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Abstract

The present paper follows the line of research which cansishvestigating consequence relations that are both
paraconsistent and plausible (generally non-monotoru} tMore precisely, we lay the focus on preferential
consequence relations, i.e. those relations that can beeddsly a binary preference relation on states labelled
by valuations (such as in Non-monotonic Reasoning). Theginpose of the paper is to provide characteriza-
tions for families of them, in a general framework that ceverg. the ones of the well-known paraconsistent
logics J3; and FOUR. The second and main purpose is to provide, again in a geftanaéwork, character-
izations for families of preferential-discriminative gaguence relations. The latter are defined exactly as the
plain versions, except that among the conclusions, a famsulejected if its negation is also present.

Remark 1 A previous version of this paper has been publishEade Journal of Logic and Com-
putation 15(3):263-294, 2005. The present version contains inmgar@nts about the presentation.
Consequently, section ordering, definition labels, prafoslabels, etc. are different according to
whether the present or the previous version is considered.
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1 Introduction

In many situations, an agent is confronted with incomplet#ar inconsistent information and then
the classical consequence relation proves to be insufficiexeed, in case of inconsistent infor-
mation, it leads to accept every formula as a conclusionclvaimounts to loose the whole in-
formation. Therefore, the agent needs another relatiattingato non-trivial conclusions in spite
of the presence of contradictions. So, several paracensisbnsequence relations have been de-
veloped. In the present paper, we will pay attention in palér to certain many-valued ones
[Bel771,[Bel77H, DAC10, CMdADO, dACMDP. AAPRA. AADG. AADB8T hey are defined in frame-
works where valuations can assign more than two differeni tvalues to formulas. In fact, they
tolerate contradictions within the conclusions, but repae principle of explosion according to
which a single contradiction entails the deduction of e¥erynula.

In case of incomplete information, the classical conseqgeeelation also shows its limits. In-
deed, norisk is taken, the conclusions are sure, but tooTae.agent often needs another relation,
more daring, leading to accept as conclusions formulasafeahot necessarily sure, but still plau-
sible. Eventually, some “hasty” conclusions will be regtiater, in the presence of additional
information. So, a lot of plausible (generally, non-momot) consequence relations have been de-
veloped. Gabbay, Makinson, Kraus, Lehmann, and Magid@sitigated extensively properties that
should be satisfied by such relatiohs [Gah85, Mak89, Miek@4I80, [LM92]. In addition, central
tools to define plausible relations arieoice function§Che54[ Arr59] Seni0, AMSL, Len0Z, Leh01,
Sch92| Sch4]. Indeed, suppose we have at our disposaltioiupccalled a choice function, which
chooses in any set of valuatiols those elements that are preferred, not necessarily irbidw e
sense, but when the valuationsWhare the only ones under consideration. Then, it is natural to
concludex (a formula) fromI” (a set of formulas) iff every model fdr chosen by is a model for
«. This constitutes a plausible (generally, non-monototicisequence relation.

In the present paper, we will lay the focus on a particularifipwf choice functions. Let us
present it. Suppose we are given a binary preference melation states labelled by valuations (in
the style of e.g [IKLM90, Sch04]). This defines naturally aicle function. Indeed, choose in any set
of valuationsl/, each element which labels a state whickipreferred among all the states labelled
by an element of/. Those choice functions which can be defined in this mannestitate the
aforementioned family. The consequence relations defigetid family will be calledpreferential
consequence relations

For a long time, research efforts on paraconsistent relsténd plausible relations were sep-
arated. However, in many applications, the informationathtincomplete and inconsistent. For
instance, the semantic web or big databases inevitabhairoimconsistencies. This can be due to
human or material imperfections as well as contradictotyses of information. On the other hand,
neither the web nor big databases can contain “all” inforomatIndeed, there are rules of which
the exceptions cannot be enumerated. Also, some informatight be left voluntarily vague or in
concise form. Consequently, consequence relations thab@th paraconsistent and plausible are
useful to reason in such applications.

Such relations first appear in e.Q. [PliR1, B&98. KIL9Z, AKKMI0Z)]. The idea begins by taking
a many-valued framework to get paraconsistency. Then, tholse models that are most preferred
according to some particular binary preference relationadmations (in the style of[ShoB8, Sha87])
are relevant for making inference, which provides pladisibfand in fact also non-monotonicity).
In JALO1D, JALOI1Z], A. Avron and I. Lev generalized the study families of binary preference
relations which compare two valuations using, for each effrththis part of a certain set of formulas
it satisfies. The present paper follows this line of resedgchombining many-valued frameworks



and choice functions.

More explicitly, we will investigate preferential conseamce relations in a general framework.
According to the different assumptions which will be madeuttthe latter, it will cover various
kinds of frameworks, including e.g. the classical proposil one as well as some many-valued
ones. Moreover, in the many-valued frameworks, prefeaéngiations lead to rational and non-
trivial conclusions is spite of the presence of contraditdiand are thus useful to deal with both
incomplete and inconsistent information. However, thely mot satisfy the Disjunctive Syllogism
(from « and—a Vv 8 we can concludg), whilst they satisfy it in classical frameworks.

