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Abstract

We show how the framework of probabilistic abstract interpretation can be applied to stati-
cally analyse a probabilistic version of the A-calculus. The resulting analysis allows for a more
speculative use of its outcomes based on the consideration of statistically defined quantities.
After introducing a linear operator based semantics for our probabilistic A-calculus A,, and
reviewing the framework of abstract interpretation and strictness analysis, we demonstrate
our technique by constructing a probabilistic (first-order) strictness analysis for A,.

1 Introduction

In this paper we aim to show how probabilistic abstract interpretation [12, 13] can
be used to analyse terms in a probabilistic A-calculus. Our running example will be a
simple strictness analysis [18, 2]. This analysis has been used in the non-probabilistic
setting to optimise lazy functional languages by allowing lazy evaluation to be replaced
by eager evaluation without compromising the semantics. We suggest that, in the
probabilistic setting, strictness analysis might be used to perform a more speculative
optimisation which replaces lazy by eager evaluation as long as the risk of introducing
non-termination is sufficiently low.

In order to illustrate how quantitative elements change classical analysis, we will
present an example borrowed from the theory of stochastic processes (see Example 2.1
of [6]), which is related to economics and in particular to risk management. Consider
the situation in which a company starts with initial capital of Cap,, at each time step
its income is In; and its outlay to meet claims is Out;; the sequence of incomes and
outlays are modelled by mutually independent and identically distributed variables.
The fortunes of the company are modelled by a simple random walk with an absorbing
barrier at zero and jumps Step,, = In,, — Out,,:

Cap. — Cap,,_; + Step,, if Cap,,_; > 0 and Cap,,_; + Step,, >0
Pn= 10 otherwise

Thus, at each step the capital of the company changes according to the profit and
losses it makes. Once losses exceed the capital the company will go bankrupt and
remain so from then on.



Qualitatively, we can analyse the random walk and just conclude that Cap ranges
over the interval [0,00); quantitatively, we can ask the more interesting question:
What is the probability of bankruptcy for a given statistical behaviour of claims and
income? Obviously, one can ask similar questions also with respect to computational
processes which in one way or another use limited computational resources.

The probabilistic version of the A-calculus we introduce is the base for the def-
inition of a quantitative approach to a semantics based program analysis. We will
define a probabilistic semantics for the A-calculus which reflects the spirit of the ex-
ample above by associating to a A-program a linear operator specifying the dynamics
of a Markov chain (a generalisation of a random walk). We will then show how this
linear operator semantics can be used to apply probabilistic abstract interpretation
techniques and obtain a quantitative version of the classical strictness analysis of the
A-calculus.

The rest of this paper is organised as follows. We start by introducing the proba-
bilistic A-calculus and its semantics. In the next Section we review the main features
of classical abstract interpretation and show how the framework may be applied to
produce a strictness analysis for a first-order fragment of an applied A-calculus. The
paper [2] shows how these ideas can be extended to the higher-order case. We then
describe probabilistic abstract interpretation [12, 13]. The final main section returns
to the problem of strictness analysis in the probabilistic A-calculus.

2 Probabilistic A-calculus

We introduce a probabilistic version of the untyped A-calculus, that is the formal
theory of functions where each expression can be considered as both a function and
a function argument. This theory can be seen as the simplest programming language
with higher-order objects. An extension of this basic theory with probabilistic features
is at the basis of the quantitative approach to static program analysis we will introduce
in Section 5.

Other works have introduced probabilistic features into the A-calculus, mainly
motivated by the design and implementation of probabilistic languages (see [22] and
[21] for recent examples). In this work, we aim to introduce a probabilistic semantics
for the A-calculus by extending the classical theory with a notion of probabilistic term.
This corresponds essentially to a probability distribution over classical A-terms. We
recall that the set A of classical A-terms, is the set of all expressions generated by the
syntax:

M :=x | Ax.M | MN.

Formally, we define the class, Ap, of probabilistic A-terms as follows. Let x range
over a set Var of variables. Then the class of probabilistic A\-expressions (ranged over
by P) conforms to the syntax:

Pi=z|Xe.P| PP | @, pi: P

We require that for each @-construct the associated p; form a probability distribution,
i.e. p; are real numbers in the interval [0, 1] and they sum up to one! (if the sum is
less or equal to one we will call it a sub-probability distribution).

! Alternatively, one could allow for any p; € [0, co) and statically normalise all p; to p; = p;/ Zj Dj-



Danos and Harmer [8] show that most forms of probabilistic behaviour can be
encoded using a coin flip, i.e. that a binary choice — which we also denote by
P, &, P, instead of (1 —p) : P, @ p: P, — is sufficient. This minimalist programme
however introduces a number of technical complications (such as distributivity in a
nested binary sum) which tend to obfuscate the basic structures. We therefore opted
for an n-ary probabilistic choice.

Example 1 Using the usual representation of integers as Church numerals a simple
example of a term in A, is given by

2 1
(5 c(Azx) @ 3 (A\z.x + 2))3

or equivalently
(A\x.x S Az.(x+x))3

Another probabilistic A-term, which we will use as a running example, is

(Az.0) @1 (Az.2))(L D2 42)

1
2
where L is a constant representing an undefined term.

Clearly, every classical A-term can also be seen as a probabilistic A-term. This can
be interpreted as a probability distribution on A, i.e. a map A — [0, 1] which assigns
1 to term M and 0 to all the other terms.

Although the recursive definition of P makes it not immediately evident, we can
give a similar interpretation to every probabilistic A-term. In fact, we will show how
we can define for each P € A, a probability distribution on A corresponding to a
vector P in the vector space V(A).

