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Abstract

Complex reasoning problems are most clearly and easily specified using logical rules,but require
recursive rules with aggregation such as count and sum for practical applications. Unfortunately,
the meaning of such rules has been a significant challenge, leading to many disagreeing semantics.

This paper describes a unified semantics for recursive rules with aggregation, extending the
unified founded semantics and constraint semantics for recursive rules with negation. The key idea
is to support simple expression of the different assumptions underlying different semantics, and or-
thogonally interpret aggregation operations using their simple usual meaning. We present a formal
definition of the semantics, prove important properties of the semantics, and compare with prior se-
mantics. In particular, we present an efficient inference over aggregation that gives precise answers
to all examples we have studied from the literature. We also apply our semantics to a wide range of
challenging examples, and show that our semantics is simple and matches the desired results in all
cases. Finally, we describe experiments on the most challenging examples, exhibiting unexpectedly
superior performance over well-known systems when they can compute correct answers.

1 Introduction

Many computation problems, including complex reasoning problems in particular, such as pro-
gram analysis, networking, and decision support, are most clearly and easily specified using logical
rules [Liu18]. However, such reasoning problems in practical applications, especially for large appli-
cations and when faced with uncertain situations, require the use of recursive rules with aggregation
such as count and sum. Unfortunately, the meaning of such rules has been challenging and remains
a subject with significant complication and disagreement.

As a simple example, consider a single rule for Tom to attend the logic seminar: “Tom will attend
the logic seminar if the number of people who will attend it is at least 20.” What does the rule mean?
If 20 or more other people will attend, then surely Tom will attend. If only 10 others will attend, then
Tom will not attend. What if only 19 other people will attend? Will Tom attend, or not? Although
simple, this example already shows that, when aggregation is used in recursive rules—here count is
used in a rule that defines "will attend" using "will attend"—the semantics can be tricky.

Some might say that this statement about Tom is ambiguous or ill-specified. However, it is a
statement allowed by logic rule languages with predicates, sets, and counts. For example, let predi-
cate will_attend(p) denote that p will attend the logic seminar; then the statement can be written
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under grants N00014-20-1-2751 and N00014-21-1-2719.
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as will_attend(Tom) if count {p: will_attend(p)} ≥ 20. So the statement must be given a mean-
ing. Indeed, “ambiguous” is a possible meaning, indicating there are two or more answers, and
“ill-specified” is another possible meaning, indicating there is no answer. So which one should it be?
Are there other possible meanings?

In deductive databases, to avoid challenging cases of aggregation as well as negation, processing
of recursive rules with aggregation is largely limited to monotonic programs, i.e., adding a new fact
used in a hypothesis cannot make a conclusion change from true to false. However, note that the rule
about Tom attending the logic seminar is actually monotonic: adding attend(p) for a new p can not
make the conclusion change from true to false. So, even restricted deductive databases must give a
meaning to this rule. What should it be?

In fact, the many different semantics of recursive rules with aggregation are more complex and
trickier than even semantics of recursive rules with negation. The latter was already challenging for
over 120 years, going back at least to Russell’s paradox, for which self-reference with negation is be-
lieved to form vicious circles [ID20]. Many different semantics, which disagree with each other, have
been studied for recursive rules with negation, as summarized in Section 9. Two of them, well-founded
semantics (WFS) [VRS91, VG93] and stable model semantics (SMS) [GL88], became dominant since
about 30 years ago.

Semantics of recursive rules with aggregation has been studied continuously since about 30 years
ago, and more intensively in more recent years, as discussed in Section 9, especially as they are
needed in graph analysis and machine learning applications. However, the many different semantics
proposed, e.g., [VG92, GZ19], are even more intricate than WFS and SMS for recursive rules with
negation, and include even different extensions for WFS, e.g., [KS91, VG92, SSRB93], and for SMS,
e.g., [KS91, MR04, GZ19]. Some authors also changed their own minds about the desired semantics,
e.g., [Gel02, GZ19]. Such intricate and disagreeing semantics would be too challenging to use correctly.

This paper describes a simple unified semantics for recursive rules with aggregation as well as nega-
tion and quantification. The semantics is built on and extends the founded semantics and constraint
semantics of logical rules with negation and quantification developed recently by Liu and Stoller [LS18,
LS20a]. The key idea is to capture, and to express in a simple way, the different assumptions underlying
different semantics, and orthogonally interpret aggregation operations using their simple usual mean-
ing. We present formal definition of the semantics and prove important properties of the semantics.

In particular, we present an efficient derivability relation for comparisons containing aggregations;
it can be computed in linear time and gives precise answers on all examples we have studied from the
literature. We also compare with main prior semantics for rules with aggregation, and show how our
semantics is direct and follows precisely from usual meanings of aggregations.

We further apply our semantics to a wide range of challenging examples, and show that our se-
mantics is simple and matches the desired semantics in all cases. In particular, our examples include
the longest and most sophisticated ones from dozens of previously studied examples [GZ19], where
answer sets were obtained by all possible guesses followed by computing sophisticated reduct for each;
we show that all the answer sets can be obtained by a simple default assumption and simple least
fixed-point computations, as is usual for inductive definitions and commonsense reasoning.

Finally, we describe experiments on three most challenging examples. For one of them, our sys-
tematically incrementalized implementation in Python exhibits unexpectedly superior performance
over four other most well-known systems. For the other two, we discovered many incorrect results
computed by two systems, while the other two systems cannot compute the desired semantics at all.
The former two systems have since found and fixed bugs that caused the incorrect results in one of the
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examples, but developers of these systems also found that fundamentally different inference would
be needed to compute correctly at all for the other example.

The rest of the paper is organized as follows. Section 2 presents the problems and an overview of
the solutions. Sections 3 describes the language of recursive rules with unrestricted negation, quan-
tification, and aggregation. Sections 4 and 5 present formal definition of the semantics and prove
properties of the semantics. Section 6 discusses and compares with prior semantics. Section 7 illus-
trates our semantics on a wide range of examples. Section 8 describes experimental results. Section 9
discusses related work and concludes. Appendix A contains additional proofs.

This paper is an extended and revised version of Liu and Stoller [LS22]. The main changes are
(1) new Section 5 on properties of the semantics, extending a summary paragraph to include all the-
orems with proofs, including additional proofs in Appendix A; (2) new Section 6 that discusses and
compares with prior semantics in more detail; (3) extended Section 7 on examples, with additional
examples 1-4 and 7; and (4) new Section 8 on experiments, extending a summary description about
two examples to full descriptions about three examples.

2 Problem and solution overview

The semantics of recursion with negation and aggregation is challenging for several reasons. First,
recursion involves self-referencing and cyclic reasoning, for which it is already non-trivial to properly
start and finish. Then, negation in recursion incurs self-denying and conflict in cyclic reasoning,
which can lead to contradiction, as in Russell’s paradox. Finally, aggregation generalizes negation to
give rise to even greater challenges in recursion, because a negation essentially corresponds to only
the simple case of a count being zero.

The first reason alone already called for a least fixed point semantics, which is beyond first-order
logic. The second reason led to major different semantics that are sophisticated and disagreeing when
trying to solve conflicts differently. The third reason exacerbated the sophistication and variety to
tackle the even greater challenges.

A smallest example. Consider the following recursive rule with aggregation. It says that p is true
for value a if the number of x’s for which p is true equals 1:

p(a) ← count {x: p(x)} = 1

This rule is recursive because inferring a conclusion about p requires using p in a hypothesis. It uses
an aggregation of count over a set. While each of recursion and aggregation by itself has a simple
meaning, allowing recursion with aggregation is tricky, because recursion is used to define a predicate,
which is equivalent to a set, but aggregation using a set requires the set to be already defined.

We use this example in addition to our Tom example in Section 1, for two reasons. First, this
and similar small examples are used for comparisons in previous papers, e.g., [FPL11, GZ14, GZ18].
Second, this example differs from the Tom example in that the comparison with count in this example
is non-monotonic, i.e., adding more x’s for which p(x) is true can change the value of the comparison,
and thus the conclusion, from true to false; using only one example is insufficient to show the main
different cases.

• Two models: Kemp-Stuckey 1991, Gelfond 2002. According to Kemp and Stuckey [KS91]
and Gelfond [Gel02], the above rule has two models: one empty model, i.e., a model in which
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nothing is true and thus p(a) is false, and one containing only p(a), i.e., p(a) is true and everything
else is false.

• One model: Faber et al. 2011, Gelfond-Zhang 2014-2019. According to Faber, Pfeifer,
and Leone [FPL11] and Gelfond and Zhang [GZ14, Examples 2 and 7], [GZ18, Examples 4 and
6], and [GZ19, Example 9], the rule above has only one model: the empty model.

As one of the several main efforts investigating aggregation, Gelfond and Zhang [Gel02, GZ14,
ZR16, GZ17, GZ18, GZ19] have studied the challenges and solutions extensively, presenting dozens of
definitions and propositions and discussing dozens of examples [GZ19]. Their examples where count
is used in inequalities, greater than, etc., with additional variables, with more hypotheses in a rule,
or with more rules and facts, are even more complicated. We discuss their most extensive examples
in Section 7.

Extending founded semantics and constraint semantics for aggregation. Aggregation, such
as count, is a simple concept that even kids understand. So it is stunning to see so many sophisticated
treatments for figuring out its meaning when it is used in rules, and to see the many disagreeing
semantics resulting from those.

We develop a simple and unified semantics for rules with aggregation as well as negation and
quantification by building on founded semantics and constraint semantics [LS18, LS20a] for rules
with negation and quantification. The key insight is that disagreeing complex semantics for rules
with aggregation are because of different underlying assumptions, and these assumptions can be
captured using the same simple binary declarations about predicates as in founded semantics and
constraint semantics but generalized to include the meaning of aggregation.

Certain. First, if there is no potential non-monotonicity, including no aggregation in recursion,
then the predicate in the conclusion can be declared “certain”.

Being certain means that assertions of the predicate are given true or inferred true by simply
following rules whose hypotheses are given or inferred true, and the remaining assertions of the
predicate are false. This is both the founded semantics and constraint semantics.

For the Tom example, there is no potential non-monotonicity; with this declaration, when given
that only 19 others will attend, the hypothesis of the rule is not true, so the conclusion cannot be
inferred. Thus Tom will not attend.

Uncertain. Regardless of monotonicity, a predicate can be declared “uncertain”. It means that
assertions of the predicate can be given or inferred true or false using what is given, and any
remaining assertions of the predicate are undefined. This is the founded semantics.

If there are undefined assertions from founded semantics, all combinations of true and false values
are checked against the rules and declarations as constraints, yielding a set of possible satisfying
combinations. This is the constraint semantics.

Complete, or not complete. An uncertain predicate can be further declared “complete” or not.

Being complete means that all rules that can conclude assertions of the predicate are given. Thus
a new rule, called completion rule, can be created to infer negative assertions of the predicate
when none of the given rules apply.

Being not complete means that negative assertions cannot be inferred using completion rules,
and thus all assertions of the predicate that were not inferred to be true are undefined.
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For the Tom example, the completion rule implies: Tom will not attend the logic seminar if the
number of people who will attend it is less than 20.

