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Abstract. One-dimensional fragment of first-order logic is obtained by restricting quan-
tification to blocks of existential (universal) quantifiers that leave at most one variable free.
We investigate this fragment over words and trees, presenting a complete classification of
the complexity of its satisfiability problem for various navigational signatures, and compar-
ing its expressive power with other important formalisms. These include the two-variable
fragment with counting and the unary negation fragment.

1. Introduction

One-dimensional fragment of first-order logic, F1, is obtained by restricting quantification
to blocks of existential quantifiers that leave at most one variable free. As the logic is
closed under negation, one may also use blocks of universal quantifiers. F1 contains a few
known decidable fragments of first-order logic: the prenex form class ∀∃∗ with equality, the
two-variable fragment FO2, and (the so-called UN-normal form of formulas in) the unary
negation fragment UNFO.

Unfortunately, over general relational structures, the satisfiability problem for F1 is
undecidable [HK14]. In such situation, one may attempt to regain the decidability in two
principal ways: by imposing some additional restrictions on the syntax of the considered
logic or by restricting attention to some specific classes of structures.

Regarding the first idea, a nice syntactic restriction of F1, which turns out to be de-
cidable over the class of all relational structures, is called the uniform one-dimensional
fragment UF1. It was introduced by Hella and Kuusisto in [HK14] as a generalization of
the two-variable fragment of first-order logic to contexts with relations of all arities—in
particular, relations with arities greater than two. Such contexts naturally include, e.g.,
databases. The readers interested in this variant are referred to [HK14], [KK14], [KK15]
and the survey [Kuu16], the latter also revealing some connections to description logics.

In this paper we will investigate F1 over restricted classes of structures. There are two
important options, well motivated in various areas of computer science, namely, the class
of words and the class of trees. Our aim is to investigate the complexity of the satisfiability
problem of F1 over words and trees, and to compare the expressive power of F1 over these
classes of structures with a few other formalisms considered in this context. To set up the

∗ This is an extended and revised version of [Kie16] and [KK17].
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2 E. KIEROŃSKI AND A. KUUSISTO

scene, let us recall the main results on satisfiability of fragments of first-order logic over
words and trees.

Over words, it is known that the satisfiability problem for full first-order logic is decid-
able, but with non-elementary complexity. In fact, as shown by Stockmeyer [Sto74], already
the fragment with three variables is non-elementary. On the other hand, a reasonable com-
plexity is obtained when the number of variables is restricted to two. The satisfiability
problem for FO2 over words and ω-words was shown to be NExpTime-complete by Etes-
sami, Vardi and Wilke [EVW02]. In the same paper it was observed that the expressive
power of FO2 over words is equal to the expressive power of unary temporal logic, UTL,
i.e., linear temporal logic with the four navigational operators next state, somewhere in the
future, previous state, somewhere in the past. FO2, however, turns out to be exponentially
more succinct than UTL. The extension of FO2 by counting quantifiers, C2, was shown
to be NExpTime-complete over words by Charatonik and Witkowski [CW16a]. In fact,
it is not difficult to observe that over words, C2 has the same expressive power as plain
FO2. Another interesting extension of FO2, this time significantly increasing its expressive
power, is the extension by the between predicate recently studied by Krebs et al. [KLPS20].
Satisfiability for this logic is ExpSpace-complete.

Turning then to the class of trees, both FO2 and C2 retain a reasonable complexity,
namely, their satisfiability problems over trees are ExpSpace-complete. See Benaim et
al. [BBC+16] for the analysis of FO2 over trees and Bednarczyk, Charatonik and Kieroński
[BCK17] for an extension covering C2. Regarding the expressive power, the situation de-
pends on the type of trees considered. In the case of unordered trees, FO2 cannot count
and is thus less expressive than C2. Over ordered trees, both formalisms are equally expres-
sive [BCK17] and share the expressiveness with the navigational core of XPath, CoreXPath
(cf. Marx and de Rijke [MdR04]), a logic similar in spirit to UTL, used to reason about
XML trees.

Our results over words. We first analyse the expressive power and the complexity of the
satisfiability problem of F1 over words and ω-words. In our scenario we assume that at each
position of a word (ω-word), multiple unary predicates may be true, and two navigational
binary predicates are used to navigate structures: successor→ and its transitive closure→+.
We show that the expressive power of F1 over such structures is the same as the expressive
power of FO2, and thus also of UTL and C2.

The advantage of F1 over these other formalisms is that it allows to specify many
properties in a more natural and elegant way. If we want to say that a word contains
some (especially not fully specified) pattern, consisting of more than two elements, we can
just quantify the appropriate number of positions and say how they should be labelled
and related to each other. Expressing the same in FO2 will usually require some heavy
recycling of the two available variables. Let us look at two simple examples. Consider a
system whose behaviour we model as a word, or an ω-word, in which one or more of the
atomic propositions P1, . . . , Pn can hold in a given point of time. To say that there are m
non-overlapping time intervals (sets of consecutive positions of the word) in each of which
each Pi holds at least once, we can use the following F1[→

+] sentence:

∃y0y1 . . . ynx11 . . . x1n . . . xm1 . . . xmn(

m
∧

i=1

n
∧

j=1

yi−1→
+xij ∧ xij→

+yi ∧ Pjxij). (1.1)



ONE-DIMENSIONAL FRAGMENT OVER WORDS AND TREES 3

As another example1, not using the navigational predicates at all, consider the property
saying that it is possible to choose m positions satisfying together all of the Pi:

∃x1 . . . xm(

n
∧

i=1

m
∨

j=1

Pixj). (1.2)

The reader can check that expressing the above properties in FO2[→,→+] is indeed not
straightforward and leads to complicated formulas.

In fact, our translation of F1[→,→
+] to FO2[→,→+] has an exponential blow-up, which

seems to be hard to avoid, and which thus suggests that F1[→,→
+] may be able to express

some properties more succinctly than FO2[→,→+], and possibly even more succintly than
C2[→,→+].

Regarding the complexity, we show that satisfiability of F1 over words and ω-words is
NExpTime-complete, that is, it is of the same complexity as satisfiability of FO2 and C2.
While our proof has some similarities to the proof of Etessami, Vardi and Wilke [EVW02] for
FO2[→,→+], it is technically more difficult, due to the combinatorically more complicated
nature of the objects involved. Not surprisingly, the basic idea in the proof is based on an
appropriately tuned contraction procedure.

We also examine some possible extensions of F1[→,→
+]. perhaps the most significant

of them is the extension of F1[→,→
+] by an equivalence relation, inspired by an analogous

extension of FO2[→,→+] (FO2 over data words), studied by Bojańczyk et al. [BDM+11].
The satisfiability problem for FO2 over data words, even though very hard, is decidable.
We show that F1[→,→

+] over data words becomes undecidable.

Our results over trees. We consider finite unranked trees accessible by navigational
signatures built out of (some of) the following relations: child ↓, descendant ↓+, next sibling
→ and following sibling →+. Concerning the complexity of satisfiability, it turns out that
it depends on whether ↓ is present or not. With ↓ the satisfiability problem is 2-ExpTime-
complete, and without ↓ it is ExpSpace-complete. To show the upper complexity bound
in the case of the full navigational signature, we will use the existing results for UNFO
by ten Cate and Segoufin [StC13]. For the ExpSpace bound we perform some surgery on
models leading to small model properties, and then design an algorithm searching for such
appropriate small models. Technically, we extend the approach from [CKM13] used there
in the context of FO2. Roughly speaking, we appropriately abstract the information about
a node by its profile (an analogous notion is called a full type in [CKM13]) and then we
contract trees, removing their fragments between nodes with the same profiles. We explain
also how to use these techniques to directly reprove the upper bound for the full signature.
The lower bounds are inherited from other formalisms.

It is worth mentioning that an orthogonal extension of the method from [CKM13] is
used in [BCK17] in the context of C2. In both cases the challenge is to carefully tune the
notion of a profile (full type) in order to get the optimal complexity.

Regarding expressivity, we show that over ordered trees with all of the four navigational
relations we consider, F1 is expressively equivalent to each of CoreXPath, GF2, FO2, C2,
UNFO. We also show that over unordered trees equipped with both the descendant and
the child relation, F1 is still equivalent to C2, but we establish that this time FO2 is
less expressive, and that CoreXPath, GF2 and UNFO are less expressive than FO2 (and

1Suggested to the authors by Jakub Michaliszyn.
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equiexpressive with each other). Most of these expressivity results are rather easy to obtain
(though in some cases slightly awkward to formally show). The exception is the equivalence
of F1 and C2 in the absence of the sibling relations, which is less obvious and more difficult
to prove. In our expressivity-related studies, we do not consider the cases of unordered trees
accessible by only one of the descendant and the child relations.

Organization of the paper. The rest of the paper is organized as follows. In Section
2 we define the logics and structures we are interested in, introduce some basic notions
and results which will then be used in the following sections. In Section 3 we compare the
expressivity of F1 with other formalisms over words and ω-words, in Section 4 we analyse
the complexity of F1 over words and ω-words, Section 5 concerns the expressive power of F1

over trees, and in Section 6 we analyse the complexity of F1 over trees. Finally, in Section
7, we conclude the paper.

2. Preliminaries

2.1. Structures. We employ conventional terminology and notation from model theory
throughout this article, assuming the reader is familiar with most of the standard concepts.
We refer to structures using Gothic capital letters (e.g., M), and their domains using the
corresponding Roman capitals (e.g., M).

We are interested in signatures of the form σ = σ0 ∪ σnav, where σ0 consists of some
number of unary relation symbols, and σnav, called the navigational signature, is a subset
of {→,→+, ↓, ↓+}.

A word is a finite structure over a signature σ0∪{→,→
+} in which→+ is a (strict) linear

order and → its induced successor relation. An infinite structure over the same signature
and containing a reduct isomorphic to (N,+1, <) is called an ω-word. Given a word M, its
element a and a number i ∈ N, we will sometimes refer by a+ i (respectively, a− i) to the
element located i positions to the right (resp., left) from a. We will also use the notation
M = M1a to denote that the word M is the concatenation of the word M1 with the element
a. In the similar vein we will can write M = M1aM2, etc.

Let N
∗ denote the set of finite sequences of natural numbers, containing in particular

the empty sequence ǫ. For α, β ∈ N
∗ and i ∈ N, we denote by 〈α, i〉 the sequence obtained

as the result of appending i to α, and by 〈α, β〉 the result of concatenating α and β. A tree
is a finite structure T whose universe T is a subset of N∗ such that if 〈α, i〉 ∈ T , then α ∈ T ,
and in the case i > 0, also 〈α, i − 1〉 ∈ T . In a tree, at least one of ↓, ↓+ and possibly one
or both of →, →+ are interpreted, each of them in the following fixed way. For a, b ∈ T , we
have T |= a↓b iff a = α and b = 〈α, i〉 for some α ∈ N

∗ and i ∈ N; T |= a↓+b iff a = α and
b = 〈α, β〉 for some α, β ∈ N

∗, β 6= ǫ; T |= a→b iff a = 〈α, i〉 and b = 〈α, i + 1〉 for some
α ∈ N

∗ and i ∈ N; T |= a→+b iff a = 〈α, i〉 and b = 〈α, j〉 for some α ∈ N
∗ and i, j ∈ N,

i < j.
When speaking about trees we use the natural terminology. The elements of T are

sometimes called nodes. The element ǫ is called the root of T, nodes α ∈ T for which there
is no i ∈ N such that 〈α, i〉 ∈ T , are called leaves. For a node α, the nodes 〈α, i〉 are called
its children, the node 〈α, 0〉 is its leftmost child, the node 〈α, i〉 for which 〈α, i + 1〉 6∈ T is
its rightmost child, the node β such that α = 〈β, i〉 is its parent, the nodes 〈α, β〉 where
β 6= ǫ are its descendants, the nodes β such that β is a proper prefix of α are its ancestors,
the node 〈α, i− 1〉 (if i > 0) is its previous sibling, the node 〈α, i+1〉 (if it belongs to T ) is
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its next sibling, the nodes 〈α, j〉 for j < i are its preceding siblings and the nodes 〈α, j〉 for
j > i are its following siblings.

The relations ↓, ↓+,→,→
+ are called, respectively, the child-, descendant-, next sibling-

and following sibling relations. If a tree interprets at least one of →, →+, then it is called
an ordered tree; otherwise it is an unordered tree. Trees interpreting all four navigational
relations are called XML trees. Trees in this paper are unranked, that is, there is no a priori
bound on the number of the children of a node.

We say that a chain of nodes ǫ, 〈i1〉, 〈i1, i2〉, . . . , 〈i1, i2, . . . , il〉, where the last element
is a leaf, is a vertical path, and a chain of elements 〈α, 0〉, 〈α, 1〉, . . . , 〈α, l〉, where the last
element is a rightmost child, is a horizontal path. We may speak about vertical (horizontal)
paths even if the structure does not interpret ↓ (→).

2.2. Logics. Over such structures we consider the one-dimensional fragment, F1, and com-
pare it with several other fragments of first-order logic. F1 is the relational fragment in
which quantification is restricted to blocks of existential quantifiers that leave at most one
variable free. Formally, the set of formulas of F1 over the relational signature σ and some
countably infinite set of variables V ar is the smallest set such that:

• Rx̄ ∈ F1 for all R ∈ σ and all tuples x̄ of variables from V ar of the appropriate length,
• x = y ∈ F1 for all variables x, y ∈ V ar,
• F1 is closed under ∨ and ¬,
• if ϕ is an F1 formula with the free variables x0, . . . , xk, then the formulas ∃x0, . . . , xkϕ
and ∃x1, . . . , xkϕ belong to F1.

As usual, we can use standard abbreviations for other Boolean operations, like ∧,→,⊤, etc.,
as well as for universal quantification. The length of a formula ϕ is measured as the total
number of symbols required to write down ϕ, and denoted ‖ϕ‖. The width of a formula is
the maximum of the numbers of free variables in its subformulas.

We will write F1[σnav ] to indicated that we are interested in F1 formulas over the
signature σ0 ∪ σnav for some set σ0 of unary relation symbols. We will use the same
convention for other logics also.

Some results in this paper will refer to the unary negation fragment, UNFO [StC13].
The set of UNFO formulas is the smallest set of formulas such that:

• Rx̄ ∈ UNFO for all R ∈ σ and all tuples x̄ of variables from V ar of the appropriate
length,
• x = y ∈ UNFO for all variables x, y ∈ V ar,
• UNFO is closed under ∨, ∧ and existential quantification,
• if ϕ(x) is an UNFO formula with no free variables besides (at most) x then ¬ϕ(x) is also
in UNFO.

We emphasise that UNFO is not closed under negation, and does not allow for a direct
universal quantification.

The following lemma, showing that UNFO may be seen as a fragment of F1 is implicit
in [StC13]:

Lemma 2.1. There is a polynomial procedure which, given an UNFO formula ϕ, produces
an equivalent formula ϕ′ in UNFO ∩ F1 over the same signature.

Proof. In [StC13], it is shown that any UNFO formula can be converted into the so-called
UN-normal form, which is one-dimensional by definition.
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We note that, generally, no translation from F1 to UNFO exists. This non-existence
is shown in [HK14] for the extension GNFO of UNFO. Actually, the satisfiability problem
(over the class of all structures) for UNFO is decidable [StC13], and for F1 it is undecidable
[HK14].

Other relevant fragments of first-order logic which will be mentioned in this paper are
the two-variable fragment, FO2, the two-variable fragment with counting quantifiers, C2,
the two variable version of the guarded fragment, GF2, the navigational core of XPath,
CoreXPath, and the unary temporal logic UTL.