The vector space V(X, W) over a set X is the space of formal (potentially infinite)
linear combinations of elements in X with coefficients in some field W (e.g. W =R),
ie.

V(X, W) = {Zcxf | o €W, xeX}.

Thus, we can interpret a probability distribution on A as a vector in V(A) = V(A,R).
Classical terms M € A correspond to the basic vectors of this space, i.e. vectors with
cy =land ey =0 forall N € A, N # M. We will denote such vectors by M.
Any term P € A, corresponds to a linear combination of basic vectors which we will

denote by
P=> pi-M.
i=1

It will be convenient to assume the existence of a (Godel) enumeration of all
classical A-terms, i.e. a function: f. : A — N which is bijective, and its inverse
function b. : N — A.

Then we can denote a probability distribution over the set A of classical A-terms

by >, pi - (i) (or, alternatively as a vector of real numbers (p;);, or as a set of pairs
{(b(4),pi)}i), where p; € [0,1] for all 4 and >, p; = 1; p; is intended to represent the



probability associated to term b(i) € A. It will also be convenient to introduce the
following operations on vector distributions on A:

o (S ) = S )
and

(Zpi']%)@ Z(Ij'ﬁj :Z(pin'MiNj)

,J

Definition 2 The flattened version P of a probabilistic A\-term P € A,, is defined by:

P=x — P=7
P=Xx.P — P=)\z.P
P=PP, — P=P P

pi- b

’ﬂ:ﬂ\

P:épi:ﬂ- —
i=1

i=1

Proposition 3 For all P € A,, P is a probability distribution on A, i.e. P =
> ;pi-Mi, M; € A for all i, and ), p; = 1.

Proof By structural induction and the fact the the two operations Az and ® trans-
form distributions on A into distributions on A. O

Example 4 The flattened version of the second probabilistic A-term in Example 1 is
constructed in the following way:

(A\2.0) &1 (Az.2)) (L @2 42) —
—  ((Az.0) D1 (Az.z)) ® (L D3y 42) —

1 1 1— 33—
— . — . -1 4+ -42
— (2()\300)+2()\xx))®(4 +t1 ) —
11
24
1 1 3 3
= g(x\x.O)J_ + g()\x.x)J_ + g()\a:.O)42 + g(/\x.x)42

11 13 13
0)L+ - x)Ll 4+ == .0)42 + —— x)42) =
(Az.0)L + 24(/\9U x) L+ 24(/\1,‘ 0)42 + 24(/\90 x)42)

We also see that the sum of all probabilities add up to one, i.e. we have indeed a
probability distribution over classical A-terms.

2.1 Probabilistic f-Reduction

The notion of (-reduction expresses the computational aspect of the classical M-
calculus. Informally, it consists in the evaluation of the [-normal form of a term
by means of the application of the g-rule

(Az.M)N —3 M|z := NJ.



If this process is identified with function application in programming languages, then
B-reduction is actually the execution of A-term programs.

For our probabilistic A-calculus, we need a notion of probabilistic 3-reduction which
is able to take into account the different alternatives of a probabilistic choice repre-
sented by a probabilistic A-term. We will introduce two different versions of an oper-
ational semantics for our probabilistic A-calculus: the first one uses distributions over
classical A-terms as operational states and a non-probabilistic transition relation =g
on them which can be seen as a ‘lifting’ of the classical S-reduction —g; the second
one is based on a probabilistic transition relation —P on probabilistic A-terms defined
in the SOS style typically adopted in the semantics of programming languages. We
will then introduce in Section 2.2 a linear representation of the latter semantics in-
spired by the theory of stochastic processes and Markov chains. This will represent
the base of our probabilistic analysis.

All the three semantics give equivalent meanings to probabilistic A-terms although
using different representations which gradually lift the classical semantics of the A-
calculus to a non-standard semantics based on linear operators via an operational
semantics as a kind of halfway house semantics.

2.1.1 Distribution-Based Semantics

Formally, we introduce the probabilistic one-step B-reduction =3 for probabilistic A-
terms as an extension of the classical one-step B-reduction relation — g on the classical
terms A, which we will briefly recall in the following [1, 15].

Definition 5 The binary relation —g on A is defined by:
(Az.M)N —g Mz := N]

M -3 N

MZ —g NZ
M -3 N

ZM —g ZN
M —g N

Az M —g Ax.N

We can now define a g-reduction relation on probabilistic A-terms as a lifting of
the classical one to distributions over classical A-terms.

Definition 6 The binary relation =3 on V(A) is defined by:
M —g N
M =3 N
M 75
M = M
M; =5 N;
D,pi: My =5 P, pi : N;




Classically, we say that term M S-reduces to term N if (M, N) is in the reflexive,
transitive closure, —7%, of —3. Analogously, we define the relation =7} on V(A) as
the reflexive, transitive closure of = 3.

Definition 7 The binary relation =7} on V(A) is defined by:
P=3P

P#gﬁ
F:ﬁ;ﬁ

Pi=s P Pr=p Py
P =5 P

The computational idea behind the classical S-reduction is to calculate for a term
M its B-normal form (if it exists), that is a term N with no sub-expressions of the
form (Az.N’)N"”. In fact, if M has a S-normal form N, then this is unique and
M —7% N (by the Church-Rosser property [1]). Definition 7 implies that for classical
terms we also have that M =5 N holds.

The probabilistic S-reduction allows us to compute g-normal forms for classical
terms together with information on the probability of actually achieving them by
[B-reduction.

