Michael L. Anderson and Donald R. Perlis Logic, self-awareness and self-improvement: The metacogniti
and the problem of brittleness. Journal of Logic and Computation 14, 2004 (pre-print).

Abstract

This essay describes a general approach to building perturbation-tolerant autonomous sys-
tems, based on the conviction that artificial agents should be able notice when something
is amiss, assess the anomaly, and guide a solution into place. We call this basic strategy
of self-guided learning the metacognitive loop; it involves the system monitoring, reasoning
about, and, when necessary, altering its own decision-making components. In this essay,
we (a) argue that equipping agents with a metacognitive loop can help to overcome the
brittleness problem, (b) detail the metacognitive loop and its relation to our ongoing work
on time-sensitive commonsense reasoning, (¢) describe specific, implemented systems whose
perturbation tolerance was improved by adding a metacognitive loop, and (d) outline both
short-term and long-term research agendas.

Keywords: Metareasoning, time, non-monotonic reasoning, active logic, brittleness,
autonomous agents

1 Introduction and background

Brittleness is arguably the single most important problem in Al and perhaps in (com-
puter) systems overall: a system designed for specific tasks fails utterly when faced
with unanticipated perturbations that take it even slightly outside its task specifica-
tions. Yet humans perform admirably under such perturbations, easily adjusting to
most minor changes as well as to many major ones.

We define a perturbation as any change, whether in the world or in the system
itself, that impacts performance. Performance is meant to be construed broadly to
encompass such things as reasoning efficiency and throughput, validity of inference,
task success, average reward over time, etc.—in short, any measurable aspect of the
system’s operation. Perturbation tolerance, then, is the ability of a system to quickly
recover—that is, to re-establish desired/expected performance levels—after a pertur-
bation. To achieve this, a perturbation-tolerant system should not only notice when
it isn’t behaving how it ought or achieving what it should, but be able to use this
knowledge to make targeted alterations to its own modules. Such changes can be as
simple as re-calibrating its sensors, or as complex as training new (or retraining old)
behaviors, changing its rules of inference, learning new words and concepts, adopting
different basic ontologies in different circumstances, and even adapting to new nota-
tional conventions and recognizing and fixing typographical errors (e.g., misspellings,
missing parentheses).!

While it may often be possible to anticipate the kinds of problems a system will
face over its lifetime, and build in specific mechanisms to handle these issues, we
doubt this will prove, in the long run, to be the most effective strategy. We believe, in
contrast, that efforts should be aimed at implementing mechanisms that help systems

IThese latter examples present a difficulty for any KR system; for whatever KR is used, incoming
data might use a different system, or have typos. How then can a fixed KR system meet the challenge
of usefully representing data not “properly” expressed in that system? The work presented here is,
in part, an attempt to remedy this. To foreshadow what is to come: we will describe a flexible
KR intended to be able to reshape its own notations and its own interpretations of those notations,
among other capabilities.

help themselves. The goal should be to increase their agency and freedom of action
in responding to problems, instead of limiting it and hoping that circumstances do
not stray from the anticipations of the system designer. We should be creating self-
aware, self-guided learners. Indeed, we believe that such metacognitive skills are the
key to achieving near-human-level (or, indeed, any useful kind of) non-brittleness.
Metacognitive learners would be advanced active learners, able to decide what, when,
and how to learn. This will allow systems the needed autonomy to function in domains
where human supervision cannot be constantly supplied.

Our general strategy in working toward this goal has been to equip artificial agents
with the ability to notice when something is amiss, assess the anomaly?, and guide
a solution into place. We call this basic strategy of self-guided learning the metacog-
nitive loop (MCL); it involves the system monitoring, reasoning about, and, when
necessary, altering its own decision-making components. This is, after all, what peo-
ple do, and do well.? Indeed, in our view this is largely what perturbation-tolerant
commonsense reasoning consists in, rather than in finding special clever solutions to
thorny problems. An MCL-based system knows what it is attempting to do, so that
it can determine when things are not going well, instead of blindly following its pro-
gramming over the proverbial cliff—as did one of the DARPA Grand Challenge entries
which kept trying to drive through a fence it could not see. If that system had known
it was supposed to make forward progress and noticed that it was not doing so, this
would have been the first step to overcoming the problem. Or consider the case of a
satellite given the command to turn and look at some object away from Earth, but
not told to turn back to Earth when finished. Once the satellite turned, there was
no way to feed it further commands, and the satellite was lost. In contrast, a system
that had general expectations for its operation (frequent communication from Earth),
based on the sort of system it was, might have been able to use this knowledge to
recover from such mistakes.

For performance in the face of unexpected perturbations can be enhanced even
when one cannot figure out exactly what is wrong, or what to do about it, so long as
one is able to realize that something is wrong, and ask for help, or use trial-and-error,
or even give up and work on something else. In our ongoing work, we have found
that including an MCL component can enhance the performance of—and speed learn-
ing in—different types of systems, including reinforcement learners, natural language
human-computer interfaces, commonsense reasoners, deadline-coupled planning sys-
tems, robot navigation, and, more generally, repairing arbitrary direct contradictions
in a knowledge base.

2We define an anomaly as a deviation from expected values or outcomes.

31n fact, there is some empirical evidence for the importance of metacognition in dealing with the
unexpected or unfamiliar. In studies of human learning strategies, it has been established students
preparing for—or taking—an exam will make judgments about the relative difficulty of the material
to be covered, and use this to choose study strategies, or which questions to answer first. Not sur-
prisingly, in these cases, accuracy of metacognitive judgments correlates with academic performance
[43, 42]. Moreover, neurophysiological findings indicate that the frontal lobe has specialized respon-
sibility for metacognitive behavior [41]. For instance, patients with frontal lobe damage have trouble
handling a “reversal shift”, which involves (a) recognizing that a word or concept one has learned to
apply to, say, big things, is now being used by others to refer to small things, and (b) making the
appropriate adjustment [30, 31].

2 Three problems in commonsense reasoning

Over a period of years, in working toward the design and implementation of (a high
degree of) artificial commonsense reasoning, we have struggled to overcome three
obstacles in particular, which we refer to by the nicknames of slippage, KR mismatch,
and contradiction. Slippage is, simply, the divergence between what is believed at a
given time, and what has changed at a later time. Of course, the basic problem of
belief revision—of rationally revising one’s beliefs in light of new evidence—is a widely
studied issue [26, 27]. However, in our view the problem bites deeper than is generally
supposed, for in all cases, at a later time, time itself has changed, and this can (and
often does) matter a great deal.* Consider person A having an appointment to meet
person B for lunch at noon, and it is now 11:00am. It is easy enough to represent this
as:

Example 1 Now(11 : 00), Lunch(12 : 00)

However, whereas the latter formula appears to represent a more or less stable fact,
the former is true only for an instant—or perhaps for a minute or so, depending on the
time-granularity employed—and that is the point: whatever time it is now will not
be the time later, and it is that very passage that brings lunch (or any future event)
closer. Without this basic fact about the temporal character of the world, planning
and acting would be meaningless. Thus we need a way to allow Now(11 : 00) to be
updated again and again, and to have that evolution of Now to play a central role in
reasoning, so that, for instance, when Now(11 : 45) holds (or is believed) the agent
will begin walking to the agreed-upon location for lunch.

