 ,r11 =⇒ -careful(lisa)
A7 : f12 =⇒ -stop(pedestrian) A26 : A6 ,A20 ,r7 =⇒ -legitimate_cross(ambulance)
A8 : f2 =⇒ on_road(ambulance) A27 : A26 ,A14 ,r10 =⇒ -careful(lisa)
A9 : f1 =⇒ on_road(car) A28 : A4,A25 ,r8 =⇒ responsible(lisa)
A10 : f3 =⇒ on_road(pedestrian) A29 : A10 ,A23 ,A13 ,r5 =⇒ o(stop(pedestrian ))
A11 : f6 =⇒ traffic_light(ambulance , red) A30 : A8 ,A23 ,A11 ,r4 =⇒ p(-stop(ambulance ))
A12 : f7 =⇒ traffic_light(car , red) A31 : A4,A27 ,r8 =⇒ responsible(lisa)
A13 : f8 =⇒ traffic_light(pedestrian , green) A32 : A6 ,A30 ,r6 =⇒ legitimate_cross(ambulance)
A14 : f10 =⇒ user(lisa , ambulance) A33 : A7,A29 ,r7 =⇒ -legitimate_cross(pedestrian)
A15 : f9 =⇒ user(pino , pedestrian) A34 : A33 ,A15 ,r10 =⇒ -careful(pino)
A16 : f14 =⇒ witness(chris) A35 : A4 ,A34 ,r9 =⇒ responsible(pino)
A17 : f15 =⇒ witness(john) A36 : A32 ,A19 ,A14 ,r12 =⇒ careful(lisa)
A18 : A17 ,A3 ,r14 =⇒ high_speed(ambulance)

Fig. 4. Example 2 bp labelling in Arg2P IDE

8.2 Example 2: Autonomous cars & legal reasoning

The focus in the previous example is on the plane of duties, i.e., automatic
reasoning aimed at defining what is permitted / prohibited in the contingent
situation. Let us take a step further.

The ambulance, driven by Lisa, has permission to move despite the red light
due to an emergency situation; the pedestrian, Pino, has the obligation to stop.
Let us imagine that Pino, despite the prohibition to proceed, keeps on crossing.
The result has been an accident in which Pino has been harmed by the ambu-
lance, which failed to see him and has not stopped its run. The purpose here is
to find the responsibilities of the parties in the accident.

For instance, let us suppose the case is under the Italian jurisdiction, so that
the Italian law is to be applied. According to Italian law, responsibility in an
accident is based on the concept of carefulness. Both Lisa and Pino have to prove
that they were careful (i.e., prudent) and acted according to the law. If they fail
to prove such facts, they are considered responsible for the event, i.e., they both
have the burden of persuasion on carefulness.
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In the following, we discuss how the Arg2P reasoner enables to deal with
that sort of situation. Listing 1.4 shows a possible representation of these rules
in Arg2P.

Rules r6 and r7 define the concepts of permitted and prohibited crossing: if
a road-user has to stop but doesn’t stop, he has to be considered responsible for
causing accidents and related damages. Rules r8 and r9 encode the notion of
responsibility in an accident, bound to the carefulness of the road-users involved.
Rules r10, r11 and r12 define the carefulness of a subject. Accordingly, a road
user can be considered careful if the crossing is permitted and his/her speed is
not excessive. Otherwise, he/she is considered imprudent. Finally, rules r13 and
r14 state the speed of a road user based on the testimonials of any witnesses. The
bp(careful(X)) notation allocates the burden of persuasion on the carefulness
of each party, i.e., it is required to the parties to provide evidence for that. If
they fail to meet the burden, carefulness arguments are rejected. Facts from f9
to f17 contain the available knowledge: both Pino and Lisa did not stop at the
crossing and, consequently, Lisa harmed Pino. There are two witnesses, John
and Chris, the first claiming that the ambulance driven by Lisa was maintaining
the proper speed, and the other claiming that she was proceeding at high speed.

