
A Sequent Calculus for First-Order Logic
Formalized in Isabelle/HOL ?

Asta Halkjær From1[0000−0002−3601−0804],
Anders Schlichtkrull2[0000−0001−9212−6150], and

Jørgen Villadsen1[0000−0003−3624−1159]

1 Technical University of Denmark, Kongens Lyngby, Denmark
{ahfrom,jovi}@dtu.dk

2 Aalborg University Copenhagen, Copenhagen, Denmark andsch@cs.aau.dk

Abstract. We formalize in Isabelle/HOL soundness and completeness
of a one-sided sequent calculus for first-order logic. The completeness is
shown via a translation from a semantic tableau calculus, whose com-
pleteness proof we base on the theory entry “First-Order Logic According
to Fitting” by Berghofer in the Archive of Formal Proofs (AFP). The cal-
culi and proof techniques are taken from Ben-Ari’s textbook Mathemati-
cal Logic for Computer Science (Springer 2012). We thereby demonstrate
that Berghofer’s approach works not only for natural deduction but con-
stitutes a framework for mechanically-checked completeness proofs for a
range of proof systems.

1 Introduction

We formalize in the proof assistant Isabelle/HOL [18] the soundness and com-
pleteness proofs of a tableau calculus as well as a sequent calculus for first-order
logic with functions. We thereby also establish semantic cut-elimination since
our sequent calculus is cut-free. Our formalization is a contribution to the meta-
program of IsaFoL (Isabelle Formalization of Logic) [3]:

IsaFoL (Isabelle Formalization of Logic) is an undertaking that aims at
developing formal theories about logics, proof systems, and automatic
provers, using Isabelle/HOL.

At the heart of the project is the conviction that proof assistants have be-
come mature enough to actually help researchers in automated reasoning
when they develop new calculi and tools.

Along with the resolution calculus, the sequent calculus is a central topic
in automated reasoning but we do not present an automatic prover. We follow
the soundness and completeness proofs in the textbook on mathematical logic

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

by Ben-Ari [1]. Our formalization of the soundness and completeness proofs
(1000+ lines) is available online in the Archive of Formal Proofs [10].

In recent years we have used our formalization for teaching logic in computer
science and described this use in a number of papers [11–13]. These report on
teaching logic for hundreds of students but this is not the topic of our present
paper. Also, these papers focus on derivations in the sequent calculus and how
Isabelle/HOL verifies these derivations of first-order formulas. That is, unlike
the present paper, none of these papers detail the formalization of the soundness
and completeness proofs for the sequent calculus or the tableau calculus.

We find that for teaching, the one-sided sequent calculus is a good starting
point, especially if the students have previously worked with tableau calculi; the
traditional two-sided sequent calculus can be covered afterwards if necessary.
Without a formalization, students and researchers have to manually recheck the
soundness and completeness proofs if they experiment with adding or removing
rules of the calculus. With our work, they can instead let Isabelle/HOL show
which proofs need to be changed in order to account for the new set of rules and
use Isabelle/HOL to help them with updating these proofs.

Our formalization approach is slightly unusual in that we have started from
the formalization of natural deduction by Berghofer (4000+ lines) [2]. Except
for comments in his Isabelle/HOL files, Berghofer has not published about this
and we have extended the formalized result to cover open formulas (around 1000
of the 4000+ lines). Our approach shows how Berghofer’s work can be used as
a framework for formalizing logical systems. It is common in mathematics and
computer science to build on the work of others by using their theorems and
lemmas, but this has the danger that assumptions may be forgotten and results
may be applied incorrectly. When we use Berghofer’s result here, there is no such
danger, because Isabelle keeps track of all of this. Along the lines of Ben-Ari [1]
our proofs work by exploring the relationships between a tableau calculus and
the sequent calculus.

We start by discussing related work on formalizing sequent calculi in Sec-
tion 2. Then we briefly review Berghofer’s formalization of natural deduction in
Section 3 and our extension to open formulas in Section 4. In Section 5 we prove
soundness and completeness of our tableau calculus and continue with open for-
mulas in Section 6. We prove soundness and completeness of our sequent calculus
in Section 7, using the completeness result for our tableau calculus. Lastly, we
conclude with thoughts about future work in Section 8.

2 Related Work

There are other formalizations of sequent calculi in proof assistants, all of which
differ from the one we present. We discuss them here.

One is in the supplementary work of a paper by Blanchette and Popescu [4],
but the paper itself does not describe this development. In the supplementary
work the authors formalize in Isabelle/HOL a tableau calculus for many-sorted
first-order logic for formulas in negation normal form. This supplementary mate-