The formulas of FO2 are just those first-order relational formulas which use only the
two variables x and y. GF2 is the fragment of FO2 in which every quantifier is appropriately
relativised by an atomic formula (see, e.g., [Grä99]). C2 extends FO2 by counting quantifiers,
that is, it adds to FO2 constructs of the form ∃≥Cyψ(x, y) and ∃≤Cyψ(x, y), for C ∈ N,
with the natural semantics: for a ∈ A, we have that A |= ∃≥Cyψ(a, y) if there are at least
C elements b ∈ A such that A |= ψ(a, b). Analogously for ∃≤C .

UTL will be mentioned in the case of words. It is a temporal logic with four navigational
operators: next state, somewhere in the future, previous state, somewhere in the past, but
without binary operators since and until (see [EVW02] for more details).

A corresponding formalism for trees is CoreXPath. We present it here as a modal logic
with four pairs of modalities, each pair corresponding to one of the relations from the set
{↓, ↓+,→,→

+}. Definitions in the literature slightly differ from ours, but the spirit is the
same. Let Σ0 be a set of propositional variables, and let us consider the following eight
modalities: 〈↓〉, 〈↑〉, 〈↓+〉, 〈↑

+〉, 〈→〉, 〈←〉, 〈→+〉, 〈←+〉. The set of CoreXPath formulas
over Σ0 is the least set such that:

• any P in Σ0 is in CoreXPath,
• CoreXPath is closed under Boolean connectives
• if ψ is in CoreXPath then so is 〈·〉ψ for any modality 〈·〉.

Identifying Σ0 with σ0 (that is, treating propositional variables of Σ0 as unary relation
symbols in σ0), we can interpret CoreXPath formulas over trees. Given a tree T and its
node a we inductively define what it means that a CoreXPath formula ψ holds at a, written
T, a |= ψ. For P ∈ Σ0 we have T, a |= P iff T |= P (a), T, a |= 〈↓〉ψ′ if there is b ∈ T such
that T |= a↓b and T, b |= ψ′, and analogously for the other modalities, which require ψ′

to be satisfied at, respectively, the parent, a descendant, an ancestor, the next sibling, the
previous sibling, a following sibling, and a preceding sibling.

Using the so-called standard translation we can translate CoreXPath formulas to equiv-
alent first-order formulas with one free-variable. By an appropriate reuse of variables this
translation fits into FO2[↓, ↓+,→,→

+], and actually even in GF2[↓, ↓+,→,→
+] (cf. [MdR04]).

As an example, the formula 〈↑〉(P ∧〈→+〉(Q∨〈↓+〉R)) can be translated to ∃y(y↓x∧P (y)∧
∃x(y→+x ∧ (Q(x) ∨ ∃y(x↓+y ∧R(y)))).

We remark that a similar translation exists for UTL [EVW02].

2.3. Comparing expressive powers. In this paper we will compare the expressive powers
of the logics mentioned in the previous paragraph over words and trees. We will concentrate
on the case of formulas with one free variable. This is a natural choice when taking into
account the character of the logics considered: e.g., (the standard translations of) formulas
in CoreXPath and UTL always have exactly one free variable and quantified subformulas
in F1, GF2, FO2 and C2 leave at most one variable free.
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Let C be a class of structures. We say that a logic L1 is less or equally expressive than a
logic L2 over C, written L1 � L2 (C will always be clear from the context) if for any formula
with one free variable ϕ1(x) in L1, there is a formula with one free variable ϕ2(x) in L2

over the same alphabet such that for any structure A and a ∈ A, we have A |= ϕ1(a) iff
A |= ϕ2(a).

If L1 � L2 and L2 � L1, then we say that the logics are equiexpressive and write
L1 ≡ L2. If L1 � L2 but it is not the case that L2 � L1, then we say that L1 is (strictly)
less expressive than L2 and write L1 ≺ L2.

2.4. Normal form for F1. For the parts of this paper concerning satisfiability, we intro-
duce a convenient normal form, inspired by the Scott normal form for FO2 [Sco62] (a similar
normal form is used also in [KK14] for the uniform F1 over arbitrary structures). We say
that an F1[σnav] formula ϕ is in normal form if ϕ has the following shape:

∧

1≤i≤m∃

∀y0∃y1 . . . ykiϕ
∃
i ∧

∧

1≤i≤m∀

∀x1 . . . xliϕ
∀
i , (2.1)

where ϕ∃
i = ϕ∃

i (y0, y1, . . . , yki) and ϕ∀
i = ϕ∀

i (x1, . . . , xli) are quantifier-free. Note that the
width of ϕ is the maximum of the set {ki + 1}1≤i≤m∃

∪ {lj}1≤j≤m∀
. The following fact can

be proved in the standard fashion.

Lemma 2.2. For every F1[→,→
+] formula ϕ, one can compute in polynomial time an

F1[→,→
+] formula ϕ′ in normal form (over the signature extended by some fresh unary

symbols) such that: (i) any model of ϕ can be expanded to a model of ϕ′ by appropriately
interpreting new unary symbols; (ii) any model of ϕ′ restricted to the signature of ϕ is a
model of ϕ.

Proof. (Sketch) We successively replace innermost subformulas ψ of ϕ of the form

∃y1, . . . , ykϕ(y0, y1, . . . , yk)

by atoms Pψ(y0), where Pψ is a fresh unary symbol, and axiomatize Pψ using normal form
conjuncts: ∀y0∃y1, . . . , yk(Pψ(y0)→ ϕ(y0, y1, . . . , yk)) and ∀y0, y1, . . . , yk (ϕ(y0, y1, . . . , yk)→
Pψ(y0)).

Lemma 2.2 allows us, when dealing with satisfiability or when analysing the size and
shape of models, to restrict attention to normal form formulas.

2.5. Types. In this subsection we define the classical notion of (atomic or quantifier-free)
type. For k ∈ N \ {0} a k-type π over a signature σ = σ0 ∪ σnav is a maximal consistent set
of σ-literals over variables x1, . . . , xk (often indentified with the conjunction of its elements).
This means that π is a k-type iff:

• for each P ∈ σ0 and 1 ≤ i ≤ k either Pxi or ¬Pxi belongs to π;
• for each ⇋∈ σnav and 1 ≤ i, j,≤ k, i 6= j, either xi ⇋ xj or ¬xi ⇋ xj belongs to π;
• for each 1 ≤ i < j ≤ k, either xi = xj or xi 6= xj belongs to π;
• if σnav = {→,→

+} (respectively, σnav contains at at least one of ↓, ↓+), then π is satisfiable
in a word (resp., tree), i.e., there exists a word (resp., tree) M and its elements a1, . . . , ak
such that M |= π(a1, . . . , ak).
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The last condition can be replaced by a purely syntactic one, listing conditions ensuring
consistency with a linear or, respectively, tree shape of structures. Listing such conditions
would be routine but slightly awkward, so we omit them here.

A type is a k-type for some k ≥ 1. Note that a 1-type is fully characterized by a subset
of σ0.

We say that a tuple of elements a1 . . . , ak of a structure (word or tree) A realizes a
k-type π if A |= π(a1, . . . , ak). In this case we write typeA(a1, . . . , ak) = π. Note that every
tuple of elements of a structure realizes precisely one type.

3. Expressivity of one-dimensional fragment over words

It is known that the two-variable fragment, FO2, is expressively equivalent over words and
ω-words to UTL [EVW02]. It is also equivalent to C2, [BCK17]. Also GF2, as a fragment
of FO2 containing UTL, has the same expressive power. Here we show that F1 and UNFO
share this expressivity. To properly handle UTL in the following theorem we identify its
formulas with their standard translations to FO2 which is a formula with one free variable.

Theorem 3.1. Over the class of words and ω-words we have: UTL≡ GF2 ≡ FO2≡ C2≡
UNFO ≡ F1.

Let us first make a simple observation about the equivalence of UNFO and F1. By
Lemma 2.1, UNFO is not more expressive than F1. In the opposite direction, given any
F1[→,→

+] formula we can, using basic logical lows, convert it into a form in which the only
non-unary negated formulas are atomic, i.e., are of the form ¬x→y or ¬x→+y. They can
be quite easily translated into formulas not using negations at all. Indeed, the former can
be expressed as y→+x ∨ x = y ∨ ∃z(x→z ∧ z→+y) and the latter as y→+x ∨ x = y. This
gives a polynomial translation from F1[→,→

+] into UNFO[→,→+].
To complete the proof of Thm. 3.1 we need to show the equivalence of FO2 and F1.

Obviously, FO2 is a fragment of F1. It remains to show how to translate F1 into FO2. The
crux is to show how to handle formulas starting with a block of quantifiers.

Lemma 3.2. For any F1[→,→
+] formula ψ = ∃y1 . . . , ykψ0(y0, y1, . . . , yk) with the free

variable y0 there exists an FO2[→,→+] formula ψ′ with one free variable such that for every
word or ω-word M and every a ∈M , we have M |= ψ[a] iff M |= ψ′[a].

Proof. We prove this lemma by induction over the quantifier depth of ψ, measured as the
maximal nesting depth of maximal blocks of quantifiers rather than of individual quantifiers.
W.l.o.g. we assume that every subformula of ψ starting with such a block indeed has a free
variable (if it would not be the case we could always add a dummy variable). Let us take
any

ψ = ∃y1 . . . , ykψ0(y0, y1, . . . , yk), (3.1)

and assume that its every subformula starting with a maximal block of quantifiers has an
equivalent FO2-formula. Convert ψ0 into disjunctive form (treating subformulas starting
with a quantifier as atoms) and distribute existential quantifiers over disjunctions, obtaining

ψ ≡

s
∨

i=1

∃y1 . . . , ykψi(y0, y1, . . . , yk), (3.2)

for some s ∈ N, where each ψi is a conjunction of literals, subformulas with one free variable
of the form ∃z1, . . . , zlχ(yj, z1, . . . , zl), and negations of such subformulas.
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Recall that the possible atoms are P (yi) for a unary symbol P , yi→yj, yi→
+yj and

yi = yj, for some i, j.
An ordering scheme over variables y0, . . . , yk is a formula of the form η0(yi0 , yi1) ∧

η1(yi1 , yi2) ∧ . . . ∧ ηk−1(yik−1
, yik), where ηi(v,w) is one of the following formulas: v = w,

v→w or v→+w ∧ ¬v→w, and i0, i1, i2, . . . , ik is a permutation of 0, 1, . . . , k.
Consider now a single disjunct ∃y1 . . . , ykψi(y0, y1, . . . , yk) of (3.2) and replace it by the

following disjunction over all possible ordering schemes δ over y0, . . . , yk:
∨

δ

∃y1 . . . , yk(δ(y0, . . . , yk) ∧ ψ
δ
i (y0, y1, . . . , yk)), (3.3)

where ψδi is obtained from ψi by replacing all atoms yi→yj, yi→
+yj and yi = yj, which

are not bounded by the quantifiers from ψi by ⊤ or ⊥, in accordance with the information

recorded in δ. Let us write ψδi as
∧k
j=0 ψ

δ
i,j(yj), where ψ

δ
i,j(yj) consists of the conjuncts with

the free variable yj. We now explain how to translate a single disjunct

∃y1 . . . , yk(δ(y0, . . . , yk) ∧

k
∧

j=0

ψδi,j(yj)) (3.4)

of (3.3). Let i0, i1, . . . , ik be the permutation used to generate δ, and let t be the index
such that it = 0. By the inductive assumption we can replace in each ψδi,j(yj) any conjunct

of the form ∃z1, . . . , zlχ(yj, z1, . . . , zl) by an equivalent two-variable conjunct with one free

variable y0. Thus, in turn, ψδi,j(yj) can be replaced by an equivalent FO2 formula ψ′δ
i,j with

one free variable.
We finally replace (3.4) by the conjunction of:

ψ′δ
i,it(y0), (3.5)

∃y(ηt−1(y, y0) ∧ ψ
′δ
i,it−1

(y) ∧ ∃y0(ηt−2(y0, y) ∧ ψ
′δ
i,it−2

(y0) ∧ . . .)), (3.6)

∃y(ηt(y0, y) ∧ ψ
′δ
i,it

(y) ∧ ∃y0(ηt+1(y, y0) ∧ ψ
′δ
i,it+1

(y0) ∧ . . .)), (3.7)

in which (3.5) takes care of subformulas with the free variable y0, (3.6) takes care of witnesses
smaller than (or equal) to y0, passing the word from y0 to the left, and (3.7) takes care of
witnesses greater than (or equal to) y0, passing the word from y0 to the right. Of course, in
all the above formulas we appropriately rename the variables if necessary, so that only y0
and y are used.

Having translated formulas starting with blocks of quantifiers, we can easily translate
other formulas with one free variable, since they are just Boolean combinations of the former
and unary literals, all of them with the same free variable. This gives a translation from
F1[→,→

+] to FO2[→,→+].
Observe that starting from an F1[→,→

+] formula this translation may produce a for-
mula in FO2[→,→+] which is exponentially longer. Essentially, there are two sources of this
exponential blow-up. The first is the transformation to disjunctive form, and the second is
considering all possible permutations of variables quantified in a single block of quantifiers.
The question whether this blow-up is necessary is left open.
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4. Satisfiability of one-dimensional fragment over words

We next turn our attention to satisfiability of F1 over words. Some upper bounds for
the problem can be obtained using the translation to FO2 given in the previous section.
As this translation involves an exponential blow-up and the satisfiability problem for FO2

over words is NExpTime-complete, this gives a 2-NExpTime-upper bound. This could be
improved by translating F1 directly to UTL, which can be done without problems using the
same method. As satisfiability of UTL is PSpace-complete, we would get an ExpSpace-
upper bound this way.

However, we can do even better. We prove that the satisfiability problem for F1[→,→
+]

both over words and ω-words is NExpTime-complete.
To this end we develop a contraction method involving a careful analysis of certain

similarities between elements in a model and explain how to use it in order to obtain small
model properties for F1[→,→

+] both over words and ω-words. The complexity result will
then easily follow.

4.1. Profiles. Now we define profiles. Profiles are intended to abstract the information
about relations of a given element to the other elements of a word. Namely, they say what
the types of tuples are (of some bounded size) containing the given element. For convenience
we will additionally distinguish types of tuples built of the elements located to the left and
to the right from the given element.

We say that an element a of a word M realizes (or has) a k-profile profMk (a) = (F ,L,R)
if F is the set of all s-types, 1 ≤ s ≤ k, realized by tuples a1, a2, . . . , as such that a = a1,
L is the set of all s-types, 1 ≤ s ≤ k, realized by tuples a1, a2, . . . , as such that a = a1 and
for all 2 ≤ i ≤ s we have ai→

+a; and, analogously, R is the set of all s-types, 1 ≤ s ≤ k,
realized by tuples a1, a2, . . . , as such that a = a1 and for all 2 ≤ i ≤ s we have a→+ai.
Given a profile θ we will sometimes refer to its components with θ.F , θ.L and θ.R. Note
that θ.L ∪ θ.R ⊆ θ.F . Note also that θ.F is determined by θ.L and θ.R, and vice versa.

Lemma 4.1. Let M be a word or an ω-word over σ = σ0 ∪ {→,→
+} and k > 0 a natural

number. Then the number of k-profiles realized in M is bounded by a fixed function h

exponential in |σ0| and k.