With respect to the grounded semantic, the argument for Pino’s responsi-
bility (A34 via r9) is accepted – he is guilty of its forbidden crossing (A35 via
r10) – and one argument claiming Lisa’s responsibility is rejected (A31). Indeed,
the argument for Lisa’s uncarefulness (A27 via r10) is based on the premise of
Lisa’s forbidden crossing (A26 via r7) that is defeated by the legitimacy of her
action (A24 via r6 stating the case of emergency). Lisa’s responsibilities in the
accident remain uncertain due to the two contradicting witnesses – rebutting
each other – i.e., the system can derive both Lisa being careful (r12) and not
being careful (r11). So, Lisa’s responsibilities are left undecided. The grounded
semantics does not provide the legally correct answer.

In the case at hand, indeed, a semantic related to the burden of persuasion
needs to be considered. The execution under the bp semantics (Fig. 4) concludes
for the responsibility of the ambulance driver in the event. The uncertainty on
Lisa’s carefulness is considered as a failure to meet the burden of persuasion
on the claim careful(lisa). Consequently, the argument supporting this claim
(A36) is rejected, leaving space for the admissibility of the conflicting arguments.

Listing 1.6. Example 3 theory
r15 : harms(P1, P2), user(P1 , V), -working(V), manufacturer(M, V), -defect_free(V) => responsible(M).
r16 : tried_to_brake(P), user(P, V), -working(V) => careful(P).
r17 : mechanic(M), claim(M, defect(V)) => -working(V).
r18 : -working(V), new(V) => -defect_free(V).
r19 : production_manager(P), claim(P, test_ok(V)) => defect_free(V).
r20 : test_doc_ok(V) => undercut(r18).
sup(r16 , r11).
bp(defect_free(V)).
f19 :-> manufacturer(demers , ambulance ).
f20 :=> tried_to_brake(lisa).
f21 :-> mechanic(paul).
f22 :=> claim(paul , defect(ambulance )).
f23 :-> new(ambulance ).
f24 :-> production_manager(mike).
f25 :=> claim(mike , test_ok(ambulance )).
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Listing 1.7. Arguments from Listing 1.2, 1.4 and 1.6
A0 : f4 =⇒ acoustic_signals(ambulance , on) A25 : A16 ,A4 ,r19 =⇒ defect_free(ambulance)
A1 : f0 =⇒ authorised_vehicle(ambulance) A26 : A24 ,A3,r14 =⇒ high_speed(ambulance)
A2 : f16 =⇒ claim(chris , low_speed(ambulance )) A27 : A23 ,A2 ,r13 =⇒ -high_speed(ambulance)
A3 : f17 =⇒ claim(john , high_speed(ambulance )) A28 : A9 ,A5,r17 =⇒ -working(ambulance)
A4 : f25 =⇒ claim(mike , test_ok(ambulance )) A29 : A13 ,A17 ,r1 =⇒ o(stop(ambulance ))
A5 : f22 =⇒ claim(paul , defect(ambulance )) A30 : A14 ,A18 ,r1 =⇒ o(stop(car))
A6 : f13 =⇒ harms(lisa , pino) A31 : A15 ,A19 ,r2 =⇒ p(-stop(pedestrian ))
A7 : f5 =⇒ light_signals(ambulance , on) A32 : A13 ,A1,A0 ,A7 ,r3 =⇒ emergency(ambulance)
A8 : f19 =⇒ manufacturer(demers , ambulance) A33 : A11 ,A31 ,r6 =⇒ legitimate_cross(pedestrian)
A9 : f21 =⇒ mechanic(paul) A34 : A26 ,A21 ,r11 =⇒ -careful(lisa)
A10 : f11 =⇒ -stop(ambulance) A35 : A28 ,A12 ,r18 =⇒ -defect_free(ambulance)
A11 : f12 =⇒ -stop(pedestrian) A36 : A10 ,A29 ,r7 =⇒ -legitimate_cross(ambulance)
A12 : f23 =⇒ new(ambulance) A37 : A20 ,A21 ,A28 ,r16 =⇒ careful(lisa)
A13 : f2 =⇒ on_road(ambulance) A38 : A36 ,A21 ,r10 =⇒ -careful(lisa)
A14 : f1 =⇒ on_road(car) A39 : A6,A34 ,r8 =⇒ responsible(lisa)
A15 : f3 =⇒ on_road(pedestrian) A40 : A15 ,A32 ,A19 ,r5 =⇒ o(stop(pedestrian ))
A16 : f24 =⇒ production_manager(mike) A41 : A13 ,A32 ,A17 ,r4 =⇒ p(-stop(ambulance ))
A17 : f6 =⇒ traffic_light(ambulance , red) A42 : A6 ,A38 ,r8 =⇒ responsible(lisa)
A18 : f7 =⇒ traffic_light(car , red) A43 : A10 ,A41 ,r6 =⇒ legitimate_cross(ambulance)
A19 : f8 =⇒ traffic_light(pedestrian , green) A44 : A11 ,A40 ,r7 =⇒ -legitimate_cross(pedestrian)
A20 : f20 =⇒ tried_to_brake(lisa) A45 : A44 ,A22 ,r10 =⇒ -careful(pino)
A21 : f10 =⇒ user(lisa , ambulance) A46 : A6,A21 ,A28 ,A8 ,A35 ,r15 =⇒ responsible(demers)
A22 : f9 =⇒ user(pino , pedestrian) A47 : A6,A45 ,r9 =⇒ responsible(pino)
A23 : f14 =⇒ witness(chris) A48 : A43 ,A27 ,A21 ,r12 =⇒ careful(lisa)
A24 : f15 =⇒ witness(john)