In addition, it is in the many-valued frameworks that nevatieins, which we will investigate
in detail, are really interestingareferential-discriminative consequence relatiombey are defined
exactly as the plain versions, except that among the candisisa formula is rejected if its negation
is also present. In classical frameworks, they do not brargething really new. Indeed, instead of
concluding everything in the face of inconsistent inforimatwe will simply conclude nothing. On
the other hand, in many-valued frameworks, where the csians are rational even from inconsis-
tent information, the discriminative versions will rejebe contradictions among them, rendering
them all the more rational.

The contribution of the present paper can now be summanizede sentence: we characterized,
in a general framework, several (sub)families of prefeadtliscriminative) consequence relations.
In many cases, our characterizations are purely syntattiis. has a lot of advantages, let us quote
some importantones. Take some syntactic conditions tlaaacterize a family of those consequence
relations. This gives a syntactic point of view on this fandefined semantically, which enables us
to compare it to conditions known on the “market”, and thustteer consequence relations. This
can also give rise to questions like: if we modified the candi in such and such a natural-looking
way, what would happen on the semantic side? More genettaitycan open the door to questions
that would not easily come to mind otherwise or to technicufggroof that could not have been
employed in the semantic approach. Finally, this can helimtbor improve proof systems based on
the family, like a Gentzen proof system for instance.

Several characterizations can be found in the literatur@feferential relations (e.gl_1Gal85,
Mak89, [Mak94| KLM90[LM92/ 1 en0Z, Lenh®1, Sch92, SchB6, Si;iBch04]). We will provide
some new ones, though, to do so, we have been inspired byideelsrof K. Schlechte [SchiD4].
In fact, our innovation is rather related to the discrimivawersion. To the author knowledge, the
present paper is the first systematic work of characteamdtr preferential-discriminative conse-
quence relations.

The rest of the paper is organized as follows. In Se¢fidnv@elintroduce our general framework
and the different assumptions which sometimes will be médeisit. We will see that it covers in
particular the many-valued frameworks of the well-knowrggansistent logicF OUR andJs. In
SectiofZP, we present choice functions and some of thdlikmewn properties. We will see which
properties characterize those choice functions that catefieed by a binary preference relation on
states labelled by valuations. In Sectlonl 2.3, we defineepeetial(-discriminative) consequence
relations and give examples in both the classical and theymalued frameworks. We will also
recall a characterization which involves the well-knowstsynP of Kraus, Lehmann, and Magidor.
In sectior B, we provide our characterizations. Finally,ooaclude in Sectiofll4.



2 Background

2.1 Semantic structures
2.1.1 Definitions and properties

We will work with general formulas, valuations, and satisian. A similar approach has been taken
in two well-known paperd [Mak05, LehD1].

Definition 2 We say thatS is asemantic structuréf S = (F,V, =) whereF is a set,V is a set,
andf= is a relation oV x F.

Intuitively, F is a set of formulasy a set of valuations for these formulas, dada satisfaction
relation for these objects (i.e. = o means the formula is satisfied in the valuation, i.e. v is a
model fora).

Notation 3 Let (F,V, |=) be a semantic structurB,C F, andV C V. Then,
Mr:={veV:Vael,vEa},

T(V)={aecF:V C M},

D:={VCV:aT CF,Mr=V}.

SupposeC is a language; a unary connective of, andF the set of all wffs ofZ. Then,
Ty(V):={a € F:V CM,andV ¢ M_,},

T.(V):={acF:V CM,andV C M_,},
C:={VCV:VacF,VZM,orVZ M-}

Intuitively, My is the set of all models far and7T'(V') the set of all formulas satisfied #i. Every
element ofT'(V') belongs either td;(V') or T..(V'), according to whether its negation is also in
T(V). D is the set of all those sets of valuations that are definabke 8t of formulas an€ the
set of all those sets of valuations that do not satisfy botrmila and its negation. As usudlr .,
T(V,v) stand for respectively/r oy, T(V U {v}), etc.

Remark 4 The notations\i, T'(V'), etc. should contain the semantic structure on which they ar
based. To increase readability, we will omit it. There wilver be any ambiguity. We will omit
similar things with other notations in the sequel, for theeaeason.

A semantic structure defines a basic consequence relation:

Notation 5 We denote byP the power set operator.
Let (F,V, =) be a semantic structure.
We denote by- the relation orP(F) x F suchthavVT' C F,Va € F,

't «iff Mr C M,,.
Let |~ be a relation orP(F) x F. Then,
T :={aeF:T |a}.
SupposeC is a language; a unary connective of, F the set of all wffs ofZ, andl” C F.
Then, we say thdt is consistentff Va € F, 't/ a orI' I/ —a.

The following trivial facts hold, we will use them implicitlin the sequel:



Remark 6 Let (F,V, =) be a semantic structure abidA C F. Then:
Mr.a = Mr N Ma;

HT) = T (My);

Mr = My (r);

I CHA)Iiff HT) CH(A) iff Ma C Mr.

Sometimes, we will need some of the following assumptioraibl semantic structure:

Definition 7 Suppos€F, V, |=) is a semantic structure.
Then, define the following assumptions about it:

(A1) Visfinite.

SupposeC is a language; a unary connective of, and.F the set of all wifs ofL. Then, define:
(A2) VI C F,Va e F,if a ¢ T(Mr) and-«a € T(Mr), thenMr N M, € M_,,.