When given that only 19 others will attend, due to the uncertainty of whether Tom will attend,
neither the given rule nor the completion rule will fire. So whether one uses the declaration of
complete or not, there is no way to infer that Tom will attend, or Tom will not attend. So, founded
semantics says it is undefined.

Then constraint semantics tries both for it to be true, and for it to be false; both satisfy the rule,
so there are two models: one where Tom will attend, and one where Tom will not attend.

Closed, or not closed. Finally, an uncertain complete predicate can be further declared “closed”
or not.

Being closed means that an assertion of the predicate is made false if inferring it to be true requires
itself to be true.

Being not closed means that such assertions are left undefined.

For the Tom example, with this declaration, if there are only 19 others attending, then Tom will
not attend in both founded semantics and constraint semantics. This is because inferring that
Tom will attend requires Tom himself to attend to make the count to be 20, so it should be made
false, meaning that Tom will not attend.

Note that this is the same result as using "certain". Because the rule for deciding whether Tom
will attend has no potential non-monotonicity, using “certain” is much simpler and has the same
meaning as using “closed”, as shown in general in Section 5.

For the smallest example about p near the beginning of this section, the equality comparison is
not monotonic. Thus p must be declared uncertain. This example also shows different semantics
when using the declarations of not complete and complete, unlike the Tom example.

• Not complete. Suppose p is declared not complete. Founded semantics does not infer p(a)

to be true using the given rule because count {x: p(x)} = 1 cannot be determined to be true,
and nothing infers p(a) to be false. Thus p(a) is undefined. So is p(b) for any constant b other
than a because nothing infers p(b) to be true or false. Constraint semantics gives a set of models,
each for a different combination of true and false values of p(c) for different constants c such
that the combination satisfies the given rule. This corresponds to what is often called open-world
assumption and used in commonsense reasoning.

• Complete. Suppose p is declared complete but not closed. A completion rule is first added.
The precise completion rule is:

¬ p(x) ← x 6= a ∨ count {x: p(x)} 6= 1

Founded semantics does not infer p(a) to be true or false using the given rule or completion
rule, because count {x: p(x)} 6= 1 also cannot be determined to be true. Thus p(a) is undefined.
Founded semantics infers p(b) for any constant b other than a to be false using the completion
rule. Constraint semantics gives two models: one with p(a) being true, and p(b) being false for
any constant b other than a; and one with p(c) being false for every constant c. This is the same
as the two-model semantics per Kemp-Stuckey 1991 and Gelfond 2002.

• Closed. Supposed p is declared complete and closed. Both founded semantics and constraint
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semantics give only the second model above, i.e., p(c) is false for every constant c. They have
p(a) being false because inferring p(a) to be true requires p(a) itself to be true. This is the same
as the one-model semantics per Faber et al. 2011 and Gelfond-Zhang 2014-2019.

We see that simple binary declarations of the underlying assumptions, with simple inference
following rules and taking rules as constraints, give the different desired semantics.

Relationship with prior semantics. Table 1 summarizes relationships between our unifying
semantics and major prior semantics. With different predicate declarations capturing different un-
derlying assumptions, founded semantics and constraint semantics for rules with aggregation ex-
tend different prior semantics for rules with negation uniformly, as shown in Table 1 left and middle
columns. These extend the matching relationships proved for rules with negation in [LS18, LS20a]. All
these relationships are when all predicates in a program have the same declarations, but our founded
semantics and constraint semantics also allow different predicates to have different declarations.

Among many different prior semantics for rules with aggregations, there are even different exten-
sions for the same prior semantics for rules with negation, as shown in the right column in Table 1.
Unfortunately, most of them are defined for limited cases, or add some case-specific definitions. In
particular, simple formal explanations for the disagreements, including among all different extensions
for each of WFS and SMS, are completely missing. We are only aware of comparisons by examples or
very restricted cases, even for disagreeing semantics by the same authors. However, for all such exam-
ples and cases we examined, we found that the desired results for them correspond to our semantics
under some appropriate declarations for some predicates. These results are described in Section 6.

Declarations Semantics Extending Reference Prior Extensions

certain Founded, Stratified Van Gelder 1986 e.g., [MPR90, RS92]
Constraint(Perfect) [VG86]

uncertain, Founded (none found) (none found)
not complete ConstraintFirst-Order Logic e.g., [HLNW01]

uncertain, Founded Fitting Fitting 1985 [Fit85] Pelov et al. 2007 [PDB07]
complete, (Kripke-Kleene)
not closed ConstraintSupported Apt et al. 1988 [ABW88] Pelov et al. 2007 [PDB07]

uncertain, Founded WFS Van Gelder et al. 1988 Kemp-Stuckey 1991 [KS91]
complete, [VGRS88, VRS91] Van Gelder 1992 [VG92]
closed Pelov et al. 2007 [PDB07]

ConstraintSMS Gelfond-Lifschitz 1988 Kemp-Stuckey 1991 [KS91]
[GL88] Pelov et al. 2007 [PDB07]

Faber et al. 2011 [FPL11]
Gelfond-Zhang 2014-
2019 [GZ19]

Table 1: Founded semantics and constraint semantics for rules with aggregation with different
declarations (for all predicates in a program), extending prior semantics for rules with negation, and
prior extensions.
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3 Language

We consider Datalog rules extended with unrestricted negation, disjunction, quantification, aggrega-
tion, and comparison containing aggregation.

Domain. The domain of a program is the set of values that variables can be instantiated with.
These values are called constants. The domain includes the values that appear in the program and a
set Num of numbers. Num is a bounded range of numbers determined by a numeric representation

bound NRB and a numeric representation precision NRP, i.e., Num contains all numbers in the range
[−NRB, NRB] with at most NRP decimal places. Numbers with more than NRP decimal places
that appear in the program or arise during evaluation can be rounded to NRP decimal places (such
rounding can be reported), or a higher-precision representation can be used.

This rounding or increasing precision is not shown explicitly in the semantics, because the rule
language in this paper (which includes all major aggregation operations: count, max, min, and sum)
does not include numeric operations that increase the number of decimal places. We use an NRP

that is at least the maximum number of decimal places in numbers that appear in the program, so
all numeric computations are exact, and rounding or increasing precision is not needed.

Datalog rules with unrestricted negation. We first present a simple core form of rules and
then describe additional constructs that can appear in rules. The core form of a rule is the following,
where any Pi may be preceded with ¬:

Q(X1, ..., Xa)← P1(X11, ..., X1a1
) ∧ ... ∧ Ph(Xh1, ..., Xhah

)

Symbols←, ∧, and ¬ indicate backward implication, conjunction, and negation, respectively. Q and
Pi’s are predicates, and each argument Xk and Xij is a constant or a variable. In examples, we use
numbers and quoted strings for constants and letters for variables.

If h = 0, then there are no Pi’s or Xij ’s, and Q(X1, ..., Xa) is called a fact. Facts are first
transformed so that each Xk that is a variable is instantiated with all constants in the domain of the
program. So facts have only constants as arguments for the rest of the paper. Also, for the rest of the
paper, “rule” refers only to the case where h ≥ 1, in which case the left side of the backward implication
is called the conclusion, the right side is called the body, and each conjunct in the body is called a
hypothesis. We do not require variables in the conclusion to be in the hypotheses; it is not needed
because rules are used with variables replaced by constants, and the domain of variables is finite.

Disjunction. In a rule body, hypotheses may be combined using disjunction (∨) as well as conjunc-
tion. Conjunction and disjunction may be nested arbitrarily.

mixed with conjunction and disjunction.

Quantification. A hypothesis in a rule body can be an existential or universal quantification of the
form

∃ X1, ..., Xa | B existential quantification
∀ X1, ..., Xa | B universal quantification

where each Xi is a variable in B, and B has the same form as a rule body. Note that this recursive
definition allows nested quantifications. Each quantified variable Xi ranges over the domain of the
program. The quantifications return true iff for some or all, respectively, combinations of values of
X1, ..., Xa, the body B is true.

7



To restrict a quantified variable Xi to a particular set of values, a user can introduce a predicate D

with a fact D(x) for each element x of that set, and write an existential quantification by adding a con-
junct D(Xi) to the body and write a universal quantification by adding a disjunct¬D(Xi) to the body.

Aggregation and comparison. A set expression has the form {X1, ..., Xa : B}, where each Xi is a
variable in B, and the body B has the same form as a rule body. The arity of this set expression is a.
The body of each set expression is first rewritten to have the same form as the body of a core-form rule,
by introducing auxiliary predicates, e.g., {Y: ∃ X | p(X,Y)} is rewritten to {Y: q(Y)} together with
a new rule q(Y) ← ∃ X | p(X,Y), where q is a fresh predicate. Each auxiliary predicate is declared
complete (which is the default, defined below), except that it is declared closed if some predicate in
the body of the rule defining the auxiliary predicate is declared closed. This exception preserves any
cycle of dependencies among closed predicates.

An aggregation has the form agg S, where agg is an aggregation operator (count, max, min, or sum),
and S is a set expression. The aggregation returns the result of applying the respective agg operation
(cardinality, maximum, minimum, or sum) to the set value of S. max and min use the order on num-
bers, extended lexicographically to an order on tuples. sum is on numbers, and on tuples whose first
components are numbers; in the latter case, the first components are summed. Note that count and
sum applied to the empty set equal 0, while max and min applied to the empty set give an error.

A hypothesis of a rule may be a comparison of the form

agg S ⊙ k or agg S ⊙ agg′ S′

where agg S and agg′ S′ are aggregations, the comparison operator ⊙ is an equality (=) or inequality
(6=, < ≤, >, ≥), and k is a variable or numeric constant or, if the aggregation operator is max or
min, a tuple of variables or numeric constants. Comparisons of the second form are first rewritten
as two comparisons of the first form by introducing a fresh variable. For example, agg S 6= agg′ S′ is
rewritten as agg S 6= V ∧ agg ′ S′ = V , and agg S < agg′ S′ is rewritten as agg S < V ∧ agg′ S′ ≥ V ,
where V is a fresh variable. The latter rewrite uses two inequalities, instead of an inequality and an
equality, to increase the cases where occurrences of predicate atoms are positive (defined below).

We include a comprehensive set of comparison operators for readability; it also allows negation
applied to comparisons to be eliminated by reversing the comparison operators; for example, the
negation of a comparison using < is a comparison using ≥.

The key idea here is that the value of a comparison (containing an aggregation) is undefined if
there is not enough information about the predicates used to determine the value, or if applying the
comparison (containing an aggregation) gives an error, such as a type error.

Additional aggregation and comparison functions, e.g., on other data types such as characters
and strings, can be supported in the same principled way as we support those discussed here.

Programs, atoms, and literals. A program π is a set of rules and facts, plus declarations for
predicates, described after dependencies are introduced next.

An atom of π is either a predicate symbol P in π applied to constants in the domain of π and
variables, or a comparison formed using predicate symbols in π, constants in the domain of π, and
variables. These are called predicate atoms for P and comparison atoms, respectively.

A literal of π is either an atom of π or the negation of a predicate atom of π. These are called
positive literals and negative literals, respectively. A literal that is a predicate atom or its negation is
called a predicate literal. A literal that is a comparison atom is called a comparison literal. Note that
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negation of a comparison atom is not needed because the negation will be eliminated by reversing the
comparison operator.