Fig. 5. Example 3 bp labelling in Arg2P IDE

8.3 Example 3: Autonomous cars, more on legal reasoning

Let us extend the above-discussed example in which Lisa, the ambulance driver,
and Pino, the pedestrian, were both considered responsible for the accident on
the basis of the available knowledge. Lisa now declares that she tried to stop
the ambulance, but the brake did not work. The ambulance is then sent to a
mechanic, who states that, even if the ambulance is new, there is a problem
with the brake system. In that case, the manufacturer is called to prove that the
ambulance was not defective when delivered—i.e., the burden of proof on the
adequacy of the vehicle is on the manufacturer.

At this stage, the discovery of a defect in the ambulance would lead to the
discarding of Lisa’s responsibility. Moreover, if the manufacturer fails to meet
his burden, it would share the responsibilities of the accident.

Listing 1.6 shows a possible Arg2P encoding of the knowledge. Rule r15
concludes the responsibility of the manufacturer in the case a malfunctioning is
found on the vehicle and it is proved that there is a defect.
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Rule r16 infer the carefulness of the driver if a defect is found on the vehicle
(for instance on the brake mechanism). The preference sup(r16, r11) states
that in case of a defect carefulness should be inferred even if high speed has
been detected. Rule r17 states the evidence of a vehicle malfunctioning on the
base of a mechanic declaration. Rules r18, r19 and r20 state the conditions for
deducing in which cases the vehicle can be considered defect-free. The statement
bp(defect-free(X)) enforces the obligation for the manufacturer to prove its
adherence to the regulations.

Facts f19–f25 depict the above scenario: Paul the mechanic has found a
problem in the brake system even if the ambulance is new. However, Mike, the
production officer of the ambulance manufacturer, declares that every vehicle
is deeply tested before the delivery and the vehicle at hand has been tested.
Anyway, there is no trace of documentation.