Proof. We introduce a binary relation ∼k on M as follows. For a, b ∈ M we set a ∼k b iff
the one-type of a + i is equal to the 1-type of b + i (or both a + i and b + i do not exist)
for all −k < i < k. Clearly, ∼k is an equivalence relation and the number of its equivalence
classes is bounded by (2|σ0|)2k−1+2k−2 = 2|σ0|·(2k−1)+2k−2 (the number of combinations
of 1-types of elements a− k + 1, . . . , a+ k − 1 plus the classes of the first k − 1 and, in the
case of a finite word, the last k − 1 elements).

We show that if a ∼k b and M |= a→+b then for every type π if π ∈ profMk (b).R

then π ∈ profMk (a).R. Take any π ∈ profMk (b).R and let b1, b2, . . . , bk, with b1 = b be
its realization. Let u1, . . . , uk be a permutation of {1, . . . , k} such that u1 = 1 and M |=
bui→

+bui+1
∨ bui = bui+1

for 1 ≤ i < k, that is a permutation ”sorting” the elements of the
given tuple. Let l be the maximal index such that M |= bui→bui+1

∨ bui = bui+1
for all 1 ≤

i ≤ l. Consider now the tuple au1 , . . . , auk , such that au1 = a, aui = a+(i−1) for 1 < i ≤ l,
and aui = bui for l < i ≤ k. Note that typeM(au1 , . . . , auk) = typeM(bu1 , . . . , buk) and thus

also typeM(a1, . . . , ak) = typeM(b1, . . . , bk) = π. Since a = a1 this means π ∈ profMk (a).R.

Strictly analogously we can show that if π ∈ profMk (a).L then π ∈ profMk (b).L.
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Thus, when moving along the elements of a single equivalence class of ∼k in M from left
to right, the R-components of the profiles of elements either stay unchanged or diminish,
and the L-components either stay unchanged or grow. As the set of types contained in
each component is determined by the set of k-types in this component, and as the number
of k-types in a component can be roughly estimated by (2|σ0|)k · 5k(k − 1) (the number of
possible assignments of one-types to the elements of a tuple of k elements, times the number
of possible binary connections: equal, y a successor of x, x a successor of y, y to the left
from x but not the successor, y to the right from x but not the predecessor, for every pair of
elements) it follows that the ∼k-equivalent elements may have at most 2·(2|σ0 |)k ·5k(k−1)+1
different k-profiles (recall that the F-components are determined by L- and R-components).
Finally, the total number of k-profiles is bounded by (2|σ0|·(2k−1)+2k−2) · (2 ·2|σ0 |·k ·5k(k−
1) + 1), which is indeed exponential in both k and |σ0|.

The notion of profiles can be easily connected to satisfaction of normal form formulas.
Given a normal form formula ϕ of width k we say that a k-profile θ is compatible with ϕ if

• for every conjunct ∀x1 . . . xliϕ
∀
i (x1 . . . xli) of ϕ and every li-type π ∈ F , we have π |= ϕ∀

i .
• for every conjunct ∀y0∃y1 . . . ykiϕ

∃
i (y0, y1 . . . yki) of ϕ there is a (ki+1)-type π ∈ θ.F such

that π |= ϕ∃
i (x1, . . . , xki+1).

It is straightforward to see:

Lemma 4.2. A normal form formula ϕ of width k is satisfied in a word (ω-word) M iff
every k-profile realized in M is compatible with ϕ.

4.2. Contraction. We are ready to prove the contraction lemma. Namely, we observe that
removing a fragment of a word between two realizations of the same profile (including one
of them and excluding the other) does not change the profiles of the surviving elements.

Lemma 4.3. Let M = M1cM2dM3 be a word or ω-word, and k > 0 a natural number.
Assume that profMk (c) = profMk (d) and M′ = M1cM3. Then, for every b ∈ M ′, we have

profM
′

k (b) = profMk (b).

Proof. Consider the case where b ∈M1 ∪{c}. Note that the prefix of M ending in b is then

equal to the prefix of M′ ending in b. It follows that profM
′

k (b).L = profMk (b).L. It remains

to show that profM
′

k (b).R=profMk (b).R.

To show that profM
′

k (b).R ⊆ profMk (b).R, take any s-type π, 1 ≤ s ≤ k, belonging to

profM
′

k (b).R and let b1, . . . , bs be a realization of π in M′, with b1 = b. Let u1, . . . , us be a
permutation of {1, . . . , s} such that u1 = 1 and M′ |= bui→

+bui+1
∨ bui = bui+1

for 1 ≤ i < s.
Let l be the maximal index such that bul ∈ M1 ∪ {c}. Since bu1 = b ∈ M1 ∪ {c}, l is well

defined. Let π′ = typeM(d, bul+1
, . . . , bus) and observe that π′ ∈ profMk (d).R. By assumption

π′ ∈ profMk (c).R, and thus there is a realization c, aul+1
, . . . , aus of π′ in M. Set aui := bui

for 1 ≤ i ≤ l. It is now not difficult to see that typeM(au1 , . . . , aus) = typeM
′
(bu1 , . . . bus)

and thus also typeM(a1, . . . , as) = typeM
′
(b1, . . . bs) = π. Since a1 = b1 = b it follows that

π ∈ profMk (b).

To show that profMk (b).Ri ⊆ profM
′

k (b).Ri we take any s-type π, 1 ≤ s ≤ k belonging

to profMk (b).Ri and let b1, . . . , bs be a realization of π in M, with b1 = b. Let u1, . . . , us
be a permutation of {1, . . . , s} such that u1 = 1 and M |= bui→

+bui+1
∨ bui = bui+1

for
1 ≤ i < s. Let l be the maximal index such that bul ∈ M1 ∪ {c}. Again note that l is well
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defined. Let π′ = typeM(c, bul+1
, . . . , bus) and observe that π′ ∈ profMk (c).R. By assumption

π′ ∈ profMk (d).R, and thus there is a realization d, aul+1
, . . . , aus of π

′ in M with the aj from

M3. Let aui := bui for 1 ≤ i ≤ l. It is not difficult to see that typeM
′
(au1 , . . . , aus) =

typeM(bu1 , . . . , bus) and thus also typeM
′
(a1, . . . , as) = typeM(b1, . . . , bs) = π and since

a1 = b it follows that π ∈ profM
′

k (b).R.
The case when a′ ∈M3 can be treated symmetrically: this time we get the equality of

the R-components of the profiles for free and to show the equality the L-components we
use the equality of the L-components of the profiles of c and d.

4.3. Surgery on ω-words. In this subsection we work over ω-words. Namely, we show
how to transform a given ω-word into a periodic one without introducing any new profiles.

Lemma 4.4. Let M be an ω-word and k > 0 a natural number. Let M0 be the shortest
prefix of M such that it contains all the elements having the k-profiles which are realized
finitely many times in M. Note that M0 has length at least k−1. Let a∗ be the first element
not belonging to M0, and θ∗ its k-profile. Let M1 be the shortest fragment of M such that

• it starts at a∗,
• contains a realization of every k-profile which is realized in M infinitely many times,
• ends at an element whose successor b∗ has k-profile θ∗.

Consider the ω-word M′ = M0M
ω
1 , that is the word obtained by concatenating M and

infinitely many copies of M1. We will call its initial fragment M0 and the subsequent copies
of M1 blocks. Let f : M ′ → M be the function returning for every a′ ∈ M ′ the element

from M which a′ is a copy of. Then, for every a′ ∈M ′, profM
′

k (a′) = profMk (f(a)).

Proof. Let us start with a simple observation.

Claim 4.5. For every −k < i < k either both a′ + i and f(a′) + i do not exist or their
1-types are identical.

Proof. The claim is obvious if a′ and a′+ i belong to the same block, and easily follows from
the requirement that a∗ and b∗ have the same k-profiles in the other case (for this observe
also that M0 contains at least k elements, which follows from the fact that the profiles of
the first k elements of a word are unique).

Let g : M → M ′ be the partial function defined on M0 ∪M1 such that g(a) = a if
a ∈M0 and g(a) is the counterpart of a in the first copy of M1.

Take any a′ ∈M′. First, let us consider the L-components of the profiles. Take any π ∈
profMk (f(a′)).L and let a tuple āπ be its realization. Let us write the elements of āπ, in the
increasing order, removing duplicates, as āsortπ = a01, . . . , a

0
s0
, a11, . . . , a

1
s1
, . . . , al1, . . . , a

l
sl

=

f(a′), where for each i, ai1, . . . , a
i
si
is a maximal sequence of consecutive elements of M. Ob-

serve, using Claim 4.5, that the structure on the sequence g(a01), . . . , g(a
0
s0
), . . . , g(al−1

1 ), . . . ,

g(al−1
sl−1

), a′ − (sl − 1), . . . , a′ − 1, a′ is isomorphic to the structure on āsortπ . It follows that

π ∈ profM
′

k (a′).L.

Take π ∈ profM
′

k (a′).L. Let āπ be its realization, and let us write the elements of āπ, in
the increasing order, removing duplicates, as āsortπ = a01, . . . , a

0
s0
, a11, . . . , a

1
s1
, . . . , al1, . . . , a

l
sl
=

a′. Take the maximal u such that ausu ∈ M0. For all i ≤ u and all j let bij := g(aij). Now,

for i = u+1, . . . , k repeat the following. Consider the sequence f(aisi)− si+1, . . . , f(aisi)−
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1, f(aisi). By Claim 4.5 the structure on this sequence is isomorphic to the structure on

ai1, . . . , a
i
si
. Let bisi be an element ofM whose profile is identical to the profile of f(aisi), and is

located at least k+1 positions to the right from bi−1
si−1

. Such an element exists since the profile

of aisi is realized in M infinitely many times. For j = 1, . . . , si−1 take bij := bisi−si+j. Note

that the structure on the sequence b01, . . . , b
0
s0
, a11, . . . , b

1
s1
, . . . , bl1, . . . , b

l
sl
is isomorphic to the

structure on the sequence āsortπ . Thus π ∈ profMk (blsl).L. But prof
M
k (blsl) = profMk (f(alsl)) =

profMk (f(a′)). So π ∈ profMk (f(a′)).L.
The reasoning for the equality of the R-components is similar but simpler and we omit

it here.

4.4. Complexity. Using the tools prepared in the previous subsection, we can now show
the following small model properties.

Lemma 4.6. Every normal form F1[→,→
+] formula ϕ satisfiable over a finite word has a

model of size bounded exponentially in ‖ϕ‖.

Proof. Due to Lemma 2.2, we can assume that ϕ is in normal form. Let k be its width. We
take any finite model M |= ϕ and perform on it the contraction procedure from Lemma 4.3,
as many times as possible, i.e., if it still contains a pair of distinct elements with the same
k-profile. By Lemma 4.1 the number of elements in the resulting model M′ is bounded
exponentially in ‖ϕ‖. By Lemma 4.3, the profiles of the elements in M′ are retained from
M. As M |= ϕ, these profiles are compatible with ϕ. By Lemma 4.2, we get that M′ indeed
satisfies ϕ.

Lemma 4.7. Every F1[→,→
+] formula ϕ satisfiable over an ω-word has a model N0N

ω
1

where both |N0| and |N1| are bounded exponentially in ‖ϕ‖.

Proof. Due to Lemma 2.2 we can assume that ϕ is in normal form. Let k be its width. We
take an arbitrary ω-model M |= ϕ. Let M = M0M1M2 where M0 and M1 are as in Lemma
4.4. Using Lemma 4.3 for M, contract its fragments M0 and M1 to, resp., N0 and N1 so
that every k-profile from M is realized at most once in N0 and at most once in N1. By
Lemma 4.1 the number of elements in both N0 and N1 are bounded exponentially in ‖ϕ‖.
Note that N0N1M2 |= ϕ. By Lemma 4.4 the k-profiles of elements in N0N

ω
1 are retained

from N0N1M2 and the latter are realized in M. By Lemma 4.2 we get that N0N
ω
1 is indeed

a model of ϕ.

Finally, we can state the main complexity result of this section.

Theorem 4.8. The satisfiability problems for F1[→,→
+] over words (ω-words) is NExpTime-

complete.

Proof. For a given F1[→,→
+] formula ϕ, convert it into its normal form ϕ′. Then guess a

finite model of ϕ′ of size bounded exponentially as guaranteed by Lemma 4.6 (exponentially
bounded initial and periodic parts of a regular ω-model as guaranteed by Lemma 4.7) and
check that all the profiles realized in this model (in the model generated by the guessed
parts) indeed are compatible with ϕ′. In the case of finite words the profiles are computed
in an exhaustive way: for every element a of the guessed model M we consider all possible
tuples a2, . . . , as of at most k − 1 elements and add typeM(a, a2, . . . , as) to the profile.
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In the case of ω-words, note that all the k-profiles realized in the periodic model are
realized in the finite model in which the periodic part is taken 2k times (k times assuming
that the length of the periodic part is bigger than 1). Thus, it suffices to compute the
profiles in such finite model.

We also get the following corollary concerning UNFO.

Corollary 4.9. The satisfiability problems for UNFO over words (ω-words) is NExpTime-
complete.

Proof. The upper bound follows from Lemma 2.1 and Thm. 4.8. The lower bound follows
from NExpTime-hardness of FO2 with only unary relations (without any structure).

4.5. Undecidable extensions. The two variable fragment over words, FO2[→,→+] re-
mains decidable when extended in various orthogonal directions. Here we show that three
such important analogous extensions are undecidable in the case of F1.

4.5.1. Data words. A data word (ω-data word) is a word (ω-word) with an additional binary
relation ∼ which is required to be interpreted as an equivalence relation, and which is
intended to model the equality of data from a potentially infinite alphabet. Data words
are motivated by their connections to XML. FO2 over data words becomes at least as hard
as reachability in Petri nets [BDM+11]. Nevertheless, the satisfiability problem remains
decidable. We show that F1[→,→

+] over data words is undecidable, even in the absence of
→+.

Theorem 4.10. The satisfiability problem for F1[→] over finite data words and over ω-
data-words is undecidable.

Proof. We employ the standard apparatus of tiling systems. A tiling system is a quin-
tuple T = 〈C, c0, c1,Hor ,Ver〉, where C is a non-empty, finite set of colours, c0, c1 are
elements of C, and Hor , Ver are binary relations on C called the horizontal and vertical
constraints, respectively. We say that T tiles the m× n grid if there is a function function
f : {0, 1, . . . ,m− 1}×{0, 1, . . . , n− 1} → C such that f(0, 0) = c0, f(m− 1, n− 1) = c1, for
all 0 ≤ i < m−1, 0 ≤ j ≤ n−1 we have 〈f(i, j), f(i+1, j)〉 is in Hor , and for all 0 ≤ i < m,
0 ≤ j < n − 1 we have 〈f(i, j), f(i, j + 1)〉 is in Ver . It is well know that the problem of
checking if for a given tiling system T there are m,n such that T tiles the m × n grid is
undecidable. The problem remains undecidable if we require m to be even and n odd.

To show undecidability of the satisfiability problem for F1[→,∼] over finite words we
construct a formula ΦT which is satisfied in a finite word iff T tiles the m×n grid for some
even m and odd n. We begin the construction of ΦT with enforcing that its model is a
finite grid-like structure, in which the relation → forms a snake-like path from its lower-left
corner to the upper-right corner, and the equivalence relation connects some elements from
neighbouring columns. See Fig. 1. As mentioned, we assume that the number of columns is
odd and the number of rows is even. We employ the following unary predicates: B, T , Ec,
Er, whose intended purpose is to mark elements in the bottom row, top row, even columns,
and even rows, respectively.
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B

T

Er

Er

Er

Er

Ec Ec Ec

Figure 1: The grid-like structure used to show undecidability of F1[→,∼]. Solid arrows
represent →, wavy lines represent ∼.