Suppose/ andA are binary connectives @. Then, define:

(A3) Y a, B € F, we have:
]\/fa\/ﬁ =M,U MB;
Mans = My 0 Mj;
Mo = s
Mﬁ(a\/,ﬁ) = Mﬂa/\—\ﬁ;
M- (ang) = Mogy-g.

Clearly, those assumptions are satisfied by classical densaructures, i.e. structures whefe ),
and|= are classical. In addition, we will see, in Sectiéns 2.1 @[A[_3, that they are satisfied also
by certain many-valued semantic structures.

2.1.2 The semantic structure defined byFOUR

The logic FOUR was introduced by N. Belnap in_[Beld7a, Bel77b]. This logiauseful to deal
with inconsistent information. Several presentationgpassible, depending on the language under
consideration. For the needs of the present paper, a dhpsipositional language will be sufficient.
The logic has been investigated intensively in e.a. [AA9ASA, [AA9E], where richer languages,
containing an implication connective (first introduced by A. Avron[Avr91]), were considered.

Notation 8 We denote by4 a set of propositional symbols (or atoms).

We denote by_. the classical propositional language containigthe usual constantgalse and
true, and the usual connectives Vv, andA.

We denote byF, the set of all wffs ofZ...

We recall a possible meaning for the logt@®UR (more details can be found in [CLMB9, Bel77a,
Bel/7/h]). Consider a system in which there are, on the ond,lsnurces of information and, on the
other hand, a processor that listens to them. The sourceglprioformation about the atoms only,
not about the compound formulas. For each aggrthere are exactly four possibilities: either the
processor is informed (by the sources, taken as a wholeptizatrue; or he is informed that is
false; or he is informed of both; or he has no information dkou

Notation 9 Denote by0 and1 the classical truth values and define:
f:={0}; t:={1}; T:={0,1}; 1:=0.



The global information given by the sources to the procesanibe modelled by a functieifrom A
to {f,t, T, L}. Intuitively, 1 € s(p) means the processor is informed thas true, whilst0 € s(p)
means he is informed thatis false.

Then, the processor naturally builds information aboutdbmpound formulas from. Before
he starts to do so, the situation can be be modelled by a bmetirom F. to {f,t, T, L} which
agrees withs about the atoms and which assighso all compound formulas. Now, takeandgq in
A and supposé € v(p) or1 € v(q). Then, the processor naturally add® v(p V ¢). Similarly, if
0 € v(p) andO € v(q), then he add8 in v(p V q). Of course, such rules hold ferandA too.

Suppose all those rules are applied recursively to all camgdormulas. Then, represents the
“full” (or developed) information given by the sources t@tprocessor. Now, the valuations of the
logic FOUR can be defined as exactly those functions that can be buliisSrianner (i.e. like)
from some of these sources-processor systems. More fgtmall

Definition 10 We say thaw is afour-valued valuationff v is a function fromZ7, to {f,t, T, L}
such thaw(true) = t, v(false) = fandv o, 8 € Fe,

1 € v(—a)iff 0 € v(w);

0 € v(—a)iff 1 € v(a);

lev(aVp)iff 1 € v(a)orl € v(s);

0 €v(aVp)iff 0 € v(a)and0 € v(B);

1ev(anp)iff 1 €v(a)andl € v(f);

0€v(anp)iff 0 €v(a)ord e v(f).

We denote by, the set of all four-valued valuations.

The definition may become more accessible if we see the faluied valuations as those functions
that satisfy Tables 1, 2, and 3 below:

v(B) v(B)

v(a)  v(-a) f t T L f t T 1
f t flf ¢t T L f|f £ £ f
t f t|t t t t t|f t T L
T SR O I I P S NGO I IR S S
1 1 Lt t L 1f L £ 1

Table 1. v(a V) v(a A B)
Table 2. Table 3.

In the logic FOUR, a formulax is considered to be satisfied iff the processor is informadlithis
true (it does not matter whether he is also informed thistfalse).

Notation 11 We denote by=, the relation orV, x F. such that’ v € V4,V a € F., we have
v g aiff 1 €v(a).

When theFOUR semantic structuréF,, Vs, =4) is under consideration, proof systems foare
available. For instance, A. Avron and O. Arieli providedesel ones in e.g[ [AAS4. AAS6. AAY98].

Note that theFOUR semantic structure satisfi¢sl3). In addition, if A is finite, then(A1)
is also satisfied. Howeve(A2) is not satisfied by this structure. In Section 2.1.3, we torma t
many-valued semantic structure which satisfid3).



2.1.3 The semantic structure defined by/;

The logic.J;3 was introduced in([DdC70] to answer a question posed in 1948.daskowski, who
was interested in systematizing theories capable of auintacontradictions, especially if they occur
in dialectical reasoning. The step from informal reasoninder contradictions and formal reasoning
with databases and information was done in [CMdAO0O] (alsxidized for real database models in
[dACMOZ]), where another formulation o calledLFI1 was introduced, and its first-order version,
semantics and proof theory were studied in detail. Invastgs ofJ; have also been made in e.g.
[Avr91], where richer languages than ofyy were considered.