Dependency graph. The dependency graph of a program characterizes dependencies between
predicates induced by the rules, distinguishing positive from non-positive dependencies. We define
the dependency graph before discussing declarations for predicates, because the permitted declara-
tions and default declarations are determined by the dependency graph.

An occurrence A of a predicate atom in a hypothesis H is a positive occurrence if (1) H is A,
which is a positive literal, (2) H is a quantification, and A is a positive literal in its body, (3) H is a
comparison atom of the form count S ≥ k, count S > k, max S ≥ k, max S > k, min S ≤ k, or min S

< k, and A is in a positive literal in the set expression S, or (4) H is a comparison atom of the form
count S ≤ k, count S < k, max S ≤ k, max S < k, min S ≥ k, or min S > k, and A is in a negative literal
in the set expression S. A predicate atom that is the conclusion of a rule is also a positive occurrence.
Other occurrences of predicate atoms are non-positive occurrences.

This definition conservatively ensures that hypotheses are monotonic with respect to positive
occurrences of predicate atoms, i.e., making a positive occurrence of a predicate atom in a hypothesis
true cannot make the hypothesis change from true. This definition can be extended so that any
occurrence A of a predicate atom in a hypothesis H is a positive occurrence if H can be determined to
be monotonic with respective to A. For example, if predicate p holds for only non-negative numbers,
then p(x) is a positive occurrence in sum {x: p(x)} > k.

The dependency graph DG(π) of program π is a directed graph with a node for each predicate of
π, and an edge from Q to P labeled positive (respectively, non-positive) if a rule whose conclusion
contains Q has a hypothesis that contains a positive (respectively, non-positive) occurrence of an
atom for P . If there is a path from Q to P in DG(π), then Q depends on P in π. If the node for P is in
a cycle containing a non-positive edge in DG(π), then P has circular non-positive dependency in π.

Declarations. A predicate declared certain means that each assertion of the predicate has a unique
true (True) or false (False) value. A predicate declared uncertain means that each assertion of the
predicate has a unique true, false, or undefined (Undef ) value. A predicate declared complete means
that all rules with that predicate in the conclusion are given in the program. A predicate declared
closed means that an assertion of the predicate is set to false, called self-false, if inferring it to be true
using the given rules and facts requires assuming itself to be true.

A predicate must be declared uncertain if it has circular non-positive dependency, or depends on
an uncertain predicate; otherwise, it may be declared certain or uncertain and is by default certain. A
predicate may be declared complete or not only if it is uncertain, and it is by default complete. A pred-
icate may be declared closed or not only if it is uncertain and complete, and it is by default not closed.

We do not give here a syntax for declarations of predicates to be certain, complete, closed, or not,
because it is straightforward, and almost all examples use default declarations. However, Liu and
Stoller [LS20b, LS21] introduces a language that supports such declarations and supports the use of
both founded semantics and constraint semantics.

Notations. In presenting the semantics, in particular the completion rules, we allow negation in the
conclusion of rules, and we allow hypotheses to be equalities (=) and negated equalities (6=) between
two variables or a variable and a constant.

9



4 Formal semantics

This section extends the definitions of founded semantics and constraint semantics in [LS18, LS20a]
to handle aggregation and comparison. We introduce a new relation, namely, derivability of com-
parisons, and extend most of the foundational definitions, including the definitions of atom, literal,
and positive occurrence in Section 3, and of complement, ground instance, truth value of a literal
in an interpretation, completion rule, naming negation, unfounded set, and constraint model in this
section. By carefully extending these foundational definitions, we are able to avoid explicit changes
to the definitions of other terms and functions built on them, including the definition of completion
function and the definition of the least fixed point at the heart of the semantics, embodied mainly in
the function LFPbySCC .

4.1 Interpretations and derivability

Complements and consistency. The predicate literals A and ¬A are complements of each other.
The following pairs of comparison literals are complements of each other: agg S = k and agg S 6= k;
agg S ≤ k and agg S > k; agg S ≥ k and agg S < k.

A set of predicate literals is consistent if it does not contain a literal and its complement.

Ground instance. An occurrence of a variable X in a quantification Q is bound in Q if X is a
variable to the left of the vertical bar in Q. An occurrence of a variable X in a set expression S is
bound if X is a variable to the left of the colon in S. An occurrence of a variable in a rule R is free if
it is not bound in a quantification or set expression in R.

A ground atom or ground literal is an atom or literal, respectively, not containing variables. A
ground instance of a rule R in a program π is any rule obtained from R by expanding universal
quantifications into conjunctions over all constants, instantiating existential quantifications with any
constants, and instantiating the remaining free occurrences of variables with any constants (of course,
all free occurrences of the same variable are replaced with the same constant). A ground instance of
a comparison atom A is a comparison atom obtained from A by instantiating the free occurrences of
variables in A with any constants. A ground instance of a set expression {X1, ..., Xa : B} is a pair
((X1, ..., Xa), B) obtained by instantiating all variables in X1, ..., Xa and B with any constants.

Interpretations. An interpretation of a program π is a consistent set of ground predicate literals
of π. Interpretations are generally 3-valued: a ground predicate literal is true (i.e., has truth value
True) in interpretation I if it is in I, is false (i.e., has truth value False) in I if its complement is
in I, and is undefined (i.e., has truth value Undef ) in I if neither it nor its complement is in I. An
interpretation of π is 2-valued if it contains, for each ground predicate atom A of π, either A or its
complement. Interpretations are ordered by set inclusion ⊆.

Let G(S) denote the set of ground instances of set expression S. For a set expression S, interpre-
tation I, and truth value t, let

G(S, I, t) = {x | (x, B) ∈ G(S) ∧B has truth value t in I}

That is, G(S, I, t) is the set of combinations of constants for which the body of set expression S has
truth value t in I.

Derivability of comparisons. Informally, a ground comparison atom agg S ⊙ k is derivable in
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π, I ⊢L count S = k ⇔ |G(S, I, True)| = k ∧G(S, I, Undef ) = ∅

π, I ⊢L count S > k ⇔ |G(S, I, True)| > k

π, I ⊢L count S < k ⇔ |G(S, I, True) ∪G(S, I, Undef )| < k

π, I ⊢L max S = k ⇔ k ∈ G(S, I, True) ∧ ∀ i ∈ G(S, I, True) ∪G(S, I, Undef ) | i ≤ k

π, I ⊢L max S 6= k ⇔ k 6∈ G(S, I, True) ∪G(S, I, Undef ) ∨ ∃ i ∈ G(S, I, True) | i > k

π, I ⊢L max S > k ⇔ ∃ i ∈ G(S, I, True) | i > k

π, I ⊢L max S < k ⇔ ∃ i ∈ G(S, I, True) ∧ ∀ i ∈ G(S, I, True) ∪G(S, I, Undef ) | i < k

π, I ⊢L sum S = k ⇔ sum G(S, I, True) = k ∧ {first(i) : i ∈ G(S, I, Undef )} ⊆ {0}

π, I ⊢L sum S > k ⇔ sum (G(S, I, True) ∪ {i ∈ G(S, I, Undef ) : first(i) < 0}) > k

π, I ⊢L sum S < k ⇔ sum (G(S, I, True) ∪ {i ∈ G(S, I, Undef ) : first(i) > 0}) < k

Figure 1: Linear-time derivability relation for comparisons. first(i) returns the first component of
i if i is a tuple, and returns i otherwise. Biconditionals (⇔) for derivability of other comparisons
are obtained from those given as follows. (1) Biconditionals for deriving comparisons using min are
obtained from those for max by replacing max with min, interchanging ≤ and ≥, and interchanging
< and >. (2) For aggregation operator agg being count or sum, the right side of the biconditional for
deriving agg S 6= k is the disjunction of the right sides of the biconditionals for deriving agg S > k

and agg S < k. (3) For each aggregation operator agg, biconditionals for deriving agg S ≥ k and
agg S ≤ k are obtained from the given biconditionals for agg S > k and agg S < k, respectively, by
replacing > k with ≥ k and replacing < k with ≤ k.

interpretation I of π, denoted π, I ⊢ agg S ⊙ k, if the comparison must be true in I, regardless of
whether atoms with truth value Undef are true or false.

Precisely, founded semantics uses the linear-time derivability relation ⊢L defined in Figure 1 based
on the aggregation operator and the comparison operator. It can be computed straightforwardly in
linear time in |G(S, I, True)|+ |G(S, I, Undef )|.

Derivability for each comparison in Figure 1 has also a condition that the comparison does not
give an error. It gives an error if the aggregation gives an error, or if there is a type error, i.e., either
the aggregation is count or sum, or is max or min with arity of S being 1, and k is not a number, or
the aggregation is max or min with arity a of S greater than 1, and k is not an a-tuple of numbers.
The aggregation gives an error if it is max or min and G(S, I, True) ∪ G(S, I, Undef ) is empty, or if
there is a type error, i.e., either it is max or min and G(S, I, True) or G(S, I, Undef ) contains either a
non-number or a tuple containing a non-number, or it is sum and S has arity 1 and G(S, I, True) or
G(S, I, Undef ) contains a non-number, or it is sum and S has arity greater than 1 and G(S, I, True)
or G(S, I, Undef ) contains a tuple whose first component is not a number. Comparisons that give
errors can easily be detected and reported by checking these conditions.

This definition of derivability is relatively strict about errors, for example, it always makes a
comparison give an error if the aggregation in it gives an error. One can be less strict about errors,
for example, a comparison containing max or min applied to the empty set and using negated equality
could be allowed to hold even if the aggregation in it gives an error, taking the view that an error is
not equal to a value or a tuple of values in the domain. This generally yields more literals that are true
or false, rather than undefined. Choices for error handling could also be specified using declarations.
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An alternative to linear-time derivability is exact derivability, denoted ⊢E. Informally, π, I ⊢E

agg S ⊙ k holds iff (1) agg S ⊙ k holds in all 2-valued interpretations I ′ that extend I and satisfy the
part of π that S depends on, and (2) there is at least one such interpretation I ′. Exact derivability is
based on enumeration of interpretations and hence is less appropriate for founded semantics, which
is designed to leave such enumeration for constraint semantics. Although exact derivability can be
more precise in principle, linear-time derivability gives the same result as exact derivability for all
examples we found in the literature.

Interpretations provide truth values for comparison literals similarly as for predicate literals. Let
DC (π, I) be the set of comparisons derivable for program π and interpretation I. A comparison literal
A for π is true in I if it is in DC (π, I), is false in I if its complement is in DC (π, I), and is undefined

in I otherwise.

Models. An interpretation I of a program π is a model of π if it (1) contains all facts in π, and (2)
satisfies all rules of π, interpreted as formulas in 3-valued logic [Fit85] (i.e., for each ground instance
of each rule, if the body is true in I, then so is the conclusion).

One-step derivability. The one-step derivability function Tπ for program π performs one step of
inference using rules of π. Formally, A ∈ Tπ(I) iff (1) A is a fact of π, or (2) there is a ground instance
R of a rule of π with conclusion A such that the body of R is true in interpretation I.