Definition 8 A probabilistic A-term P is a probabilistic f-normal form if its flattened
version is a probability distribution on A-terms which are S-normal forms, i.e. P =

Zi pi - N; and N; € A are B-normal forms for all 4.

Intuitively, a probabilistic A-term has a probabilistic S-normal form if and only if
all its possible “branches” reduce to a classical S-normal form (with some probability).
We can show that the uniqueness property of classical S-normal forms still holds for
probabilistic S-normal forms.

Proposition 9 For a probabilistic A-term P there is at most one probabilistic term
Pps such that Pg is a probabilistic f-normal form and P =} Pg.

Proof Consider the flattened form P = Z?:l p; - M; of P with M; € A. Then
M; either has a -normal form N;, i.e. M; —j N;, or diverges in =5 Therefore,

P :% > b -N; = E where the sum is over all ¢ such that M; —>; N; #3. By
Corollary 3.1.13 in [1] the N;’s are unique (if they exist); thus Pg is also unique. O

Example 10 Starting from the flattened version of our running example (see Exam-
ple 4) we get the following reductions

1 1
g()\x.O)J_ + g()xx.x)l_ + %(Ax.0)42 + %()\m.x)éﬂ =3
_ 1 3 3
=3 §0 + g()xx.ac)J_ + g()\x.O)42 + g()\x.x)42 =3
= 16+1I+3(A 0)42+3()\ )42 =
s g0+g g g(ae 3



11— 3~ 3—+——+=
- -1+ —(A\z.x)42
=3 80+8 +80+8(x:c) =3
- 1— 3~ 33—
S0+ -L+-0+-42=
=3 80+ 3 + 80+ 3
= 76+§I+§E

2.1.2 Term-Based Semantics

A more programming language oriented definition of the reduction of probabilistic
A-terms is based on the definition of a probabilistic transition relation —?C A, x
[0,1] x A, on probabilistic A-terms.

Definition 11 The probabilistic transition relation —?C A, x [0,1] x A, is defined
inductively by the following rules:

PP Q-"Q

(app,) PQ =" P'Q
PQ _,(1-r)q PQ/
PPP QA PAY QQ
(appz) PQ D P/Q PQ _q PQ/
(B) (Az.P)Q —' Pz := Q)]
(0) (DBpi: P) =P P,

where P, € A, are probabilistic terms and r € [0, 1] is a parameter representing a
probabilistic scheduler.

The first rule in the above definition states that whenever it is possible to use a
left- or right-most scheduling this will be resolved by a probabilistic choice between
them. The probabilities of choosing one of these will be r and 1 — r respectively.
The second rule covers the case when only one strategy is possible which will then be
applied with probability one. This transition relation —? is parametric in 7 but we
will usually omit this dependency in the notation (cf. Proposition 13).

We write P, —P P, to mean that P; is transformed into P, with probability p in
one step, i.e. by application of one of the above transition rules. We denote by P -/
the fact that there are no probabilistic transitions from P. If the reduction process is
finite, then it terminates with a term which is a A-term or a constant.

Example 12 For our running example, using the short-hand notation

P = (Az.0)@1 (Az.x)
2
Q = L Ds 42

we get the derivations depicted in Figure 1.

The transitive closure —*P of —P is defined in the usual way, but with some
care for the interpretation of the label p; this is calculated by taking the product of



3r Fa-n
3 J(1=m)

(Az.0)Q (Az.x) P42
e e NN
L(-r) 2(1-r)
T[Az.0)L (Az.0)42 T(Az.z)L  (Az.x)d2  (Az.0)L (Az.z)Ll (Az.0)42 (Az.z)42
0 0 0 Q L 42 0 1 0 42

Figure 1: Derivations of ((Az.0) @1 (Az.x))(L &2 42)

1
2

probabilities along the paths and then summing up the probabilities along different
paths which reach the same probabilistic A-term (see e.g. [10]).

In the example above there are three paths leading from PQ to L with probability
grorer =4t (1) 1= 77'(1 r) and 1(1 77“) L= 7(1 1), respectively.
Thus we have PQ —*7 L with p = ¢r?+(r— )—|— (1- r) ir+3(1—r) = §. Note
that the final probability of reachlng L does not depend on r. ThlS is no coincidence
as shown by the following proposition.

Proposition 13 (Independence of the scheduling) For all parameters 1 and
and all probabilistic A\-terms P € A, with P —*2(") N 4 and P —*2("2) N £ we
have p(r1) = p(rs).

Proof (sketch) The probabilistic reduction relation —P(") is independent of the
value r when it comes to probabilistic choices, i.e. terms of the form @, p; : P,
cf rule (6). The dependency on r is thus essentially a problem of classical A-terms
which get reduced according to the probabilistic relation —P(") rather than by classical
[B-reduction.

If we therefore consider the probabilistic reduction of classical terms M we can see
that the only difference between classical and probabilistic reduction is the annotation
or decoration of transitions with probabilities: If there is a classical reduction of a
term M — 5 M’ then there is also a probabilistic reduction M —?(") M’ with p(r) > 0.
Furthermore, the sum of all probabilities associated with a term M sum up to 1. In
the classical case we know, by the Church-Rosser property, that terms with normal
form have a unique normal form, i.e. all derivations of classical terms are confluent.
If we decorate the classical derivations with probabilities according to the rules for
—P(") we see that the probabilities of all paths from M to its normal form must sum
up to one.