rial is unfortunately not up to date with recent Isabelle versions. The advantages
of our formalization are that it works in the newest version of Isabelle and that
it is not limited to formulas in negation normal form. We expect that it will be
easy to keep our development up to date with new versions of Isabelle, because
our formalization stays within the usual features of Isabelle such as its default
proof language Isar, default proof methods methods/tactics and default tools for
defining types, constants and functions. Furthermore our formalization is part
of the Archive of Formal Proofs in which Isabelle developers keep the entries up
to date with new releases of Isabelle. E.g. Berghofer’s natural deduction formal-
ization has been kept up to date with new Isabelle releases since 2007. On the
other hand, the advantages of Blanchette and Popescu’s formalization are that
it supports many-sorted first-order logic with equality whereas ours supports
only plain first-order logic. This limitation of our work is a consequence of using
Berghofer’s natural deduction formalization which is also based on this choice.
Another difference is that Blanchette and Popescu base their formalization on a
framework [5] for proving logical calculi complete using so-called analytic or syn-
tactic completeness proofs. Such proofs work by using failed attempts at deriving
an unprovable formula to construct a countermodel. We instead base our for-
malization on Berghofer’s formalization of synthetic completeness adopted from
a book by Fitting [8]. In the synthetic approach, completeness is proved by con-
structing maximal consistent sets of formulas and showing that formulas in such
sets have a model. Instead of reasoning about failed proof attempts, including
concerns of fairness, we reason about the simple process of extending a consis-
tent set of formulas to be maximally consistent. Thus, we prove completeness in
an entirely different way than Blanchette and Popescu.

Another formalization of a sequent calculus is by Ridge and Margetson [20].
Like Blanchette and Popescu they use the analytic approach, and their calculus
is limited to negation normal form without equality. Additionally, their term
language consists exclusively of variables rather than full first-order terms.

Braselmann and Koepke [6] also formalized a sequent calculus for first-order
logic without equality, but they used Mizar rather than Isabelle/HOL. They
base their work on the textbook by Ebbinghaus, Flum and Thomas [7] which
like our work employs the synthetic approach. Their formalization uses Mizar’s
Tarski-Grothendieck set theory as the metalogic whereas we have Isabelle/HOL’s
higher-order logic as metalogic. In their work they have a definition of proofs as
lists of sequents whereas we define derivability directly as an inductive predicate.

A more exotic result is Ilik’s formalization [16], in Coq, of the completeness
of a sequent calculus with respect to a Kripke-semantics for classical first-order
logic [17]. This is in contrast to the other works presented here which use the
usual semantics for first-order logic. Lastly, we mention here some results from
intuitionistic logic, namely Persson’s formalization [19] of the soundness of in-
tuitionistic first-order logic, and Herbelin, Kim and Lee’s formalization [15] of
soundness and completeness of intuitionistic first-order logic with respect to
Kripke models for a first-order logic with only universal quantification and im-
plication.

3 Natural Deduction

Our point of departure is Berghofer’s formalization of natural deduction [2] based
on Fitting’s presentation of the completeness of first-order logic [8]. In his for-
malization, Berghofer first defines the syntax and semantics of first-order logic.
He then defines a natural deduction proof system and proves it sound. He goes
on to prove the model existence theorem and thereafter proves completeness.

Our formalization uses the same definition of first-order logic’s syntax and
semantics, and we also use the model existence theorem to prove completeness.
We therefore briefly review Berghofer’s formalization in this section.

3.1 FOL Syntax and Semantics

Berghofer formalizes terms using a simple datatype with one constructor, Var,
for variables and one, App, for composite terms:

datatype ′a term
= Var nat
| App ′a 〈 ′a term list〉

Variables are represented by natural numbers because Berghofer is using the
so-called de Bruijn notation. In the de Bruijn notation the idea is that a variable
Var i exists in the scope of a number of quantifiers. Of these quantifiers, Var i
is bound by the one that has the ith innermost of these scopes, counting from
0. In case no such scope exists, the variable is considered free.

Berghofer formalizes formulas as a datatype:

datatype (′a, ′b) form
= FF
| TT
| Pred ′b 〈 ′a term list〉

| And 〈(′a, ′b) form〉 〈(′a, ′b) form〉

| Or 〈(′a, ′b) form〉 〈(′a, ′b) form〉

| Impl 〈(′a, ′b) form〉 〈(′a, ′b) form〉

| Neg 〈(′a, ′b) form〉

| Forall 〈(′a, ′b) form〉

| Exists 〈(′a, ′b) form〉

FF represents ⊥ (falsity), TT represents > (truth), Pred p ts represents the
predicate p(ts1 , . . . , tsn), And represents ∧ (conjunction), Or represents ∨ (dis-
junction), Impl represents → (implication), Neg represents ¬ (negation), Forall
represents ∀ (universal quantification) and Exists represents ∃ (existential quan-
tification). Notice that the quantifiers contain a subformula but no explicit bind-
ing of a variable symbol – this is because with the de Bruijn notation an explicit
binding would not be meaningful.