The KR mismatch problem is this: there are indefinitely many ways to represent
a given circumstance, and systems using one set of representational conventions may
not be able to recognize expressions cast using a different set. We consider this a
special instance of the more general problem of language meaning, for an expression
typically is presented in order to convey a meaning, that is, to cause a certain belief
state in the presentee, including beliefs about what the presentee should do; and it is
typically this meaning, rather than the expression itself, that needs to be used in the
ongoing reasoning process (although, of course, sometimes it is necessary to reason
about the expression in order to realize or appreciate its meaning). But this requires
being able to separately represent and reason about the meaning of an expression,
and its form, that is, it requires taking a meta-linguistic perspective, and the ability
to treat words as objects. This is related to the use-mention distinction [10], as well
as to work on recognizing utterer intentions; but for us the central question is: how
can one recognize the (or a useful) meaning for an expression when the expression is
not already known (e.g., when it is not already part of the KR system in use)? This
includes cases of new expressions that need to be added to the system, as well as
errors (e.g., typos) that need to be recognized as deviations from the existing KR.5

4In addition, standard approaches to belief revision, based on classical logic, do not address the
capacity of reasoning with contradictions. But any real agent will have inconsistent beliefs, and so
needs the ability to reason in the presence of inconsistencies. See below. Note that our approach
to this issue does not require the assumption that new information is more reliable than, or will
necessarily replace, beliefs currently in the KB.

5The mismatch problem is related to “fast mapping”, the ability to learn words from a single
instance of use [13]. In earlier writings we have used “rapid semantic shift” to include both fast

The contradiction problem is this: how to reason effectively in the presence of
contradictions? Much work has been done related to this, especially in the guise of
paraconsistent logics [49, 48]. Indeed, it is customary to define a paraconsistent logic
as one in which the presence of a contradiction need not entail all sentences in the
language. The standard paraconsistent approaches address contradictions by side-
stepping any inconsistencies and reasoning only with consistent portions of the KB.
Our view is a bit different: contradictions in one’s KB are inevitable [45, 46], and there
is no safe haven from which to address them. One must reason with the contradictions
as best one can, replacing and repairing beliefs, like the planks of Neurath’s boat, one
by one while en route. Indeed, our work strongly suggests that contradictions are
generally useful (so long as they are discovered), in that they point to issues and
problems that need to be addressed.

We have found that all three problems lend themselves to a uniform treatment,
namely the metacognitive loop (in which time plays a central role). This brings us to
an underlying formal basis for our work, namely active logic.

3 Active logic: Time-situated commonsense reason-
ing

Our formal approach to effective reasoning in the presence of slippage, KR mis-
matches, and contradictions—active logic—is motivated in part by the observation
that all reasoning takes place step-wise, in time.® This allows an agent to maintain
control over, and track, its own reasoning processes. As will be seen, active logic is a
type of paraconsistent logic, albeit rather different from standard ones. An account of
the basic concepts can be found in [22]. We are also working on a formal semantics,
the first results of which are to be reported in [5].

In active logic, aspects of the environment are represented as first order formulas in
the knowledge base. Such formulas might represent perceptions of a user’s utterance,
observations about the state of the domain, or rules added by a system administrator.
Inference rules provide the mechanism for “using” the knowledge for reasoning.

Each “step” in an active logic proof itself takes one active logic time-step; thus
inference always moves into the future at least one step and this fact can be recorded
in the logic. In fact, to achieve much of their reasoning, active logics employ a notion
of “now” that is constantly updated by the “clock rule” shown in example 2:

i Now(i)
Example 25 1 Now(i+1)

The clock rule states that from the fact that it is step 7 at the current step, the step
number of the next step is ¢+ 1. This step-wise tracking model of time is very different
from the “time-frozen” characterization of time that temporal logic [2, 52] has. The
notion of past, present and future, that temporal logics have do not change while

mapping and real-time disambiguation and/or correction of meanings.

60ther approaches to commonsense reasoning incorporating this basic insight include [12, 32].
Labelled deductive systems (see [23]) appear to provide a generalization of at least some aspects of
active logic.

theorems are being derived. This sharply contrasts with the special evolving-during-
inference model of time that active logics have. When an agent is reasoning about its
own ongoing activity, or about another agent whose activity is highly interdependent,
traditional “time-frozen” reasoning is at a disadvantage, and “time-tracking” active
logics can bring new power and flexibility to bear. For instance, theorems can be
marked with their time (step-number) of being proven, i.e., the current value of “now”.
This step-number is itself something that further inferences can depend on, such as
inferring that a given deadline is now too close to meet by means of a particular plan
under refinement if its enactment is estimated to take longer than the (ever shrinking)
time remaining before the deadline.

What this means more generally is that, for active logic, beliefs are held at times,
and the KB is therefore considered to be a temporally embedded and evolving set of
formulas. Thus, the meaning of an inference rule such as that shown in example 3
(an active logic analogue to modus ponens), is that if A and A — B are in KB at time
(step number) 4, then B will be added to the KB at time ¢ + 1.

i: AJA—B

fxample 3 5) A A-B.B

Although in active logic the logical consequences of the evolving KB do not become
part of the KB until they are actually derived, inheritance rules ensure that, once
derived (or otherwise added to the KB), formulas are carried forward and persist over
time.” By default, all beliefs from one step that are not directly contradicting are
inherited to the next step. This allows the representation of persisting facts or states-
of-affairs. However, some beliefs, like the ones related to the current time, are not
inherited to the next step; note, for instance, that in the clock rule (example 2) the
belief Now(%) is not inherited at step ¢+ 1. One simple version of such an inheritance
rule, which also illustrates the use of firing conditions, is shown in example 4:

i A
i+1: A
condition: —A ¢ KB at step i and A # Now(i)

Example 4

Thus, to bring all this together, let us re-consider our lunch example. As noted
above in example 1, person A knows the current time, knows to meet person B at
noon, and knows to leave for the restaurant at 11:45. We can represent this knowledge,
and the deductive process required to get person A to leave on time, in terms of the
following active logic inference (with the new beliefs at each step indicated in bold):

11:15: Now(11:15), Meet(B,Lunch,12:00),
Now(11:45am) — Go(Lunch)

11:16 : Now(11:16), Meet(B,Lunch,12:00),
Now(11:45am) — Go(Lunch)

Example 5

11:45: Now(11:45), Meet(B,Lunch,12:00),
Now(11:45am) — Go(Lunch)

11:46 : Now(11:46), Meet(B,Lunch,12:00),
Now(11:45am) — Go(Lunch), Go(Lunch)

"Inheritance and disinheritance are directly related to belief revision [25] and to the frame problem
[36, 18]; see [44] for further discussion.

Note that all the beliefs except the time are inherited, and that the rule Now(11 :
45) — Go(Lunch), although it fires at 11:45, does not produce its conclusion until
the next time step.®

In addition to the formulas obtained from applying rules of inference to formulas
at the previous step, new formulas can be added at each step. Step-wise reasoning,
coupled with this ability to add new formulas, ensures that the logic would not get
stuck in a lengthy proof, oblivious of the other events that occur during the reasoning.

It is the time-sensitivity of active logic inference rules that provides the chief
advantage over more traditional logics. Thus, an inference rule can refer to the results
of all inferences up until now—i.e. thru step i—as it computes the subsequent results
(for step ¢ + 1). This allows an active logic to reason, for example, about its own
(past) reasoning; and in particular about what it has not yet concluded. Moreover,
this can be performed quickly, since it involves little more than a lookup of the current
knowledge base.

As mentioned already above, since in active logic the notion of inference is time-
dependent, it follows that at any given time only those inferences that have actually
been carried out so far can affect the present state of the agent’s knowledge. As a
result, even if directly contradictory wifs, P and —P, are in the agent’s KB at time 4,
it need not be the case that those wifs have been used by time 4 to derive any other
wif, Q. Indeed, it may be that ¢ is the first moment at which both P and —P have
simultaneously been in KB.