The valuations of the logids can be given the same meaning as those of the IBGE(R,
except that the consideration is restricted to those systehere the sources, taken as a whole,
always give some information about an atom. More formally,

Definition 12 We say thav is athree-valued valuatioiff v is a function fromF, to {f,t, T} such
thatv(true) = t, v(false) = fandv o, 8 € F,

1 € v(—a)iff 0 € v(w);

0 € v(—a)iff 1 € v(a);

lev(aVp)iff 1 € v(a)orl € v(s);

0 €v(aVp)iff 0 € v(a)and0 € v(B);

lev(anp)iff 1 €v(a)andl € v(f);

0€v(anp)iff 0 €v(a)ord e v(f).

We denote by the set of all three-valued valuations.

As previously, the definition may become more accessiblesifee the three-valued valuations as
those functions that satisfy Tables 4, 5, and 6 below:

v(B) v(p)
v(a)  v(-a) f t 7T f t T
f t f|f t T f|f £ f
t f ve) |t |t t t] o) |t |f t T
T T T T t T TIf T 7T
Table 4. v(a V) v(a A B)
Table 5. Table 6.

We turn to the satisfaction relation.
Notation 13 We denote by=; the relation orV; x F. such that' v € Vs,V a € F., we have
v =g alff 1€ v(a).

When theJ; semantic structuréF.., Vs, =3) is considered, proof systems ferare available. Some
have been provided in e.d. [Avrig1, DAC70] and in chapter IXEms90].
The J; structure satisfieA3) and(A42). In addition, if A is finite, then it satisfiesA1) too.

2.2 Choice functions
2.2.1 Definitions and properties

In many situations, an agent has some way to choose in any&guationsl’, those elements that
are preferred (the bests, the more normal, etc.), not nadlgsie the absolute sense, but when the
valuations inV" are the only ones under consideration. In Social Choics,ishinodelled by choice
functions [Che54. Arr89, Senl70, AMBI, Leh02Z, 1.eh01].



Definition 14 LetV be asetV C P(V), W C P(V), andyu a function fromV to W.
We say thaj: is achoice functionff VV € V, u(V) C V.

Several properties for choice functions have been put idemge by researchers in Social Choice.
Let us present two important ones (a better presentatiofedound in [LehOll]). Supposé’ is

a set of valuationsy is a subset of¥/, andv € V is a preferred valuation df’. Then, a natural
requirement is that is a preferred valuation df. Indeed, in many situations, the larger a set is,
the harder it is to be a preferred element of it, and he who catihe most can do the least. This
property appears in[Cheb4] and has been given the name &uteein [Mou8h].

We turn to the second property. SuppdBes a set of valuationd/ is a subset of¥, and suppose
all the preferred valuations 6% belong toV. Then, they are expected to include all the preferred
valuations ofl/. The importance of this property has been put in evidenc@mBE, /AM81] and
has been given the name Local Monotonicity in €.0. [Léh01].

Definition 15 LetV be asetV C P(V), W C P(V), andy a choice function fronV to W.
We say tha. is cohereniff VvV, W € V,

if VCW, thenu(W)nV C u(V).
We say thaju is locally monotonidLM) iff VV, W € V,
if u(W) CV CW, thenu(V) C p(W).

In addition to their intuitive meanings, these properties important because, as was shown by
K. Schlechta in[[Sch00], they characterize those choicetfons that can be defined by a binary
preference relation on states labelled by valuations @nsthile of e.g. [[KLM90D]). We will take a
closer look at this in Sectidn 2.2.2.

When a semantic structure is under consideration, two neywepties can be defined. Each of
them conveys a simple and natural meaning.

Definition 16 Let (F,V, =) be a semantic structurd] C P(V), W C P(V), andu a choice
function fromV to W.
We say thaju is definability preservingDP) iff

YV evnD, u(V)eD.

SupposeC is a language; a unary connective of, and.F the set of all wifs ofL.
We say thau is coherency preservingCP) iff

YV evnce, ulV)ecC.

Definability Preservation has been putin evidence firstanBs]. One of its advantages is that when
the choice functions under consideration satisfy it, wd piibvide characterizations with purely
syntactic conditions. To the author knowledge, the pregaper is the first to introduce Coherency
Preservation. An advantage of this property is that wherchugce functions under consideration
satisfy it, we will not need to assunié2) to show our characterizations (in the discriminative case)



2.2.2 Preference structures

Binary preference relations on valuations have been iigatsd by e.g. B. Hansson to give se-
mantics for deontic logicg [Hanb9]. Y. Shoham rediscovehen to give semantics for plausible
non-monotonic logics [ShoBB, Sha87]. Then, it seems th&linski is one of the first persons to

introduce binary preference relations on states labejedhhuations|[Imi87]. They have been used
to give more general semantics for plausible non-monotogics, see e.g IKLM90, LM92, SchP2,

Sch96[ Sch00, SchD4]. Let us present them.

Definition 17 We say thaRR is a preference structure on a 3&iff R = (S, 1, <) whereS is a set,
l'is a function fromS to V, and< is a relation orS x S.