4.2 Founded semantics without closed declarations

We first define a version of founded semantics, denoted Founded0, that ignores declarations that pred-
icates are closed. We then extend the definition to handle those declarations. Intuitively, the founded

model of a program π ignoring closed-predicate declarations, denoted Founded0(π), is the least set of
literals that are given as facts or can be inferred by repeatedly applying the rules. Formally, we define

Founded0(π) = UnNameNeg(LFPbySCC (NameNeg(Cmpl(π)))),

where functions Cmpl , NameNeg, LFPbySCC , and UnNameNeg are defined as follows.

Completion. The completion function Cmpl(π) returns the completed program of π. Formally,
Cmpl(π) = AddInv(Combine(π)), where Combine and AddInv are defined as follows.

The function Combine(π) returns the program obtained from π by replacing the facts and rules
defining each uncertain complete predicate Q with a single combined rule for Q, defined as follows.
First, transform the facts and rules defining Q so they all have the same conclusion Q(V1, ..., Va), by
replacing each fact or rule Q(X1, ..., Xa)← B with

Q(V1, ..., Va)← (∃ Y1, ..., Yk | V1 = X1 ∧ ... ∧ Va = Xa ∧B)

where V1, ..., Va are fresh variables (i.e., not occurring in any given rule defining Q), and Y1, ..., Yk are
all variables occurring free in the original rule Q(X1, ..., Xa)← B. Then, combine the resulting rules
for Q into a single rule defining Q whose body is the disjunction of the bodies of those rules. This
combined rule for Q is logically equivalent to the original facts and rules for Q.

The function AddInv(π) returns the program obtained from π by adding, for each uncertain com-
plete predicate Q, a completion rule that derives negative literals for Q. The completion rule for Q

is obtained from the inverse of the combined rule defining Q (recall that the inverse of A ← B is
¬A ← ¬B), by (1) putting the body of the rule in negation normal form, i.e., using laws of pred-
icate logic to move negation inwards and eliminate double negations, and (2) eliminating negation
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applied to comparison atoms by reversing the comparison operators. As a result, in completion rules,
negation is applied only to predicate atoms.

Similar completion rules but without aggregation are used in Clark’s completion [Cla78] and
Fitting semantics [Fit85].

Least fixed point. The least fixed point is preceded and followed by functions that introduce and
remove, respectively, new predicates representing the negations of the original predicates.

The function NameNeg(π) returns the program obtained from π by replacing, except where
P (X1, ..., Xa) is a positive occurrence, ¬P (X1, ..., Xa) with n.P (X1, ..., Xa), and P (X1, ..., Xa) not
after ¬ with ¬ n.P (X1, ..., Xa). The new predicate n.P represents the negation of predicate P . Since
P (X1, ..., Xa) and ¬P (X1, ..., Xa) are complements of each other, we now also define P (X1, ..., Xa)
and n.P (X1, ..., Xa) to be complements of each other.

Note that n.P (X1, ..., Xa) is introduced to make the one-step derivability function explicitly mono-
tonic, while maintaining consistency. We replace ¬P (X1, ..., Xa) for any conclusion and any negative
occurrence of P (X1, ..., Xa) in a hypothesis (where negative occurrence is defined symmetrically as
positive occurrence) with n.P (X1, ..., Xa) to allow negative conclusions to be derived and used as
facts. We replace any negative occurrence of P (X1, ..., Xa) not after ¬ with ¬ n.P (X1, ..., Xa) also to
use these facts. Other occurrences of ¬P (X1, ..., Xa) and P (X1, ..., Xa) in hypotheses, if any due to
positive (and negative) occurrence being conservative, can be either replaced or left, with the result
still being a model, because all derivation and use of n.P (X1, ..., Xa) and P (X1, ..., Xa) follow the
one-step derivability. We have not seen any example that needs the following, but one might obtain
a more precise model, i.e., more atoms that are true or false, by trying all combinations of replacing
and leaving. It is an open question whether some combination leads to a unique most precise model.

The function LFPbySCC (π) uses a least fixed point to infer facts for each strongly connected
component (SCC) in the dependency graph of π, as follows. Let C1, ..., Cn be a list of the SCCs in
dependency order, so predicates in earlier SCCs do not depend on predicates in later ones; it is easy
to show that any linearization of the dependency order leads to the same result for LFPbySCC . The
projection of a program π onto an SCC C, denoted Proj(π, C), contains all facts of π whose predicates
are in C and all rules of π whose conclusions contain predicates in C.

Define LFPbySCC (π) = In, where I0 = ∅ and Ii = AddNeg(LFP(TProj(π,Ci)∪Ii−1
), Ci) for i ∈ 1..n.

LFP is the least fixed point operator. AddNeg(I, C) returns the interpretation obtained from inter-
pretation I by adding completion facts for the certain predicates in C to I; specifically, for each certain
predicate P in C, and each combination of values v1, ..., va of arguments of P , if I does not contain
P (v1, ..., va), then add n.P (v1, ..., va).

The least fixed point is well-defined, because the one-step derivability function TProj(π,Ci)∪Ii−1

is monotonic with respect to⊆, i.e., for all interpretations J and J ′, TProj(π,Ci)∪Ii−1
(J) ⊆ TProj(π,Ci)∪Ii−1

(J ′)
whenever J ⊆ J ′. To establish this, we show monotonicity of each part of the definition of Tπ. Part (1)
adds a fixed set of facts and hence is trivially monotonic. Part (2) is monotonic because derivability
of comparisons is monotonic with respect to ⊆ (i.e., DC (π, J) ⊆ DC (π, J ′) whenever J ⊆ J ′), and
because every rule that can “fire” in J (i.e., its hypotheses are true) can also fire in J ′.

The function UnNameNeg(I) returns the interpretation obtained from interpretation I by replac-
ing each atom n.P (X1, ..., Xa) with ¬P (X1, ..., Xa).

13



4.3 Founded semantics with closed declarations

Informally, when an uncertain complete predicate is declared closed, an atom A of the predicate is
false in an interpretation I for a program π, called self-false in I, if every ground instance of a rule
that concludes A has a hypothesis that is false in I or, recursively, is self-false in I. To simplify the
formalization, we first transform ground instances of rules to eliminate disjunction, by putting the
body of each ground instance R of a rule into disjunctive normal form (DNF) and then replacing R

with multiple rules, one per disjunct of the DNF.
A set U of ground predicate atoms for closed predicates is an unfounded set of π with respect to

an interpretation I of π iff U is disjoint from I and, for each atom A in U , and each ground instance
R of a rule of π with conclusion A,

(1) some hypothesis of R is false in I,

(2) some positive predicate hypothesis of R is in U , or

(3) some comparison hypothesis H of R is false when all atoms in U are false, i.e., π, I ∪¬ ·U ⊢L ¬H,

where, for a set S of positive literals, ¬·S = {¬P (c1, ..., ca) |P (c1, ..., ca) ∈ S}, called the element-wise

negation of S, and where ¬H is implicitly simplified to eliminate negation applied to H by changing
the comparison operator in H.

Note that this definition differs from the standard definition of unfounded set [VRS91] in that we
restricted the unfounded set to atoms for closed predicates, added clause (3), and added the disjoint-
ness condition. Because a comparison hypothesis depends non-conjunctively on the truth values of
multiple literals for predicates used in the aggregation, and these literals may be spread across I and
U , clause (3) checks whether H is false when all atoms in U are set to false. The explicit disjointness
condition is not needed in WFS or founded semantics without aggregation, because one can prove in
those settings that unfounded sets are disjoint from interpretations that arise in the semantics (e.g.,
see [VRS91, Lemma 3.4]). The disjointness condition is needed here to ensure that the interpretation
I ∪ ¬ · U in clause (3) is consistent and hence the meaning of the clause is well-defined.

The definition of unfounded set U ensures that extending I to make all atoms in U false is consistent
with π, in the sense that no atom in U can be inferred to be true in the extended interpretation. We
define SelfFalseπ(I), the set of self-false atoms of π with respect to interpretation I, to be the greatest
unfounded set of π with respect to I. Note that this set is empty when no predicate is declared closed.

The founded semantics is defined by repeatedly computing the semantics given by Founded0

(founded semantics without closed declarations) and then setting self-false atoms to false, until a
least fixed point is reached. Formally, the founded semantics is Founded(π) = LFP(Fπ), where
Fπ(I) = Founded0(π ∪ I) ∪ ¬ · SelfFalseπ(Founded0(π ∪ I)).

4.4 Constraint semantics

Constraint semantics is a set of 2-valued models based on founded semantics. A constraint model M

of a program π is a 2-valued interpretation of π such that (1) Founded(π) ⊆ M , (2) M is a model of
Cmpl(π), and (3) if there are closed predicates, there is no non-empty subset S of M \Founded(π) such
that S contains only positive literals for closed predicates and S = SelfFalseπ(M \ S). Condition (3)
says that M should not contain a set S of positive literals for closed predicates that are not required
to be true by the founded semantics and are self-false with respect to the rest of M .

We also require that an interpretation that leads to an error in a comparison be not a constraint
model. Precisely, we require that for interpretation M to be a constraint model, no ground instance
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of a rule of π contains a comparison that gives an error in M . Errors are defined the same as in Section
4.1, but note that G(S, I, Undef ) is empty here. This definition of constraint models could also be
made less strict about errors as in Section 4.1.

Note that condition (3) differs from the corresponding condition in constraint semantics without
aggregation [LS18, LS20a], which is ¬ · SelfFalse(M) ⊆ M . The change is needed because of the
new disjointness condition for unfounded sets. With the new disjointness condition, for any 2-valued
interpretation M , SelfFalse(M) must be empty, and hence ¬ · SelfFalse(M) ⊆M is vacuously true.

We define Constraint(π) to be the set of constraint models of π. Constraint models can be com-
puted by iterating over interpretations M that are supersets of Founded(π), thus satisfying condition
(1), and then checking whether conditions (2) and (3) are satisfied.

4.5 Range-blocked inference

Use of sum or count can generate values outside the representable range [−NRB, NRB]. Our seman-
tics only considers predicate argument values in the domain, and thus does not infer facts with an
argument value outside the representable range. We call inferences that would derive such facts
“range-blocked inferences”.

Formally, program π has a range-blocked inference in interpretation I if there is a rule R of π

such that: (1) R has a hypothesis of the form agg S = k, (2) k is a variable that also occurs in the
conclusion of R, and (3) there is a ground instance R′ of R, containing a ground instance agg S′ = k′

of agg S = k, such that (i) all hypotheses of R′ other than agg S′ = k′ are true in I and (ii) either
π, I |= agg S′ > NRB or π, I |= agg S′ < −NRB. We can detect and report range-blocked inferences
by checking the conditions in this definition.

This definition is designed to be permissive and allows inferences involving intermediate values
(i.e., values not in the inferred facts) outside the representable range. For example, it allows inference
using the rule q ← sum {x: p(x)} > 0 even when the sum is outside the representable range. The def-
inition can easily be extended to block such inferences as well; this may better reflect implementation
behavior, because implementations need to compute intermediate values.

5 Properties of the semantics

Consistency and correctness.