By endowing an active logic with a “conflict-recognition” inference rule such as
that in example (6), direct contradictions can be recognized as soon as they occur,
and further reasoning can be initiated to repair the contradiction, or at least to
adopt a strategy with respect to it, such as simply avoiding the use of either of the
contradictands for the time being. Unlike in truth maintenance systems [20, 21] where
a separate process resolves contradictions using justification information, in an active
logic the contradiction detection and handling occur in the same reasoning process
[38]. The Contra predicate is a meta-predicate: it is about the course of reasoning
itself (and yet is also part of that same evolving history).

i: P, P
i+1: Contra(i, P, =P)

Example 6

The idea then is that, although an indirect contradiction may lurk undetected in
the knowledge base, it may be sufficient for many purposes to deal only with direct
contradictions. Sooner or later, if an indirect contradiction causes trouble, it may
reveal itself in the form of a direct contradiction. After all, a real agent has no choice
but to reason only with whatever it has been able to come up with so far, rather than
with implicit but not yet performed inferences. Moreover, since consistency (i.e.,
the lack of direct or indirect contradictions) is, in general, undecidable, all agents
with sufficiently expressive languages will be forced to make do with a hit-or-miss
approach to contradiction detection. The best that can be hoped for, then, seems to
be an ability to reason effectively in the presence of contradictions, taking action with
respect to them only when they become revealed in the course of inference (which
itself might be directed toward finding contradictions, to be sure).

80f course, production active logic systems are much faster than one deduction per minute!

Thus, the trick to detecting and dealing with contradictions is to look backward at
what one’s reasoning has been, rather than forward to what it might be (as traditional
automated commonsense or nonmonotonic reasoning formalisms do [1, 24]). Thus at
time-step 7 + 1 our systems look at what was in their KB at step ¢ and earlier,
e.g., to infer that there was a (direct) contradiction at step ¢ [39]; or that it is now
too late to meet a deadline given what has been accomplished so far (by step i)
and given what remains to be done [44]; or that a particular word is not recognized
[7]. Such looking backward appears to provide a computationally feasible handle on
perturbation tolerance, allowing an automated reasoner to note and assess anomalies
and alter its ongoing courses of reasoning and action accordingly, much as a human
appears to do.

Interestingly, having in place these mechanisms for managing contradictions makes
dealing with the problems of KR mismatch and slippage much easier. Thus, for
instance, adding and/or changing formulas in the KB need pose no special problems,
nor require any expensive (and ultimately undecidable) consistency checks; this makes
addressing the slippage problem, by having one’s KB change over time, relatively
straightforward. Likewise, once one has accepted the notion that one is limited to
dealing only with currently derived formulas in the KB—and not also with all the
eventual consequences of those beliefs—megative introspection, i.e., knowing what is
not known, amounts to a simple search in the KB for a given formula. More generally,
the ability to make assertions about the contents of the KB (such as what it does not
contain), or about particular beliefs (e.g., that they are suspect) is the first necessary
step to being able to reason not just with, but about one’s own knowledge. This is
crucial to dealing with the mismatch problem, for when dealing with language and
meaning it is often necessary to recognize and represent the difference between the
form and the meaning of an expression [10], for instance to assert that two words
mean the same thing, or that one doesn’t know the meaning of a given expression.

These temporal and metacognitive aspects make active logic systems more flex-
ible than traditional AT systems and therefore more suitable for reasoning in noisy,
dynamic and inconsistent environments, and thus it has proved a very good basis for
the development of MCL.

4 From active logic to MCL

Some years ago it was a popular notion that there were two major competing Al
methodologies: the “neat” and the “scruffy”, representing—roughly and respectively—
symbol-laden software (with a relatively clear semantics) and adaptive software (that
could be tweaked until it “worked”). For instance, one important “scruffy” approach,
on which we hope to improve, is Brooks’ behavior-based robotics [14, 16]. Brooks
suggests that sophisticated robotic intelligence can and should be built through the
incremental addition of individual layers of situation-specific control systems. The
only direct interaction between layers is through the suppression or activation of cer-
tain pathways (in rough analogy to the workings of neural systems). However, all
layers have access to inputs from perception (although they respond only to those
elements to which they are specifically attuned) and can control certain aspects of
the robot’s behavior, which offers a great deal of indirect, environmentally mediated
interaction between the layers. Although we agree that an architecture of this sort

can provide fast and fluid reactions in real-world situations, we cannot accept Brooks’
claim [17, 15] that such an approach can ever achieve the flexibility and robustness
of human intelligence (for some arguments to this effect see, e.g. [33, 4]). For that,
in addition to “scruffy” systems providing fast and fluid reactions, there must be
“neat” systems supporting both deliberation and re-consideration, which we have ar-
gued calls for symbolic reasoning and (most importantly) meta-reasoning, capable of
self-monitoring and self-correction [6, 11, 19, 47]. That is to say, we think that a fast,
fluid and flexible—i.e., non-brittle—real-world system can be achieved by adding a
layer of symbolic (meta-)reasoning on top of adaptive control layers, and allowing it
not just to suppress the adaptive layers, but also to re-train them when necessary.

Of course, the basic idea of combining “neat” and “scruffy” approaches is not new,
but while it has long been recognized that both methodologies are important and
need to be combined, efforts along those lines to date (e.g., Ron Sun [56, 61, 55, 54],
Ofer Melnik and Jordan Pollock [37], and Gary Marcus [34]) have—in our view—
overlooked the most exciting advantage to be gained from a proper joining. Our
contention is that a triadic architecture will be able to cut through the brittleness
barrier, which, as we asserted above, is perhaps the single most pervasive problem in
AT research. Our suggested triad is comprised of (1) trainer module(s), (2) trainable
modules (many of which may perform symbolic/reasoning computations), and (3) an
oversight module that executes the metacognitive loop (MCL). Note that symbolic
modules may be in as much need of re-tuning as may traditionally adaptive modules;
and conversely, symbolic processing may be critical in the effective adaptation of the
latter. Thus we postulate the special (symbolic) MCL module that oversees both
of these. Consequently, in our approach there is less distinction between symbolic
and adaptive modules; (almost) everything may adapt via MCL (executed by an
exceptional non-adaptive module).”

Traditional View MCL View

Trainer Inference Oversight (MCL)
Modules Engine Module

- 777 -

Trainable Knowledge Trainer Trainable
Modules Base Modules Modules

Traditional and
Symbolic/Inferential

Figure 1: Traditional and Triadic-MCL views of the relationship between symbolic
and adaptive processing.

In traditional work, adaptive and symbolic processing were not brought together,
or if so then usually only peripherally; in rare exceptions the symbolic aspects were put

9The possibility of letting the MCL module itself be trained for improvement is intriguing; however
it is beyond the scope of this paper.

into the adaptive portion, but only to show out that symbols, too, can be implemented
in (say) distributed ways, as they presumably are in the brain. But in the proposed
view MCL decides when a trainer should initiate (or stop) adaptation in another
trainable (whether symbolic or not) module, and MCL may also, if the matter is
simple enough, carry out the adaptation directly. MCL may even decide that a new
trainable module is to be created, if existing ones do not seem close to being able to
address the issue at hand.

As mentioned already above, active logic has the necessary features—most impor-
tantly time sensitivity and contradiction-tolerance—to implement MCL in real-world
systems. The overall idea is as follows: Errors (contradictions, typos, mismatches
between world and word, missed deadlines, etc.) and other kinds of perturbations
occur. How does one detect and reason about such perturbations? As we have de-
fined the terms, a perturbation will cause an anomaly, that is, a deviation from the
expected performance of the system. Thus, we have found in our work to date, e.g.,
see [50, 46, 58, 7] that a very wide range of anomalies are readily expressed in terms
of contradictions. This is quite clear in some cases, e.g., when two normally trusted
sources report conflicting data. But it also seems to work well in others, such as
Expected(A) and Observed(—A), as long as the expectation has led A to be asserted
into the KB, so that the observation of —=A contradicts it.'® Thus MCL crucially
involves the generation of expectations for performance, as well as for the outcomes
of specific actions, and the continual monitoring of the KB for contradictory pairs.