Berghofer defines the semantics of terms and lists of terms by mutual recur-
sion on these:

primrec
evalt :: 〈(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ ′a term ⇒ ′c〉 and
evalts :: 〈(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ ′a term list ⇒ ′c list〉 where
〈evalt e f (Var n) = e n〉

| 〈evalt e f (App a ts) = f a (evalts e f ts)〉

| 〈evalts e f [] = []〉

| 〈evalts e f (t # ts) = evalt e f t # evalts e f ts〉

Here, e is a variable denotation and f is a function denotation.
Berghofer defines the semantics of formulas by recursion on the formula

datatype:

primrec eval :: 〈(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒
(′b ⇒ ′c list ⇒ bool) ⇒ (′a, ′b) form ⇒ bool 〉 where
〈eval e f g FF = False〉

| 〈eval e f g TT = True〉

| 〈eval e f g (Pred a ts) = g a (evalts e f ts)〉

| 〈eval e f g (And p q) = ((eval e f g p) ∧ (eval e f g q))〉

| 〈eval e f g (Or p q) = ((eval e f g p) ∨ (eval e f g q))〉

| 〈eval e f g (Impl p q) = ((eval e f g p) −→ (eval e f g q))〉

| 〈eval e f g (Neg p) = (¬ (eval e f g p))〉

| 〈eval e f g (Forall p) = (∀ z . eval (e〈0 :z 〉) f g p)〉

| 〈eval e f g (Exists p) = (∃ z . eval (e〈0 :z 〉) f g p)〉

Here, e is a variable denotation, f is a function denotation and g is a predicate
denotation. Since Berghofer is formalizing the object logic FOL in the meta-
logic HOL, he can use HOL’s True, False, ∧, ∨, −→, ¬, ∀ and ∃ when defining
the semantics of FOL. The notation e〈0 : z〉 represents the variable denotation
{0 7→ z, 1 7→ e 0, 2 7→ e 1, . . .}.

Berghofer also formalizes what it means for a formula p to be a consequence of
a list of formulas ps with respect to a variable denotation, a function denotation
and a predicate denotation:

definition model :: 〈(nat ⇒ ′c) ⇒ (′a ⇒ ′c list ⇒ ′c) ⇒ (′b ⇒ ′c list ⇒ bool) ⇒
(′a, ′b) form list ⇒ (′a, ′b) form ⇒ bool 〉 (-,-,-,- |= - [50 ,50] 50) where

〈(e,f ,g ,ps |= p) = (list-all (eval e f g) ps −→ eval e f g p)〉

3.2 Berghofer’s Natural Deduction System

Berghofer formalizes a natural deduction system as an inductive predicate con-
sisting of a number of rules.

inductive deriv :: 〈(′a, ′b) form list ⇒ (′a, ′b) form ⇒ bool 〉 (- ` - [50 ,50] 50) where
Assum: 〈a ∈ set G =⇒ G ` a〉

| TTI : 〈G ` TT 〉

| FFE : 〈G ` FF =⇒ G ` a〉

| NegI : 〈a # G ` FF =⇒ G ` Neg a〉

| NegE : 〈G ` Neg a =⇒ G ` a =⇒ G ` FF 〉

| Class: 〈Neg a # G ` FF =⇒ G ` a〉

| AndI : 〈G ` a =⇒ G ` b =⇒ G ` And a b〉

| AndE1 : 〈G ` And a b =⇒ G ` a〉

| AndE2 : 〈G ` And a b =⇒ G ` b〉

| OrI1 : 〈G ` a =⇒ G ` Or a b〉

| OrI2 : 〈G ` b =⇒ G ` Or a b〉

| OrE : 〈G ` Or a b =⇒ a # G ` c =⇒ b # G ` c =⇒ G ` c〉

| ImplI : 〈a # G ` b =⇒ G ` Impl a b〉

| ImplE : 〈G ` Impl a b =⇒ G ` a =⇒ G ` b〉

| ForallI : 〈G ` a[App n []/0] =⇒ list-all (λp. n /∈ params p) G =⇒
n /∈ params a =⇒ G ` Forall a〉

| ForallE : 〈G ` Forall a =⇒ G ` a[t/0]〉

| ExistsI : 〈G ` a[t/0] =⇒ G ` Exists a〉

| ExistsE : 〈G ` Exists a =⇒ a[App n []/0] # G ` b =⇒
list-all (λp. n /∈ params p) G =⇒ n /∈ params a =⇒ n /∈ params b =⇒ G ` b〉

For example, the rule ForallI would be the following rule in a more conventional
style for writing out proof rules:

G ` a[n/0] n does not occur in G, nor in a

G ` ∀.a

Here a[n/0] represents substitution of variable 0 with the constant (0-ary com-
posite term) n in a. The rest of the rules are built in a similar way, so we will
not write them out here.

3.3 Soundness of Natural Deduction

Berghofer proves natural deduction sound:

theorem correctness: 〈G ` p =⇒ ∀ e f g . e,f ,g ,G |= p〉

The proof is by induction on the rules of the proof system. Berghofer’s original
proof was in apply-style, but the current version of the proof by From is an Isar-
style proof in which all cases are handled by the automation of Isabelle except
for ForallI and ExistsE . However, these cases are not too difficult.