The results of the evaluation of this scenario according to the bp semantics
can be summarised as follows. On the one hand, Lisa is free from every responsi-
bility in the accident since her prudence is correctly proved. Arguments A48 and
A37 built on r11 and r16 defeat the A34 built on r11 and consequently the one
concluding her responsibility (A42 via r8) and the burden on carefulness can be
considered satisfied. On the other hand, the manufacturer is found responsible
for the accident (A46). Indeed, arguments built on r18 and r19 – A35 and A25

respectively – rebut one other leading to a state of uncertainty. Hence, the bur-
den is not satisfied, and the argument for the defect-free ambulance is rejected.
Accordingly, the argument concluding the manufacturer’s responsibility in the
event is accepted.

8.4 Examples discussion

As it emerges from the above-discussed examples, Arg2P is a non-monotonic
reasoner, capable of improving the overall system transparency while enabling
system engineers to deeply customise the behaviour of the entire engine tailoring
their specific application context. In the remainder of this section, we discuss the
Arg2P key features as emerged by the above example in relation to distributed
pervasive multi-agent systems requirements.

System transparency & explainability. System transparency is easily obtained
thanks to the intrinsic interpretability of argumentation models (leveraging on
rule base approaches), thus ensuring key system features such as observability,
interpretability, explicability, accountability, and trustability. An example of this
property is highlighted in the first example presented in Subsection 8.1. Observ-
ing the knowledge encoding, as well as the output of the system in terms of
decisions, it is immediately clear that both coding and decisions are highly in-
terpretable and human-readable, making it easy for any observer to understand
the output of the system. Let us suppose that an autonomous vehicle is capable
of acquiring data from the surrounding environment (via car sensors) and can
consequently update the knowledge base of its control system. The use of argu-
mentation techniques would lead to a completely understandable and explainable
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model of vehicle behaviours. Quite obviously, the use of this technology in that
complex scenario would first require a neat upgrade in terms of overall system
efficiency. To this end, as well as for knowledge encoding issues, advancements
in the fields of neuro-symbolic computing and text mining could be exploited
[38, 34].

The transparency of the system, along with the ability to argue about a de-
cision, allow trustworthiness to be reached. This is a crucial aspect of ethical
autonomous systems, and can be obtained by exploiting the argumentation in-
trinsic justification mechanisms: the acceptance (or rejection) of arguments and
their premises in the framework provides an explanation for why an action was
selected (or not).

Customisation. Customisation, under a technology perspective, often means eas-
iness of integration with other techniques—for instance, already existing AI ap-
proaches. The second example (Subsection 8.2) underlies the advantages of the
Arg2P modular architecture and the easiness of customising its inference capa-
bilities by adding for instance a new semantic, like the burden of persuasion one.
New semantics and customised reasoning mechanisms can be easily added by
just adding the corresponding module that better fits the application scenarios.
Accordingly, new modules where the reasoning process is integrated with other
domain-specific techniques can be easily envisioned. The example focuses on
Arg2P customisability in the computable law domain by introducing the burden
of persuasion semantics in compliance with its related definitions. In particular,
the example shows how in certain circumstances, in compliance with the law,
responsibility must be established not only on the basis of what happened but
also by demonstrating that safety rules have been respected. In the case at hand,
purely illustrative, being careful is stated as a safety rule and is strictly correlated
to the speed of the vehicle. Obviously, the scenario could be further complicated,
but the key point here is to highlight the ease of grafting new features—in terms
of predicates, argumentative semantics, or inference capabilities. The example
examines the inclusion and use of the new burden semantic in order to give an
output suitable to the application desiderata: the system, conscious of the le-
gal context (situateness property) is given the proper tools to act accordingly.
Of course, the same could happen for other specific needs: for example, [14]
presents an extension enabling in Arg2P the notion of jurisdiction—one of the
other properties selected in [42].