In particular, every time an application term gets reduced there is a left-most
path with probability » and a right-most path with probability 1 — r. This “split-



ting” of paths can be repeated recursively, but we will always end up with the same
normal form with combined probability 1. For example, a classical reduction and its
probabilistic counterpart will be of the following forms:

M/
M///

We can lift this argument to general probabilistic A-terms, i.e. terms which con-
tain (possibly) nested choices €, by structural induction. This exploits the fact that
classical terms reduce probabilistically only to classical terms. The probabilistic re-
duction of a term of the form @, p; : M; (with M; classical terms M;) can be therefore

constructed out of the probabilistic reduction of the M;’s and their probabilities p;.
O

" MIII "

The probabilities of reaching S-normal forms is also independent from dynamically
changing r’s, i.e. if the choice between left- and right-most reduction is made with
different probabilities in each step. This independence of the normal forms and their
probabilities from the application (probability) of different reduction strategies can
be seen as a kind of probabilistic analogue of the classical Church-Rosser property.

The S-reduction of a classical A\-terms (if it terminates) leads to a unique result,
namely its S-normal form (by the Church-Rosser theorem). The transition relation
—*P for probabilistic A-terms leads in general to several final terms. The notion
of observables will collect all these possible results together with their probabilities.
Proposition 13 guarantees that the probability of reaching a final result is independent
of the parameter r of the transition relation. Therefore, we can define a notion of
observables as follows.

Definition 14 We define the observables of a probabilistic A-term P € A, as
O(P) = {Mi,pi) | P =" My A M; -7}

Note that the definition of —*7 (and in particular of the label p in this relation)

guarantees that
Z{ pz upl (P)} <1,

that is O(P) € V(A) is a sub-probability distribution for every P € A,. If all
“branches” M, of P terminate, then O(P) defines a probability distribution.

Example 15 The observables of the term P in Example 12 are



As the observables are independent of the reduction strategy we can fix one by
setting 7 = 1 (or r = 0) thus enforcing a left-most (right-most) scheduling strategy.

Example 16 The possible transitions of the probabilistic A-term P = ((Az.0) @ 1
(Az.z))(L @2 42) with r = 1, i.e. using left-most scheduling, can be depicted as
follows:

(A2.0) &1 (\w.2))(L@s 42)
(Az.0)(L @3 42) (\.z)(L &3 42)
1(l) 1 i @{142
1 f

The original term is of the form PQ), thus we apply the rule (app;) with r = 1,
i.e. reduce the first term P first. This is of the form P SZE P5, so we have to apply

the (J) rule and choose P; and P, with their respective probability % After that
we end up with two terms which are both of the form (Az.P)P’; thus we can apply
with probability 1 the (8) rule which gives us either the constant 0 or the choice
L @3z 42. The latter then reduces via the (§) rule either to L or 42 with the indicated
probabilities.

2.1.3 Correspondence

The probabilistic §-reduction = introduced in Section 2.1.1 can be seen as a “paral-
lelised” version of the probabilistic transition relation —? introduced in Section 2.1.2,
where all sub-terms of a probabilistic term P are reduced simultaneously. Each com-
putational path constructed in the probabilistic transition system for P leads to pairs
(M;,p;) of aterm M; € A and a probability p; which is calculated via the rules in the
transition system. On the other hand, the flattening rules in Definition 2 calculate
the probabilities p; beforehand by transforming P into its flattened version P which
is then reduced by =3. Intuitively, we expect that the probabilities p; be the same
independently of whether we use one or the other procedure, i.e. we expect that the
probabilistic observables O(P) defined via the probabilistic transition system corre-
spond to the probabilistic S-normal forms that can be calculated via the probabilistic
(- reduction.
The following proposition formally shows this correspondence.

Proposition 17 Let P € A, be a probabilistic A-term which admits a probabilistic
B-normal form. Then we have:
O(P) = P;s

Proof We have to show that for all P € A,, O(P) = {(N;,pi)}i =, pi- Ni = Ps,
with N; € A B-normal forms for all 7.

10



(P =
(P =

(P=

x) We have that O(P) = {(z,1)} =T = Pg.

Az.P") Let O(P) = {(Ni,pi)}i. By Proposition 13 we can use a right-most
strategy without loss of generality, so that all derivations for P are of the form

Ax. P —Pi \x. N —*1 N; AP,

with (N/,p;) € O(P ) and N/ € A for all i. By the induction hypothesis, we
have that O(P') = P}, = 3", p; - N/. This means that

and so
P =\z.P =75 AT. (sz i) sz )x:r;N’

We now observe that for all i, Az.N/ —*' N; coincides with the classical (-
reduction Az.N/ —7 Nj; thus by applying the first and third rule in Definition 6
and by the transitivity rule of Definition 7, we get

Zpi - Ax.N| :>E Zpi - N;.

Since the N,’s are all 8-normal forms, we then have that
n
Zpi N =
i=1

plpz) Let O(Py) = {(M},p}) | i =1,...,mi} and O(P,) = {(M?,p?) | j =
1,...,ma}. Then all derlvatlons for P are of the form

1,2
P —*PiPi MIM? —*' Nij /P

By the induction hypothesis we have that

my

P1:>ﬁ P1 sz

ma
Pr = (Po)g = 3 pj - M.
j=1
Thus,

ma - mo -
Pomem i (Saa)e (Sem
i=1 j=1

— szp] M}Mf.

11



Now we have to show that Pg = Zij p}p? - N;;. This follows from observing
again that the derivation M} M J2 —*1 N;; corresponds to a classical 3-reduction;
we can then apply Definition 6 and Definition 7 to get

Zplp] M1M2;> Zplpj + Nij.

irj
Since Nj; € A are all f-normal forms, we conclude that Ps =3, p{p3 - Nij.