In fact, preference structures are essentially Kripkecttines. The difference lies in the interpre-
tation of <. In a Kripke structure, it is seen as an accessibility refatwhilst, in a preference
structure, it is seen as a preference relation. We recalkailple meaning for preference structures
(see e.q.[IKLM9D._Sch04] for details about meaning). Imntaly, V is a set of valuations for some
languagel andS a set of valuations for some languagericher thanl. The elements of are
called statesl(s) corresponds precisely to this partathat is about the formulas @f only. We call
[ a labelling function. Finally is a preference relation, i.e.< s’ meanss is preferred tos’.

We turn to well-known properties for preference structures

Definition 18 SupposeV is a set,R = (S,I, <) is a preference structure aq S C S, s € S,
V CV,andV C P(V).

We say thaR is transitive(resp.irreflexive) iff < is transitive (resp. irreflexive).

We say thas is preferredin S'iff Vs’ € S, s" £ s.

L(V):={se S :1(s) € V} (intuitively, L(V') contains the states labelled by the elemenfg)f
We say thaRR is V-smooth(aliasV-stopperedliff VV € V,Vs € L(V),

eithers is preferred inL (V') or there exists’ preferred inL(V') such that’ < s.

A preference structure defines naturally a choice funcfidre idea is to choose in any set of valu-
ationsV, each element which labels a state which is preferred amibtigeastates labelled by the
elements of/.

Definition 19 SupposeéR = (S, 1, <) is a preference structure on a ¥&t
We denote by the function fromP(V) to P(V) such thaty V C V,

ur(V)={veV:3se€ L(v), sispreferredinL(V)}.

In [Sch00], Schlechta showed that Coherence and Local Moigty characterize those choice
functions that can be defined by a preference structure. ilDet@ given in the proposition just
below. It is an immediate corollary of Proposition 2.4, Rysgtion 2.15, and Fact 1.3 df [ScH00].

Proposition 20 Taken from[SchQ0].
LetV be a setV andW subsets of°(V), andp a choice function fronV to W. Then,

(0) w is coherent iff there exists a transitive and irreflexivef@rence structur& onV such that
YV e V,we haveu(V) = ur (V).

Suppos&’ V, W € V,we haveV UW € VandV NW € V. Then,



(1) pis coherentand LM iff there exists\@-smooth, transitive, and irreflexive preference structure
RonVsuchthat V € V, we haveu(V) = pur (V).

In fact, in [SchQD], the codomain ¢f is required to be its domaiV. However, this plays no role
in the proofs. Therefore, verbatim the same proofs are vatien the codomain gf is an arbitrary
subsetW of P(V). Both myself and Schlechta checked it.

2.3 Preferential(-discriminative) consequence relatios
2.3.1 Definitions

Suppose we are given a semantic structure and a choicedanctin the valuations. Then, it is
natural to conclude a formula from a set of formulag® iff every model forI" chosen byu is a
model fora. More formally:

Definition 21 SupposeS = (F,V, |=) is a semantic structure amd a relation orP(F) x F.
We say that~ is apreferential consequence relatidffi there exists a coherent choice functipn
fromDtoP(V) suchthavV ' C F,Va € F,

I' v aiff u(Mr) C M,.
In addition, if  is LM, DP, etc., then so i5-.

These consequence relations are called “preferentiabims in the light of Propositida 20, they
can be defined equivalently with preference structurese@usof coherent choice functions. They
lead to “jump” to plausible conclusions which will eventlyabe withdrawn later, in the presence of
additional information. Therefore, they are useful to deigth incomplete information. We will give
an example with a classical semantic structure in SeElidA 2.

In addition, if a many-valued semantic structure is congdethey lead to rational and non-
trivial conclusions is spite of the presence of contraditdiand are thus useful to treat both incom-
plete and inconsistent information. However, they will satisfy the Disjunctive Syllogism. We
will give an example with theFOUR semantic structure in Sectibn ZK.2.

Now, we turn to a qualified version of preferential conse@eenit captures the idea that the
contradictions in the conclusions should be rejected.

Definition 22 SupposeL is a language;- a unary connective of, F the set of all wffs ofZ,
(F,V, E) a semantic structure, aid a relation orP(F) x F.

We say that~ is a preferential-discriminative consequence relatiffrthere is a coherent choice
functiony fromD to P(V) suchthatV T' C F,V a € F,

r "\/ a iff M(MF) Cc Ma and:u(MF) g Mﬁa-
In addition, if i is LM, DP, etc., then so ib-.

If a classical semantic structure is considered, the digngtive version does not bring something
really new. Indeed, the only difference will be to concludghing instead of everything in the
face of inconsistent information. On the other hand, withanyavalued structure, the conclusions
are rational even from inconsistent information. The disgrative version will then reject the
contradictions in the conclusions, rendering the lattethal more rational.

10



In Definitions[Z1 and@2, the domain of the choice functiois This is natural as only the
elements oD play a role in the definition of a preferential(-discrimiiva) consequence relation.
This point of view has been adopted in e.d. _[Leh01] (see Sed). Now, one might want a
definition with choice functions of which the domainV). In fact, some families of relations
can be defined equivalently wilb or P (V). For instance, as is noted in_[Lefh01],ifis a coherent
choice function fromD to P(V), then the function.’ from P(V) to P(V) defined byu/'(V) =
V N u(Mrpvy) is a coherent choice function which agrees witbn D.