Non-monotonicity & defeasibility. The whole application scenario, and in par-
ticular the third example (Subsection 8.3), shows how non-monotonicity – a
key feature of argumentation – fits perfectly the reasoning schemes required by
real-world scenarios. In fact, knowledge is usually unstable, mutable, and contra-
dicting, thus forcing intelligent agents to modify their goals, plans, and beliefs.
The selected scenario highlights all the benefits of an easy-injectable technology
– such as Arg2P – capable of delivering customisable reasoning capabilities in
compliance with legal and normative standards.
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Moreover, the case study shows how Arg2P meets many of the requirements
discussed in [42] w.r.t. the treatment of the legal knowledge—i.e. (i) rules form
and strict semantic, (ii) support for knowledge defeasibility through conflicts
and exclusionary rules, (iii) contraposition (i.e., negative conclusion does not
affect premises in defeasible rules), (iv) attribution of a value over rules through
preferences, (v) deontic effects.

9 Conclusion & future work

In this work we present the Arg2P framework, focussing in particular on its
computational model and on the technology. The work shows the effectiveness
of Arg2P to (i) deal with inconsistent information—thus enabling defeasible
reasoning; (ii) integrate legal aspects and custom behaviours—e.g., the possi-
bility to explicit the burden of persuasion over terms; (iii) provide an easy and
straightforward way to manipulate and interact with the engine.

One of the main strengths of the tool lays in its architecture: modularity,
on one side, and full integration with LP, on the other side, make Arg2P highly
suitable for intelligent pervasive systems. Moreover, its integration with LP –
enhanced with argumentation capabilities – makes it easier for Arg2P to meet
interpretability, understandability, and explainability requirements.

Even though the prototype technology presented in this work is already ma-
ture enough for tests and experiments, there is still a huge potential for improve-
ments, in particular in terms of efficiency and further research challenges.

Efficiency issues. The main limit of the prototype is related to the query-based
mode. In fact, the proposed algorithm only supports grounded semantics. Ef-
ficient solutions should also be designed for the other possible semantics. The
second issue concerns the building mechanism for the argumentation graph. In
order to derive the argumentation trees from facts and rules, an exhaustive
search on the knowledge base is performed. Consequently, the most expensive
operators affecting such a search should be implemented more efficiently—for in-
stance, leveraging the tuProlog capabilities of integrating rules written directly
in Java/Kotlin, and implementing an interpreter instead of the meta-interpreter
proposed in the prototype.

Research challenge & issues. From the point of view of the research, Arg2P rep-
resents, in our vision, a fundamental brick for distributing symbolic intelligence
in intelligent systems in compliance with the concept of micro-intelligence. En-
abling argumentation and agreement capabilities should enhance system actors
with properties like understandability and explainability – since the actors can
argue over their decisions – but also normative enforcement—since actors can
act in compliance with the law, and violations can be timely observed. Under
this perspective, many challenges open up. For example, an open point is how to
manage the resolution of conflicts among agents. A single “arbitrator” to manage
the whole argumentation process and force the other agents’ behaviour would
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certainly be impractical in distributed contexts, since it would soon become a
bottleneck. One could perhaps think about “area arbitrator” responsible for a
certain space and for a certain period of time – also considering the dynamism
of knowledge and its change over time – but the best solution still has to be
designed and tested. Furthermore, in modern pervasive contexts, symbolic tech-
niques need to be suitably integrated with sub-symbolic algorithms in order to
exploit synergies and benefits of each approach in a fruitful way. For instance,
a promising synergy point that is gaining attention in the recent literature is
the use of graph neural networks (GAN) to predict the admissibility of argu-
ments [30]. Indeed, as already acknowledged in the literature, argumentation is
computationally complex (usually NP for computations other than grounded).
In computationally-constrained scenarios, it is therefore directly not applicable,
or at least it could be suitably integrated with other approaches, balancing ad-
vantages and disadvantages. For instance, GANs could be exploited to assess
arguments’ admissibility, losing some reliability in terms of correctness and for
sure some transparency, but gaining efficiency. In general, the advancements
in the fields of neuro-symbolic computing and text mining [38, 34] could help
in mitigating efficiency and knowledge encoding issues, strictly related to the
logic-based approach.

Overall, its high interoperability and modular architecture make Arg2P a
useful technology addressing most of the aforementioned issues.
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