The first two formulas say that the lower left and upper right corners of the grid exist:

∃x(Bx ∧ ¬Tx ∧ Ecx ∧Erx ∧ ¬∃y(y→x)) (4.1)

∃x(Tx ∧ ¬Bx ∧ Ecx ∧ ¬Erx ∧ ¬∃y(x→y)) (4.2)

Next we take care of the → relation, ensuring that it respects the intended meaning of
the unary predicates:

∀xy (x→y → (4.3)

(Ecx ∧ Ecy → (¬By ∧ ¬Tx ∧ (Erx↔ ¬Ery)) ∧

(Ecx ∧ ¬Ecy → (Tx ∧ Ty ∧ ¬Bx ∧ ¬By ∧ ¬Erx ∧ ¬Ery)) ∧

(¬Ecx ∧ Ecy → (Bx ∧By ∧ ¬Tx ∧ ¬Ty ∧ Erx ∧ Ery)) ∧

(¬Ecx ∧ ¬Ecy → (¬Bx ∧ ¬Ty ∧ (Er ↔ ¬Ery))))

Further, we enforce the appropriate ∼-connections. (We abbreviate a formula guaran-
teeing that x1, . . . , xk agree on the Ec-predicate by SameColumn(x1, . . . , xk).)

∀xyzt(x→y ∧ y→z ∧ z→t ∧ Ty ∧ Tz → x ∼ t) (4.4)

∀xyzt(x→y ∧ y→z ∧ z→t ∧By ∧Bz → x ∼ t) (4.5)

∀xyztuw(SameColumn(x, y, z) ∧ SameColumn(t, u, w) ∧

x→y ∧ y→z ∧ z ∼ t ∧ t→u ∧ u→w → x ∼ w (4.6)

And finally, we say that T and B are appropriately propagated.

∀xy(x ∼ y → (Tx↔ Ty) ∧ (Bx↔ By)) (4.7)

∀xyzt(SameColumn(x, y) ∧ SameColumn(z, t) ∧

x→y ∧ y ∼ z ∧ z→t→ (Tx↔ T t) ∧ (Bx↔ Bt)) (4.8)

Formulas (4.1)-(4.8) ensure that all the vertical segments of the snake-like path are of
the same length and thus that any model indeed looks like in Fig. 1. It remains to encode
the tiling problem. We use a unary predicate Pc for each c ∈ C. We say that each node of
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the grid is coloured by precisely one colour from C, that (0, 0) is coloured by c0 and that
(m− 1, n− 1) is coloured with c1:

∀x(
∨

c∈C

Pc(x) ∧
∧

c 6=d

¬(Pc(x) ∧ Pd(x))), (4.9)

∀x((¬∃yy→x)→ Pc0(x)), (4.10)

∀x((¬∃yx→y)→ Pc1(x)). (4.11)

Let us abbreviate by ΘH(x, y) the formula
∧

〈c,d〉6∈Hor(¬Pc(x) ∧ ¬Pd(y)) stating that x, y

respect the horizontal constraints of T and by ΘV (x, y) the analogous formula for vertical
constraints. We take care of vertical adjacencies:

∀xy(Ec(x) ∧ Ec(y) ∧ x→y ∨ ¬Ec(x) ∧ ¬Ec(y) ∧ y→z → ΘV (x, y)), (4.12)

and of horizontal adjacencies:

∀xyzt(x→y ∧ y→z ∧ z→t ∧ Ty ∧ Tz → ΘH(y, z)), (4.13)

∀xyzt(x→y ∧ y→z ∧ z→t ∧By ∧Bz → ΘH(y, z))), (4.14)

∀xyztuw(SameColumn(x, y, z) ∧ SameColumn(t, u, w) ∧ z ∼ t ∧

x→y ∧ y→z ∧ t→u ∧ u→w → ΘH(x,w)∧ΘH(y, u)∧ΘH(z, t)). (4.15)

Let ΦT be the conjunction of (4.1)-(4.15). From any model of ΦT , we can read off a
tiling of an m×n grid by inspecting the colours assigned to the elements of the model. On
the other hand, given any tiling for T , we can construct a finite model of ΦT in the obvious
way. We leave the detailed arguments to the reader.

The case of ω-words can be treated essentially in the same way. We just mark one
element in a model, corresponding to the upper-right corner of the grid, with a special unary
symbol, and relativize all our formulas to positions smaller than this element (marked with
another fresh unary symbol). In effect, it is irrelevant what happens in the infinite fragment
of a model starting from this marked element.

What is probably worth commenting is that in our undecidability proof we use the
equivalence relation ∼ in a very limited way, actually not benefiting from its transitivity
or symmetry. In fact, the transitivity of ∼ does not help, being rather an obstacle in our
construction.

4.5.2. Uninterpreted binary relation. Both FO2[→] and FO2[→+] remain decidable when,
besides → or →+, the signature may contain other binary symbols, whose interpretation is
not fixed ([Ott01], [CW16b]). We can easily see that this is not the case for F1.

Theorem 4.11. The satisfiability problem for F1[→] and F1[→
+] is undecidable when an

additional uninterpreted binary relation is available.

Proof. We can use the proof of Thm 4.10 without assuming that ∼ is an equivalence relation.

Actually, undecidability holds even without using the linear order: we can simply ax-
iomatize grid-like structures using a single binary predicate and some unary coordinate
predicates. This can be done by a simple modification of the undecidablity proof for F1

over the class of all structure [HK14] which uses two binary symbols.
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Figure 2: The grid-like structure used to show undecidability of F1[→1,→2]. Solid arrows
represent →1, dotted arrows represent →2.

4.5.3. Two linear orders. Let us now consider a variation in which we have two linear orders
rather than just one. The second linear order may be interpreted, e.g., as a comparison
relation on data values. FO2[→1,→2], the two-variable fragment accessing the linear orders
through their successor relations only, is decidable in NExpTime [CW16b]. Showing that a
corresponding variant of F1 is undecidable is again easy. We can define a grid-like structure
using the first linear order to form a snake-like path as in the proof of Thm. 4.10 and
the second to form another snake-like path, starting in the upper-left corner, ending in
the lower-left corner and going horizontally through our grid, with steps down only on the
borders. See Fig. 2. The required structure can be defined with help of some additional
unary predicates. Since the details of the construction do not differ significantly from the
details of the proof of Thm. 4.10 we omit them here.

Theorem 4.12. The satisfiability problem for F1[→1,→2] is undecidable.

5. Expressivity of one-dimensional fragment over trees

In this section we compare the expressive power of F1 with related logics in the case of two
important tree signatures: {↓, ↓+,→,→

+} and {↓, ↓+}, or, in other words, over the class of
XML trees and unordered trees.

As in the case of UTL over words we will identify CoreXPath formulas with their
standard translations into GF2, which are formulas with one free variable.

It turns out that over ordered trees all logics we are interested in are equiexpressive, as
it was in the case over words.

Theorem 5.1. For σ = {↓, ↓+,→,→
+} we have CoreXPath ≡ GF2[σ] ≡ FO2[σ] ≡ C2[σ] ≡

UNFO[σ] ≡ F1[σ].

Proof. Let us first observe that F1 is equivalent to UNFO. The argument is similar to the
one in the case of words. Due to Lemma 2.1, UNFO is not more expressive than F1. In
the opposite direction, given any F1[↓, ↓+,→,→

+] formula we can, using basic logical laws,
convert it into a form in which the only non-unary negated formulas are atomic, i.e., they
are of the form ¬x↓y, ¬x↓+y, ¬x→y or ¬x→+y. Taking into consideration the shape of
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trees, we translate them into formulas not using negations at all as follows.

trans(¬x↓+y) :=∃z((z = x ∨ z↓+x) ∧ (y = z ∨ ∃t(z→+t ∨ t→+z) ∧ (y = t ∨ t↓+y)))

trans(¬x↓y) :=trans(¬x↓+y) ∨ ∃z(x↓z ∧ z↓+y)

trans(¬x→+y) :=x↓+y ∨ ∃z(z→
+x ∧ (y = z ∨ z↓+y)) ∨ ∃z(x→

+z ∧ z↓+y)∨

∃z(z↓+x ∧ (y = z ∨ ∃t(z→+t ∨ t→+z) ∧ (y = t ∨ t↓+y))) (5.1)

trans(¬x→y) :=trans(¬x→+y) ∨ ∃z(x→z ∧ z→+y)

This gives a polynomial translation from F1[↓, ↓+,→,→
+] into UNFO[↓, ↓+,→,→

+].
and establishes their equivalence.

Further, a translation from UNFO[↓, ↓+,→,→
+] to CoreXPath is given in [StC13].

CoreXPath is a fragment of GF2, GF2 is a fragment of FO2, and FO2 is a fragment
of C2. Finally, C2 can be easily translated to F1 (over any class of structures): con-
sider, e.g., a subformula of the form ∃≥kyψ(x, y) and note that it can be written as
∃y1, . . . , yk(

∧

i 6=j yi 6= yj ∧
∧

i ψ(x, yi)). This completes the proof in the case of XML
trees.

Over unordered trees the situation if more interesting and the considered languages
turn out to vary in their expressive power, in particular F1 is more expressive than UNFO
and FO2. Interestingly it is, however, equivalent to C2. The full picture is as follows.

Theorem 5.2. For σ = {↓, ↓+} we have CoreXPath[σ] ≡ GF2[σ] ≡ UNFO[σ] ≺ FO2[σ] ≺
C2[σ] ≡ F1[σ].

Proof. Let us assume that the signature contains no unary predicates and for i ∈ N let
Ti denote the tree consisting just of a root and its i children. The C2 formula ∃≥3y x↓+y
distinguishes T3 and T2 (it is true at the root of the former and false in the latter), while
the FO2 formula ∃y(¬x↓+y ∧ ¬y↓+x ∧ x 6= y) distinguishes T2 and T1. It is not difficult
to see that FO2 cannot distinguish between T3 and T2 (a simple 2-pebble game argument,
cf. [BCK17]) and that GF2 cannot distinguish between T2 and T1 (use guarded bisimulations,
cf. [AvBN98]). These observations justify the relations GF2 ≺ FO2 and FO2 ≺ C2.

C2 can be translated to F1 as in the previous proof. Translation in the opposite direction
is a harder task and we devote for it a separate subsection.

It remains to show the equivalence of CoreXPath, GF2 and UNFO. To this end we
provide a translation from GF2 to UNFO and from UNFO to CoreXPath. The cycle is then
closed by recalling that CoreXPath is a fragment of GF2.

From GF2 to UNFO. Take any GF2[↓, ↓+] formula and write it without using the universal
quantifiers. Then push down all the negations with the exception of those standing just
before the existential quantifiers (they are allowed in UNFO since a GF2 formula starting
with an existential quantifier has at most one free variable). Let ϕ be the resulting formula.
We need to eliminate from ϕ all occurrences of negated binary literals. We will do this in
a bottom-up manner.

Take an innermost subformula ψ of ϕ starting with a maximal block of quantifiers.
If ψ = ∃xψ0(x) or ψ = ∃yψ0(y) then there is nothing to do, as there are no negated
binary literals in ψ. Otherwise ψ has one of the three forms: ∃y(α(x, y) ∧ ψ0(x, y)) or
∃x(α(x, y)∧ψ0(x, y)) or ∃x, y(α(x, y)∧ψ0(x, y)), where α is one of the four possible guards
x↓y, y↓x, x↓+y, y↓+x.
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Consider the first form (the other one can be treated similarly). If α = x↓y then
replace any literal ¬x↓y by ⊥, ¬y↓x by ⊤, ¬x↓+y by ⊥ and ¬y↓+x by ⊤. If α = y↓x
then proceed analogously. If α = x↓+y then first convert ψ into the equivalent formula
(∃y(x↓y ∧ ψ0(x, y))) ∨ (∃y(x↓+y ∧ ¬x↓y ∧ ψ0(x, y))). With the first disjunct we proceed as
described above. The second one is replaced by ∃z, y(x↓z ∧ z↓+y ∧ ψ0(x, y) and then in
ψ0(x, y) we replace ¬x↓y by ⊤, ¬y↓x by ⊤, ¬x↓+y by ⊥ and ¬y↓+x by ⊤. If α = y↓+x
then we proceed analogously. In all cases we obtain an UNFO replacement of ψ. We then
proceed up in the syntax tree of the input formula and finally end up with a UNFO formula
equivalent to ϕ.

From UNFO to CoreXPath. Let ϕ be a formula in UNFO[↓, ↓+]. Recall that by Lemma
2.1 we may assume that ϕ ∈ UNFO ∩ F1. Here we proceed similarly as in the translation
from F1[→,→

+] to FO2[→,→+] in the proof of Thm. 3.1. Again, the crux is to show how
to translate the subformulas of ϕ starting with a block of quantifiers. Assume that

ψ = ∃y1, . . . , ykψ0(y0, y1, . . . , yk) (5.2)

is such a subformula. W.l.o.g. we may additionally assume that every subformula of ψ
starting with a maximal block of existential quantifiers has a free variable (if it was not the
case, we could add a dummy free variable).

Convert ψ0 into disjunctive form (treating its subformulas starting with a quantifier as
atoms) and distribute existential quantifiers over disjunctions, obtaining

ψ ≡

s
∨

i=1

∃y1 . . . , ykψi(y0, y1, . . . , yk), (5.3)

for some s ∈ N, where each ψi is a conjunction of unary literals, binary atoms of the form
yi↓yj, yi↓+yj or yi = yj, and subformulas of the form ∃z1, . . . , zlχ(yj, z1, . . . , zl) (with one
free variable) or their negations. Note that we do not have negated binary literals.

A tree ordering scheme over variables y0, . . . , yk is a conjunction δ of atoms of the form
yi↓yj, yi↓+yj or yi = yj that can be satisfied in a tree in such a way that this tree satisfies
no binary atoms over y0 . . . , yk except those from δ. For example y0↓y1∧y0↓y2∧y3↓+y4 is a
tree ordering scheme, but y0↓+y1 ∧ y0↓+y2 ∧ y1↓+y3 ∧ y2↓+y3 ∧ y0↓+y3 is not since to satisfy
it, one needs to add (at least) either y2↓+y1 or y1↓+y2.

Consider now a single disjunct ∃y1 . . . , ykψi(y0, y1, . . . , yk) of (5.3), and replace it by
the following disjunction over all possible tree ordering schemes δ over y0, . . . , yk containing
all the binary atoms of ψi which are not bounded by the quantifiers of the subformulas of
ψi:

∨

δ

∃y1 . . . , yk(δ(y0, . . . , yk) ∧ ψ
δ
i (y0, y1, . . . , yk)), (5.4)

where ψδi is obtained from ψi by removing all the binary atoms (except those bounded by
the quantifiers from ψi), as they are now present in δ.

Let us now write the conjunction ψδi as
∧k
j=0(µ

δ
i,j(yj)∧ ν

δ
i,j(yj)), where µ

δ
i,j(yj) consists

of the literals with free variable yj and ν
δ
i,j(yj) consists of the subformulas starting with a

maximal block of quantifiers with free variable yj. We now explain how to translate a single
disjunct

∃y1 . . . , yk(δ(y0, . . . , yk) ∧

k
∧

j=0

(µδi,j(yj) ∧ ν
δ
i,j(yj))) (5.5)
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Q

Figure 3: A visualisation of a tree ordering scheme. Straight arrows represent ↓, wavy
arrows represent ↓+. Connections implied by transitivity are omitted for clarity.

of (5.4).
The idea is to start from y0 and ”visit the other variables” in the order specified by δ;

first go down from y0 then up, and finally jump to the nodes whose connection to y0 is not
required by δ, at each visited node making all the necessary forks, including those required
by the νi,j. Since making the above intuition formal is cumbersome let us just illustrate it
by a representative example.