Several characterizations for preferential consequegle¢gions can be found in the literature
(e.g. [KLM9Q,[LM9Z,[Leh0P| Len01. SchbP. Sch¥6, ScH00, FFh0in particular, we will recall
(in SectiorZ}) a characterization that involves the walhwn systenP of [KLM90].

As said previously, in the light of Propositi@nl20, prefeialf-discriminative) consequence re-
lations could have been introduced equivalently with mesiee structures. We opted for coherent
choice functions for two reasons. First, they give a cleareaning. Indeed, properties like Co-
herence have simple intuitive justifications, whilst prefece structures contain “states”, but it is
not perfectly clear what a state is in daily life. By the way,[KLM90], Kraus, Lehmann, and
Magidor did not consider preference structures to be ogto# justifications for their interest in
the formal systems investigated, but to be technical tankstidy those systems and in particular
settle questions of interderivability and find efficient dé&m procedures (see the end of Section 1.2
of [KLM90)).

Second, in the proofs, we will work directly with choice fdions and their properties, not with
preference structures. By the way, the techniques dewveliophe present paper (especially in the
discriminative case) can certainly be adapted to new ptiggser

2.4 The systenP

Gabbay, Makinson, Kraus, Lehmann, and Magidor investéjex¢éensively properties which should
be satisfied by plausible non-monotonic consequence ork{Gab85. Mak89., Mak94. KLM90,
LM92]. A certain set of properties, called the syst&m plays a central role in this area. It is
essentially due to Kraus, Lehmann, and Magidar [KLIM90] aiad been investigated further in
[CM92]. Let’s present it.

Definition 23 SupposeL is a language containing the usual connectiveendV, F the set of all
wffs of £, (F,V, =) a semantic structure, amd a relation onF x F.
Then, the syster® is the set of the six following conditions:«, 8,y € F,

Reflexivity a | «

Fae 8 apy
B

Fa—=8 vha
Y B

Left Logical Equivalence

Right Weakening

cut GNPy apB
apry

ap B apy
aNB oy

Cautious Monotonicity
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apry By
or aV By

Note thate A S is a shorthand for(—« VvV =8). Similarly,« — 8 anda +» (8 are shorthands. Note
again thafP without Or is calledC. The systentC is closely related to the cumulative inference
which was investigated by Makinson [n[MaKk89]. In additidrseems to correspond to what Gabbay
proposed in[[Gab85]. Concerning the rée, it corresponds to the axiom CA of conditional logic.
All the properties inP are sound if we read |~ S as ‘S is a plausible consequence @f.
In addition,P is complete in the sense that it characterizes those coesequelations that can be
defined by a smooth transitive irreflexive preference stmectThis is what makeB central. More
formally:

Definition 24 Suppos€F,V, |=) is a semantic structure.

ThenDy:={VCV:3acF,V =M}

SupposeL is a language containing the usual connectivesdV, and.F the set of all wifs ofL.
Then define the following conditiontv € V,V o, 8 € F,VI C F,

(KLMO) v = —aiff v £ o
(KLM1) v =EaViffvEaore ES.
(K LM?2) if for every finite subset\ of T', Ma # ), thenMr # ().

Note that(K' LM ?2) is called “assumption of compactness”[in [KLM90].

Proposition 25 [KLM90| SupposeL is a language containing the usual connectivendv, F
the set of all wffs ofZ, (F,V, =) a semantic structure satisfyifdg’ LM 0)—(K LM?2), andj~ a
relation of F x F.

Then,|~ satisfies all the properties Bfiff there exists & -smooth transitive irreflexive preference
structureR onV suchthav «, 8 € F, o |~ S iff pr (M) C Mg.

Note thatj~ is a relation onF x F, notP(F) x F. This difference is crucial. Indeed, if we adapt
the conditions ofP in the obvious way to relations oR(F) x F and if we replacédD; by D in
Propositio 2B, then the latter does no longer hold. Thistiegresult was shown by Schlechta in
[Scha2].

Now, by Propositions20 alldP5, we immediately get the falllmwrepresentation theorem:

Proposition 26 Suppose DefinitioR21 (of preferential consequence rela}its adapted in the ob-
vious way to relations o x F (essentially, replacP by D¢), £ is a language containing the usual
connectives- andV, F the set of all wifs ofZ, |~ a relation onF x F, and(F,V, =) a semantic
structure such thgtk LM 0)—(K LM2) holdandvV V,W € Dy, VUW € Dy andV N W € Dy.
Then, LM preferential consequence relations are precthelye relations that satisfy the systém

2.4.1 Example with a classical semantic structure

Let £ be a classical propositional language of which the atoms,areandp. Intuitively, r means
Nixon is a republicang means Nixon is a quaker, apdneans Nixon is a pacifist. L&t be the set
of all wifs of £, V the set of all classical two-valued valuationstyfand|= the classical satisfaction
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relation for these objects. TheM,is the set of the 8 following valuationsy, vy, va, vs, v4, U5, Vs,
andvr, which are defined in the obvious way by the following table:

r1q\|p
v ||0]0]0
v1{{0]0]1
(%) 0(11]0
va||0]1]1
V4 1{0(0
vs || 110]1
Ve 1 110
vr | 1]1]1

Now, consider the class of all republicans and the classl afuakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normaiéffis a pacifist. And, consider that a
valuationv is more normal than a valuatianfrom the point of view of a clas§' iff

e Nixon is an individual ofC' in bothv andw;
e Nixon is normal inv;
e Nixon is not normal inw.