For a simple illustration, consider our lunch example from the perspective of person
B, already waiting at the restaurant. Person B expects to meet person A at 12:00;
but let us suppose that person A is late. We might get a series of inferences like the
following:!!

11:59 : Now(11:59), —~See(A

), Expect(See(A), 12:00),

(Expect(x,t) & Now(t
A
(

)) — Assert(x)

), Expect(See(A), 12:00),
)) — Assert(x)
)
)
);

12:00 : Now(12:00), —See(
(Expect(x,t) & Now(t
12:01 : Now(12:01), —See(A
Example 7 (Expect(x,t) & Now(t
12:02 : Now(12:02), —See(A), Expect(See(A), 12:00),
(Expect(x,t) & Now(t)) — Assert(x), See(A)
12:03 : Now(12:03), Expect(See(A), 12:00),
(Expect(x,t) & Now(t)) — Assert(x)
Contra(12:02, See(A),—See(A))

, Expect(See(A), 12:00),
) — Assert(x), Assert(See(A))

9

When person A doesn’t show up on time, this generates an anomaly, in the form
of a contradiction. Once such an anomaly is detected, it is compared to a stored

10This is akin to McCarthy’s use of abnormalities [35]. However, while that approach can lead to
thorny problems requiring prioritized circumscription in more traditional settings, for us the real-
time character of active logic allows the system the freedom to eventually decide to ignore such
complex cases if they are not resolved easily. Thus a key notion for us is that such rather shallow
inferences are sufficient for MCL to greatly improve overall performance.

11n this example, negSee(A) would be put into the KB from the perception system. While one
does not necessarily want the default operation of the perceptual system to be to continually assert
everything it does not see, it can be useful to specifically assert that one doesn’t see something one
is actively looking for.

(but dynamically changing, as learning proceeds) list of anomaly-types. A match
then provides access to a second list (again changeable) of options for dealing with
(repairing) that type. A choice is made among these (e.g., based on time and other
factors). If no match is found, a fall-back option is used (ask for help, trial-and-error,
put on hold, give up, ignore). In the current case, person B might note that the
anomaly is a missed appointment, and pick the first option there, namely Phone(A).

After an option is chosen, MCL attempts to guide it into place (“make it so”). In
some cases this is easy and MCL can carry out the entire repair, e.g., inserting a new
belief into the KB, if that is the repair. Other cases may not be so easy, e.g., it may
be necessary to call an external process (as in the above case of making a phone call),
or even to retrain a module, such as memory retrieval, or a neural net that controls
locomotion, or ask for advice about a possible new category and await the response
(for further examples anomalies, and discussion of response options, see sections 5
and 6, below).

MCL must be kept simple and fast; it is not aimed at clever tricks or deep rea-
soning. This is important, so that the system (and MCL in particular) does not
get bogged down in its own efforts. As pointed out earlier, if it takes too long on
something, it must notice that and make a decision as to whether to give up on it, or
try another tack. Active logic was designed with this general kind of time-sensitive
capability in mind, and has been successfully applied to similar situations before (e.g.,
deadline-coupled planning, mentioned above).

Moreover—and crucially—active logic provides a mechanism to note and forestall
“bogging-down”. That is, suppose MCL happens to encounter more and more anoma-
lies (perhaps generated as recursive calls to its guiding step (iii), if that guidance is
getting nowhere). Then the passage of sufficient time with no noted progress on a
given goal will itself trigger an anomaly that will force a resolution of work on that
goal, either to abandon it, postpone it, or seek help. The “sufficient” amount of time
can even be reset by the logic, given data on the relative importance of progress toward
goals. This is one important advantage that time-tracking meta-reasoning has over
other approaches to meta-reasoning, such as [53], that assume that meta-reasoning
will take little time, and thus have no built-in mechanism for handling situations when
that assumption is violated.

Several studies of ours illustrate the benefits of meta-reasoning and metacognitive
monitoring in improving overall system performance, and decreasing brittleness, both
in the case where the system consists entirely of symbolic reasoners and in the case
where a symbolic meta-reasoner monitors and corrects a neural net or a reinforcement
learner.'? In the next section, we will outline the results from a few of those projects,
after which we will discuss where future work might be directed.

5 Implemented MCL systems

MCL can enhance performance for two related reasons. First, it can monitor and
influence on-line performance even without making any basic changes or improvements
to action-producing or decision-making components. An example of this would be

128ee, for instance, [50, 51, 6, 19, 11, 46, 28, 9]; most of these have used active logic to provide the
reasoning and meta-reasoning component of the overall system.

10

noticing that progress on a task has stopped (i.e. that the system is “stuck”) and
directing specific efforts to getting “un-stuck”, or simply moving on to a different task.
Second, and more powerfully, MCL can direct the system to actively learn something
that it (apparently) doesn’t know, or has gotten wrong. Since there is evidently a great
deal that can be learned, depending on the system and the scenario, MCL in this guise
is best understood as a principled method of organizing and controlling learning—
deciding whether to learn, what to learn, with what methods, and (importantly)
when to stop. An example of this latter ability would be noticing that a problem
in processing a given user command appears to be caused by ignorance of a certain
word, and taking steps to learn the unknown word.

Both of these abilities are crucial to improving the perturbation tolerance of a given
system, and they generally work in concert. Thus, for instance, we have shown that
an MCL-enhanced reinforcement learner can—by choosing when to ignore anomalies,
when to make minor on-line adjustments, and when to order re-learning of its action
policy—always perform at least as well as, and in many cases significantly out-perform,
a standard reinforcement learner when operating in a changing world.

5.1 MCL-enhanced reinforcement learning

In a simple demonstration of this idea, we built a standard reinforcement learner (we
tested Q-learning [59, 60], SARSA [57] and Prioritized Sweeping [40]), and placed it
in an 8x8 world with two rewards—reward 1 (rl) in square (1,1) and reward 2 (r2)
in square (8,8). The learner was allowed to take 10,000 actions in this initial world,
which was enough in all cases to establish a very good albeit non-optimal policy. In
turn 10,001, the values of the rewards were abruptly changed. See [9] for a complete
account of the experimental design and results.

We found that the perturbation tolerance (i.e. the post-perturbation performance)
of standard reinforcement learners was negatively correlated to the degree of the
perturbation—the bigger the change, the worse they did. However, even a simple (and
somewhat stupid) MCL-enhancement, that did no more than generate and monitor
expectations for performance (average reward per turn, average time between rewards,
and amount of reward in each state) and re-learn its entire policy whenever its ex-
pectations were violated three times, outperformed standard reinforcement learning
in the case of high-degree perturbations. And, as already mentioned, a somewhat
smarter MCL-enhancement, that chose between the available methods of doing noth-
ing, making an on-line adjustment, and re-learning its policy, in light of its assessment
of the anomalies, performed best overall, (see figure 2, “sophisticated-MCL”), despite
some under-performance of this version of MCL in response to mid-range perturba-
tions.

In a manner not too different from that illustrated in example 7, sophisticated-
MCL generates and records expectations, based on ongoing experience, for the average
reward it will get per turn, average time between rewards, and the amount of reward
expected in each system state. When its experience deviates from these expectations,
it uses the anomalies to determine whether, how, and to what degree the world has
changed. Thus, for instance, in the case of an anomaly such as an increased time to
reward, its initial assumption is that a local problem in the action policy was causing
the system to “cycle” between states (i.e. that it was stuck), and its response is to

11

0.7 T

non-MbL —_—
sensitive-MCL ---+---
sophisticated-MCL ------
0.6 |- s |
A o
T . S SEH SO e
N
T <
04 1 |
03 VX” |
0.2 |
0.1 L) ‘ ‘ ‘ ‘ |
0 1 2 3 4 5 s . .