3.4 Model Existence and Consistency Properties

In order to prove model existence, Fitting and Berghofer first define the notion
of what it means for a set of sets of formulas to be a consistency property:

definition consistency :: 〈(′a, ′b) form set set ⇒ bool 〉 where
〈consistency C = (∀S . S ∈ C −→

(∀ p ts. ¬ (Pred p ts ∈ S ∧ Neg (Pred p ts) ∈ S)) ∧
FF /∈ S ∧ Neg TT /∈ S ∧
(∀Z . Neg (Neg Z) ∈ S −→ S ∪ {Z} ∈ C) ∧
(∀A B . And A B ∈ S −→ S ∪ {A, B} ∈ C) ∧
(∀A B . Neg (Or A B) ∈ S −→ S ∪ {Neg A, Neg B} ∈ C) ∧
(∀A B . Or A B ∈ S −→ S ∪ {A} ∈ C ∨ S ∪ {B} ∈ C) ∧
(∀A B . Neg (And A B) ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {Neg B} ∈ C) ∧
(∀A B . Impl A B ∈ S −→ S ∪ {Neg A} ∈ C ∨ S ∪ {B} ∈ C) ∧

(∀A B . Neg (Impl A B) ∈ S −→ S ∪ {A, Neg B} ∈ C) ∧
(∀P t . closedt 0 t −→ Forall P ∈ S −→ S ∪ {P [t/0]} ∈ C) ∧
(∀P t . closedt 0 t −→ Neg (Exists P) ∈ S −→ S ∪ {Neg (P [t/0])} ∈ C) ∧
(∀P . Exists P ∈ S −→ (∃ x . S ∪ {P [App x []/0]} ∈ C)) ∧
(∀P . Neg (Forall P) ∈ S −→ (∃ x . S ∪ {Neg (P [App x []/0])} ∈ C)))〉

Fitting and Berghofer’s model existence theorem then states the following:

Theorem 1. If C is a consistency property, S ∈ C, φ ∈ S and φ is closed, then
φ has a model.

We will not repeat the proof here, and instead refer to Berghofer [2] and Fit-
ting [8]. We note that the result only applies to closed formulas.

Berghofer shows that the collection (set) of natural deduction consistent sets
of formulas is a consistency property and he can therefore obtain the following
model existence theorem for natural deduction in particular:

Theorem 2. If S is a natural deduction consistent set, then there is a model
for the closed formulas in S.

3.5 Completeness

Proving completeness means showing that if q1, ..., qn |= p then q1, ..., qn ` p.
In other words, if a conclusion follows logically from a set of premises then the
conclusion can also be proved from the set of premises. Fitting’s proof is by
contraposition, i.e. he shows that if q1, ..., qn 6` p then q1, ..., qn 6|= p. He therefore
assumes that q1, ..., qn 6` p, i.e. there is no natural deduction proof of the conclu-
sion from the premises. Natural deduction allows proof by contradiction, so in
particular there is no natural deduction proof by contradiction, i.e. we also know
that q1, ..., qn,¬p 6` ⊥. Thus, q1, ..., qn,¬p is consistent with respect to natural
deduction. The model existence theorem for natural deduction states that if a set
of formulas is consistent with respect to natural deduction then it is satisfiable.
We can therefore use it to conclude that natural deduction consistent formulas
are satisfiable, and thus q1, ..., qn,¬p has a model. That model is the evidence
that q1, ..., qn 6|= p. This concludes the completeness proof by contraposition.

In the following we will see that as soon as we have shown that the model exis-
tence theorem can be applied to the tableau calculus then the above completeness
argument can largely be repeated to prove the tableau calculus complete.

4 Open Formulas and Natural Deduction

In this section we show how to extend a completeness result for sentences to one
for open formulas. We presented this technique at the Tenth Scandinavian Logic
Symposium in 2018 [9] (abstract only) and at the (informal, no-proceedings)
Isabelle Workshop 2020 [14]. The text in this section is adapted from the latter.

We illustrate the five-step technique by showing the lemma that combines
the steps. The result we prove is the following:

assumes 〈∀ (e :: nat ⇒ nat hterm) f g . e, f , g , z |= p〉

shows 〈z ` p〉

We assume that formula p is valid under assumptions z and want to derive
z ` p.

1. We simplify the problem by turning the meta-level assumptions into object-
level implications (put-imps p (rev z) builds the chain zn → . . .→ z1 → p):

let ?p = 〈put-imps p (rev z)〉

Importantly, this preserves validity:

have ∗: 〈∀ (e :: nat ⇒ nat hterm) f g . eval e f g ?p〉

2. Next, we universally close the formula by prefixing it with a sufficient
number (m) of universal quantifiers and note that this too preserves validity:

obtain m where ∗∗: 〈closed 0 (put-unis m ?p)〉

moreover have 〈∀ (e :: nat ⇒ nat hterm) f g . e, f , g , [] |= put-unis m ?p〉

3. The resulting formula is a valid sentence so we know from the existing
completeness result that it can be derived:

ultimately have 〈[] ` put-unis m ?p〉

4. By working within the proof system we can then derive the open formula:

then have 〈[] ` ?p〉

5. And finally we use a deduction theorem to turn the introduced implications
back into meta-level assumptions:

then show 〈z ` p〉

Steps 1 through 3 are not particularly difficult so we focus on steps 4 and 5.