Let δ(y0, . . . , y6) = y3↓y2 ∧ y3↓+y0 ∧ y3↓+y6 ∧ y3↓+y1 ∧ y0↓y1 ∧ y2↓y6 ∧ y4↓y5. Let
µi,0 = P (y0)∧¬Q(y0), µi,1 = ¬P (y1), µi,2 = ¬Q(y2), µi,3 = Q(y3)∧¬R(y3), µi,4 = ¬R(y4),
µi,5 = Q(y5), µi,6 = R(y6), and let νi,0 = ∃z1, z2γ0(y0, z1, z2), νi,2 = ∃z1γ2(y2, z1); the other
νi,j are empty. See Fig. 3. By the inductive assumption we have CoreXPath formulas ν ′0
and ν ′2 equivalent to νi,0 and, respectively, νi,2. The translation looks then as follows:

P ∧ ¬Q ∧ ν ′0 (5.6)

∧ <↓> ¬P

∧ <↑+> (Q ∧ ¬R

∧ <↓> (¬Q ∧ ν2

∧ <↓> R))

∧ <↑+><↓+> (¬R

∧ <↓> Q)

The first line describes what happens at y0, the second corresponds to a step down to
y1, lines 3-5 correspond to a step up to y3 (from which we go down to y2 and then once
more down to y6). In lines 6-7 we jump to y4 and then step down to y5. Note that y4 and
y5 do not need to be related to the other variables, which is captured by <↑+><↓+> which
works as the universal modality and allows us to move to any part of the tree.

The correctness of the translation relies on the fact that our formulas do not have
literals with negated binary atoms, and thus we do not need to worry about them. Indeed,
in our example above one can construct models in which, say, y5↓y3, or y2 = y0 holds.

This gives a procedure translating formulas from UNFO ∩ F1 starting with a block of
existential quantifiers into CoreXPath. An arbitrary UNFO ∩ F1 formula with one free
variable is a Boolean combination of such formulas (with the same free variable), and its
translation is just the Boolean combination of the translations of its constituents.
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5.1. Translation from F1[↓, ↓+] into C2[↓, ↓+]. In this subsection we provide the missing
translation from the proof of Thm. 5.2.

Before presenting the details, we comment informally on the intuition behind the proofs.
The main issue is that F1 formulas can be presented in a normal form where every subfor-
mula ∃xψ essentially describes a substructure with |x| (or |x|+1) elements. In this normal
form, when considering trees only, subformulae ∃xψ describe substructures of trees. Such
substructures consist essentially of disjoint subtrees (called components). Such components
can be described in C2 by working inductively from the leaves of the subtrees towards the
root. However, with the help of the relation ↓+, we can write our F1 formula in such a
form that formulae ∃xψ contain also the unique root of the full tree, and thus the disjoint
components are connected (using ↓+). Thus we can write a formula that describes the
components and also puts them together in a suitable way.

We then turn to the formal argument. Let σ be an arbitrary finite relational vocabulary.
(Note indeed that σ is not necessarily a vocabulary for trees.) We allow σ to contain nullary
predicates, i.e., Boolean variables; a nullary predicate Q ∈ σ is an atomic formula such that
any σ-model M interprets Q either such that M |= Q or such that M 6|= Q. A σ-diagram
of width k ∈ Z+ is a quantifier-free conjunction consisting of the following.2

(1) A conjunction expressing that the variables x1, ..., xk are mutually pairwise distinct.
(2) A conjunction containing exactly one of the literals Rx,¬Rx for each R ∈ σ and each

x ∈ {x1, ... , xk}
ar(R), where ar(R) is the arity of R.

A quantifier-free formula is a diagram if it is a σ-diagram of width k for some σ and
some k.

Let ∃xϕ be a formula of F1. The formula ϕ is a Boolean combination of atoms and
existential formulae ∃yψ. We call such existential formulae ∃yψ relative atoms of ϕ. The
other atoms are called free atoms of ϕ. For example, the formula R(x, y)∧∃x(S(y, x)∧ψ′(y))
contains a binary free atom R(x, y) and a unary relative atom ∃x(S(y, x) ∧ ψ′(y)).

A formula χ of F1 is said to be in diagram normal form if every subformula ∃xϕ of χ
has the property that ϕ is a diagram with respect to the vocabulary σ′ defined as follows.

(1) σ′ contains the predicate symbols of the free atoms of ϕ.
(2) If ψ(x) is a unary relative atom of ϕ (i.e., a relative atom with one free variables, x),

then this relative atom is considered a unary predicate in σ′.
(3) Similarly, if ψ′ is a nullary relative atom of ϕ, then this relative atom is considered a

nullary predicate in σ′.

Lemma 5.3. Formulae of F1 have equivalent representations in diagram normal form.

Proof. Consider an F1-formula ∃xϕ. Now, the formula ϕ can be modified into a disjunctive
normal form formula ϕDNF (without modifying its atoms or relative atoms). Then the
quantifier prefix ∃x can be distributed over the disjunctions of ϕDNF . The resulting formula
is of the form (∃xϕ1) ∨ ... ∨ (∃xϕk), where the formulae ϕi are conjunctions of (possibly
negated) free atoms and (possibly negated) relative atoms of ϕ.

Consider one such disjunct ∃xϕi. We first apply the induction hypothesis to the free
atoms and relative atoms of ϕi and put them in diagram normal form. Let the obtained
formula be denoted by ϕ′

i. We next describe how the formula ∃xϕ′
i can be put to diagram

normal form. The intuitive idea is roughly to (1) consider all distributions of equalities and
inequalities for the free variables in ϕ′

i, (2) for each such distribution, define all diagrams

2We note that diagrams of width k are similar to k-types.
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consistent with ϕi, and (3) take the disjunction over all the diagrams and distribute the
existential quantifiers of ∃x over the disjunction.

The general formal construction is straightforward but cumbersome, so we begin by
sketching some examples. First consider the case where ϕ′

i is R(x, y).

• The formula R(x, y) gives rise to—for example—the diagram x 6= y∧R(x, y)∧¬R(y, x)∧
¬R(x, x) ∧R(y, y).
• Furthermore, the same formula R(x, y) gives rise to the diagram R(x, x) obtained under
the distribution of equalities which requires that x = y. We note that R(x, x) loses
the free variable y, which is an undesirable effect. Therefore we shall use the formula
x = y ∧ R(x, x) instead. This in not strictly speaking a diagram, but we shall discuss
below how to deal with this problem.

To obtain the diagram normal form formula equivalent to ∃xϕ′
i in this particular case where

ϕ′
i is R(x, y), we take a disjunction of all the diagrams consistent with R(x, y) and also the

formulas that are not strictly speaking diagrams, such as x = y∧R(x, x), and distribute the
existential quantifiers ∃x inwards over the disjunctions. To put the non-diagram conjuncts
such as χ := ∃x(x = y∧R(x, x)) into diagram normal form, we consider three cases. In each
case we replace χ by an equivalent formula in diagram normal form. Firstly, if ∃x = ∃x,
then we replace χ by R(y, y). Secondly, if ∃x = ∃y, we replace χ by R(x, x). Finally, if
∃x = ∃x∃y, then we replace χ with ∃xR(x, x). These new formulae are in diagram normal
form. All remaining cases are similar.

The general way to deal with any formula ∃xϕ′
i is as follows. Recall that ϕ′

i is a
conjunction of formulas in diagram normal form. We may assume, w.l.o.g., that ϕ′

i is
quantifier-free (because the relative atoms will be treated as if they were atoms). If the
quantifier-free formula ϕ′

i is inconsistent, then we simply take an arbitrary formula ψ in
diagram normal form and replace ∃xϕ′

i with ψ∧¬ψ. Assuming ϕ′
i is consistent, we perform

the following steps.

(1) LetX denote the set of (free) variables in the conjunction ϕ′
i, and let τ be the vocabulary

of ϕ′
i. By a proto diagram over ϕ′

i we mean a conjunction δ∧ϕ′′
i such that the following

conditions hold.
• δ is a conjunction of equality atoms and negated equality atoms in the variables X
that contains, for any two distinct variables x and y, either the conjunct x = y or
x 6= y. Furthermore, δ is consistent with the conjunction ϕ′

i and therefore contains
all equalities and inequalities that already occur in ϕ′

i.
• By a relational τ -literal over X we mean a atom or negated atom (of vocabulary τ
and with its variables from X) that is not an equality or negated equality atom. Now,
ϕ′′
i is a maximal set of relational τ -literals over X that is consistent with ϕ′

i.
We define χ′ to be the disjunction of all proto diagrams δ ∧ ϕ′′

i over ϕ′
i.

(2) We distribute the existential quantifiers ∃x over the disjuncts of χ′. Consider one such
disjunct ∃x(δ ∧ϕ′′

i ). Eliminate positive equalities from δ ∧ ϕ′′
i one-by-one by modifying

δ∧ϕ′′
i such that for each positive equality (e.g., x = y), choose one of the variables (e.g.,

x) and replace each instance of the chosen variable in ϕ′′
i by the other variable (e.g.,

replace instances of x by y). In the process, do not eliminate the possible free variable
of ∃x(δ ∧ ϕ′′

i ) (note that there is at most one such possible free variable since we are
dealing with F1). This way we get rid of positive equalities, and the obtained formula
is in diagram normal form.

This process converts the original formula ϕ into diagram normal form.



ONE-DIMENSIONAL FRAGMENT OVER WORDS AND TREES 23

Above we considered general F1, but now we return to considering F1[↓, ↓+] over trees
(labelled with extra unary predicates).

A formula of F1[↓, ↓+] is in rooted diagram form if every diagram contains a point z
and an extra conjunct γ(z) stating that z is the root of the tree; thus γ(z) states that z is
an element that does not have any parent, γ(z) := ¬∃y(y↓z). It is easy to modify diagram
normal form formulae into rooted diagram form by taking big disjunctions of all possibilities
for the location of z in a diagram: potentially any variable of the original diagram can be
the root, and additionally, it may be that none of the variables is the root and thus a root
must be added. We take a disjunction of all the possible configurations that arise.

Note that in rooted diagram form, every diagram is connected, meaning that for all
distinct variables x, y, there is an undirected path using the relations ↓, ↓+ that begins from
x and ends with y. This connectedness property will help us with the inductive argument
in the proof of the following lemma.

Lemma 5.4. Let ϕ(x) = ∃yψ be a formula of F1[↓, ↓+] where x a free variable. Then there
exists a formula ϕ∗(x) of C2[↓, ↓+] that is equivalent to ϕ(x)

Proof. We first note that if ϕ(x) is not satisfiable over trees, the desired C2 formula is ⊥.
Thus we assume that ϕ(x) is satisfiable over trees. We let σ denote the vocabulary of ϕ(x)
and σ0 the proposition symbols that occur in ϕ, i.e., the unary relation symbols in ϕ.

As argued above, we may assume that ϕ(x) is in rooted diagram normal form. Therefore
ψ is a diagram that describes a substructure Mψ of a tree; Mψ contains a root node and is
connected. The nodes of Mψ are the variables of ψ.

To express ϕ(x) = ∃xψ in C2, we first define, for each leaf u of Mψ, the unique σ0-
diagram of width 1 that is satisfied by u and denote this formula by δu(y). The idea is
then to proceed inductively upwards from the leaves and define, for each point v in the
diagram Mψ, a formula that characterizes—in a way specified later on—the substructure
of Mψ below v in the tree. However, since the free variable x of ϕ(x) is not necessarily
the root of Mψ, and since we want the induction to end at x, we will in fact proceed such
that from the perspective of the undirected tree induced by Mψ, we work from the leaves
towards x. Since x is a legitimate root for the underected tree, the induction ends at x.

We illustrate the flow of the induction by an example first. Assume the diagram Mψ

consists of the eight points r, s, s′, w, x, x′, y such that Mψ satisfies the following conditions.

(1) The the child relation ↓ in the diagram Mψ is {(w, x), (w, x′), (x, y), (s, s′)}.
(2) r connects via ↓+ to s and w (and thus to x, x′, y, s′ as well).
(3) If u ∈ {s, s′} and t ∈ {w, x, x′, y}, then u 6↓+ t and t 6↓+ u.

In this case we first deal with the leaves s′, x′ and y and define suitable C2 formulae
for them. The exact properties these formulae are to satisfy, will be specified below. Next
the induction takes care of s (the parent of s′) using the formula already specified for s′.
Thus we obtain a C2 formula for s. Then, using the formula for s, we define a C2 formula
for r. After this, we define a C2 formula for the node w using the formulae defined for
r and x′; notice that this time (when going from r to w) the relation ↓+ is scanned in
a different direction as in the previous step when going from s to r. Thus we have now
defined the formulae for each of the neighbours of x in the diagram Mψ, i.e., the formulae
for w and y. Therefore we can finally define the formula for x (scanning the relation ↓ both
ways, upwards from y and downwards from w). Notice that since ϕ(x) is in rooted diagram
normal form, Mψ is connected, which in the this example is due to the node r. Thus the
induction does not have to deal with any disconnected components.
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If u is a point in the diagram Mψ, then we let Mψ(u) denote the substructure of Mψ

induced by the set that contains u and all the nodes occurring before u in the induction from
the leaves towards x. Formally, the domain of Mψ(u) consists of the points u′ ∈ Mψ such
that the undirected path in Mψ from x to u′ contains u. We next show how to inductively

define, for each node v ∈ Mψ, a formula χv(y) of C2 (with the sole free variable y) such
that the following condition holds.

Let N be a σ-tree and v′ a point in N . Then N |= χv(v
′) iff N contains an induced

substructure isomorphic to Mψ(v) via an isomorphism that sends v′ to v.

Let v 6= x be a leaf of Mψ. Then we let χv(y) be the formula δv(y) (defined above).
Now assume v is not a leaf of Mψ. In order to show how to define χv(y), we first give some
auxiliary definitions.

(1) Let c1, ... , cn+
denote the children of v in Mψ(v), i.e., the elements ci in Mψ(v) such

that (v, ci) ∈ ↓. (We note that possibly n+ = 0.)
(2) Let c′ denote a possible parent of v in Mψ(v), i.e., a point c′ in Mψ(v) such that

(c′, v) ∈ ↓. (We note that possibly there exists no such point c′.)
(3) Let d1, ... , dm+

denote the descendants di of v in Mψ(v) such that
(a) (v, di) ∈ ↓+ \ ↓, i.e., di is a descendant of v but not a child of v,
(b) there exists no point d in the diagram Mψ such that v↓+d↓+di.
We note that possibly m+ = 0.

(4) Let d′ denote the (possibly non-existing) ancestor of v in Mψ(v) such that d′ is not a
parent of v and there does not exist a point d in the diagram Mψ such that d′↓+d↓+v.
Note that if we have the point c′ (specified in bullet 2 above) in the diagram, then there
is no d′ in the diagram. Vice versa, if there is a d′ in the diagram, there is no c′. Also,
it is possible that neither c′ nor d′ exists in the diagram.