Figure 2: Post-perturbation performance of standard Q-learning, sensitive-MCL and
sophisticated-MCL, as a function of degree of perturbation.

temporarily increase the exploration factor so as to break out of the cycle. However,
it continues to monitor the situation, and if this does not solve the problem, or if
this anomaly occurs along with significant violations of its expectations for the values
of rewards, then the system decides that the world had changed significantly, and,
rather than continue to make small on-line adjustments, it orders its action policy to
be re-learned.

5.2 MCL-enhanced navigation

Another agent that we have been developing uses a neural net for navigation; however
it also has a monitoring component that notices when navigational failures (such as
collisions) take place, and records these and their circumstances. It is then able to
use this information to assess the failures and make targeted changes to the neural
net, including starting with a different set of weights, or re-training on a specific set
of inputs. The agent exhibits better behavior while training, and also learns more
quickly to navigate effectively [28].

Although both the above systems are relatively simple, they do illustrate the ways
in which self-monitoring and control can help systems maintain performance in the
face of changes, and, more particularly, they demonstrate cooperation between the
ability to initiate new actions, and the ability to initiate new learning. Still, one has to
expect that as the scenarios, and the systems themselves, become more complex, more
sophisticated and expressive reasoning mechanisms will be required to usefully assess
and appropriately respond to anomalies. Thus we turn in our final example to the
very representation-rich and difficult domain of natural-language human-computer
interaction.

12

5.3 MCL-enhanced human-computer dialog

One of the most important application areas for active logic has been natural language
human-computer interaction (HCI). Natural language is complex and ambiguous, and
communication for this reason always contains an element of uncertainty. To manage
this uncertainty, human dialog partners continually monitor the conversation, their
own comprehension, and the apparent comprehension of their interlocutor. Both
partners elicit and provide feedback as the conversation continues, and make conver-
sational adjustments as necessary. The feedback might be as simple as “Got it?”,
eliciting a simple “yes”, or as complex as “Wait. I don’t think I understand the con-
cept of hidden variables”, which could result in a long digression. We contend that
the ability to engage in such meta-language, and to use the results of meta-dialogic
interactions to help understand otherwise problematic utterances, is the source of
much of the flexibility displayed by human conversation [47]. Although there are
other ways of managing uncertainty (and other types of uncertainty to be managed),
we have demonstrated improved performance can be achieved by enhancing existing
HCT systems with the ability to engage in meta-reasoning and meta-dialog.

One earlier achievement was the design and implementation of a model of action-
directive exchanges (task oriented requests) based on the active logic model of infer-
ence. Our model works via a step-wise transformation of the literal request made by
a user (e.g. “Send the Boston train to New York”) into a specific request for an action
that can be performed by the system or domain. In the case of ‘the Boston train’,
the system we have implemented is able to interpret this as ‘the train in Boston’,
and then further disambiguate this into a specific train currently at Boston station,
which it will send to New York. Information about each step in the transformation
is maintained, to accommodate any repairs that might be required in the case of
negative feedback (if for instance, the system picks the wrong train, and the user
says “No” in response to the action). This implementation represents an advance not
just in its ability to reason initially about the user’s intention (e.g., by ‘the Boston
train’ the user means . . .) but in its ability to respond in a context-sensitive way
to post-action user feedback, and use that feedback to aid in the interpretation of
the user’s original and future intentions. For instance, in one specific case tested, the
user says “Send the Boston train to New York” and then, after the system chooses
and moves a train, says “No, send the Boston train to New York”. Such an exchange
might occur if there is more than one train at Boston station, and the system chose
a train other than the one the user meant. Whereas the original TRAINS-96 dialog
system [3] would respond to this apparently contradictory sequence of commands by
sending the very same train, our enhanced HCI system notes the contradiction, and,
by assessing the problem, identifies a possible mistake in its choice of referent for ‘the
Boston train’. Thus, the enhanced system will choose a different train the second
time around, or if there are no other trains in Boston, it will ask the user to specify
the train by name. The details of the implementation, as well as a specific account of
the reasoning required for each of these steps, can be found in [58].

A more recent advance we have made along these lines, in a system we call AL-
FRED!3, was to enhance the ability of our HCI system to more accurately assess
the nature of dialog problems, and to engage in meta-dialog with the user to help

13 Active Logic For Reason Enhanced Dialog

13

resolve the problem. For instance, if the user says “Send the Metro to Boston”, the
original system would have responded with the unhelpful fact that it was unable to
process this request. Our system, in contrast, notices that it doesn’t know the word
‘Metro’, and will instead request specific help from the user, saying: “I don’t know
the word ‘Metro’. What does ‘Metro” mean?” Once the user tells the system that
‘Metro’ is another word for ‘Metroliner’, it is able to correctly implement the user’s
request [8, 7, 29]. It can use these same methods to learn new commands, so long as
the new command can be explained in terms of (including being compounded from)
commands it already knows.

Two key features that support these behaviors are a rule for detecting contradic-
tions (which is a standard feature of active logic), and the ability to set and monitor
expectations. If the agent notices that an expectation has not been achieved, this
causes the agent assess the problem and consider the different options it has to fix
it. This includes the detection of time-related anomalies, which are especially im-
portant to HCI. For instance, if the user does not respond to a system query with
in the expected time limit, then the system recognizes that there is a problem. In
this case, the different options that it has to deal with the problem are (a) to repeat
the query, (b) to find out from the user whether everything is OK, and (c) to stop
expecting a response from the user. The current system initially tries repeating the
query. However, continuous repetition of the query without a response from the user
indicates a continuing problem (for recall that part of MCL is to monitor the progress
of solutions), and causes a re-evaluation of the possible response options. In this case
the system would ask the user whether everything is OK. If there is still no response
from the user, the system will drop its expectation about getting a response from the
user in the near future.

Equally important to the above abilities, however, is an enhancement to AL-
FRED’s representational scheme allowing it to differentially represent the various
aspects of words and language, e.g. extension (reference), intension (concept), or-
thographic form (spelling), and the like. This gives ALFRED the flexibility and
expressive power to come to meta-level conclusions, such as that two different words
(different orthographic forms) have the same referent, or vice-versa, or that it doesn’t
know anything about a given word but its orthographic form, and so must learn more
about it.

6 Future work

Each of the systems described above relies for its robust behavior on the relatively
simple expedient of generating, and monitoring for violations of, expectations for
overall performance, and for the outcome of each action taken. As we have already
shown, immediate performance improvements can be expected in virtue of this step
alone, if only by allowing systems to notice when something is going very wrong
and stop (or do something else). Indeed, it has been suggested to us that the MCL
approach—and, more generally, the design of systems able to generate and monitor
expectations for their own performance—will allow more problems to be caught at
the design stage, as careful thought must be given to what, exactly, the system should
expect in each system state. However, clearly the most powerful and promising aspect
of the research lies in the further steps of allowing the system to assess the anomalies

14

and guide into place a targeted response, one that can include self-directed active
learning.

This suggests three major research questions, roughly corresponding to the three
stages, note-assess-guide, of the MCL paradigm.

1. What kinds of expectations, at what levels of the system architecture, are most
important to track, and how should these be represented so as to make anomalies
readily noted? More generally: how much, and what kind of self-knowledge,
represented in what form, is required to support the abilities envisioned? In our
work on reinforcement learning, for instance, we found that average reward per
turn was not a particularly useful metric, but that time between rewards was
an extremely important indicator of on-line performance.