4.1 Deriving the Open Formula

We have a derivation of a formula with m universal quantifiers in front and
want a derivation without them. We could use the Uni-E rule to substitute the
original variables for the freshly quantified ones but this requires some tricky
reasoning due to our use of de Bruijn indices. The following example starts from
the formula ∀∀∀p(0, 1, 2) and illustrates how the variables shift when eliminating
the quantifiers:

(∀∀p(0, 1, 2))[2/0] ∀((∀p(0, 1, 2))[3/1]) ∀∀(p(0, 1, 2)[4/2]) ∀∀p(0, 1, 4)

(∀p(0, 1, 4))[1/0] ∀(p(0, 1, 4)[2/1]) ∀p(0, 2, 3)

p(0, 2, 3)[0/0] p(0, 1, 2)

To avoid having to reason about these shifts, we instead eliminate the univer-
sal quantifiers with fresh constants. The function subc c s p replaces occurrences
of c with s in p, adjusting the variables in s when substituting under a quantifier.
It is admissible to perform such a substitution uniformly across the formula and
assumptions of a derivation:

shows 〈z ` p =⇒ subcs c s z ` subc c s p〉

The proof goes by induction on the derivation and is mechanical, except for
the quantifier rules where care must be taken to treat the involved constants
correctly. The following renaming result is useful. Here psubst applies a function
to every constant/function symbol:

shows 〈z ` p =⇒ map (psubst f) z ` psubst f p〉

When we compose closure elimination (sub) with constant substitution (subc)
in the right order we get the following telescoping sequence of substitutions:

subc c0 (m-1) (subc c1 (m-2) (. . . (subc cm−1 0 (sub 0 cm−1 . . .))))

Each introduced constant is immediately replaced by the correct variable and
since subsequent substitutions are of constants, they do not adjust previously
inserted variables. We can then prove our desired result:

lemma remove-unis-sentence:
assumes inf-params: 〈infinite (− params p)〉

and 〈closed 0 (put-unis m p)〉 〈[] ` put-unis m p〉

shows 〈[] ` p〉

4.2 Shifting Implications

Step 5 of our technique is to derive z ` p from [] ` put-imps p (rev z). We do
so with the following lemma, which shifts just one formula from an implication
to the assumptions:

assumes inf-params: 〈infinite (UNIV :: ′a set)〉

and 〈z ` Impl p q〉

shows 〈p # z ` q〉

In the proof, we weaken z with p and apply modus ponens (Imp-E). The
weakening is shown by induction over the inference rules:

shows 〈z ` p =⇒ set z ⊆ set z ′ =⇒ z ′ ` p〉

The proof is trivial except for the cases for Exi-E and Uni-I, where the
Skolem constant fixed by the induction hypothesis is only new to the smaller
set of premises, not necessarily the larger ones. Again, it is necessary to perform
renaming using psubst. We can now shift a list of implications:

shows 〈z ′ ` put-imps p z =⇒ rev z @ z ′ ` p〉

4.3 Completeness

In conclusion, we have completeness for any valid formula, open or closed:

assumes 〈∀ (e :: nat ⇒ nat hterm) f g . e, f , g , z |= p〉

shows 〈z ` p〉

The recipe makes no particular use of natural deduction – in the places where
the recipe does derivations, one expects similar derivations to be possible in other
calculi. Indeed we will see that the recipe applies to our semantic tableau calculus
as well.

5 Soundness and Completeness of Tableau

The Isabelle theory Tableau contains the tableau formalization. We use this
as a stepping stone to show completeness for the sequent calculus since the
tableau rules match the consistency property making it almost trivial to show
completeness.

5.1 Definition

Tableau calculi can be understood as dual to sequent calculi. Where a one-sided
sequent is interpreted as a disjunction, each node in a tableau stands for a
conjunction of formulas. In a sequent calculus proof we end each sub-derivation
with an axiom, but in a closed tableau we mark each branch with a contradiction.
As will become apparent, the following rules are derived from this duality:

inductive TC :: 〈(′a, ′b) form list ⇒ bool 〉 (〈a -〉 0) where
Basic: 〈a Pred i l # Neg (Pred i l) # G〉

| BasicFF : 〈a ⊥ # G〉

| BasicNegTT : 〈a Neg > # G〉

| AlphaNegNeg : 〈a A # G =⇒ a Neg (Neg A) # G〉

| AlphaAnd : 〈a A # B # G =⇒ a And A B # G〉

| AlphaNegOr : 〈a Neg A # Neg B # G =⇒ a Neg (Or A B) # G〉

| AlphaNegImpl : 〈a A # Neg B # G =⇒ a Neg (Impl A B) # G〉

| BetaNegAnd : 〈a Neg A # G =⇒ a Neg B # G =⇒ a Neg (And A B) # G〉

| BetaOr : 〈a A # G =⇒ a B # G =⇒ a Or A B # G〉

| BetaImpl : 〈a Neg A # G =⇒ a B # G =⇒ a Impl A B # G〉

| GammaForall : 〈a subst A t 0 # G =⇒ a Forall A # G〉

| GammaNegExists: 〈a Neg (subst A t 0) # G =⇒ a Neg (Exists A) # G〉

| DeltaExists: 〈a subst A (App n []) 0 # G =⇒ news n (A # G) =⇒ a Exists A #
G〉

| DeltaNegForall : 〈a Neg (subst A (App n []) 0) # G =⇒ news n (A # G) =⇒ a Neg
(Forall A) # G〉

| Order : 〈a G =⇒ set G = set G ′ =⇒ a G ′〉

A closed tableau should prove unsatisfiability of the starting formulas. Since⊥
is never satisfiable, BasicFF allows us to close a branch directly if it occurs. More
interestingly, the BetaOr rule says that both A # G and B # G have to be
unsatisfiable for Or A B # G to be so. The remaining rules are similar.