Theorem 1 . The founded model and constraint models of a program π are consistent.
Proof. See Appendix A. �

Theorem 2 . The founded model of a program π is a model of π and Cmpl(π). The constraint models
of π are 2-valued models of π and Cmpl(π).
Proof. See Appendix A. �

Same SCC, same certainty. All predicates in an SCC have the same certainty. The proof is the
same as for Theorem 4 in [LS20a].
Theorem 3 . For every program, for every SCC C in its dependence graph, all predicates in C are
certain, or all of them are uncertain.

Equivalent declarations. Changing predicate declarations from uncertain, complete, and closed
to certain when allowed, or vice versa, preserves founded and constraint semantics. The same SCC,
same certainty property above implies that this change needs to be made for all predicates in an SCC.
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This property is formally stated in the following theorem. Several modifications to the proof of the
corresponding theorem in [LS20a] are needed.

When predicates are declared certain, founded semantics and constraint semantics are the same
and can be computed much more efficiently than the worst case, by simple least fixed-point compu-
tations, without using completion rules, finding self-false atoms, or doing constraint solving.
Theorem 4 . Let π be a program. Let C be an SCC in its dependency graph containing only
predicates that are uncertain, complete, and closed. Let π′ be a program identical to π except that all
predicates in C are declared certain. Note that, for the declarations in both programs to be allowed,
predicates in all SCCs that follow C in dependency order must be uncertain, predicates in all SCCs
that precede C in dependency order must be certain, and predicates in C must not have circular
non-positive dependency. Then Founded(π) = Founded(π′) and Constraint(π) = Constraint(π′).
Proof. See Appendix A. �

Higher-order programming. Founded semantics and constraint semantics are preserved by a
transformation that facilitates higher-order programming by replacing a set S of compatible predi-
cates with a single predicate holds whose first argument is the name of one of those predicates. For
example, if win is in S, then win(x) is replaced with holds(’win’,x). The definitions of compatible
predicates and of the program transformation that replaces predicates in S with holds are the same
as in [LS20a], with the clarification that the auxiliary function MergeAtomS(A), which replaces pred-
icates in S with holds in an atom A, is applied only to predicate atoms. The proof is the same as for
Theorem 5 in [LS20a].
Theorem 5 . Let S be a set of compatible predicates of program π. Then MergeS(π) and π have
the same founded semantics, in the sense that Founded(MergeS(π)) = MergeAtomS(Founded(π)).
MergeS(π) and π also have the same constraint semantics, in the sense that Constraint(MergeS(π))
= MergeAtomS(Constraint(π)).

6 Discussion

This section discusses and compares with major prior semantics for recursive rules with aggregation.
In these comparisons, including the given results for examples, default declarations for the predicates
are used in our semantics except where stated otherwise. In particular, our semantics is able to match
all desired results from prior semantics.

Stratified and monotonic programs. Many prior works, especially in deductive databases, con-
sider only stratified programs, which prohibit recursion through aggregation or negation, or mono-
tonic programs, e.g., [MPR90, RS92, SYZ15, YSZ17, ZYD+17, ZDG+19]. These works vary in the
details of the rule language and the programs recognized as stratified or monotonic. In our semantics,
all these programs fall in the class of programs where all predicates can be declared certain, and whose
semantics are fully determined by least fixed-point computations.

First-order logic. Several prior works extend first-order logic with various kinds of aggregations.
For example, Hella et al. [HLNW99, HLNW01] extend first-order logic with aggregation operators
similar to those in database query languages, and analyze its expressiveness. Programs in our lan-
guage can be regarded as sets of formulas in such logics, with ← representing reverse implication,
and with aggregations translated to accommodate syntactic differences between the languages. If
all predicates in the program are uncertain and not complete, constraint semantics of the program
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matches the semantics of those formulas, i.e., the constraint models of the program are exactly the
models of those formulas. Theorem 7 in [LS20a] establishes this result without aggregations. It is
easy to see that the result still holds when aggregations are considered, because our semantics for
aggregations in 2-valued models matches the standard semantics for aggregations used in such logics.

Kemp-Stuckey 1991. Kemp and Stuckey [KS91] is one of the earliest comprehensive studies, im-
proving over a number of previous works that handled limited classes of programs with aggregations.
They extend WFS and SMS to logic programs with aggregations and study previously defined classes
of programs with aggregations under several notions of stratification as well as properties such as
monotonicity.

Their extension of WFS requires that a set be fully defined before aggregation can be evaluated
on it; thus, if the predicate used in an aggregation is Undef for any argument, the truth value of
the hypothesis containing that aggregation is also Undef . This is much less precise than founded
semantics, in the sense that it leaves many more atoms with truth value Undef . For example, for the
company control problem [MPR90], they point out that their extension of WFS does not infer the
expected results, while founded semantics and constraint semantics do, as shown in Section 7.5.

Another way in which founded semantics is more precise is that their extension of WFS uses the
standard definition of unfounded set, while our semantics extends that definition to handle aggrega-
tion precisely, allowing larger unfounded sets and thus more self-false atoms, yielding fewer undefined
values. For example, for the correlated counts problem discussed in Section 7.4, if p is declared uncer-
tain, complete, and closed, instead of the default certain, this additional clause is needed to conclude
that {p(2), p(3)} is an unfounded set.

In extending SMS to handle aggregations, they treat literals containing aggregation as negative
literals when computing the program reduct. However, they found that this may produce un-intuitive
non-minimal stable models. For example, for the company control problem, it allows undesired stable
models [KS91, Section 6], while founded semantics and constraint semantics yield exactly the desired
model, as shown in Section 7.5.

Van Gelder 1992. Van Gelder [VG92] presents an early approach in which aggregations are defined
using ordinary rules, rather than introduced as new primitives, in a language with 3-valued seman-
tics. It illustrates the approach using examples involving min, max, subset, and sum, with the rules
defining the aggregations customized in some cases to the problem at hand, with the comment “ad

hoc methods of analysis seem to be necessary.”
The paper shows that the desired results are obtained for several non-trivial examples but not

for some others. For example, for the company control problem in Section 7.5, Van Gelder points
out that his semantics sometimes leaves atoms for the controls predicate undefined, even though
they can be determined to be true or false using the given ownsStk facts [VG92, Example 6.1]; our
semantics infers all of the expected controls relations.

Unfortunately, it is hard to characterize the programs for which their approach gives desired re-
sults because of their use of ad hoc methods. In contrast, our work handles a clearly defined language
of programs with aggregations, allows specification of different assumptions, and supports both 2-
valued and 3-valued semantics. Also, our work allows rules with disjunction and quantifiers. These
are not considered in [VG92].

Pelov et al. 2007. Pelov, Denecker, and Bruynooghe [PDB07] present a framework in which
semantics of logic programs are obtained by approximating the fixed points of an immediate conse-
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quence operator. They define the ultimate approximation Uaggr of this operator extended to handle
aggregations, and define the ultimate Fitting (Kripke-Kleene), ultimate WFS, and ultimate SMS of
programs with aggregations as appropriate kinds of fixed points of Uaggr .

Their ultimate semantics are intended to be most precise but have very high computational com-
plexity. Therefore, Pelov et al. also introduce more tractable semantics. They define extensions Φagg

of Fitting’s 3-valued approximation of the immediate consequence operator Φ to handle aggregations,
and obtain extensions of Fitting semantics, WFS, and SMS as appropriate kinds of fixed points of
Φagg. They consider two versions of Φagg , based on “trivial” and “ultimate” 3-valued approximations
of the semantics of aggregations.

To see the precision of their ultimate Fitting semantics and ultimate WFS, consider the program

p(1) p(-1)

q ← ¬ q

c ← sum {x: p(x) ∧ q} ≥ 0

In both their ultimate Fitting semantics and ultimate WFS, c is undefined. To see this, first note
that q is undefined, so possible values of the set being summed range from ∅ (in interpretations where
q is false) to {-1, 1} (in interpretations where q is true). Their framework uses intervals in the subset
lattice, so the comparison in the third rule is evaluated for all sets in the interval from ∅ to {-1, 1} in
the subset lattice, and the comparison is true for some of them (e.g., ∅) and false for others ({-1}), so
c is left undefined. Founded semantics matches that result, because the comparison in the third rule
is not derivable. Founded semantics using exact derivability would give a more precise result: the
comparison is evaluated only for ∅ and {-1, 1} as possible values of the set expression, and is true for
both, so c is true, as one would expect for a most precise semantics.

To explore assumptions underlying their extension of SMS, consider the following program used
by Faber et al. [FPL11, Example 5.2] to compare with other semantics including Pelov et al.’s:

p(1) ← ¬ p(-1)

p(-1) ← p(1)

p(1) ← sum {x: p(x)} ≥ 0

In Faber et al.’s semantics, this program has one model, {p(1), p(-1)}. Our constraint semantics (with
default declarations) matches Faber et al.’s semantics. In Pelov et al.’s semantics, this program has
no stable models. Our constraint semantics, when p is declared closed (which is not the default),
matches Pelov et al.’s semantics.

Faber et al. 2011. Faber, Pfeifer, and Leone [FPL11] define an answer set semantics (analogous
to SMS) for disjunctive programs with aggregations, using a generalization of the Gelfond-Lifschitz
transformation. They also analyze the computational complexity of the language for several different
restrictions on the allowed aggregations.

To explain their semantics that differs from other prior semantics, consider the following two
programs used by Gelfond and Zhang [GZ19, Example 2] to help motivate a different semantics. The
first program, called P2, is

p(1) ← count {x: p(x))} ≥ 0

The second, called P3, is a variant of P2 logically expected to have the same meaning:

p(1) ← count {x: p(x))} = y, y ≥ 0
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In Faber et al.’s semantics, P2 has one model, {p(1)}, as in semantics for simple monotonic programs.
Our semantics matches this: p is certain by default, because it has only a positive dependence on
itself, and the founded semantics and constraint semantics are the same, giving the same one model.

In Faber et al.’s semantics, P3 has no model, which may be surprising. Founded semantics provides
an explanation: p is uncertain and complete by default, and p(1) is undefined. Constraint semantics
gives the same one model as for P2, matching the logically expected equivalence with P2.

Gelfond-Zhang 2019. Gelfond and Zhang [Gel02, GZ14, ZR16, GZ17, GZ18, GZ19] study the
challenges and solutions for aggregation in recursion extensively, in an effort to establish the desired
semantics for aggregation that corresponds to SMS, a set of 2-valued models. This resulted in changes
from earlier semantics by Gelfond [Gel02], essentially to capture an implicit closed-world assump-
tion. Their most recent work [GZ19] introduces a new semantics, with programs P2 and P3 above as
motivating examples.

They note that many prior semantics unintuitively give different results for programs P2 and P3

above. They resolve this problem by introducing a semantics in which both programs [GZ19, Example
3] have no model. Having no model for P2 contradicts all other semantics we have seen that support
aggregation in recursion, including semantics for even monotonic programs supported in deductive
databases. To make P2 and P3 logically equivalent, the desired way is to make P3 have the same
model {p(1)} as P2. Our constraint semantics achieves that, as described above.

Precision, range, and errors. Computing aggregations require operations on numbers, which
incur the issues with precision, bound, and errors with numeric computations in reality. These issues
are not explicitly addressed systematically, or not discussed at all, in prior work.