2. What methods might be used to accurately assess anomalies, as part of the effort
to decide upon an appropriate response? In partial answer to this question, we
have been developing a general typology of contradictions [46], but there are
also likely to be important situation- and architecture-specific indicators that
need to be identified. Thus, for instance, in the reinforcement learning work, it
was discovered that valence changes in the rewards was a good indicator of the
need to re-learn the action policy.

3. What strategies are most effective for guiding responses into place? Here again,
there are likely to be some generic and/or fall-back strategies useful in very many
situations (e.g. get more information, ask for help, move on to a different task),
and also some situation- and architecture-specific responses, including various
kinds of learning. With respect to reinforcement learning, we are investigating
the efficacy of such methods as self-shaping (having the system define a shaping
function in light of its partial knowledge of its new environment) and directed
exploration. More generally, we are exploring such methods to improve learning
as mistake-driven boosting and dynamic alteration of bias.

6.1 A near-term project for MCL

These research questions are, of course, very broad, and could be pursued in any
number of ways. To make the discussion more concrete, and also as a way of explain-
ing our particular research agenda, let us imagine an autonomous search-and-rescue
vehicle, that could enter an unknown structure, traverse it, find all the people inside,
and, where necessary, return to specific individuals with items such as food, water,
and the like—a kind of Autonomous, Urban, St. Bernard (AUSB). Even putting
aside some of the difficult physical challenges presented by such a domain (climbing
over rubble, or up and down stairs and steep inclines), there is plenty of opportunity
for environmental and system perturbation: passageways can become blocked, people
can move, apparent survivors can perish, and apparent casualties can turn out to be
alive, lighting and visibility conditions can change (over time, and in different parts
of the structure), and the AUSB itself can become damaged (e.g. by falling debris,
fire or water) and need to adjust accordingly.

Naturally, of primary concern for such a system would be implementing robust and
flexible navigation and mapping abilities, and there are many standard approaches

15

to this problem. How would the MCL approach be different from, or improve upon
any of these? Well, one generally recognized drawback of the standard approaches
to, for instance, obstacle detection and avoidance is that they are generally tuned to
detect and react to specific kinds of obstacles—i.e. things that look a specific way to
their sensors. Our approach, in contrast, is to enhance the standard methods with
MCL, consistently comparing expectations for performance, based on how things look
to the system, with actual performance. Divergence of the two—as would occur, for
instance, in the case where no progress is being made even though the sonar indicates
no obstacles, or when a previously developed map indicates a passageway where there
is now an obstacle—would trigger appropriate recovery procedures. The immediate
benefit would be a building-navigating robot that would flexibly respond to changes in
its environment, and never get permanently stuck—at least to the extent that it would
notice if it were stuck, or going in unintended circles, and initiate a recovery-response
process.

Another necessary feature for such a system would be person-detection capabili-
ties. Here again, the advantage that MCL would provide to such a system is not a new
and better technique for detecting people, but rather a method for best taking advan-
tage of current capabilities. For consider that it is unlikely that all person-detecting
techniques are equally useful in all situations, and also unlikely that one can know
with certainty, in advance, which ones will work better when. So, for instance, in
an extremely dusty environment, heat signatures may reveal people even though the
vision system is confounded; likewise, in a fire, heat signatures may be less useful than
vision, and both less useful than voice-detection. A system which notices the fact that
it is getting detections on some systems and not others, combined with the fact that
some systems don’t seem to be operating according to expected norms in general, can
decide to rely more on some systems than others. The immediate advantage would
be an AUSB that flexibly adapts to the situation, dynamically choosing the detection
techniques that appear to be most effective in its current circumstances, in light of
its assessment of anomalies in sensor performance.

Finally, what if the AUSB were equipped with self-guided re-training mechanisms
for its learning components, including the pattern-recognition elements of the vision
system, and the obstacle-detection and avoidance elements of the navigational sys-
tem? If the AUSB has to consistently operate under conditions that are not conducive
to adequate performance, or if the conditions fluctuate, its systems may have to be
re-trained for these new conditions. The system would notice poor performance (and,
not incidentally, notice under what conditions it performed poorly, and under what
conditions it performed well, which could be important for quick adaptation later on,
by quickly switching to a previously learned policy if previously experienced conditions
recur) and recalibrate or retrain until performance achieved acceptable levels. How?
In addition to the techniques we have implemented already for reinforcement learning
and neural-net re-training, we intend to explore the usefulness of boosting and dy-
namic alteration of bias—and there are, no doubt, many other possibilities to explore.
Here the main advantage would be that online autonomous real-time decisions could
be made about which kind of learning to guide into place, even when human inputs
are not always readily available, as in the case of Mars rovers, undersea exploration,
and battlefield reconnaissance. Thus not only will behavioral improvements occur but
behavior-improving strategies can be developed autonomously.

16

6.2 Long-term vision

The example of the AUSB shows how MCL can enhance relatively standard systems,
making them more robust and flexible. But it could also be argued that something
like MCL, and the metacognitive awareness it implements, is required for more so-
phisticated cognitive adjustments. Thus, imagine that the robot MarSciE!* is roving
the surface of Mars. She is designed to move slowly about the Martian surface, tak-
ing and testing samples as she goes. The most exiting possible discovery, of course,
would be to find signs of life, and for this she has modules for detecting amino acids
and other likely organic compounds. However, her more mundane, primary task is
to analyze and classify the types of rocks she comes across, to help scientists better
understand Mars’ geologic history, and the forces that continue to shape the surface of
the planet. She worked very well at NASA’s desert test site, classifying rock samples
of the sort expected to be found on Mars with over 90% accuracy. But since getting
to Mars she has had little to report. The samples she is finding don’t seem to fit
into the categories with which she has been equipped, and nearly everything is being
classified as “unknown”. It is obvious that there is some kind of problem—obvious,
that is, to us, but not to MarSciE, who is operating exactly as designed. With no
human scientist on site to assess the problem and perhaps re-train MarSciE, the Mars
geologic mission is likely to fail.

Solving MarSciE’s problem is somewhat complicated, and will surely require the
help of scientists back on Earth. That is to be expected; after all, even a human
scientist, faced with the unexpected, may well ask for advice. But consider how much
could be accomplished by MarSciE on her own, if only she were equipped with MCL.
First, just noticing there is a potential problem with her mineral classification modules
is a big step, for this could trigger an automatic system check: she takes rocks of known
classification, and analyzes them. The results come back 100% correct. Whatever the
problem is, it isn’t with the operation or accuracy of those routines. This opens
the possibility that the problem lies in a mis-match between MarSciE’s classification
scheme and Mars’ rocks. Assessing her options at this point, MarSciE knows she can
ask for advice, but she can also try to see if there are any obvious patterns in the data
she has so far collected. Since Earth is at this point 22 light-minutes away, making
communication slow and difficult, she decides to see what she can learn on her own.
Analyzing the information from the “unknown” samples she has collected, she finds
they fall into 4 natural categories. Now she is ready for advice. She sends all this
data back to Earth and waits.

It turns out that MarSciE’s time was well-spent. The rocks in one of MarSciE’s
categories do not correspond to anything known by the scientists. They appear to
be a kind of granite-like igneous rock of surprising composition, which they name
Gr-Mla. If the classification holds up it could be an important find. The three
remaining categories she identified corresponded to known types of rock, which were
not expected to be in the part of Mars MarSciE is exploring (thus suggesting a rather
different geologic history for the area). However, of these three categories, two actually
correspond to the same kind of schist. Thus, in light of these findings, the advice she
receives is three-fold: first, collapse two of the categories of rock she identified into
one. Second, she is to retrain on her samples until she classifies them according to

1AM ARs SClentific Explorer, pronounced “Marcie”

17

these three new categories (which provisionally appear to be genuine). Third, once
she gathers many more examples of Gr-M1a, she is to carefully analyze that category
to see if it can either be sub-divided, or merged with any of her other currently known
types. As it turns out, the new rock type survives scrutiny, and in honor of MarSciE’s
role in the discovery, the new rock is named Marcyite. MarSciE duly learns this new
name, and classifies her samples accordingly.