(P=@p;: P) Let O(P) = {(N ,qj> | i =1,...,m;}. Then all derivations form P
are of the form o
P Pt P —*% NI AP,
and so O(P) = {( j,plqj>|j:1,...,mi},;.
By the induction hypothesis we have that for all ¢

mg _
P, =5 (P)g = Zq; - N3
j=1
Thus we have

sz P, = Zszqj Nl

i j=1

Since N} € A are all in $-normal form, we have that Pg = Y, > pig; - N; =
O(P).

O

2.2 Linear Representation

In this section we introduce a linear operator on the vector space V(A) as a represen-
tation of the the semantics O(P) for a probabilistic A-term P which is more suitable
as a base for the probabilistic analysis we will present later. For this purpose we will
use the distribution-based semantics introduced in Section 2.1.1 as an intermediate
step, and define a linear operator representing the one-step reduction relation =g.
We first define a linear operator for the g-reduction of the classical A-calculus, i.e. for
terms M, N € A,
T:V(A) — V(A)

This is defined by
1 if M —g N
(T)MN: 1 1fM7L>g AN M=N
0 otherwise

and then the restriction for each classical A-term M € A:

Ty = mranTrr00),

where 7 (ar) is the projection onto the reachable terms R(M) = {M' € A | M —7
M'}, i.e. the sub-vector space V(R(M)) of V(A).

12



For a probabilistic term P € A, we consider its linear representation, i.e. its
flattened form P € V(A) :
P= Zpi - M;
i

and the restriction of T to the union of reachable terms, i.e.
Tp =mrp)Trrp)

with R(P) = |J; R(M;). We can then express the semantics of P via the iteration of
the operator Tp.

Definition 18 For a probabilistic A-term P € A, we define its semantics as:

[P]=P- lim T%

11— 00

Note that for probabilistic A-terms P € A, which admit a probabilistic 3-normal
form the set of reachable states R(P) is finite as each of its (finitely many) “branches”
M; will reduce to a normal form (in finitely many steps). The vector space V(R(P)),
on which Tp acts, is therefore finite dimensional. This guarantees that the limit
lim; ., T% exists and is well defined as there is only one (standard) topology on
finite dimensional vector spaces.

Proposition 19 For every probabilistic A-term P € A, which admits a probabilistic
B-normal form we have:

Proof By the construction of the operator T p we have that [P] = Ps. Then by the

correspondence shown in Proposition 17 we conclude that [P] = O(P). O

Example 20 Consider again the probabilistic A-term from Example 16:
P=((A2.0) &1 (Az.x))(L ®3 42)

After the flattening procedure we get the probability distribution

P

11— 1— 1—- 3
—\x. —A\x. —1 4+ —42
(2/\1‘0—|—2)\1‘1‘)®(4 +4 )

1 1
= —(Az.0)L+ §()\x.0)42 + -(Az.x) L + §(/\fzr.x)42
8 8 8 8
An enumeration of the reachable terms is as follows:
50
1 (Az.0)L 3 (A\zr.z)L
6 L
2 (A\x.0)42 4 (A\z.x)42
7 42.

According to this enumeration we can represent P by the vector

P

ol

3
s 88 8 000),

13



and we have:

000 0T1UO00O0
000 0T1U00O0
000 O0O0T1O0
lmT,= 0 0 0 0 0 0 1
e 000 O0T1UO0O0
000O0O0T10
000 0O0TO0°1

We can then calculate the linear semantics of P:

[P]=P lim Ty = lim P-Th,=(0 0 0 0 & & 2,

11— 00 11— 00

which coincides with the observables O(P) in Example 15.

3 Classical Abstract Interpretation

Program analysis aims to determine some property of a program without running
it. A classical example is the Reaching Definitions analysis which determines, for
each node in a flowchart, which definitions (assignments) reach it [19]. The results
of this analysis might be used to perform a constant folding transformation of the
program. Such transformations should be semantics preserving and it is therefore
important that the analysis gives correct information about the program. Often the
properties that we are interested in are undecidable and so correctness is replaced by
some approximation notion.

We start by sketching the classical approach to semantics-based program analysis:
abstract interpretation [4, 19]. The semantics of a program f identifies some set V' of
values and specifies how the program transforms one value v, to another vs.

In a similar way, a program analysis identifies the set L of properties and specifies
how a program f transforms one property l; to another lo: f I3 > Is.

As we have seen, every program analysis should be correct with respect to the
semantics. For first-order program analyses, i.e. those that abstract properties of
values, this is established by directly relating properties to values using a correctness
relation: R :V x L — {true, false}. The intention is that v R [ formalises our claim
that the value v is described by the property .

The correctness relation is often achieved via a Galois connection: (V,«,~, L) is
a Galois connection between the complete lattices (V,C) and (L,C) if and only if
a:V — Land v: L — V are monotone functions that satisfy: voa 3 Av.v and
aoy C ALL

Having defined a suitable “set” of properties we then define suitable interpretations
of program operations. The framework of abstract interpretation guarantees that the
analysis will be safe as long as we use an interpretation, F,}q, of each language
operator, F), that satisfies: Fpo J oo Fory.

Since interesting languages involve iteration or recursion we also have to construct
efficient implementations; a generic solution to this problem is the theory of widening
and narrowing [4].
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3.1 Strictness Analysis

Strictness analysis [18, 2] aims to answer for some function f: Does f L = 1? If the
function has this property then it either uses its argument or is the bottom function.
In either case, an affirmative answer would mean that arguments can be passed by
value rather than using (the more costly) lazy evaluation. For illustration, we will
restrict ourselves to a first-order applied A-calculus with integers as the only data
type.