In the following graph, there is an arrow from a valuatioto a valuationw iff v is more normal
thanw from the point of view of some class:

V0 A\ T

1

Given those considerations a natural preference struoturgis R = (V, 1, <), wherel is identity
and< is the relation such thatv, w € V, we havey < w iff (1) or (2) below holds (i.e. there is an
arrow fromo to w):

(1) v Erandv = —pandw = r andw £ —p;
(2) v E gandv = p andw = ¢ andw [~ p.

Finally, let|~ be the preferential consequence relation defined by theepnhehoice functiom.
Then,|~ leads us to “jump” to plausible conclusions from incomplefermation and to revise
previous “hasty” conclusions in the face of new and fulldoimation. For instance; |~ —p and
{r.p} ¥ —p andq p~ p and{q, —p} [~ p.
However, |~ is not paraconsistent. In addition, some sets of formulasrandered useless,
because there is no preferred model for them, though therenadels for them. For instance,
{¢.7} b a,Vae F.
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2.4.2 Example with the FOUR semantic structure

Consider theFOUR semantic structuréF.., V,, =4) and supposel = {r, ¢, p} (these objects have
been defined in Sectidn Z1.2). In addition, make the samsiderations about Nixon, the classes,
normality, etc., as in Sectidn 2.%.1, except that this tinmalaationv is considered to be more normal
than a valuationw from the point of view of a clas§’ iff

e in bothv andw, the processor is informed that Nixon is an individua{hf
e in v, he is informed that Nixon is normal and not informed of thatcary;
e inw, he is not informed that Nixon is normal.

See Sectiof 2.11.2 for recalls about the sources-procegstanss. Given those considerations a
natural preference structure d is R = (V4,1, <), wherel is identity and< is the relation such
thatV v, w € V4, we havev < w iff (1) or (2) below holds (i.ew is more normal tham from the
point of view of some class):

(1) v Erandv = —pandv £ pandw = r andw £ —p;
(2) v E gandv = p andv = —p andw = g andw - p.

Let |~ be the preferential consequence relation defined by theeohehoice function .
Then, again we “jump” to plausible conclusions and revisevjmus “hasty” conclusions. For

instancer |~ —p and{r, p} [ —p andq |~ p and{q, —p} | p.

In addition, |~ is paraconsistent. For instancgs, —p,¢} I~ p and{p,-p,q} ~ —p and
{p,—p,q} I~ qand{p,—p,q} ¥ —¢. And, it happens less often that a set of formulas is ren-
dered useless because there is no preferred model forugltthere are models for it. For instance,

F{his t}ir;ce,{q,r} k pand{q,r} | —pand{q,r} I qand{q,r} [ —¢ and{q,r} |~ r and
q,7 —r.

However |~ does not satisfy the Disjunctive Syllogism. Indeed, fotanse {—r,r V ¢} |~ g.

3 Contributions

The main contributions of the present paper are summarelesbWe characterized (in many cases,
by purely syntactic conditions) families of preferentiabigpreferential-discriminative consequence
relations. Sometimes, we will need to make some assumpdibost the semantic structure under
consideration. However, no assumption will be needed ®thhee following families:

e the preferential consequence relations (Se¢fioh 3.2);
o the DP preferential consequence relations (Segfidn 3.1);
o the DP LM preferential consequence relations (Seéfidn 3.1)
We will assume A1) and(A3) for:
o the CP preferential-discriminative consequence relat{@ectiod 34);
o the CP DP preferential-discriminative consequence mlat{Sectiol 313);

o the CP DP LM preferential-discriminative consequencetiaia (Sectiof313).
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And, we will need(A1), (A2), and(A3) for:
o the preferential-discriminative consequence relati@ectio 3.4);
o the DP preferential-discriminative consequence relati@ectiol 313);

o the DP LM preferential-discriminative consequence relati(Sectiofi 313).

3.1 The non-discriminative and definability preserving cas

The characterizations in this section have already beemgivProposition 3.1 of [SchD0], under the
assumption that a classical propositional semantic streé considered. Using the same techniques
as those of Schlechta, we show that his characterizatiddsaithh any semantic structure.

Notation 27 Let (F,V, =) be a semantic structure apda relation oriP(F) x F.
Then, consider the following conditiong.I’, A C F,

(I0) i H(T) = H(A), thenf(T) = f(A);
(1) F(R(D)) = o (D);

(2) T C (D);

(R3) (D, A) CH((D), A);

(I4) it T CHA) C (D), thenp(T) C v (A).

Note that those conditions are purely syntactic when theeegroof system available fer (which
is the case with e.g. the classic&2OUR, and.J; semantic structures).

Proposition 28 LetS = (F,V, =) be a semantic structure apda relation orP(F) x F. Then,
(0) |~ is a DP preferential consequence relatior{}if0), (~1), (~2), and(}~3) hold;
(1) |~ is a DP LM preferential consequence relation([#0), (|~1), (~2), (3), and(l~4) hold.