By the induction hypothesis, we have defined all the required formulae denoted by

χc1 , ..., χcn+
, χc′ , χd1 , ..., χdm+

, χd′

each with the free variable y. (We note that χc′ and χd′ cannot not both be in the list of
required formulae.) Now, we shall next consider collections of these formulae defined as
follows. A collection (in the variable y) is here defined to be a conjunction that contains,
for each of the formulae χ(y) defined in the previous stage of the induction (i.e., some
subset of the above listed formulae χc1 , ..., χcn+

, χc′ , χd1 , ..., χdm+
, χd′), exactly one of the

formulae χ(y),¬χ(y) as a conjunct. (We note that a collection may be unsatisfiable if for
example χc1 and χc2 are equivalent and we include the negation of exactly one of them
in the collection. Note also that a node satisfying some formula χv1(y) can also satisfy a
non-equivalent formula χv2(y) as the formulae are only supposed to assert that a certain
substructure exists ‘below’ y in the undirected tree with root x.)

Our next step is to show how χv(y) can be defined based on the corresponding formu-
lae χc1 , ..., χcn+

, χc′ , χd1 , ..., χdm+
, χd′ for the nodes that occur immediately before v in the

induction. We illustrate how this is done via an elucidating example. Consider a situation
where n+ = 2, m+ = 1 and neither c′ nor d′ exists.3 The formula χv(y) will be a big disjunc-
tion over all possible suitable scenarios that the nodes in the previous stage could realize in
some (any) tree with the desired substructure. One possible scenario in some structure is

3For simplicity, we assume here and in all subsequent examples that the set of unary predicates considered
is empty.
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the one where one child of the current node v satisfies χc1(y)∧χc2(y), another child satisfies
¬χc1(y)∧χc2(y), and a third child satisfies χc1(y)∧¬χc2(y)∧∃x(↓+(y, x)∧χd1(x)). In this
scenario there must exist two distinct children such that one satisfies χc1 and the other one
χc2 , and furthermore, there must be a third child that connects via ↓+ to a node satisfying
χd1 . This kind of a condition is easily expressible in C2. Another suitable scenario is that
three or more children all satisfy the formula

α(y) := χc1(y) ∧ χc2(y) ∧ ∃x(↓+(y, x) ∧ χd1(x)),

as this ensures that there is a child u1 that satisfies χc1(y) and another child u2 that satisfies
χc2(y), and furthermore, a descendant (which is neither a child nor reachable via u1 or u2)
that satisfies χd1 . Here all the three children satisfy the same collection χc1(y) ∧ χc2(y).
Again it is easy to describe this scenario in C2 by stating the existence of at least three
children satisfying α(y). It is not difficult to see how to write the full disjunction χv(y) that
covers all the possible suitable scenarios and thereby enumerates the ways to connect v to
the nodes in the previous stage.

We consider one more example. This time we assume that m+ = n+ = 0 and that c′

exists. Furthermore, we assume that c′ has two children in the diagram, v and u, and the
induction proceeds from u via c′ to v. Now note that we cannot simply define χv(y) to be
the formula ∃x(x↓y ∧ χc′(x)), but instead, we must define χv(y) to be the formla

(¬χu(y) ∧ ∃x(x↓y ∧ χc′(x))) ∨ (χu(y) ∧ ∃x(x↓y ∧ χc′(x) ∧ ∃
≥2y(x↓y ∧ χu(y)))).

We omit further details since it is now easy to see in general how to write the for-
mulae χv(y) in C2 using collections and counting ; one simply enumerates all possible
situations with sufficient numbers of correctly oriented neigbours satisfying the formulae
χc1 , ..., χcm+

, χc′ , χd1 , ..., χdn+
, χd′ . Then the big disjunction over all the resulting possible

ways to connect v to the nodes in the previous stage is the desired formula.

Corollary 5.5. Let ϕ = ∃yψ be a formula of F1[↓, ↓+]. The formula ϕ may be a sentence or
contain a single free variable. Then there exists a formula ϕ∗ of C2[↓, ↓+] that is equivalent
to ϕ.

Proof. The case where ϕ has a single free variable follows from the previous lemma. The
case where ϕ is a sentence is covered as follows.

Assume ϕ = ∃xψ. Remove a single variable from x and apply the argument for the
case with a free variable. Then reintroduce a quantifier that quantifies the remaining free
variable away.

6. Satisfiability of one-dimensional fragment over trees

The aim of this section is to establish the complexity of satisfiability of F1 over trees for
all navigational signatures contained in {↓, ↓+,→,→

+}. En route we show some small
model properties, allowing us, when designing algorithms deciding satisfiability, to restrict
attention to models with appropriately bounded vertical and horizontal paths.

Actually, we can show that when the child relation is present in the signature then the
satisfiability problem is 2-ExpTime-complete using some known results on UNFO.

Theorem 6.1. Let {↓} ⊆ σnav ⊆ {↓, ↓+,→,→
+}. Then the satisfiability problem for

F1[σnav] is 2 -ExpTime-complete.
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Figure 4: Positions in a tree with respect to a node a.

Proof. In [StC13] a 2-ExpTime-upper bound is given for UNFO[↓, ↓+,→,→
+], and the

corresponding lower bound—for UNFO[↓]. We transfer these bound to F1 using the poly-
nomial translation from F1[↓, ↓+,→,→

+] to UNFO[↓, ↓+,→,→
+] in the proof of Thm. 5.1

and, respectively, Lemma 2.1.

We will soon see that for the navigational signatures not containing ↓ but containing
↓+ the complexity drops down to ExpSpace. The machinery we will develop will also allow
us to give an alternative, direct proof of the upper bound in Thm. 6.1

6.1. Profiles for trees. We begin with an adaptation of the notion of profiles for the case
of trees. As in the case of words, the profile of a node says what the types of all tuples (of
some bounded size) containing this node are.

Given a tree T and its nodes a, b, b 6= a, we say that b is in position B to a (or below a)
if it belongs to the subtree of a, in position L to a (or left to a) if it belongs to the subtree
of some left sibling of a, in position R to a (or right to a) if it belongs to the subtree of
some right sibling of a, and in position A to a (or above a) if it is not in any of the previous
positions to a. See Fig. 4.

Let σ = σ0 ∪ σnav be a signature such that →+ ∈ σnav
4 and let T be a tree over

this signature. We say that an element a ∈ T realizes (or has) a k-σ-profile σ-profTk (a) =
(F ,A,B,L,R) if F is the set of all s-types, 1 ≤ s ≤ k, realized by tuples a1, . . . , as such
that a1 = a, and for any position P ∈ {A,B,L,R}, the component P is the subset of F
consisting of the types realized by those tuples for which for all 2 ≤ i ≤ k the element ai
is in position P to a. When σ is clear from context we will just speak about k-profiles
and write profTk (a) instead of k-σ-profiles and σ-profTk (a). Given a σ-k-profile θ we will
sometimes refer to its components with θ.F , θ.A, θ.B, θ.L and θ.R.

Lemma 6.2. Let θ be a profile of a node in a tree over a signature containing →+. Then
θ.F is unequivocally determined by θ.A, θ.B, θ.L and θ.R Moreover, there is a procedure
fulltype(A,B,L,R) which given θ.A, θ.L, θ.B and θ.R computes θ.F in time polynomial
in |θ| and exponential in k.

Proof. The unique determination of F for an element a follows from the fact that for any
elements b1, b2, if we know their positions to a and the truth values of the atoms a ⇋ b1,

4This assumption is of technical character, and our approach could be also developed for signatures not
containing →+.
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Figure 5: Combining type π1, π2 into a single type π3. The dashed and solid connection in
π3 are present in π1 and, resp., π2, the wavy connection follows from the definition
of profiles.

b1 ⇋ a, a ⇋ b2, b2 ⇋ a for all ⇋∈ σnav then the truth values of b1 ⇋ b2 and b2 ⇋ b1 are
determined for all ⇋.5

More specifically, to construct all types in F we proceed as follows. Construct all
possible tuples consisting of at most one type from each of the components θ.A, θ.B, θ.L
and θ.R and for each such tuple combine its types together into a single type in a natural
way, that is identify their x1 variables, appropriately renumber the other variables, and
appropriately set the navigational relations. The latter is done using the observation that
the only navigational connections between elements in different positions to an element a
are as follows:

• if b is in position B (to a) then c↓+b holds for those c in position A for which c↓+a holds.
• if b is in position L then c↓+b holds for those c in position A for which c↓+a holds, c↓b
holds if c↓a holds, and b→+d holds for those d in position R for which a→+d holds,
• symmetrically for b in position R.

If the number l of variables in the so obtained type π is not greater than k then the
procedure adds to F the type π, together with all the types obtained from π by permuting
its variables x2, . . . , xl.

For example let us consider the signature σ with σ0 = {P} and σnav = {↓+,→
+} and as-

sume that the 2-type π1 = {Px1, Px2, x2↓+x1} ∈ A, and the 3-type π2 = {Px1, Px3, x3↓+x2}
∈ R (we list only non-negated literals in the types). The combination of π1 and π2 is the
4-type π3 = {Px1, Px2, Px4, x2↓+x1, x2↓+x3, x2↓+x4, x4↓+x3}. See Fig. 5. The type π3 to-
gether with the types obtained from π3 by permuting the variables x2, x3, x4 in all possible
ways are added to F if k ≥ 4.

Lemma 6.3. The number of k-σ-profiles is bounded from above by g⋆(|σ0|, k) where g⋆ :
N× N→ N is a fixed function, doubly exponential in its both arguments.

Proof. Each component of a profile is determined by the set of the k-types it contains. The
number of k-types in a component can be roughly estimated by (2|σ0|)k · 9k(k − 1) (the
number of possible assignments of 1-types to the elements of a tuple of k elements, times
the number of possible connections by relations from σnav for a pair of elements a, b: a is
equal to b, b is the next sibling of a, b is a following sibling of a but not the next one, b is a

5This could be not true if →+ 6∈ σnav: assuming that b1 is the parent of a and b2 is in position R to a

but not joined to it by any relation then we do not know if b1 is the parent of b2 or just an ancestor.
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child of a, b is a descendant of a but not its child; and vice versa). So, each component has

at most 2(2
|σ0|)k ·9k(k−1) possible values. From this the existence of the desired g⋆ follows.

In contrast to the case of words, where in a single model at most exponentially many
profiles are realized (Lemma 4.1), in the case of trees there are F1 formulas whose models
must realize doubly exponentially many profiles. In the next subsection we will however
see, that for some signatures we can at least bound exponentially the number of profiles on
all the vertical or horizontal paths in ”minimal” models of any formula, which will allow us
to prove our small model properties.

Again, we connect the notion of profiles with satisfaction of normal form formulas.
Given a normal form formula ϕ of width k over a signature σ we say that a k-σ-profile θ is
compatible with ϕ if

• for every conjunct ∀x1 . . . xliϕ
∀
i (x1 . . . xli) of ϕ and every li-type π ∈ θ.F , we have π |= ϕ∀

i .
• for every conjunct ∀y0∃y1 . . . ykiϕ

∃
i (y0, y1 . . . yki) of ϕ there is a (ki+1)-type π ∈ θ.F such

that π |= ϕ∃
i (x1, . . . , xki+1).

It is straightforward to see:

Lemma 6.4. A normal form formula ϕ of width k over a signature σ is satisfied in a tree
T iff every k-σ-profile realized in T is compatible with ϕ.

For a further use we make the following observation.

Lemma 6.5. Let T be a σ-tree, a, a′ its nodes and θ, θ′ their respective k-σ-profiles.

(i) If a′ is a child of a then
(a) θ′.A is uniquely determined by the 1-type of a and θ.L, θ.R and θ.A
(b) θ.B is uniquely determined by the 1-type of a′ and θ′.L, θ′.R and θ.B

(ii) If a′ is the next sibling of a then
(a) θ′.L is uniquely determined by the 1-type of a and θ.L and θ.B.
(b) θ.R is uniquely determined by the 1-type of a′ and θ′.R, θ′.B.

Moreover there is a procedure computeA(µ,L,A,R) which computes the component θ′.A
when given the 1-type of a and θ.L, θ.R and θ.A, in time polynomial in |θ| and exponen-
tial in k. Analogously there are procedures computeB(µ,L,R,B), computeL(µ,L,B) and
computeR(µ,R,B) computing θ.B, θ′.L, θ.R, respectively, when fed with the appropriate
parameters (as in points (i)(b), (ii)(a), (ii)(b)).

Proof. Consider the statement (i)(a). Note that the set of nodes in position A to a′ consists
precisely of a and the elements in positions L, R and A to a. Thus the procedure computeA
can work as follows.

Construct all possible tuples consisting of at most one type from each of the components
θ.L, θ.R and θ.A and for each such tuple combine its types together into a single type
π in a natural way, that is identify their x1 variables, appropriately renumber the other
variables, and appropriately set the navigational relations (similarly as it was done in the
proof of Lemma 6.2). Construct π′ by increasing the number of every variable in π by 1
and adding x1 as ”a child of 1-type µ of (the current) x2” (that is by setting the truth of
σ0-atoms containing x1 in accordance with µ and appropriately setting the truth of σnav-
atoms containing x1 and the other xi). Then construct π′′ from π′ by removing all the
literals that contain x2 and then decreasing the number of each variable xi, i ≥ 2 by 1. If
the number l of variables in the so obtained type π′ (π′′) is not greater than k then add
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to F the type π′ (π′′), together with all the types obtained from π′ (π′′) by permuting its
variables x2, . . . , xl.

The other statements can be justified analogously.

We say that an s-type if trivial if for every 1 ≤ i, j ≤ s it contains xi = xj, that is it is
realized only by singletons. We say that a trivial s-type is based on 1-type µ if its restriction
to x1 is equal to µ. We now define the following notion of local consistency.

Definition 6.6. Let T be a tree, k a natural number, Ω a function assigning to each a ∈ T
a 1-type and Ξ a function assigning to each a ∈ T a tuple (F ,A,B,L,R) of collections of
s-types such that F = fulltype(A,B,L,R), s ≤ k. We say that the pair (Ω,Ξ) is locally
consistent on T if the following conditions hold.

(a) if a ∈ T is the root then Ξ(a).A is trivial and based on Ω(a).
(b) if a ∈ T is a leaf then Ξ(a).B is trivial and based on Ω(a).
(c) if a ∈ T has no preceding sibling then Ξ(a).L is trivial and based on Ω(a).
(d) if a ∈ T has no following sibling then Ξ(a).R is trivial and based on Ω(a).
(e) for any a, a′ ∈ T such that a′ is a child of a we have

(i) Ξ(a′).A = computeA(Ω(a′), Ξ(a).L, Ξ(a).R, Ξ(a).A)
(ii) Ξ(a).B = computeB(Ω(a), Ξ(a′).L, Ξ(a′).R, Ξ(a′).B)

(f) for any a, a′ ∈ T such that a′ is the next sibling of a we have
(i) Ξ(a′).L = computeL(Ω(a′), Ξ(a).L, Ξ(a).B)
(ii) Ξ(a).R = computeR(Ω(a), Ξ(a).R, Ξ(a).B)

Obviously, if Ω returns the 1-types of elements of T and Ξ returns their k-profiles then
the pair (Ω,Ξ) is locally consistent. In the following lemma we show that the opposite is
also true.

Lemma 6.7. Let T be a tree, k a natural number, Ω the function assigning to each a ∈ T
the 1-type of a in T, and Ξ a function assigning to each a ∈ T a tuple (F ,A,B,L,R) of
collections of s-types, 1 ≤ s ≤ k. If the pair (Ω,Ξ) is locally consistent on T then for every

a ∈ T we have that Ξ(a) = profTk (a).