We can construct a Galois connection (Pg(Z, ), «, v, Two) where Py is the Hoare
Powerdomain construction on the integers Z and Two is {0, 1} ordered by 0 C 1. The
elements of the Hoare Powerdomain in this case are just down-closed sets ordered by
subset inclusion, so that every set contains L.

We define:

[0 ifz={L1} [ {L} ifS=0
olZ) = {1 otherwise v(S) = {ZJ_ ifs=1

We can construct the induced operations that correspond to the operations in this
first-order applied A-calculus:

Concrete operation | Induced operation
base type constants 1
if = then y else z xM(yUz)
x opy rly

The conditional takes three arguments (z, y, z); the predicate must be defined
and then the result is at least as defined as either of the branches. Thus the abstract

interpretation of
(A z.if £ =0 then 15 else 42)

is(Az.(zn1)N(1U1)) = Az.xz. Since (A x. ) 0 = 0, this tells us that our original
function is strict. We now extend this approach to a probabilistic A-calculus by
applying techniques of Probabilistic Abstract Interpretation [12, 13]. This will allow
us to solve one important problem that despite decades of research into strictness
analysis methods based on abstract interpretation has remained open, namely the
precise and formal characterisation of the information loss.

4 Probabilistic Abstract Interpretation

Probabilistic Abstract Interpretation (PAI) was introduced in [12, 13] as a method
for approximating the semantics of probabilistic programs which re-formulates the
classical theory of Abstract Interpretation [4] in a setting suitable for a quantita-
tive program analysis. The PAI framework is based on the notion of probabilistic
domains which we will identify with Hilbert spaces over some set representing the
computational states and linear operators.

A Hilbert space H is a complex vector space together with an inner product (.,.) :
H x H — C with (i) (z,y) = (y, ), (ii) {az,y) = a{z,y), (i) (x + z,y) = (x,y) +
(2,9), and (iv) (z,z) =0 <= z =oforall « € C and z,y, z € H (where ¢ denotes
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the complex conjugation in C, and o is the null vector in H) such that the topology
induced by the norm ||z|| = y/(z, z) is complete. It is easy to show that this is indeed
a vector norm on H, i.e. that for all z,y € H and a € C the following holds:

(@) [lzl =0 (iii) [loz] = fe]|=]

(i) [zl =0ez=0  (iv) z+yl <[zl + |yl

All finite dimensional complex vector spaces are isomorphic to a n-dimensional
complex Hilbert space C”, for some n. The treatment based on complex numbers
is technically somewhat simpler than when based on real numbers as, by the funda-
mental theorem of algebra, polynomials of order n over the complex numbers have
exactly n (not necessarily distinct) roots. For finite sets of computational states X
we thus can take the Hilbert space V(X,C) = C™ with the standard inner product
((ei)foy, (di)iey) = 300 ci - di.

In fact, for (complex) finite dimensional vector spaces the algebraic structure is
essentially forcing a unique topological structure and the Hilbert space with its Eu-
clidean norm ||.||2 is only one way to introduce this (metric) topology. We would ob-
tain essentially the same topology by using the 1-norm ||.||; (sum of absolute values)
or the supremum norm ||.||o (supremum of absolute values). In infinite dimensions,
Hilbert spaces are only one possible, although very important, example of defining a
topology.

In finite dimensions all linear maps between two Hilbert spaces, represented usually
by matrices, are automatically continuous, i.e. preserve the topological structure.
For infinite dimensional Hilbert spaces a linear map is continuous if and only if it is
bounded; a linear map T : H; — H, is bounded if its operator norm

T(x
— T
verty |7

is bounded, i.e. ||T|| < co. This norm allows us to measure operators in a canonical
way which will be important in quantifying the precision of an abstraction.

On a Hilbert space ‘H we can define the so called adjoint T* of an operator T :
H — 'H via the requirement: (T(z),y) = (x, T*(y)) for all elements z,y € H. One
can show that the adjoint operator for bounded linear operators on a Hilbert space
always exists and that it is unique. For finite dimensional operators with a matrix
representation M € M the matrix representation of the adjoint is M* = (M), i.e.
the transpose complex conjugate matrix.

Probabilistic Abstract Interpretation is defined in general for infinite-dimensional
Hilbert spaces. We recall here the general definition, although in this paper we will
only consider the finite dimensional case. Given two probabilistic domains C and D,
a probabilistic abstract interpretation is defined by a pair of linear maps, A : C — D
and G : D — C, between the concrete domain C and the abstract domain D, such
that G is the Moore-Penrose pseudo-inverse of A, and vice versa. Let C and D be
two Hilbert spaces and A : C — D a bounded linear map between them. A bounded
linear map AT = G : D — C is the Moore-Penrose pseudo-inverse of A iff

AoG=P, and Go A =Pg

where P4 and P¢ denote orthogonal projections (i.e. P4 = P4 = P% and P}, =
P; = P%) onto the ranges of A and G.
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Alternatively, if A is Moore-Penrose invertible, its Moore-Penrose pseudo-inverse,
AT satisfies the following:

(i) AATA = A, (iii) (AAT)* = AAT,
(i) ATAAT = AT, (iv) (ATA)* = ATA.

where M* is the adjoint of M. It is instructive to compare these equations with
the classical setting. For example, if (a,7) is a Galois insertion we similarly have
aoyoa=aand yoaoy=1.