We describe the choices and the handling of these issues in our language and semantics: preci-
sion and range under Domain in Section 3, Range-blocked inference in Section 4.5, and errors under
Derivability of comparisons in Section 4.1 and interpretations of comparisons in Constraint semantics
in Section 4.4.

In general, choices for handling precision, range, errors could also be specified using declarations.
We do not explicitly name these choices, because they are well-known in numeric computations in
practice, and they are orthogonal to the declarations about predicates in our language and semantics.

7 Additional examples and applications

Many small examples similar to the example in Section 2 have been discussed extensively in the
literature. The most recent work [GZ19] is most comprehensive in discussing 28 examples; we discuss
their Examples 1 and 28 to show the range of difficulties they deal with, Example 15 that resorts to
a subset relation, and Example 25 that spans the most discussion. We then discuss the well-known
challenging company control problem [MPR90] and two even more challenging game problems that
generalize the well-known win-not-win game [LS18, LS20a]. In all cases, founded semantics and
constraint semantics are simple and give the desired results.

7.1 Classes needing teaching assistants

This is Example 1 in [GZ19]. It considers a complete list of students enrolled in a class c, represented
by a collection of facts:

enrolled(’c’,’mike’) enrolled(’c’,’john’) ...
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It defines a relation need_ta(c) that holds iff class c needs a teaching assistant, i.e., the number of
students enrolled in the class is greater than 20, and it gives a second rule for its negation, as follows:

need_ta(c) ← count {x: enrolled(c,x)} > 20

n_need_ta(c) ← ¬ need_ta(c)

Because enrolled is certain from the list being complete, and there is no aggregation in recursion,
need_ta is certain by default, and so is n_need_ta. Thus founded semantics and constraint semantics
are the same and are straightforward to compute. First, need_ta is inferred by just doing the counting
for each c and then checking if the count is greater than 20. Then n_need_ta is computed, simply
concluding true for classes for which need_ta is false.

7.2 Graduation requirements—directly using universal quantification

This is Example 15 in [GZ19]. It considers a knowledge base containing two complete lists of facts,
for two relations taken and required:

taken(’mike’,’cs1’) taken(’mike’,’cs2’)

taken(’john’,’cs2’)

required(’cs1’) required(’cs2’)

It introduces a subset relation to define a new relation ready_to_graduate(s) that holds if student s

has taken all the required classes:

ready_to_graduate(s) ← {c: required(c)} ⊆ {c: taken(s,c)}

The problem description in [GZ19, Example 15] says that using the subset relation “avoids a more
complex problem of introducing universal quantifiers and some kind of implication in the rules of the
language”.

With our language, the rule can be written directly using universal quantification and implication,
where P→ Q can be trivially rewritten as ¬ P∨ Q, yielding:

ready_to_graduate(s) ← ∀ c | ¬ required(c) ∨ taken(s,c)

Because taken and required as given are certain, and there is no negation or aggregation in recur-
sion, ready_to_graduate is certain by default and can be computed simply as a least fixed point. This
yields the same result for founded semantics and constraint semantics: ready_to_graduate(’mike’)

is true and ready_to_graduate(’john’) is false.
Example 15 in [GZ19] also discusses other assumptions and rules. They are either non-issues or

straightforward to handle in our language. For example, if taken is not complete, founded semantics
gives that ready_to_graduate(’mike’) is true and ready_to_graduate(’john’) is undefined, and con-
straint semantics gives two models: one with ready_to_graduate(’john’) being true and one with it
being false.

7.3 Digital circuits—from the most complex to the simplest

This is Example 25 in [GZ19], finishing the longest span of discussion by building on their Examples
11, 23, and 24 that are simpler instances or parts. It considers a program for propagating binary
signals through a digital circuit that does not have a feedback, consisting of the following facts (where
input(w,g) means that wire w is an input to gate g, output(w,g) is similar, gate(g,’and’) means that
gate g is an and gate, and val(w,v) means that wire w has value v):
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input(’w1’,’g1’) input(’w2’,’g1’) input(’w0’,’g2’)

output(’w0’,’g1’) output(’w3’,’g2’)

gate(’g1’,’and’) gate(’g2’,’and’)

val(’w1’,0) val(’w2’,1)

and a rule:

val(w,0) ← output(w,g) ∧ gate(g,’and’)

∧ count {w: val(w,0), input(w,g)} > 0

Their Example 11 does not have the last fact on each line (i.e., no gate g2, input on w0, output on
w3, and value on w2).1 Their Examples 23 and 24 use simpler instances of the rule to illustrate their
definitions of “splitting set” and “stratification”, respectively.

First, input, output, and gate as given are certain. Then, val is certain by default, despite that
val is defined using val in aggregation, because the dependency is positive—counting with > and
with no negation is monotonic. Therefore, the semantics is simply a least fixed point by using the
given rule, yielding the same result for founded semantics and constraint semantics: val(’w0’,0),
val(’w3’,0), plus the given facts, consistent with all of Examples 11 and 23–25 in [GZ19].

7.4 Correlated counts—with different predicate declarations

This is Example 28, the last example, in [GZ19]. It considers the following one fact and two rules:

p(1)

p(3) ← count {x: p(x)} ≥ 2

p(2) ← count {x: p(x)} ≥ 2

We have that p is certain by default, despite that p is defined using p in aggregation, because the
dependency is positive—counting with ≥ and with no negation is monotonic. The least fixed point
infers p(1) being true in one iteration, and ends with p(1) being true, and p(3) and p(2) being false,
as the result of both founded semantics and constraint semantics. This is the same as the resulting
answer set in [GZ19], but is obtained straightforwardly, not using all possible guesses followed by
sophisticated reducts as in computing answer sets, which, for this example and for one of the answer
sets, considers 9 S-reducts, each containing 3 rules or clauses for a combination of three models each
containing 2 of 3 possible facts [GZ19].

We also consider results under other assumptions, not discussed in [GZ19]. Suppose that the
default is not used, and p is declared uncertain and complete. Then the following completion rule is
added, and it does not infer p(3) or p(2) to be false.

¬ p(x) ← x 6= 1 ∧ (x 6= 3 ∨ count {x: p(x)} < 2)

∧ (x 6= 2 ∨ count {x: p(x)} < 2)

Founded semantics gives that p(1) is true, and p(3) and p(2) are undefined. Constraint semantics
gives two models: {p(1)} and {p(1),p(2),p(3)}.

Suppose that p is declared uncertain and not complete. It is straightforward that p(1) is true as
given, and p(3) and p(2) are left as undefined. Thus, founded semantics and constraint semantics
are the same as when p is uncertain and complete.

Supposed that p is declared uncertain, complete, and closed. Then the greatest unfounded set is
{p(3),p(2)}, and founded semantics gives that p(1) is true, and p(3) and p(2) are false. That is, it

1Their Example 11 also reverses the first two hypotheses of the rule; this appears to be accidental.
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makes the last two false, instead of undefined, and is the same as when p is certain. Since there are no
undefined values, constraint semantics has one model: {p(1)}. This is again the same as in [GZ19],
but note that using p being certain as above yields this desired result straightforwardly.

7.5 Company control—a well-known challenge

This is Examples 1.1 and 2.13 in [FPL11] and is also used in Example 12 in [GZ19]. The problem was
also discussed repeatedly before, e.g., [MPR90, KS91, VG92, RS97, PDB07], and earlier [CGT90].
It considers a set of facts of the form company(c), denoting that c is a company, and a set of facts
of the form ownsStk(c1,c2,p), denoting the percentage p of shares of company c2 that are owned by
company c1. It defines that company c1 controls company c2, denoted controls(c1,c2), if the sum
of the percentages of shares of c2 that are owned either directly by c1 or by companies controlled by
c1 is more than 50.

controlsStk(c1,c1,c2,p) ← ownsStk(c1,c2,p)

controlsStk(c1,c2,c3,p) ← company(c1)

∧ controls(c1,c2) ∧ ownsStk(c2,c3,p)

controls(c1,c3) ← company(c1) ∧ company(c3)

∧ sum {p,c2: controlsStk(c1,c2,c3,p)} > 50

It introduces controlsStk(c1,c2,c3,p), denoting that company c1 controls p percent of shares of com-
pany c3 through company c2. It has become a most well-known challenging example for recursion
with aggregation, because it involves aggregation in mutual recursion.

Founded semantics and constraint semantics are again straightforward to compute. First, company

and ownsStk as given are certain. Then, controlsStk and controls are certain by default, de-
spite that controlsStk and controls are mutually recursive while involving aggregation, because
controlsStk(c1,c2,c3,p) holds for only non-negative p, making the dependency through the com-
parison positive. Therefore, the semantics is simply a least fixed point using the given rules, giving
the same result for founded semantics and constraint semantics. This is the desired result, same as
in [FPL11].

7.6 Double-win game—for any kind of moves

Consider the following game, which we call the double-win game. Given a set of moves, the game
uses the following single rule, called double-win rule, for winning:

dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} ≥ 2

It says that x is a winning position if the number of positions, y, such that there is a move from x to
y and y is not a winning position, is at least two. That is, x is a winning position if there are at least
two positions to move to from x that are not winning positions.

We created the double-win game by generalizing the well-known win-not-win game [LS18, LS20a],
which has a single rule, stating that x is a winning position if there is a move from x to some position
y and y is not a winning position:

win(x) ← move(x,y) ∧ ¬ win(y)

One could also rewrite the double-win rule using two explicit positions y1 and y2 and adding y1!=y2,
but this approach does not scale when the count can be compared with any number, not just 2, and
is not necessarily known in advance.

By default, move is certain, and dwin is uncertain but complete. First, add the completion rule:
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¬ dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Then, rename ¬ dwin to n.dwin, in both the given rule and the completion rule, except the positive
occurrence of dwin in the body of the completion rule, yielding:

dwin(x) ← count {y: move(x,y) ∧ n.dwin(y)} ≥ 2

n.dwin(x) ← count {y: move(x,y) ∧ ¬ dwin(y)} < 2

Now compute the least fixed point. Start with the base case, in the second rule, for positions x that
have moves to fewer than 2 positions; this infers n.dwin(x) facts for those positions x. Then, the first
rule infers dwin(x) facts for any position x that can move to 2 or more positions for which n.dwin is true.

This process iterates to infer more n.dwin and more dwin facts, until a fixed point is reached,
where dwin gives winning positions, n.dwin gives losing positions, and the remaining positions are
draw positions, corresponding to positions for which dwin is true, false, and undefined, respectively.

7.7 Over-win game—winning defined over winning

Consider the following game, which we call the over-win game. Given a set of moves, the game uses
the following single rule, called the over-win rule, for winning:

owin(x) ← count {y: move(x,y) ∧ owin(y)} ≤ 2

It says that x is a winning position if the number of positions, y, such that there is a move from x to
y and y is a winning position, is at most two. That is, x is a winning position if there are at most two
positions to move to from x that are winning positions.

We created this over-win game from double-win game by removing the negation on the recursive
occurrence of the predicate and reversing the comparison ≥ to ≤. That is, winning is now defined
over winning, so to speak, instead of over not winning. In general, one could of course use any integer
in place of 2. The point is, even though the recursive occurrence of the predicate is no longer negated,
the occurrence of the predicate is still non-positive because of the reversed comparison.