It seems fairly clear that autonomous robots with MarSciE’s capabilities would
be extremely useful; it is also clear that they are beyond the current state of the
art. However, we would like to suggest that they are not so far beyond the state
of the art that it would be impossible to discuss concrete plans for building such
a system. For much of what MarSciE needs to be able to do can be done using
current technology, or perhaps current technology slightly improved: e.g., she needs
to be able to learn categories, and use them in sorting objects according to sensory
input, and she needs to be able to take and use advice. Both of these capabilities
exist in current systems. What we are suggesting is the primary difference between
current systems and a system like MarSciE is the way these components are organized
in, and controlled by the system itself. First there is the simple fact that MarSciE
is monitoring her own performance, and comparing it with expectations. This, of
course, is simple, and not especially novel. Second is the fact that the system can
consider the possibility not just that a given system is malfunctioning, but that its
representational scheme is somehow inappropriate to the current circumstances. This
latter ability is the key metacognitive enhancement in MarSciE that drives the mental
flexibility that she displays; MarSciE knows or somehow represents the fact that she
is using concepts and categories, that these concepts may or may not be the most
appropriate for a given task, and, most importantly, that they may be changed as a
way of possibly improving performance. As mentioned above, we have taken some
steps in this direction with ALFRED, but much more work needs to be done on the
question of what kinds of representations, coupled with what kinds of reasoning and
self-monitoring, are required to support MarSciE’s abilities.

More ambitious still is a system we call GePurS'®. GePurS is used in many do-
mains, so his knowledge base gets very large and complex, with a great deal of knowl-
edge that is at any given moment irrelevant to his current domain. Moreover, many
domains require different ontologies and KR schemes, and in some cases the mis-
matches are quite significant. All this slows him down, sometimes so much so that he
becomes ineffective—and without MCL he cannot notice his own slowdown, let alone
fix it. A programmer has to reorganize the KB, with a working memory (STM) and a
long-term store (LTM), as well as retrieval mechanisms; and make sure that the infor-
mation is complaint with the KR scheme appropriate to the intended domain—and
then reprogram it again later on when another domain change affects which stored
beliefs are relevant, and which ontology is most appropriate.

Here again, we think that the ideal situation is one in which the system itself can
notice the domain shifts, or the performance problems that accompany them, and
make the necessary adjustments to its systems to cope with each new environment.
This will require an even greater degree of self-awareness and self-control than Mar-
SciE had, for whereas she needed to know she was using concepts that can be changed,
since GePurS may need to periodically change the way he organizes and utilizes his

15GEneral-PURpose Scout, pronounced “Jeepers”

18

own KB (including memory, as well as how he treats his own sensor data), he will
need to represent these facts about himself, and have mechanisms whereby they can
be dynamically altered. This goes far beyond changing one’s individual concepts, for
it can entail not just the shifting of particular items to and from different memory
stores, but even the dynamic adoption and adaptation of different ontologies and KR
schemes as the domain and necessity dictate.

This would represent a fundamental shift in how KR is currently developed and
implemented in intelligent systems: instead of requiring a developer (or, more often, a
large team of developers) to get the KR right from the beginning, and then imposing
the inflexible scheme on the system, we imagine a process much more similar to
teaching a child a language, or training a new employee in the operation of a complex
system. Although in these cases the expert trainer may have a detailed and largely
stable ontology and KR scheme, the trainee has at best an approximation of this
ideal. However, through experience, self-monitoring, recognizing and fixing mistakes,
and advice from the trainer, the trainee will come successively closer to an identical,
or at least an equally workable, KR scheme.

There are two attributes of such a trainee that are worth trying to reproduce in
autonomous systems. The first, and most obvious, is the ability for learning and self-
improvement. This requires all the elements of MCL: self-monitoring, the recognition
of mistakes and other problems, and the ability to make changes to address these
problems. However, equally important, and resting on the very same foundations,
is the fact that during the training problems don’t (entirely) derail the trainee—
he or she can recognize that there is a problem, and take special steps for dealing
with it, which, although it may slow down the process a great deal, and eventually
result in handing over control to a supervisor, nevertheless does not cause a complete
breakdown. Furthermore, most trainees are smart enough to realize that the concepts
and procedures they are learning at work don’t necessarily apply at home (or, if they
don’t realize this at first, they may come to this conclusion in light of the various
problems that universally using a given scheme can cause). Thus they learn to use
one set of concepts and KR scheme at work, and another at home; and they know
that both can be adapted as the situation dictates. That is, they are not only able to
treat a given KR scheme as flexible, but to flexibly switch between KR schemes, all
the while noticing, and addressing, problems as they arise. This kind of flexibility in
medias res is perhaps the most important immediate benefit of the inclusion of MCL
in a system.

7 Conclusion

We are the first to admit that building MarSciE will be much more difficult than
building the AUSB, and that GePurS is an order of magnitude more complex than
MarSciE; and yet we want to insist that they all lie on the same developmental path,
which necessarily involves the implementation of self-monitoring, self-representation,
and autonomous self-improvement. However, to follow this path will require some
important shifts in how we approach the design and implementation of autonomous,
intelligent systems, and how we divide responsibility for the operation and main-
tenance of the system between the developer and the system itself. This, in turn,
suggests that the most pressing areas for future research in intelligent systems are

19

those revolving around the questions outlined above: by what methods, and with
what amount of detail, should systems represent themselves, and what should they
expect for their own operation; how can the system assess its own failures; what
methods are available for fixing those failures, and when should each be used; and,
finally, what are the architectures that can support these abilities, and what are the
advantages of each.

8 Acknowledgments

This work is supported in part by grants from AFOSR and ONR. We would like
to thank Tim Oates for many fruitful discussions of these ideas, and Ken Hennacy,
Darsana Josyula and Waiyian Chong for their roles in implementing the systems
described herein.

References

[1] Logical formalizations and commonsense reasoning, 2004. Special issue of AlJ,
edited by Ernest Davis and Leora Morgenstern.

[2] James F. Allen and George Ferguson. Actions and Events in Interval Temporal
Logic. Journal of Logic and Computation, 4(5), 1994.

[3] James F. Allen, Bradford W. Miller, Eric K. Ringger, and Teresa Sikorski. A
robust system for natural spoken dialogue. In Proceedings of the 1996 Annual
Meeting of the Association for Computational Linguistics (ACL-96), pages 62—
70, 1996.

[4] Michael L. Anderson. Embodied cognition: A field guide. Artificial Intelligence,
149(1):91-130, 2003.

[6] Michael L. Anderson, Walid Gomaa, John Grant, and Don Perlis. On the rea-
soning of real-word agents: Toward a semantics for active logic, in preparation.

[6] Michael L. Anderson, Darsana Josyula, Yoshi Okamoto, and Don Perlis. Time-
situated agency: Active Logic and intention formation. In Workshop on Cognitive
Agents, 25" German Conference on Artificial Intelligence, 2002.

[7] Michael L. Anderson, Darsana Josyula, and Don Perlis. Talking to computers. In
Proceedings of the Workshop on Mized Initiative Intelligent Systems, IJCAI-03,
2003.

[8] Michael L. Anderson, Darsana Josyula, Don Perlis, and Khemdut Purang. Ac-
tive logic for more effective human-computer interaction and other commonsense
applications. In Proceedings of the Workshop Empirically Successful First-Order
Reasoning, International Joint Conference on Automated Reasoning, 2004.