As in the classical framework, given a concrete semantics we can always construct
a best correct approrimation for this semantics, although the notions of correctness
and optimality assume a different connotation in our linear setting as explained in
the following.

If ® is a linear operator on some vector space V expressing the probabilistic se-
mantics of a concrete system, and A : V +— W is a linear abstraction function from
the concrete domain into an abstract domain W, we can compute the (unique) Moore-
Penrose pseudo-inverse G = AT of A. An abstract semantics can then be defined as
the linear operator on the abstract domain W:

U=AodoG=GDPA.

In the case of classical abstract interpretation the abstract semantics constructed
in this way (called the induced semantics in [5]) is guaranteed to be the best correct
approximation of the concrete semantics, meaning that it is the most precise among all
correct approximation (the relative precision being left unquantified). In the linear
space based setting of PAI where the order of the classical domains is replaced by
some notion of metric distance, the induced abstract semantics is the closest one to
the concrete semantics. This “closeness” property expresses both the “safety” of the
approximation and its optimality, which comes from the following properties of the
Moore-Penrose pseudo-inverse. The theory of the least-square approximation [9, 7]
tells us that if C and D be two finite dimensional vector spaces, A : C — D a linear
map between them, and AT = G : D C its Moore-Penrose pseudo-inverse, then the
vector g = yG is the one minimising the distance between xA, for any vector x in
C, and y, i.e.

inf [[2A — || = z0A — .

In other words, if we consider the equation zA = y we can identify a (exact)
solution z, as a vector for which ||z, A —y[| = 0. In particular in the case that no
such solution vector x, exists we can generalise the concept of a exact solution to
that of a “pseudo-solution”, i.e. we can look for a xy such that xgA is the closest
vector to y we can construct. This closest approximation to the exact solution is now
constructed using the Moore-Penrose pseudo-inverse, i.e. take 2o = yAf.

Returning to our program analysis setting, suppose that we have an operator ¢ and
a vector x. We can apply ® to x and abstract the result giving t®A or we can apply
the abstract operator to an abstract vector giving tAAT®A. Ideally, we would like
these to be equal. If A is invertible then its Moore-Penrose pseudo-inverse is identical
to the inverse and we are done. In program analysis A is never a square matrix
and thus AAT in zAAT®A will lead to some loss of precision. The Moore-Penrose

17



pseudo-inverse is as close as possible to an inverse if the matrix is not invertible and
thus for the particular choice of A, AT®A is the best approximation of ® that we can
have. Moreover, by choosing an appropriate notion of distance we can measure this
closeness to get a quantitative estimate of the information lost in the abstraction.

5 Probabilistic Strictness Analysis

In this section we will use the PAT technique previously introduced to define a prob-
abilistic abstraction of the linear operator expressing the semantics of a probabilistic
A-term (see Section 2.2). This will allow us to construct a probabilistic strictness
analysis from which we will be able to extract quantitative information such as the
probability that a given reduction will not terminate.

In many cases, and particularly in strictness analysis, the abstraction is a surjective
function. An alternative view of abstraction in this case is that it maps concrete values
to equivalence classes. Equivalence relations can be represented by a particular kind
of operators, namely classification operators.

We call an n x m-matrix K a classification matrix if it is a 0/1-matrix, where every
row has exactly one non-zero entry and columns have at least one non-zero entry.
Classification matrices are thus particular kinds of stochastic matrices. We denote by
K(n,m) the set of all n x m-classification matrices (m < n). Let X = {x1,...,z,} be
a finite set. Then for each equivalence relation ~ on X with | X/~| = m, there exists
a classification matrix K € K(n, m) and vice versa. Each column in the classification
matrix represents a (non-empty) equivalence class.

The pseudo-inverse of a classification matrix K € K(n,m) corresponds to its
normalised transpose or adjoint K = N(K”) (these coincide for real-valued K),
where the normalisation operation AN is defined for a matrix A by:

Aij e .
N(A)ij:{ai 1fal—ZjA”7é0

0 otherwise.

A suitable abstraction for probabilistic strictness analysis classifies terms as un-
defined, don’t know or defined. We abstract every term in the enumeration to one of
these values. The don’t know value is used to classify terms whose “definedness” is not
yet determined. Classically 0 represents definite non-termination whilst 1 represents
possible termination. The use of three values here allows for a more informative anal-
ysis — the defined value means definitely terminating. This abstraction is achieved by
the classification operator corresponding to the partition of the set of terms into the
three classes represented by 0, ? (unknown) and 1. We will demonstrate the method
by the following examples.

Example 21 Consider again Example 16:
P=((A2.0) @1 (Az.2))(L @35 42)
and its flattened version P — P:

p= é (Ow0)L) & g  (O.0)42) @ é (Oaa)l) @ g  (O.2)42),
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Using the following abstraction operator and its pseudo-inverse

010

010

010

010 00 000O0O0T10
K=|010 K=(3: 31+ L L1 000

010 000000 3 0 3

00 1

100

00 1

we get the abstract (induced) semantical operator T% : V({0,7,1}) — V({0,7,1}):

T# = KITpK =

Ol =
o O O
ol O

As the flattened version P is constructed only of classical A-terms which can be
reduced in a single step to their normal form the abstract semantics turns out to be
an exact abstraction in the sense that we have:

PTpK=(} 0 1)=P KT

i.e. the abstracted concrete semantics coincides with the abstract semantics.