By default, move is certain, and owin is uncertain but complete. First, add the completion rule:

¬ owin(x) ← count {y: move(x,y) ∧ owin(y)} > 2

Then, in the given rule, rename the non-positive occurrence of owin to¬ n.owin, and in the completion
rule, rename ¬ owin to n.owin, yielding:

owin(x) ← count {y: move(x,y) ∧ ¬ n.owin(y)} ≤ 2

n.owin(x) ← count {y: move(x,y) ∧ owin(y)} > 2

Now compute the least fixed point. Start with the base case, in the first rule, for positions x that have
moves to no more than 2 positions; this infers n.owin(x) facts for those positions x. Then, the second
rule infers n.owin(x) facts for any position x that can move to more than 2 positions for which owin

is true.
This process iterates to infer more owin and more n.owin facts, until a fixed point is reached,

where owin gives winning positions, n.owin gives losing positions, and the remaining positions are
draw positions, corresponding to positions for which owin is true, false, and undefined, respectively.
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8 Experiments

We also performed experiments with our new semantics and compared with results computed by four
well-known systems. We implemented straightforward and incremental least fixed-point computa-
tions for selected examples in DistAlgo [LSL17], an extension of Python.

For comparison with founded semantics, we use XSB [SWS+17], the most well-known system
for computing WFS and that supports negation and aggregation in recursion, and SWI-Prolog [WSTL12],
which added similar support more recently. For comparison with constraint semantics, we use
clingo [AFG15] and DLV [FPL+08, ACD+17], the most well-known systems for computing SMS
and that support negation and aggregation in recursion.

We show experimental results for the three most complex examples we discussed: the company-
control problem, the double-win game, and the over-win game. For our programs, the default dec-
larations described in Section 7 are used. The XSB programs were written by an XSB expert. The
SWI-Prolog programs are the same except for using a conjunction with fail to find all solutions in
place of do_all that is in XSB but not in SWI-Prolog. For the company control problem, the DLV
and clingo programs are the same, from [FPL11, Example 1.1]. For all benchmarks, we compared
results from our system with results from the other logic rule engines to check correctness. We also
manually checked correctness of the results for all small benchmarks.

While the emphasis of our experiments is on semantics and correctness, we also report running
time results for the company-control problem. For the double-win game and over-win game, all other
systems either do not compute the desired semantics or were found to compute incorrect results. XSB
and SWI-Prolog have since found and fixed bugs that caused the incorrect results in the double-win
game, but developers of these systems also found that fundamentally different inference would be
needed to compute correctly at all for the over-win game.

Our experiments used five systems: DistAlgo 1.1.0b15, available via https://github.com/DistAlgo/distalgo,
on Python 3.7.0; XSB 4.0.0, available via http://xsb.sourceforge.net/; SWI-Prolog 8.5.1, avail-
able via https://www.swi-prolog.org/; clingo 5.4.0, available via https://potassco.org/clingo/;
and the version of DLV available via https://www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/

(accessed 2020-09-21 and 2021-10-01). That version of DLV supports recursive aggregates, while
the current release of DLV “does not yet contain a full implementation of recursive aggregates” ac-
cording to the DLV System website, http://www.dlvsystem.com/dlv/ (accessed 2020-09-21 and
2021-10-01). We tried to run the company control problem in the current version of DLV (accessed
2021-10-01), but it exited with the error message “the predicates appearing in the aggregate atom
cannot be recursive with the head of the rule”.

Company control. For the company control problem, we compare a straightforward least fixed-
point computation of our semantics in DistAlgo, and a more efficient version of that computation
obtained using the incrementalization method developed by Liu et al. [LS09, LBSL16, LSL17], with
XSB, SWI-Prolog, clingo, and DLV.

Our benchmark problem instance generator takes the desired number N of company facts as input
and generates pseudorandom problem instances with N company facts and N ownsStk facts. The gen-
erator ensures that the owned percentages of each company sum to at most 100, and that nontrivial
transitive control relationships exist. It accomplishes the latter by pseudorandomly choosing triples
c1, c2, c3 of companies, giving c1 a controlling share (i.e., more than 50%) of c2, and splitting a
controlling share of c3 between c1 and c2.

All measurements were taken on 64-bit Ubuntu 16.04 on a 3.47 GHz Intel Xeon X5690 CPU with
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Figure 2: Running time comparison for the company control problem, showing CPU times up to 1000
seconds (left) and zooming in to 1 second to reveal the differences between the fastest systems (right).
DA and DAinc are the DistAlgo least fixed point computation and the incrementalized version of
it, respectively. XSBopt and SWIopt are XSB and SWI-Prolog, respectively, on the variant with
reversed rules. For XSB and SWI-Prolog, the suffixes after the dash indicate how facts were loaded.

94 GB RAM. All running times are for computing all inferred facts as the semantics of the rules and
include the time needed to read the company and ownsStk facts from a file and print the controls

relation. Each reported time is an average of CPU times of runs over 10 generated benchmarks of
the specified size. Our test driver checks and confirms that all five systems produce the same query
answers for each benchmark.

Figure 2 shows the running times of the five systems for an increasing number of companies. For
XSB and SWI-Prolog, besides the original rules, we also used an optimized variant with “reversed”
rules; specifically, the company hypotheses in the second and third rules are moved to the ends of
the rules. This variant was proposed by an XSB expert after debugging XSB’s slow performance
on the original rules and led to drastic speedups. This change to the rules has a similar impact on
SWI-Prolog’s running time, so we only show its running times on the drastically faster variant. This
change does not affect the running times of the other systems.

Additionally, for loading facts, we experimented with four ways in XSB: predicate consult/1 for
reading a Prolog file, load_dyn/1 for faster loading of dynamic code, and more specialized versions
load_dync/1 and load_dynca/1 recommended by an XSB expert. We also experimented with two
ways of loading facts in SWI-Prolog: predicate consult/1, and 22 lines of specialized handwritten
code recommended by an SWI-Prolog expert.

Figure 2-left shows that our straightforward implementation in DistAlgo is much slower than
XSB on the original rules but much faster than DLV. All other XSB, SWI-Prolog, clingo, and Dis-
tAlgo programs are too fast to tell apart from 0 seconds with this range of CPU times, regardless of
optimizations of rules and methods of loading facts.
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Figure 2-right shows that our incrementalized implementation in DistAlgo is the fastest; followed
by XSB and SWI-Prolog on the reversed rules using load_dync/1 and using specialized code by hand,
respectively, for loading facts; then by clingo; and then by XSB and SWI-Prolog on the reversed
rules using other ways to load facts; finally, XSB on the original rules is significantly slower. Results
for XSB using load_dynca/1 are not shown, because they are basically the same as the results using
load_dync/1.

For XSB on the original rules, only the results using consult/1 are shown; the results us-
ing load_dyn/1 and load_dync/1 are similar to each other and about 15–25% slower than using
consult/1—this is opposite to those times being faster for the reversed rules because (1) compared to
XSB times on the original rules, all ways of loading facts are too fast, being a part of XSB times on the
reversed rules, as shown in Figure 2-left, and (2) unlike load_dyn, etc., consult/1 statically compiles
the facts to support more efficient hashing, showing its advantage for more expensive queries.

Beyond these performance results, our experiments show that significant expertise is needed to
achieve high performance with XSB and SWI-Prolog.

Double-win game. The result for this problem was partly unexpected, because it revealed that,
for many of our benchmarks, both XSB and SWI-Prolog gave incorrect results. Both clingo and DLV
are known to not compute 3-valued semantics. Therefore, we do not compare with these systems for
performance. The performance of our DistAlgo implementation for this problem is similar to that
for the company control problem but is faster because it involves fewer sets and operations.

For running the double-win game problem in XSB, we were helped by an XSB expert. The result
is that when querying using dwin(X) in XSB to compute true, false, and undefined values for all
positions, the XSB implementation produced different results than our DistAlgo implementation on
many of our benchmarks. Some results differ very slightly but some others differ significantly.

However, many logic rule engines also allow the same rules to be directly used for different queries.
For all benchmarks that XSB produced different results than ours, when querying using dwin(x) for
each of the positions x separately, XSB produced the same true, false, or undefined values for all
positions as our results.

So this experiment helps confirm the correctness of our results and at the same time revealed a
bug in XSB. Some careful investigation into this bug indicated that it is a nasty one. After learning
that SWI-Prolog added similar support as XSB for computing WFS, we also ran tests in SWI-Prolog
and found various incorrect results. Both XSB and SWI-Prolog have since found and fixed bugs that
caused these incorrect results.

We also ran the double-win example in both clingo and DLV. Both exited with an error message
that the rule is unsafe.

Note that 2-valued semantics such as extensions of SMS do not give the desired semantics for this
game. For example, even on the simple input with only two move facts, move(1,1) and move(1,2), any
such semantics would give {}, i.e., no model, meaning that the game is inconsistent, but the desired re-
sult is that dwin(2) is false, and dwin(1) is undefined, i.e., 2 is a losing position, and 1 is a draw position.

Over-win game. The result for this problem was totally unexpected, because we found that not
only both XSB and SWI-Prolog gave incorrect query results, but also their developers determined
that the inference they do to compute their intended semantics fundamentally cannot compute the
correct results. Both clingo and DLV again cannot compute the desired 3-valued semantics, as for
the double-win game.

For XSB and SWI-Prolog, their inference to compute WFS deals with loops through explicit nega-
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tion, but the recursive appearance of owin is not explicitly negated. Additionally, their inference does
not correctly handle different comparisons that use the results of the same aggregation. These issues
are being studied by the XSB team, and an entirely new inference algorithm, based on our founded
semantics for computing WFS, is being developed. Our DistAlgo programs for experiments have
been used to generate test cases, especially on larger data, because no other known implementations
can compute correct results.

9 Related work and conclusion

The study of recursive rules with negation goes back at least to Russell’s paradox, discovered over 120
years ago [ID20]. Many logic languages and disagreeing semantics have since been proposed, with sig-
nificant complications and challenges described in various survey and overview articles, e.g., [AB94,
RU95, Fit02, Tru18], and in works on relating and unifying different semantics, e.g., [Dun92, Prz94,
Sch95, LZ04, DT08, HDCD10, BDT16, LS20a].

Recursive rules with aggregation have been a subject of study soon after rules with negation were
used in programming. They received an even larger variety of disagreeing semantics in 20 years,
e.g., [KS91, VG92, SSRB93, CM93, RS97, SNS02, Gel02, MT04, MR04, PDB07, SPT07, FPL+08,
LPST10, FPL11, Fer11], and even more intensive studies in the last few years, e.g., [GZ14, SYZ15,
AFG15, AL15, Alv16, AFG16, ZR16, GZ17, ZYD+17, ADM18, CFDCP18, GZ18, CFSS19, GZ19,
GWM+19, DLW+19, ZDG+19, WZW+20, VBD21], especially as they are needed in graph analysis
and machine learning applications.

Aggregation is even more challenging than negation, when used in recursion, because it is more
general. For example, the count of all values x for which p(x) holds is 0 iff for all x, p(x) does not
hold, but the count can be, say, 5, meaning that p(x) holds for some 5 values, but does not for the
other values, with many possibilities. Even more different and more sophisticated semantics have
been proposed for aggregation than for negation.