Proof. Let us first see that for every a ∈ T the equality holds for the L-, B- and R-
components of Ξ(a) and profTk (a). Let d be the maximal number of edges on a vertical
path in T. Define level(a) to be d if a is the root and level(b)−1, where b is the parent of a,
otherwise. This way 0 ≤ level(a) ≤ d for any a ∈ T . Define posl(a) to be 0 is a the leftmost
child of some node and posl(b)+1, where b is the previous sibling of a, otherwise. Similarly,
define posr(a) to be 0 is a the rightmost child of some node and posr(b) + 1, where b is the
next sibling of a, otherwise.

We proceed by induction on the level of a node. For the base of induction assume
level(a) = 0. In this case a is a leaf. Then the equality Ξ(a).B = profTk (a).B follows from
Condition (b) of Def. 6.6. Consider now the L-components. We proceed by subinduction

on posl(a). If pos(a) = 0 then the equality Ξ(a).L = profTk (a).L follows from Condition (c).

Otherwise, assume that for the previous sibling a′ of a we have Ξ(b).L = profTk (a
′).L. As it

must be that level(a′) = 0 it again follows from Condition (b) that Ξ(a′).B = profTk (a
′).B.

The equality Ξ(a).L = profTk (a).L follows now from Condition (f)(i). The argument for the
R-components is strictly symmetric, by subinduction on posr(a) and involves Condition
(f)(ii).
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Assume now that level(a) = s, for some s > 0 and that for any node b with level(b) =
s− 1 we have Ξ(b).B = profTk (b).B, Ξ(b).L = profTk (b).L, Ξ(b).R = profTk (b).R (the main in-
ductive assumption). This inductive assumption in particular holds for any child of a. Again,

we first consider the B-components. If a is a leaf then the equality Ξ(a).B = profTk (a).B fol-
lows from Condition (b). Otherwise let a′ be a child of a. The equality for the B-components
for a follows in this case from the inductive assumption for a′ and Condition (e)(ii). So, all
the nodes on level s have proper B-components. For the L- and R-components we can now
proceed as in the base of induction.

This finishes the part of the proof concerning the B-, L- and R-components. It remains
to show the equality for the A-components. This is done by induction on depth(a). If
depth(a) = 0 (a is the root) then the equality for the A-components follows from (a).
Otherwise let a′ be the parent of a and assume that the equality Ξ(a′).A = profTk (a

′).A
holds. As we have already proved, for all nodes of T this equality holds for the L- and
R-components, so we can use Condition (e)(i) to get that Ξ(a).A = profTk (a).A.

Now the equality of the F-components follows from the fact that they are computed
by the procedure ComputeF from Lemma 6.2. This finishes the proof.

6.2. Size of models. In this subsection we show essentially optimal bounds for lengths of
vertical and horizontal paths in ”minimal” models of normal form formulas, for all relevant
navigational signatures.

What is crucial for the lower complexity bound in Thm. 6.1 is the ability to enforce
doubly-exponentially long vertical paths. Let us see how to do it directly in F1[↓]. We use
unary predicates N,P, P0, . . . , Pn−1, Q. See the left part of Fig. 6. The intended long path
is the path of elements in N . Every element in N is going to have 2n children marked by P ,
each of which has a local position in the range [0, 2n − 1] encoded by means of P0, . . . , Pn−1.
Reading the truth-values of Q as binary digits we can assume that the collection of the
P -children of a node in N encodes its global position in the tree in the range [0, 22

n

− 1]
(the i-th bit of this global position is 1 iff at the element at local position i the value of Q
is true). It is then possible to say that each node in n whose global position is smaller than
22

n

− 1 has a child in N with the global position greater by 1.
We employ the abbreviation λ=(x, y) in order to state that x and y have the same local

position; λ<(x, y) to state that the local position of y is greater than the local position of
x; and λ+1(x, y) to state that the local position of y is one greater than the local position
of x (addition modulo 2n). All these abbreviations can be defined in the standard way
using quantifier-free formulas of length polynomial in n. Formulas (6.1)-(6.6) take care of
the basic shape of models (existence of N -successors, P -successors, and exponentially many
P -siblings with appropriate local positions):

∃x(Nx ∧ ∀y(x↓y ∧ Py → ¬Qy)) (6.1)

∀x(Nx∨̇Px) (6.2)

∀x(Nx→ ∃y(x↓y ∧ Py)) (6.3)

∀x(Px→ ∃yz(z↓x ∧ z↓y ∧ Py ∧ λ+1(x, y))) (6.4)

∀xyz(z↓x ∧ z↓y ∧ λ=(x, y)→ (Qx↔ Qy)) (6.5)

∀x(Nx ∧ ∃y(x↓y ∧ Py ∧ ¬Qy)→ ∃y(x↓y ∧Ny)) (6.6)
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Figure 6: Enforcing doubly exponential vertical path in F1[↓] (left) and horizontal path in
F1[↓+,→] or F1[↓,→] (right).

Let µ(x) abbreviate a formula stating that x is an element for which Q is false, and
all its siblings with smaller local position have Q true. Now we can naturally encode +1
addition in our 22

n

-global-position-counter:

∀xyx′y′zt
(

(z↓x ∧ z↓x′ ∧ z↓t ∧ t↓y ∧ t ≻ y′∧

Nx ∧Nt ∧ Px ∧ Px′ ∧ Py ∧ Py′ ∧ µ(x)λ=(x, y) ∧ λ=(x′, y′))→

Q(y) ∧ λ<(x′, x)→ ¬Qy′ ∧ λ<(x, x′)→ (Qy′ ↔ Qx′)
)

(6.7)

In an analogous way, assuming that → is available in the signature, that is in F1[↓,→]
or F1[↓+,→], we can enforce a doubly exponentially long horizontal path, like the path of
the N in the right part of Fig. 6.

It turns out that the presence of the successor relation(s) is crucial for enforcing doubly
exponentially long vertical or horizontal paths. To show this let us prove two contraction
lemmas.

Lemma 6.8. Let σ be a signature with the navigational part containing →+. Let T be a
σ-tree and a, b, a′, b′ ∈ T be such that b is a child of a, b′ is a child of a′, a′ is a descendant
of b, σ-profTk (a).B = σ-profTk (a

′).B, and σ-profTk (b).A = σ-profTk (b
′).A. Let T′ be the tree

obtained from T by replacing the subtree of a by the subtree of a′, with the exception of the
root of this subtree which remains a. Then, for any node c ∈ T ′ we have σ-profTk (c)=σ-

profT
′

k (c).

Proof. We consider three cases. In the first two of them we analyse the profiles of the
elements lying next to the cut made in our surgery, in the third one we systematically
analyse the profiles of the remaining elements of T′.

(i) Assume first that c is a child of a in T′ (that is, it is a child of a′ in T). Clearly the

L-, B- and R-component of profTk (c) are retained in T′, since the subtrees of c and its
siblings are the same as in T. We need to see that also the A-component is retained. Let

π = typeT
′
(c, a1, . . . , as) ∈ profT

′

k (c).A. Let π′ = typeT(b, a1, . . . , as). As π′ ∈ profTk (b).A,
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by the assumption of the Lemma we have that π′ ∈ profTk (b
′).A. Let b1, . . . , bs be ele-

ments in position A to b′ in T such that π′ = typeT(b′, b1, . . . , bs). Observe that then
typeT(c, b1, . . . , bs) = π and thus π ∈ profTk (c).A.

In the opposite direction assume that π = typeT(c, a1, . . . , as) ∈ profTk (c).A. Let

π′ = typeT(b′, a1, . . . , as). As π′ ∈ profTk (b
′).A, by the assumption of the Lemma we have

that π′ ∈ profTk (b).A. Let b1, . . . , bs be elements in position A to b in T such that π′ =

typeT(b, b1, . . . , bs). Observe that then typeT
′
(c, b1, . . . , bs) = π and thus π ∈ profT

′

k (c).A.

(ii) Consider now the element a. Clearly the L-, A- and R-component of profTk (a) are
retained in T′, since from the point of view of a, the only part of the tree which changes
is its subtree, and this change may influence at most the B-component of the profile of a.
That this component also does not change follows straightforwardly from the assumption
of the Lemma that σ-profTk (a).B = σ-profTk (a

′).B, since in T′ the subtree of a is replaced by
the subtree of a′ (with the exception of the root which is still a).

(iii) If c 6= a and c is not a child of a then note that c retains in T′ all its direct neighbours
(that is the parent, the children, the next sibling and the previous sibling) from T. We
will use the fact that each component of the profile of an element is determined by its 1-
type (which is obviously retained from T) and some components of the profiles of its direct
neighbours, as stated in Lemma 6.5. We will now systematically analyse the profiles of the
elements of T′

(a) If c belongs to the subtree rooted at a child c′ of a then the L-, B- and R-component
of profTk (c) are retained in T′, because the subtrees of c′ and its siblings are exactly as in T.
For the A-component we proceed by induction on the depth of c in the subtree of c′ using
the fact that the A-component of the profile of an element d is uniquely determined by its
1-type and by the L-, A- and R-components of the profile of its parent (Lemma 6.5 (i)(a)).

(b) If c is a left sibling of a then the L-, B- and A-component of profTk (c) are retained
in T′, because, from the point of view of a only some elements in position R could change.
For the R-component we proceed by induction on the distance of c from a using the fact
that the R-component of the profile of an element d is uniquely determined by its 1-type
and by the R- and B-components of the profile of its next sibling (Lemma 6.5 (ii)(b)).

(c) If c is a right sibling of a then we proceed symmetrically (using Lemma 6.5 (ii)(a)).
(d) If c is in the subtree of a sibling b of a then we proceed as in (a) using top-down

induction on the distance from b to deal with the A-component.
(e) If c is an ancestor of a then the L-, A- and R-component of profTk (c) are retained

in T′ since, from the point of view of c only some of its descendants has changed. For the
the B-component we proceed by induction on the distance of c from a using the fact that
the B-component of the profile of an element d is uniquely determined by its 1-type and by
the L-, B- and R-components of the profile of its any child, in particular of the child on the
vertical path to a (Lemma 6.5 (i)(b)).

(f) If c is a sibling of an ancestor of a then we proceed as in (b) or (c)
(g) Any remaining c is now in the subtree rooted at an element about which we already

know that its profile is retained from T and thus we can proceed as in (a) and (d) using
top-down induction to deal with the A-component.

Lemma 6.9. Let σ be a signature with the navigational part containing →+. Let T be a
σ-tree and a, a′ ∈ T be such that a′ is a following sibling of a, σ-profTk (a).L = σ-profTk (a

′).L

and σ-profTk (a).R = σ-profTk (a
′).R. Let T′ be the tree obtained from T by removing all the
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subtrees rooted at the elements lying on the horizontal path from a to a′, including a and
excluding a′ (and thus making the next sibling of a′ in T the next sibling of a in T′). Then,

for any node c ∈ T ′ we have σ-profTk (c) = σ-profT
′

k (c).

Proof. Let b be the next sibling of a′ in T and e their parent. As in the previous proof we
first see that the profiles of a, b and e, that is the elements lying next to the cut, do not
change and then propagate our analysis to the remaining elements.

(i) For a it is clear that the L-, B- and A-components of its profile do not change. For

the R-component we naturally use the assumption of the lemma that σ-profTk (a).R = σ-

profTk (a
′).R (note that it implies, in particular, that the 1-types of a and a′ are identical)

and the fact that what a can see in position R in T′ is exactly what a′ can see in position
R in T.

(ii) The case of b is symmetric.

(iii) For e, the L-, R- and A-components of its profile clearly do not change. For the

B-component take any π ∈ profTk (e).B and assume π = typeT(e, a1, . . . , as), for a1, . . . , as
in position B to e. W.l.o.g. assume that a1, . . . , at are the elements lying in position L

or B to a or being a itself, and that at+1, . . . , at are the elements in position R to a.
Since π′ = typeT(a, at+1, . . . , as) belongs to profTk (a).R, by the assumption of the Lemma

we have that π′ ∈ profTk (a
′).R. Let bt+1, . . . , bs be elements in position R to a′ in T

such that π′ = typeT(a′, bt+1, . . . , bs). Now typeT
′
(e, a1, . . . , at, bt+1, . . . , bs) = π and thus

π ∈ profT
′

k (e).B. In the opposite direction we proceed similarly.

(iv) for the remaining elements of T′ we argue analogously as in case (iii) of the proof of
Lemma 6.8, that is we use the fact that those elements retain their neighbours from T and
using Lemma 6.5 to propagate the equalities of profiles of computedin T and T′ towards
the other parts of T′.

With the help of the above lemmas we can now easily get essentially optimal upper
bounds on the lengths of paths.

Theorem 6.10. There are a fixed doubly exponential function g and a singly exponential
function f such that:

(i) For any navigational signature σnav ⊆ {↓, ↓+, ↓,→
+} every satisfiable F1[σnav ] for-

mula ϕ has a model in which horizontal and vertical paths have length bounded from
above by g(‖ϕ‖).

(ii) Any satisfiable formula ϕ in F1[↓, ↓+,→
+] has a model in which horizontal paths have

length bounded from above by f(‖ϕ‖) (and vertical paths are bounded by g(‖ϕ‖)).
(iii) Any satisfiable formula in F1[↓+,→,→

+] has a model in which the length of vertical
paths is bounded from above by f(‖ϕ‖) (and horizontal paths are bounded by g(‖ϕ‖)).

(iv) Any satisfiable formula in F1[↓+,→
+] has a model in which vertical paths and hori-

zontal paths have length bounded from above by f(‖ϕ‖).

Proof. Let us take a normal form formula ϕ over a signature σ = σ0 ∪ σnav and denote by
k its width. Let T |= ϕ. First, until there are elements a, a′ ∈ T meeting the assumptions
of Lemma 6.9 replace T by T′ as in this lemma. Let T∗ be the tree eventually obtained.
Clearly every horizontal path in T∗ contains elements of distinct k-σ-profiles. By Lemma
6.3 the number of such profiles is bounded by g∗(|σ0|, k). As k ≤ |ϕ| and as we may assume



34 E. KIEROŃSKI AND A. KUUSISTO

that σ0 consists only of the unary relations appearing in ϕ, also |σ0| ≤ ‖ϕ‖ we get that T∗

has paths bounded by g∗(‖ϕ‖, ‖ϕ‖), doubly exponentially in ‖ϕ‖.
Further, take T := T∗ and as long as there are elements a, a′, b, b′ ∈ T meeting the

assumptions of Lemma 6.8 replace T by T′ as in this lemma. Let T† be the tree eventually
obtained. Take a vertical path in T† and split it into segments consisting of two consecutive
elements each (possibly with the exception of the last segment which may consists of a single
element if the number of elements on the path is odd). Clearly every two pairs have different
combination of k-σ-profiles, since otherwise a further contraction step would be possible.
The number of such combinations is bounded by (g∗(‖ϕ‖, ‖ϕ‖))2 , doubly exponentially in
‖ϕ‖. As horizontal paths in T† are also horizontal paths in T∗ we have that T† is a witness
to (i), where as g(‖ϕ‖) we take 2g∗(‖ϕ‖, ‖ϕ‖)2 + 1 (two elements in each pair plus possibly
the last element on the path if their number is odd).