5.2 Soundness

The lemma TC-soundness states the soundness property:

〈a G =⇒ ∃ p ∈ set G. ¬ eval e f g p〉

If a closing tableau exists for the list of formulas G, then the conjunction
of G is unsatisfiable: every interpretation falsifies some formula p in G.

The proof of TC-soundness is fairly straightforward and goes by induction
on the inference rules (for an arbitrary function denotation). It is written in

Isar and relies only on existing lemmas introduced by Berghofer. Only two of
the inductive cases cannot be proven automatically by Isabelle: DeltaExists and
DeltaNegForall. They have similar proofs and we consider the former case here.

We need to show ∃ p ∈ set (Exi A # G). ¬ eval e f g p and have by the
induction hypothesis: ∃p ∈ set (A [Fun n [] / 0] # G). ¬ eval e ?f g p where n is
a new constant and ?f represents any function denotation.

We proceed by contradiction and assume that every formula holds in the
given model: (*) ∀p ∈ set (Exi A # G). eval e f g p. Since Exi A holds, there
must be a member of the universe, say, x that satisfies A[Fun n [] / 0] when n is
interpreted as x: (1) eval e (f(n := λw. x)) g p. A [Fun n [] / 0].

By applying the induction hypothesis at the same updated function denota-
tion we know: (2) ∃p ∈ set (A [Fun n [] / 0] # G). ¬ eval e (f(n := λw. x)) g p.

From (2) we have two cases: either A [Fun n [] / 0] is false or G contains the
false formula. The first case contradicts (1) directly. Alternatively, if G contains
the false formula, this contradicts our starting assumption (*).

The following abbreviates that p can be proved from assumptions ps:

〈tableauproof ps p ≡ (a Neg p # ps)〉

With it, we can state soundness more easily:

〈tableauproof ps p =⇒ list-all (eval e f g) ps =⇒ eval e f g p〉

5.3 Completeness

We show completeness of the tableau calculus in the same way as for natural
deduction: by proving a consistency property and using the model existence
result to contradict the nonexistence of a closing tableau for a valid formula. In
natural deduction, the consistent sets are those from which we cannot derive a
contradiction (⊥). In tableau calculi, deriving contradictions is exactly the point,
so the consistent sets are simply those without closing tableaux. The statement
of our consistency theorem TCd-consistency thus becomes:

shows 〈consistency {S ::(′a, ′b) form set . ∃G. S = set G ∧ ¬ (a G)}〉

Our tableau rules are dual to the definition of when a set is consistent [2]. For
instance, we can close a tableau if a predicate appears both positively and neg-
atively with the same arguments, while such a pair cannot occur in a consistent
set. This makes the consistency simple and mechanical to show.

Take the case when ¬¬φ occurs in a consistent set S, so S ∪ {φ} should also
be consistent. No closing tableau can exist for S ∪ {φ}. If it did, one would also
exist for S because we can extend S with φ by applying the AlphaNegNeg rule
to ¬¬φ ∈ S. The corresponding proofs for natural deduction generally require
more creativity and more than one rule application.

We obtain the completeness result tableau-completeness’ for closed formulas:

assumes 〈closed 0 p〉

and 〈list-all (closed 0) ps〉

and mod : 〈∀ (e :: nat ⇒ nat hterm) f g . list-all (eval e f g) ps −→ eval e f g p〉

shows 〈tableauproof ps p〉

We assume that p is valid under assumptions ps (in the universe of Her-
brand terms) but that we cannot close the corresponding tableau. Then the set
formed by ¬p and ps is consistent and we have seen that any formula in it has
a model. By our validity assumption the same model satisfies p, and this leads
to a contradiction.

6 Open Formulas and Tableau

We use the same recipe as for natural deduction to extend the tableau complete-
ness result to cover open formulas. However, we employ one simplification that
would also work for natural deduction but is slightly less intuitive. Instead of
closing the formula with universal quantifiers, we close it by substituting fresh
constants directly for the free variables. At that point we are still operating se-
mantically, so we only need to show that this preserves validity and doing so is
simple. We still make use of the telescoping sequence of substitutions but save
the introduction of the universal quantifiers. Our application of this recipe to
both natural deduction and a tableau calculus indicate that it can be applied to
a wider range of proof systems to strengthen existing completeness results.

7 Sequent Calculus

The Isabelle theory Sequent contains the sequent formalization.