[9] Michael L. Anderson, Tim Oates, Waiyian Chong, and Don Perlis. Enhancing
reinforcement learning with metacognitive monitoring and control for improved
perturbation tolerance, submitted.

20

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Michael L. Anderson, Yoshi Okamoto, Darsana Josyula, and Don Perlis. The
use-mention distinction and its importance to HCI. In Proceedings of the Sixth
Workshop on the Semantics and Pragmatics of Dialog, 2002.

Manjit Bhatia, Paul Chi, Waiyian Chong, Darsana P. Josyula, Michael Ander-
son, Yoshi Okamoto, Don Perlis, and K. Purang. Handling uncertainty with
active logic. In Proceedings of the AAAI Fall Symposium on Uncertainty in
Computation, 2001.

Wolfgang Bibel. Let’s plan it deductively. Artificial Intelligence, 103(1-2):183—
208, 1998.

Paul Bloom and Lori Markson. Capacities underlying word learning. Trends in
Cognitive Scienes, 2(2):67-73, 1998.

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2:14-23, 1986.

R. A. Brooks. Intelligence without reason. In Proceedings of 12th Int. Joint Conf.
on Artificial Intelligence, pages 569-95, 1991.

R. A. Brooks. From earwigs to humans. practice and future of autonomous
agents. Robotics and Autonomous Systems, 20:291-304, 1997.

Rodney Brooks. Intelligence without representation. Artificial Intelligence,
47:139-60, 1991.

F. Brown, editor. The Frame Problem in Artificial Intelligence. Morgan Kauf-
mann, 1987.

Waiyian Chong, Michael O’Donovan-Anderson, Yoshi Okamoto, and Don Perlis.
Seven days in the life of a robotic agent. In Proceedings of the GSFC/JPL
Workshop on Radical Agent Concepts, 2002.

Jon Doyle. A Truth Maintenance System. Artificial Intelligence, 12(3):231-272,
1979.

Jon Doyle. A Model for Deliberation, Action, and Introspection. PhD thesis,
Massachusetts Institute of Technology, 1980.

J. Elgot-Drapkin and D. Perlis. Reasoning situated in time I: Basic concepts.
Journal of Experimental and Theoretical Artificial Intelligence, 2(1):75-98, 1990.

Dov M. Gabbay and John Woods. Agenda Relevance: A Study in Formal Prag-
matics. North-Holland, 2003.

M. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan Kaufmann,
1987.

P. Gardenfors. Knowledge in Fluz: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge, MA, 1988.

21

[26]

[27]

Peter Gérdenfors. Belief Revision. Cambridge University Press, Cambridge,
1992.

Peter Géardenfors and Hans Rott. Belief revision. In Dov M. Gabbay, Christo-
pher J. Hogger, and John A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume IV, pages 35-132. Oxford University
Press, 1995.

Ken Hennacy, Nikil Swamy, and Don Perlis. RGL study in a hybrid real-time
system. In Proceedings of the IASTED NCI, 2003.

Darsana Josyula, Michael L. Anderson, and Don Perlis. Towards domain-
independent, task-oriented, conversational adequacy. In Proceedings of IJCAI-
2003 Intelligent Systems Demonstrations, pages 1637-8, 2003.

H.H. Kendler and T.S. Kendler. Vertical and horizontal processes in problem
solving. Psychological Review, 69:1-16, 1962.

H.H. Kendler and T.S. Kendler. Reversal-shift behavior: Some basic issues.
Psychological Bulletin, 72:229-32, 1969.

Hesham Khalil. Logical Foundations of Default Reasoning. PhD thesis, University
of Leipsig, Leipzig, Germany, 2002.

David Kirsh. Today the earwig, tomorrow man? Artificial Intelligence,
47(3):161-184, 1991.

G. F. Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive
Science. MIT Press, 2001.

J. McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artificial Intelligence, 28(1):89-116, 1986.

J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence,
volume 4, pages 463-502. Edinburgh University Press, 1969.

O. Melnik and J.B. Pollack. Theory and scope of exact representation extraction
from feed-forward networks. Cognitive Systems Research, 3(2), 2002.

M. Miller. A View of One’s Past and Other Aspects of Reasoned Change in
Belief. PhD thesis, Department of Computer Science, University of Maryland,
College Park, Maryland, 1993.

M. Miller and D. Perlis. Presentations and this and that: logic in action. In Pro-
ceedings of the 15th Annual Conference of the Cognitive Science Society, Boulder,
Colorado, 1993.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Rein-
forcement learning with less data and less time. Machine Learning, 13:103-130,
1993.

22

[41]

[42]

[43]

T. O. Nelson. Consciousness and metacognition. American Psychologist, 51:102—
16, 1996.

T. O. Nelson and J. Dunlosky. Norms of paired-associate recall during multitrial
learning of swahili-english translation equivalents. Memory, 2:325-35, 1994.

T. O. Nelson, J. Dunlosky, A. Graf, and L. Narens. Utilization of metacognitive
judgments in the allocation of study during multitrial learning. Psychological
Science, 4:207-13, 1994.

M. Nirkhe, S. Kraus, M. Miller, and D. Perlis. How to (plan to) meet a deadline
between now and then. Journal of logic computation, 7(1):109-156, 1997.

D. Perlis. On the consistency of commonsense reasoning. Computational Intelli-
gence, 2:180-190, 1986.

D. Perlis. Sources of, and exploiting, inconsistency: Preliminary report. Journal
of APPLIED NON-CLASSICAL LOGICS, 7, 1997.

D. Perlis, K. Purang, and C. Andersen. Conversational adequacy: mistakes are
the essence. Int. J. Human-Computer Studies, 48:553-575, 1998.

G Priest. Paraconsistent logic. In D. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic, 2ed, pages 287-393. Kluwer Academic Publishers, 2002.

G. Priest, R. Routley, and J. Norman. Paraconsistent Logic: Fssays on the
Inconsistent. Philosophia Verlag, Mnchen, 1989.

K. Purang. Systems that detect and repair their own mistakes. PhD thesis, De-
partment of Computer Science, University of Maryland, College Park, Maryland,
2001.

K. Purang, D. Purushothaman, D. Traum, C. Andersen, D. Traum, and D. Perlis.
Practical reasoning and plan execution with active logic. In Proceedings of the
1JCAT’99 Workshop on Practical Reasoning and Rationality, 1999.

N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, New York, 1971.

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial Intelli-
gence, 49(1-3):361-395, 1991.

R. Sun, T. Peterson, and C. Sessions. The extraction of planning knowledge from
reinforcement learning neural networks. In Proceedings of WIRN 2001, 2001.

Ron Sun. Integrating Rules and Connectionism for Robust Commonsense Rea-
soning. John Wiley and Sons, Inc., New York, 1994.

Ron Sun. Supplementing neural reinforcement learning with symbolic methods.
In S. Wermeter and R. Sun, editors, Hybrid Neural Systems, pages 333-47. Berin:
Springer-Verlag, 2000.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1995.

23

[58]

David R. Traum, Carl F. Andersen, Waiyian Chong, Darsana Josyula, Yoshi
Okamoto, Khemdut Purang, Michael O’Donovan-Anderson, and Don Perlis.
Representations of dialogue state for domain and task independent meta-
dialogue. Electronic Transactions on Artificial Intelligence, 3:125-152, 1999.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279-292,
1992.

S. Wermeter and R. Sun. Hybrid Neural Systems. Springer-Verlag, Heidelberg,
2000.

24

	ap: Michael L. Anderson and Donald R. Perlis Logic, self-awareness and self-improvement: The metacognitive loop and the problem of brittleness. Journal of Logic and Computation 14, 2004 (pre-print).