Next, note that if → 6∈ σnav then, if T∗ |= a→+a′ and a, a′ have the same 1-type then

σ-profT
∗

k (a).L ⊆ σ-profT
∗

k (a′).L and σ-profT
∗

k (a).R ⊇ σ-profT
∗

k (a′).R. Thus, when moving
along a horizontal path from left to right through the elements of the same 1-type, the L-
components of the profiles of elements either stay unchanged or grow, and theR-components
either stay unchanged or diminish, but in each step at least one of these must change since
otherwise a contraction step as in Lemma 6.9 would be possible. As the number of 1-types
and the size of L- and R-components is bounded exponentially in ‖ϕ‖ (cf. Lemma 6.3) we
conclude that the horizontal paths in T∗ are bounded exponentially in ‖ϕ‖. This justifies
(ii).

Reasoning similarly as in the above paragraph, but using the A- and B-components
and Lemma 6.8 we can show that if ↓ 6∈ σnav then the vertical paths in T† are bounded
exponentially in ϕ. Take a vertical path in T† and split it into segment of size two. If
there are segments 〈a, b〉 and 〈a′, b′〉 such that a′ is a descendant of b, the 1-types of a

and a′ are equal, and the 1-types of b and b′ are equal then profT
∗

k (b).A ⊆ σ-profT
∗

k (b′).A

and profT
∗

k (a).B ⊇ σ-profT
∗

k (s′).B, but at least one of the above inclusions must be strict
since otherwise a contraction step as in Lemma 6.8 would be possible. Since the sizes of
the components are bounded exponentially in ‖ϕ‖, there are exponentially many segments
for any fixed pair of 1-types of its elements. As the number of 1-types is also bounded
exponentially we get (iii).

Finally, if none of ↓, → belongs to σnav, then by the arguments above, T† has exponen-
tially bounded horizontal and vertical paths, which proves (iv).

6.3. Complexity. Using Theorem 6.10 one could establish the optimal upper complexity
bounds for satisfiability of F1 over trees for any navigational signature. We concentrate on
the case of the signature {↓+,→,→

+} which will allow us to complete the picture concerning
the complexity of satisfiability, and then roughly explain how similar approach can be used
to directly prove the upper bound in Theorem 6.1, which we have already proved by a
reduction to the unary negation fragment.

Theorem 6.11. Let {↓+} ⊆ σnav ⊆ {↓+,→,→
+}. Then the satisfiability problem for

F1[σnav] is ExpSpace-complete.

Proof. The lower bound for F1[↓+] is inherited from FO2[↓+], [BBC
+16], which in turn refers

to ExpSpace-hardness of the so-called one-way two-variable guarded fragment, [Kie06].
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To justify the upper bound for F1[↓+,→,→
+] we propose a nondeterministic algorithm

working in exponential space checking if a given normal form formula ϕ is satisfiable. As
by Savitch theorem NExpSpace=ExpSpace, the result follows.

Let k be the width of ϕ. Our algorithm attempts to construct a model T together
with functions Ω and Ξ assigning to each node a ∈ T a 1-type and, respectively, a tuple
(F ,A,B,L,R) of sets of s-types for various s ≤ k, intended to be the 1-type and, respectively,
the k-profile of a in T. For each constructed tuple (F ,A,B,L,R) it immediately checks
if F = fulltype(A,B,L,R) and rejects if it is not the case. Additionally, the algorithm
stores for each node a its position hcount(a) in the horizontal path of its siblings and its
position vcount(a) on the vertical path from the root to a.

The algorithm starts with constructing the root ǫ of T, that is by guessing the values
Ω(ǫ), Ξ(ǫ) and setting hcount(ǫ) := 0 and vcount(ǫ) := 0. It then verifies that the values of
Ω and Ξ on ǫ respect Conditions (a), (c) and (d) of Def. 6.6.

Then the algorithm works in a depth-first manner, that is, being at a node a it first
goes down to the leftmost child of a (or just decides that a is a leaf), analyses the subtree
of a, marks a as ”visited”, then goes right to the next sibling of a, proceeds a, and so on;
when it decides that the rightmost child in a horizontal path of siblings is reached it goes
up.

At any moment the algorithm stores the whole vertical path from the root ǫ to the
current node. When making a step down from a node a to a new node a′ the algorithm
guesses Ω(a′), Ξ(a′), sets hcount(a′) := 0 and vcount(a′) := vcount(a) + 1, verifies that the
values of Ω and Ξ on a and a′ respect Condition (e) of Def. 6.6, and that their values on a′

respect condition (c) of Def. 6.6.
When making a step right from a node a, which is a child of a node b, to a new node

a′, the algorithm guesses Ω(a′), Ξ(a′), sets hcount(a′) := hcount(a) + 1 and vcount(a′) :=
vcount(a) and verifies that the values of Ω and Ξ on a and a′ respect Condition (f) of
Def. 6.6, and that their values on b and a′ respect Condition (e) of Def. 6.6.

When the algorithm nondeterministically decides that the current node a is a leaf, it
verifies that the values of Ω and Ξ on a respect Condition (b) of Def. 6.6. When the
algorithm nondeterministically decides that the current node a is the rightmost child on a
horizontal path, it verifies that the values of Ω and Ξ on a respect Condition (d) of Def. 6.6.

The algorithm rejects if the value of hcount at any node exceeds g(|ϕ|) or the value of
vcount at any node exceeds f(|ϕ|) or if the values of Ξ on any node, treated as a profile, is
not compatible with ϕ (cf. Lemma 6.4). It accepts when it returns back to the root without
noticing any violation of the local consistency conditions or ϕ-compatibility.

That the algorithm uses only exponential space should be clear: it stores a single vertical
path of length bounded exponentially by f(|ϕ|) plus possibly one sibling of the currently
inspected node. The values of the counters and the functions Ω and Ξ stored at each node
are also of exponential size.

Let us finally explain the correctness of the algorithm. Assume that ϕ is satisfiable. By
Thm. 6.10 (iii) ϕ has a model T with vertical paths bounded by f(|ϕ|) and horizontal paths
bounded by g(|ϕ|). An accepting run of the algorithm can be then naturally constructed
by making all the guesses in accordance with T. In the opposite direction, if the algorithm
has an accepting run, then we can naturally extract from this run a tree T in which the
1-types of nodes are as given by the function Ω. Since during the run the local consistency
of the pair (Ω,Ξ) is checked, it follows by 6.7 that for each a ∈ T we have Ξ(a) = profTk (a).
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That T |= ϕ follows then by Lemma 6.4, since the algorithm verifies at each node a that
Ξ(a) is compatible with ϕ.

As promised, we shall finally briefly explain how to reprove the upper bound in Thm. 6.1
using the technique we have developed. Recall that Thm. 6.10 (i) says that every satisfi-
able formula has a model in which the length of vertical and horizontal paths is bounded
from above doubly exponentially by the function g. Our examples illustrated in Fig. 6
demonstrate that in the case of σnav = {↓, ↓+,→,→

+} we indeed need to take into account
models with at least doubly exponential paths, which thus have triply exponentially many
nodes. This means that to fit in 2-ExpTime we cannot walk through the whole model.
Instead we propose an algorithm for an alternating machine with exponentially bounded
space. This suffices for our purposes, since by the well known result by Chandra, Kozen
and Stockmeyer [CKS81] AExpSpace=2-ExpTime, that is any algorithm working in al-
ternating exponential space can be turned into an algorithm working in doubly exponential
time.

Given a normal form F1[↓, ↓+,→,→
+] formula ϕ, the algorithm attempts to construct

a single walk through a tree being a model of ϕ from the root to a leaf, at each node making
a universal choice whether to go down (to the leftmost child of the current node) or to go
right (to the next sibling of the current node).

The other details are as in the procedure from the the proof of Thm. 6.11: the algorithm
operates on similar data structures, that is at each nodes it guesses the values of Ω and Ξ
and appropriately updates the counters vcount and hcount. At each step it also guesses if
the current node is the rightmost child or a leaf, checks if the values of the counters do not
exceed g(‖ϕ‖), and verifies the local consistency conditions from 6.7 and ϕ-compatibility
conditions from Lemma 4.2.

Arguments similar to those from the proof of Thm 6.11 ensure that ϕ has a model iff
the algorithm has an accepting run.

7. Conclusions

In this paper we investigated the one-dimensional fragment of first-order logic, F1, over
words and trees and collated our results with the results on a few important formalisms for
speaking about those classes of structures.

Regarding expressivity, all the considered formalisms (CoreXPath, GF2, FO2, C2, UNFO,
F1) are equiexpressive over words, while over trees it depends on the navigational signature:
over XML trees (child, descendant, next sibling, following sibling) again all the logics are
equiexpressive, but over unordered trees (only child and descendant) they differ in the
expressivity, with F1 being as expressive as C2 but more expressive than UNFO and FO2.

Concerning the complexity of the satisfiability problem, the picture is presented in Table
1. Column {→,→+} concerns the case of words. The remaining columns show the results
for the case of trees. We have chosen the four most interesting navigational signatures (XML
trees, unordered trees with both child and descendant, and unordered trees accessible by
only descendant or only child). In the case of CoreXPath we assume that both downward
and upward modalities (and both left and right modalities in the case of XML trees) are
present in each of the considered variations

For convenience, below we recall the references to the results in the table. The PSpace
result for UTL is proved in [EVW02]. For CoreXPath the ExpTime-results follow from
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{→,→+} {↓, ↓+,→,→
+} {↓, ↓+} {↓+} {↓}

UTL/ CoreXPath PSpace ExpTime ExpTime PSpace PSpace

GF2
NExpTime ExpSpace ExpSpace ExpSpace ExpTime

FO2
NExpTime ExpSpace ExpSpace ExpSpace NExpTime

C2
NExpTime ExpSpace ExpSpace ExpSpace NExpTime

UNFO NExpTime 2-ExpTime 2-ExpTime ExpSpace 2-ExpTime

F1 NExpTime 2-ExpTime 2-ExpTime ExpSpace 2-ExpTime

Table 1: Complexity over words and trees. Results in bold are proved in this paper. We
have not found the results in grey in the literature but they can be easily derived
using the existing techniques (see the Appendix).

[Mar04], while the PSpace-completeness for {↓} is proved in [BFG08]; the argument
for PSpace-completeness in the case of {↓+} is sketched in the Appendix. NExpTime-
completeness of FO2 over words is shown in [EVW02]; this holds also for GF2, as in the
case of words every pair of elements is guarded by →+ and thus any FO2 formula can be
easily translated into GF2. GF2 and FO2 over trees are thoroughly examined in [BBC+16].
NExpTime-completeness of C2 over words is shown in [CW16a]. C2 over trees is investi-
gated in [BCK17] where ExpSpace-completeness for signatures containing ↓+ is proved; the
signature {↓} is not studied there, and we sketch an argument for NExpTime-completeness
in this case in the Appendix. Finally, 2-ExpTime-results for UNFO are proved in [StC13].

What is probably interesting to note is that in the case of the two-variable logics over
trees, it is the signature {↓} which is easier than the other signatures. In the case of the
multi-variable logics F1 and UNFO this signature is equally hard as our full navigational
signature, but a complexity drop can be observed this time for the signature {↓+}.

One more interesting issue that we have not investigated in detail in this paper is
succinctness. Our work implies that F1 is exponentially more succinct than FO2 over XML
trees and more generally over trees whose signatures contain ↓. This follows from the
fact that every satisfiable FO2[↓, ↓+,→,→

+] formula has a model whose paths are bounded
exponentially in its size [BBC+16] (this holds also for C2 [BCK17]) while already in F1[↓]
we can enforce models with doubly exponentially long paths (Section 6.2 of this paper).

The above argument does not work in the case of words, since we have shown that in
F1 at most exponentially large models can be enforced, and this indeed can be also done in
FO2. Nevertheless, we suspect that also in this case F1 is more succint, which is suggested
by the examples presented in the Introduction.
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Appendix A. Missing complexities

Theorem A.1. The satisfiability problem for CoreXPath[↓+] is PSpace-complete.

Proof. (Sketch) The lower bound can be shown in a standard fashion, e.g., by a reduction
from the QBF problem.

To get the upper bound we show that every satisfiable formula has a model of depth
and degree bounded polynomially in its length. This can be done by the following standard
selection process. We extend the language by box modalities [↓+], [↑

+], with their standard
semantics: [·]ϕ := ¬〈·〉¬ϕ. For a given input formula, using de Morgan laws, we push all
the negations down to the propositional variables. Let ϕ be the NNF result of this process,
and let SF (ϕ) be the set of its subformulas.

Take now a tree T and its node c such that T, c |= ϕ. We first take care of the length
of vertical path. For each 〈↓+〉ψ ∈ SF (ϕ) mark all minimal nodes a such that T, a |= ψ.
Similarly, for each 〈↑+〉ψ ∈ SF (ϕ) mark all maximal nodes a such that T, a |= ψ. Mark
also the element c. Let T∗ be the result of removing from T all the unmarked elements and
rebuilding the structure of the tree on the marked ones, so that the relation ↓+ from T is
respected. By the structural induction we can now show that for any ψ ∈ SF (ϕ) and any
node a ∈ T ∗, if T, a |= ψ then T∗, a |= ψ; in particular T∗, c |= ϕ. Since the size of SF (ϕ)
is linear in ‖ϕ‖ it follows that the paths of T∗ are also bounded linearly in ‖ϕ‖.

Next we take care of the degree of nodes. Proceeding in breadth-first manner we repeat
for all nodes a of T∗: for every 〈↓+〉ψ, if ψ holds at an descendant of a then mark one such
descendant; mark also c if it is a descendant of a. Remove all the subtrees rooted at the
children of a which do not contain any marked node. After this process the resulting tree
has the degree of nodes and the length of the vertical paths bounded linearly in ‖ϕ‖.

Finally, we can check the existence of models with linearly bounded length of paths and
degree by guessing their nodes in a depth-first manner. A natural decision procedure can
be designed to work in NPSpace=PSpace.

Theorem A.2. The satisfiability problem for C2[↓] is NExpTime-complete.

Proof. (Sketch) The lower bound is inherited from monadic FO2 (with no navigational
predicates). The upper bound can be proved by an adaptation of the upper bound proof
for FO2[↓,→,→+] in [BBC+16]. It will work even in the richer scenario of C2[↓,→,→+].
We first convert the input formula into Scott-type normal form from [BCK17]:

ϕ = ∀x∀y χ(x, y) ∧
m
∧

i=1

(

∀x ∃⊲⊳iCiy χi(x, y)
)

,

where ⊲⊳i∈ {≤,≥}, each Ci is a natural number, and χ(x, y) and all the χi(x, y) are
quantifier-free. Denote C = max{Ci}i=1,...,m.

We then mostly repeat the construction from the proof of Thm. 4.1 from [BBC+16].
We start from a model of ϕ with exponentially bounded horizontal and vertical paths as
guaranteed by Thm. 18 in [BCK17]. Then, the only real modification of the proof from
[BBC+16] is that when selecting the set of protected witnesses W1 we choose C represen-
tatives of each 1-type (or all of them if there are less than C of them) rather than just
one. Similarly, when selecting incomparable witnesses for the elements of W1 we also add
to the set W2 C incomparable witnesses for each element and conjunct of type ∀∃ (or all
of them if there are less than C of them). Since the number of 1-types and the value of C
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are bounded exponentially in the size of ϕ it follows that the size of W = W1 ∪W2 is also
bounded exponentially.

We then proceed as in [BBC+16] to prove that there exists a model of ϕ with ex-
ponentially many non-isomorphic subtrees. Such models can be represented as DAGs of
exponential size, which can be then naturally used to test satisfiability in NExpTime by
guessing such a representation and verifying that it indeed encodes a model of ϕ.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany
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