7.1 Definition

We define the sequent calculus as yet another inductive collection of rules:

inductive SC :: 〈(′a, ′b) form list ⇒ bool 〉 (〈` -〉 0) where
Basic: 〈` Pred i l # Neg (Pred i l) # G〉

| BasicNegFF : 〈` Neg ⊥ # G〉

| BasicTT : 〈` > # G〉

| AlphaNegNeg : 〈` A # G =⇒ ` Neg (Neg A) # G〉

| AlphaNegAnd : 〈` Neg A # Neg B # G =⇒ ` Neg (And A B) # G〉

| AlphaOr : 〈` A # B # G =⇒ ` Or A B # G〉

| AlphaImpl : 〈` Neg A # B # G =⇒ ` Impl A B # G〉

| BetaAnd : 〈` A # G =⇒ ` B # G =⇒ ` And A B # G〉

| BetaNegOr : 〈` Neg A # G =⇒ ` Neg B # G =⇒ ` Neg (Or A B) # G〉

| BetaNegImpl : 〈` A # G =⇒ ` Neg B # G =⇒ ` Neg (Impl A B) # G〉

| GammaExists: 〈` subst A t 0 # G =⇒ ` Exists A # G〉

| GammaNegForall : 〈` Neg (subst A t 0) # G =⇒ ` Neg (Forall A) # G〉

| DeltaForall : 〈` subst A (App n []) 0 # G =⇒ news n (A # G) =⇒ ` Forall A # G〉

| DeltaNegExists: 〈` Neg (subst A (App n []) 0) # G =⇒ news n (A # G) =⇒ ` Neg
(Exists A) # G〉

| Order : 〈` G =⇒ set G = set G ′ =⇒ ` G ′〉

7.2 Soundness

The lemma SC-soundness states the soundness property:

lemma SC-soundness: 〈` G =⇒ ∃ p ∈ set G. eval e f g p〉

If the sequent G has a derivation then the disjunction of G is valid: every
interpretation satisfies some formula p in G. By taking the sequent with a single
formula we get the expected theorem.

Dually to the tableau proof, the only two cases that are not solved automat-
ically by Isabelle are: DeltaForall and DeltaNegExists. Consider the first one.

We need to show ∃p ∈ set (Uni A # G). eval e f g p and we can assume the
induction hypothesis: ∃p ∈ set (A [Fun n [] / 0] # G). eval e ?f g p.

When we instantiate the induction hypothesis at the function denotation
f(n := λw. x) we get that for all witnesses x, some formula holds:

∀x. ∃p ∈ set (A [Fun n [] / 0] # G). eval e (f(n := λw. x)) g p

Now there are two cases. Either it is the case that the first formula holds
for all witnesses, i.e. ∀x. semantics e f(n := λw. x) g (A [Fun n [] / 0]), or it
is the case that there exists a witness that makes some formula in G hold, i.e.
∃x. ∃p ∈ set G. semantics e (f(n := λw. x)) g p.

The first case corresponds to the semantics of the universal quantifier, so
we know Uni A holds and we are done. In the second case we can recover the
unmodified function denotation f since n is new in G, and thereby know that
something in G holds, so we are done.

7.3 Completeness

We show completeness of the sequent calculus by proving that for every closed
tableau over a list of formulas [p1, . . . , pn], there exists a sequent calculus deriva-
tion of the list of complementary formulas [¬p1, . . . , ¬pn]. This is stated in Isa-
belle by mapping the function compl across the list, where compl is defined as
follows: compl (¬ p) = p, and compl p = ¬ p for any formula p that is not a
negation. Thus in Isabelle we want to show a G =⇒ ` map compl G.

The proof goes by induction over the tableau rules with a bit of massag-
ing of each induction hypothesis to make the corresponding sequent calculus
rule applicable. Consider for instance the AlphaAnd case where we assume
a A # B # G and, inductively, ` map compl (A # B # G) and need to show
` map compl (Con A B # G). We get ` compl A # compl B # map compl G
from the induction hypothesis and definition of map. There are two cases for A
(and similarly B). Either it is of the form A = ¬A′ or it starts with a different
connective. In the first case, compl A = A’. We want to apply AlphaNegAnd
which requires a derivation containing ¬A, so in the first case we apply Al-
phaNegNeg first. We can hereafter derive ` Neg (Con A B) # map compl G
using AlphaNegAnd. In the second case compl A = ¬A, and we need only to
apply AlphaNegAnd. Using the definition of map again we see that it is the goal.

Ben-Ari [1] also shows this relationship between a tableau calculus and a
sequent calculus. However, he neglects the complications around compl and how
the AlphaNegNeg rule can be necessary to make the cases line up. By carrying
out our work in a proof assistant, we cannot accidentally make such omissions.

The theorem SC-completeness states the completeness property:

theorem SC-completeness:
fixes p :: 〈(nat , nat) form〉

assumes 〈∀ (e :: nat ⇒ nat hterm) f g . list-all (eval e f g) ps −→ eval e f g p〉

shows 〈` p # map compl ps〉

Assume p is valid under assumptions ps. Any of the formulas can be open.
From completeness for tableau, the tableau for ¬ p # ps closes, so by the equiv-
alence to sequent calculus, p # map compl ps has a sequent calculus derivation.

8 Conclusions and Future Work

We have shown that the natural deduction system formalized by Berghofer is
also complete when considering open formulas. We have also formalized the
soundness and a synthetic completeness proof of a one-sided sequent calculus
for first-order logic. This was via a translation from a tableau calculus. Standing
on the shoulders of Berghofer, we proved the tableau calculus complete based on
his natural deduction formalization. This shows that Berghofer’s work is more
general than just a natural deduction formalization and can indeed be used as
an offset for proving calculi complete.