In the last example the analysis is optimal as the abstraction does not lose any
information. However, in general we will encounter a loss of precision when we move
from the concrete to the abstract semantics, as the following example illustrates:

Example 22 Consider the probabilistic term

P = % C(Arz)(Ar.x)(42) @ % (Azrz)(L) &
%  Ora)Owa) (L) @ % () (A2.0) (1)

and the enumeration of the reachable(classical) A terms:

1 (Az.z)(Az.x)(42)

(
5 (Az.x)(42) 8 (\2.0)(L)
2 (Az.x)(L)
6 L 9 42
3 (A\z.z)(Az.x)(L)
7 (Az.x)(L) 10 0
4 (Az.x)(Az.0)(L)

Then we can construct the restricted one-step reduction operator for P and a
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suitable classification matrix for P as follows:

000O010U0O0TO0O 01 0
000O0O0T100UO0O 01 0
000O0O0O0OT1O0UO0O0 01 0
000O0O0O0OTO0T1O0O0 01 0
000O0O0O0OTO0GOT1O0 01 0

Te=10000010000 K=1100
000O0O0T100TO0O 01 0
000O0O0O0OO0O0TO 01 01 0
00 0O0O0O0OTO0GOT1O0 00 1
000O0O0O0GO0O0O0 1 00 1

We can then construct the abstract one-step reduction operator:

1 0 0
T, =KITpK = | 029 043 0.29
0o 0 1

The middle row and column represent the don’t know value. The value in the
middle row, middle column gives a bound on how much the other two values in that
row might change when we iterate — in this sense, it gives a measure of the precision of
the current abstract operator. Iterating this abstract operator causes the probability
of a transition from don’t know to don’t know to decrease rapidly; for example after
two iterations we have:

10 0
(T%)>=( 041 018 0.41
0o 0 1

Achieving a defined outcome becomes more and more likely. This result could be used
to support the decision to speculatively evaluate the argument.

One advantage of the use of linear operators is that we can measure them. The
standard way to measure the “size” of a linear operator is via their operator norm.

Example 23 For the example above, an accurate abstraction of the original pro-
gram can be achieved by taking the limit of the iterations of the abstract operator
(numerically computed as (T%)100):

1 0 0
lim (T%) = | 050 0 0.50
1— 00 O O 1
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The limit of Tp gives instead the concrete semantics of P:

00000O0O0GO0T1DO0
0000010000
0000010000
00000O0DGO0O0O0 1
) 00000O0O0GO0T10
ImTe=Te=10 000010000
0000010000
00000O0DGO0TO0O0 1
00000O0O0GO0T1D0
00000O0DGO0O0O0 1

from which we can directly construct the abstract semantical operator

1 0 0
Ki(lim TS) K =K'T2K = | 043 0 0.57
1— 00 O 0 1

By comparing the two operators K[P]K and lim,-ﬁoo(Tﬁ)" we get
|K'(lim T%)K — lim (KT TpK)?||o = 0.143

and when we compare the abstract and concrete semantics after two iterations (when
the concrete semantics converges to its limit) we have:

IKI'T2K — (T%)?||s0 = 0.367.

These norm differences measure the “precision” of the abstract semantics. In
the first case we see that the abstract semantics limiﬁw(Tﬁ)i and the abstracted
semantics KT (lim; ., T%)K differ by about 14%, i.e. the true chance of obtaining L
or a constant and the estimated probabilities are within +7%; and indeed we see that,
for example, the true chance of getting L is about 43%, while the abstract semantics
forecasts a 50% chance of obtaining this result.

6 Conclusions

In this paper we introduced a probabilistic version of the A-calculus and provided
it with three different semantics. One is based on a classical, i.e. non-probabilistic,
reduction relation on probability distributions on classical terms; a second one is
defined via a probabilistic transition relation on probabilistic A-terms which subsumes
the classical S-reduction; and a third one is a linear operator semantics which specifies
the computational dynamics in the form of so-called Markov chains [20]. All the
three semantics are equivalent in the sense that they assign the same meaning to a
probabilistic A-term P. This is essentially a distribution on the §-normal forms to
which the classical sub-terms of P can be S-reduced. The second semantics can be
seen as an intermediate step between the first one and the linear operator semantics,
which is the most appropriate as a base for quantitative analysis.
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We have also reviewed the classic approach to abstract interpretation and strict-
ness analysis and shown how Di Pierro and Wiklicky’s notion of probabilistic abstract
interpretation [12, 13] is a natural analogue of the classical framework in a probabilis-
tic setting. We have illustrated the approach for the probabilistic A-calculus in the
context of a simple strictness analysis. This quantitative version of strictness analysis
is based on the linear operator semantics for the A-calculus and aims in constructing
an abstract semantics which is as close as possible to the abstraction of the con-
crete semantics. The final outcome of this analysis are quantitative estimates on the
probability that a probabilistic term reduces to a constant normal form or to L.

In our formal treatment of the semantics and analysis of the probabilistic \-
calculus we assumed that the A-terms we consider all have normal forms, i.e. ter-
minating reduction sequences. This allows us to use straight forward constructions
from linear algebra. In related work we have shown that in principle it is possible
to accommodate also infinite reduction sequences, e.g. [11]. However, this requires a
recasting of our framework in a functional analytical setting, using results and con-
cepts from the theory of Hilbert spaces and C*-algebras (see e.g. [3, 16]), which would
deserve a separate treatment.

A present shortcoming of our work is that the strictness analysis is not defined
in a compositional way. However, the intermediate, distribution-based semantics can
be seen as a kind of ‘lifting’ of the classical S-rule and it seems therefore possible to
import results from the semantics of the classical A-calculus and classical strictness
analysis in order to define a compositional linear semantics and to refine the simple
probabilistic strictness analysis presented in this paper.
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