Major related works are as shown in Table 1, right column. They give disagreeing semantics
with each other, without simple formal explanations for the disagreement, as explained there. More
detailed comparisons with work by Kemp and Stuckey [KS91], Van Gelder [VG92], Pelov, Denecker,
and Bruynooghe [PDB07], Faber, Pfeifer, and Leone [FPL11], Gelfond and Zhang [GZ19], and Hella
et al. [HLNW99, HLNW01] appear in Section 6. Among all, Pelov et al.’s work [PDB07], recently
reworked for Answer Set Programming (ASP) [VBD22], which uses SMS, is notable for proposing a
framework that can be instantiated to extend several prior semantics to handle aggregation. They
develop several separate extended semantics. In contrast, our approach uses simple predicate decla-
rations to capture different assumptions made by different semantics in a unifying single semantics.

Many other different semantics have been studied, all focused on restricted classes or issues. The
survey by Ramakrishnan and Ullman [RU95] discusses some different semantics, optimization meth-
ods, and uses of recursive rules with aggregation in earlier projects. Ross and Sagiv [RS97] studies
monotonic aggregation but not general aggregation. Beeri et al. [BRSS92] presents the valid model
semantics for logic programs with negation, set expressions, and grouping, but not aggregation. Su-
darshan et al. [SSRB93] extends the valid model semantics for aggregation, gives semantics for more
programs than Van Gelder [VG92], and subsumes a class of programs in Ganguly et al. [GGZ91], but
it is only a 3-valued semantics. Hella et al. [HLNW99, HLNW01] study expressiveness of aggregation
operators but without recursion. Liu et al. [LPST10] give a semantics for logic programs with abstract
constraints, which can represent aggregates, and show that, for positive programs, it agrees with one
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of Pelov et al.’s semantics [PDB07]. A number of other works have followed Gelfond and Zhang’s line
of study for ASP [CFDCP18, CFSS19, GZ19].

Zaniolo et al. [GGZ91, ZAO93, ZYD+17, GWM+19, DLW+19, ZDG+19] study recursive rules
with aggregation for database applications, especially including for big data analysis and machine
learning applications in recent years. They study optimizations that exploit monotonicity as well
as additional properties of the aggregation operators in computing the least fixed point, yielding su-
perior performance and scalability necessary for these large applications. They discuss insight from
their application experience as well as prior research centering on fixed-point computation [ZYD+17],
which essentially corresponds to the assumption that predicates are certain.

Our founded semantics and constraint semantics for recursive rules with aggregation unify differ-
ent previous semantics by allowing different underlying assumptions to be easily specified explicitly,
and furthermore separately for each predicate if desired. Our semantics are also fully declarative,
giving both a single 3-valued model from simply least fixed-point computation and a set of 2-valued
models from simply constraint solving.

The key enabling ideas of simple binary choices for expressing assumptions and simple lease
fixed-point computation and constraint solving are taken from Liu and Stoller [LS18, LS20a], where
they present a simple unified semantics for recursive rules with negation and quantification. To
use the power of founded semantics and constraint semantics in programming, they propose DA
logic [LS20b, LS21], for design and analysis logic, that allows different assumptions to be specified
as one of four meta-constraints, allows the resulting semantics to be referenced directly, and allows
programs to be easily and modularly specified by using knowledge units.

Our semantics can be extended for rules with negation in the conclusion, in the same way as in
[LS18, LS20a]. It can also easily be extended for hypotheses that are equalities or negated equal-
ities between variables and constants, because such hypotheses are already used in presenting the
semantics. Additionally, DA logic [LS20b, LS21] can be extended to include aggregation, because
aggregations and comparisons are interpreted orthogonally from the additional features in DA logic.

There are many directions for future research, including additional language features, efficient
implementation methods, and precise complexity guarantees [LS09, TL10, TL11] when possible.

Acknowledgement. We would like to thank David S. Warren and Jan Wielemaker for their excel-
lent help with using XSB and SWI-Prolog.
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A Additional proofs

Proof of Theorem 1. The proof of consistency of the founded model is an extension of the corre-
sponding proof by induction for the language without aggregation [LS20a, Theorem 1]; for brevity, we
refer to that proof as the original proof. The proof is by induction on the sequence of interpretations
constructed in the semantics by steps that either apply one-step derivability or add negated self-false
atoms. Two extensions to the proof are needed to show consistency for the language extended with
aggregation.

To show that steps that apply one-step derivability still preserve consistency, we extend the orig-
inal proof to show consistency for comparison literals, in the sense that DC (π, I) cannot contain a

31

http://xsb.sourceforge.net


comparison literal and its complement; this result is used, together with the result in the original
proof that I cannot contain a predicate literal and its complement, to show that the body of a rule and
its negation cannot both be true in I. This result follows directly from the definition of linear-time
derivability in Figure 1: for each pair of biconditionals for deriving complementary comparisons, the
right sides of those biconditionals are mutually exclusive conditions, i.e., the conjunction of those two
conditions is not satisfiable.

To show that steps that add negated self-false atoms still preserve consistency, we extend the
proof to show that the extended definition of unfounded set still ensures that none of the atoms in an
unfounded set U for an interpretation I are derivable in I ∪ ¬ · U . This property still holds because
the definition ensures that, for each rule instance R that could be used to derive an atom in U , (1)
some hypothesis of R is false in I and hence is false in I ∪¬·U , (2) some positive predicate hypothesis
of R is in U and hence is false in I ∪¬ ·U , or (3) some comparison hypothesis of R is false in I ∪¬ ·U .
Note that these three cases correspond to the three cases in the extended definition of unfounded set.

For consistency of constraint semantics, note that constraint models are required to be interpre-
tations, which are consistent by definition. �

Proof of Theorem 2. The proof that Founded(π) is a model of π and Cmpl(π) is an extension
of the corresponding proof for the language without aggregation [LS20a, Theorem 2]; for brevity, we
refer to that proof as the original proof. The original proof relies on the result that the body of a
ground instance A ← B of a rule in Cmpl(π) cannot become true in AddNeg for an SCC C, i.e., as
a result of adding negative literals for certain predicates in C to the interpretation, where C is the
SCC containing the predicate Q in the conclusion A. This result is shown in the original proof by
proving by contradiction that B cannot contain a negative literal for a certain predicate in C. To show
that this result holds in the language with aggregation, we prove by contradiction that adding those
negative literals to the interpretation cannot cause a comparison atom in B to become derivable.

We suppose that B contains a comparison atom A that becomes derivable and therefore true in
AddNeg for C and show a contradiction. Since A becomes true in AddNeg for C, A must contain a
non-positive occurrence of a certain predicate P in C. P and Q are in the same SCC C, so P must be
defined, directly or indirectly, in terms of Q. Since P is certain and is defined in terms of Q, Q must
be certain. Since Q and P are defined in the same SCC C, and Q depends non-positively on P , Q

has a circular non-positive dependency, so Q must be uncertain, a contradiction.
Constraint models are 2-valued models of Cmpl(π) by definition. Any model of Cmpl(π) is also

a model of π, because π is logically equivalent to the subset of Cmpl(π) obtained by removing the
completion rules added by AddInv. �

Proof of Theorem 4. First, we show that Founded(π) is 2-valued for predicates in C. Let RS be the
set of all ground instances of combined rules and completion rules in Cmpl(π) for predicates in C. Note
that every positive literal and negative literal for every predicate in C appears as the conclusion of at
least one rule in G (this holds even if rules in π contain conclusions of forms such as p(x,x) or p(x,0),
due to the fresh variables and existential quantifiers introduced by Combine). Let UA be the set of
ground predicate atoms for predicates in C that are undefined in Founded0(π). For each atom A in UA,
since the predicate in A is complete and A is not true or false in Founded0(π), (1) for every rule R in
RS with conclusion A, some hypothesis of R is false or undefined in Founded0(π), and (2) for some rule
R in RS with conclusion A, some hypothesis of R is undefined in Founded0(π). Since all predicates in
SCCs that precede C are certain, these undefined hypotheses must be atoms in UA or their negations,
or comparisons whose outcomes depend on the truth value of atoms in UA or their negations.

Define a dependence relation→ on UA by: B → A if some rule R in RS with conclusion A has an
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undefined hypothesis that is B, ¬B, or a comparison whose outcome depends on the truth value of
B. The previous observation implies that, for every A in UA, there exists B in UA such that B → A.
Since UA is finite, this implies that every atom in UA is in a→-cycle. Since predicates in C do not have
circular non-positive dependency, this implies that all dependencies in the cycles are positive. These
observations, together with all predicates in C being closed, imply that the predicate literals in every
cycle, and hence all atoms in UA, are in SelfFalseπ(Founded0(π)). Note any comparisons that give
rise to the dependencies in the cycles becomes false when all atoms in UA are false (and hence satisfy
clause (3) in the definition of unfounded set), because the comparison must be true or false when all
literals it depends on are true or false, and setting literals on which it has positive dependence to false
cannot make the comparison become true. This implies that Founded(π) contains the negations of
all literals in UA. Therefore, Founded(π) is 2-valued.

Next, we show that Founded(π) = Founded(π′). For each predicate P in C, the two programs
contain equivalent rules for adding positive literals for P to the founded model, because the combined
rule for P in π is logically equivalent to the original rules for P in π, so Founded(π) and Founded(π′)
contain the same positive literals for P . Since both models are 2-valued for P , they also contain the
same negative literals for P .

Finally, we show that Constraint(π) = Constraint(π′). We consider the conditions in the defini-
tion of Constraint , in turn.

Consider the first condition, namely, Founded(π) ⊆ M . It is equivalent for the two programs,
because they have the same founded model.

Consider the second condition, namely, M is a model of Cmpl(π). It differs for the two programs
in that Cmpl(π) contains combined rules and completion rules for predicates in C, while Cmpl(π′)
contains the original rules in π for predicates in C. Since Founded(π) = Founded(π′), Theorem 2
implies Founded(π) is a model of both Cmpl(π) and Cmpl(π′). Since Founded(π) is 2-valued for
predicates in C and all predicates on which they depend, it is 2-valued for all predicates used in those
rules. Therefore, every interpretation M that is a superset of Founded(π) contains the same predicate
literals as Founded(π) for all predicates used in those rules and hence is also a model of both Cmpl(π)
and Cmpl(π′). Since M is (by the first condition) a superset of Founded(π), and it is a model of both
Cmpl(π) and Cmpl(π′). Thus, the second condition is equivalent for the two programs.

Consider the third condition, namely, there does not exist a non-empty subset S of M \Founded(π)
containing only positive literals for closed predicates and such that S = SelfFalseπ(M \ S). Since
Founded(π) is 2-valued for predicates in C, and S ⊆ M \ Founded(π), S cannot contain literals
for predicates in C; furthermore, this and the disjointness condition in the definition of unfounded
set imply that SelfFalseπ(M \ S) cannot contain literals for predicates in C. The same conclusions
hold for π′, since Founded(π) = Founded(π′). Since S and SelfFalseπ(M \ S) do not contain literals
for predicates in C, and π and π′ have the same rules and declarations for predicates not in C,
SelfFalseπ(M \S) = SelfFalseπ′(M \S). Thus, the third condition is equivalent for the two programs.
�
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