As future work we envision formalizing the resolution system from Fitting’s
book [8]. This should easily fit our approach since Berghofer’s work is based on
this book.

With the present paper, detailing our novel formalization in Isabelle/HOL
of the soundness and completeness proofs for a sequent calculus and a tableau
calculus for first-order logic with functions, we hope that more people will get
inspired and take up the gauntlet to formalize logical systems and build frame-
works to aid this task. There are plenty of systems out there waiting to be
formalized and plenty of room to build upon the frameworks currently available.

Acknowledgements

We thank Agnes Moesg̊ard Eschen, Frederik Krogsdal Jacobsen, Alexander Birch
Jensen, Simon Tobias Lund, François Schwarzentruber and Freek Wiedijk for
comments on drafts.

References

1. Ben-Ari, M.: Mathematical logic for computer science (2. ed.). Springer (2001)
2. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs (Aug

2007), https://isa-afp.org/entries/FOL-Fitting.html, Formal proof development

https://isa-afp.org/entries/FOL-Fitting.html

3. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, January 14-15, 2019. pp. 1–13. ACM (2019)

4. Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In:
Frontiers of Combining Systems - 9th International Symposium, FroCoS 2013,
Nancy, France, September 18-20, 2013. Proceedings. pp. 245–260 (2013)

5. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness
proofs by coinductive methods. J. Autom. Reason. 58(1), 149–179 (2017).
https://doi.org/10.1007/s10817-016-9391-3

6. Braselmann, P., Koepke, P.: Gödel’s completeness theorem. Formalized Mathemat-
ics 13(1), 49–53 (2005)

7. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical logic. Undergraduate texts
in mathematics, Springer (1984)

8. Fitting, M.: First-Order Logic and Automated Theorem Proving, Second Edition.
Graduate Texts in Computer Science, Springer (1996)

9. From, A.H.: Formalized Soundness and Completeness of Natural Deduction for
First-Order Logic (2018), tenth Scandinavian Logic Symposium (SLS 2018), http:
//scandinavianlogic.org/material/book of abstracts sls2018.pdf

10. From, A.H.: A sequent calculus for first-order logic. Archive of Formal Proofs (Jul
2019), https://isa-afp.org/entries/FOL Seq Calc1.html, Formal proof development

11. From, A.H., Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Teaching a formalized
logical calculus. In: Quaresma, P., Neuper, W., Marcos, J. (eds.) Proceedings 8th
International Workshop on Theorem Proving Components for Educational Soft-
ware, ThEdu@CADE 2019, 25th August 2019. EPTCS, vol. 313, pp. 73–92 (2019)

12. From, A.H., Villadsen, J., Blackburn, P.: Isabelle/HOL as a meta-language for
teaching logic. In: Quaresma, P., Neuper, W., Marcos, J. (eds.) Proceedings 9th
International Workshop on Theorem Proving Components for Educational Soft-
ware, ThEdu@IJCAR 2020, 29th June 2020. EPTCS, vol. 328, pp. 18–34 (2020)

13. From, A.H., Jacobsen, F.K., Villadsen, J.: SeCaV: A sequent calculus verifier in
Isabelle/HOL. In: Pre-proceedings of the 16th International Workshop on Logical
and Semantic Frameworks with Applications, LSFA 2021, Buenos Aires, Argentina
(online), 23–24 July (2021)

14. From, A.H., Villadsen, J.: A concise sequent calculus for teaching first-order logic,
Isabelle Workshop 2020 (informal, no proceedings)

15. Herbelin, H., Kim, S.Y., Lee, G.: Formalizing the meta-theory of first-order pred-
icate logic. Journal of the Korean Mathematical Society 54(5), 1521–1536 (2017)

16. Ilik, D.: Constructive Completeness Proofs and Delimited Control. Ph.D. the-
sis, École Polytechnique (2010), https://tel.archives-ouvertes.fr/tel-00529021/
document

17. Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Annals of Pure
and Applied Logic 161(11), 1367–1378 (2010)

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

19. Persson, H.: Constructive completeness of intuitionistic predicate logic. Ph.D.
thesis, Chalmers University of Technology (1996), http://web.archive.org/web/
20001011101511/http://www.cs.chalmers.se/∼henrikp/Lic/

20. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Theorem Proving in Higher Order Logics, 18th
International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Pro-
ceedings. pp. 294–309 (2005)

https://doi.org/10.1007/s10817-016-9391-3
http://scandinavianlogic.org/material/book_of_abstracts_sls2018.pdf
http://scandinavianlogic.org/material/book_of_abstracts_sls2018.pdf
https://isa-afp.org/entries/FOL_Seq_Calc1.html
https://tel.archives-ouvertes.fr/tel-00529021/document
https://tel.archives-ouvertes.fr/tel-00529021/document
http://web.archive.org/web/20001011101511/http://www.cs.chalmers.se/~henrikp/Lic/
http://web.archive.org/web/20001011101511/http://www.cs.chalmers.se/~henrikp/Lic/

	A Sequent Calculus for First-Order Logic Formalized in Isabelle/HOL