Proof Proof of(0). Direction: “—".
By hypothesis, there exists a DP coherent choice fungtifrom D to P (V) such that' T’ C F,
() = T(u(Mr)). We will show:
(0.0) |~ satisfieg|~0);
(0.1) |~ satisfieg~1);
(0.2) |~ satisfieg~2).
Before turning to(|~3), we need a preliminary result:
(0.3) vI C F,we havm(Mp) = ]\/f‘,\,(p);
(0.4) |~ satisfieg|~3).
Direction: “«".
Supposé~ satisfies(|~0), (1), (~2), and(p3).
Let u be the function fronD to P(V) such that' T' C F, u(Mr) = M| ().
Then,u is well-defined.
Indeed, IfT', A C F andMr = Ma, then=(T") = F(A), thus, by(|~0), (T) = ~(A).
In addition, . is obviously DP. We show the following which ends the proof:
(0.5) w is a choice function;
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(0.6) p is coherent;
(0.7) YT C F, we have~(T") = T'(u(Mr)).

Proof of (0.0). LetT", A C F and suppose (I') = F(A).
Then,Mr = Ma. Thus,~(T) = T(u(Mr)) = T(u(Ma)) = p().

Proof of (0.1). LetT’ C F. Then,t-((I')) = H(T(u(Mr))) = T(Mrunry)) = ().
Proof of (0.2). LetT" C F. Then,I' C T'(Mr) C T(u(Mr)) = ().

Proof of (0.3). LetI’ C F. As, uis DP,u(Mr) € D.
Thus,3T" C F, u(Mr) = Mr.. Thereforeu(Mr) = Mrr = My, ) = Mruany) = M-

Proof of (0.4). LetT', A C F. As, Mr Ao € Mr andy is coherenty (M) N Mr a C u(Mr a).
Therefore/~(T', A) = T'(u(Mr,a)) C T((Mr) N Mr a) =T ((Mr) N Ma).
Thus, by(0.0), ~(T', A) C T(]\/f‘,\,(p) NMa) = T(M|N(F)7A) =H((T), A).

Proof of (0.5). LetI" C F. Then,u(Mr) = M, ), which is, by(}~2), a subset of\/r.

Proof of (0.6). LetT", A C F and suppos@/r C Ma.
Then,u(Ma) N Mr = M|N(A) N Mr = M|~(A),F-
But, by (3), Miv(a)r € Miv(ar) = p(Ma,r) = pu(Mr).

Proof of (0.7). LetT" C F. Then, by(~1), ~(T) = F(~(T)) = T(Mury) = T'(u(Mr)).

Proof of (1). Direction: “—".
Verbatim the same proof as (), except that in additiop is LM.
We use it to show that satisfieq(|~4).
LetI', A C F and suppos€ C F(A) C ().
Then, by(0.3), u(Mr) = Moy € Mi(a) = Ma € Mr.
Therefore, ag is locally monotonicu(Ma) C pu(Mr).
Thus,~(I') = T(u(Mr)) € T(u(Ma)) = (A).
Direction: “«".
Verbatim the same proof as (), except that in additioj~4) is satisfied.
We use it to show that is locally monotonic.
LetT', A C F and supposg(Mr) € Ma C Mr.
Then, M ry € Ma € Mr. Thereforel' C T'(Mr) C T(Ma) = F(A).
On the other hand;(A) = T'(Ma) € T(Mr)) = F(p(I")) which is, by(j~1), equal to~(T").
Thus, by(r4), we have~(T') C ~(A). Thereforeu(Ma) = Myuay € Moy = p(Mr). |}

3.2 The non-discriminative and not necessarily definabilit preserving case

In this section, we will characterize the family of all predatial consequence relations. Unlike in
SectiorZ31L, our conditions will not be purely syntactie (using only-, |~, etc.). In fact, properties
like Coherence cannot be translated in syntactic termsusedhe choice functions under consider-
ation are not necessarily definability preserving. Indeezido no longer have at our disposal the
remarkable equalityu(Mr) = My, which is of great help to perform the translation and which
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holds precisely because of Definability Preservation.

In Proposition 5.2.11 of [SchD4], K. Schlechta provided arelaterization of the aforementioned
family, under the assumption that a classical propositisermantic structure is considered. Note that
most of his work is done in a very general, in fact algebraeyfework. Only at the end, he applied
his general lemmas in a classical framework to get the cheniaation. The conditions he gave, as
ours, are not purely syntactic (e.g. they involve the notibmodel, etc.). Moreover, some limits of
what can be done in this area have been put in evidence bycitaleApproximatively, he showed
in Proposition 5.2.15 of the same book that, in an infinitessileal framework, there does not exist
a characterization containing only conditions which areersally quantified, of limited size, and
using only simple operations (like e.g, N, \).

The purpose of the present section is to provided a new deaization, more elegant than the
one of Schlechta and that hold with any semantic structucedd'so, we have been inspired by
the algebraic part of the work of Schlechta (see Propostia@rb of [Sch04]). Technically, the idea
begins by building from any functiofi, a coherent choice functiqry such that whenevef“covers”
some coherent choice function, it necessarily cougrs

Definition 29 LetV be a setV andW subsets o (V), andf a function fromV to W.
We denote by:; the function fromV to P(V) such that/ V € 'V,

pr(V)y={veV:VWeV,ifveW CV, thenv € f(W)}.

Lemma 30 Let V be a setV andW subsets of°(V), andf a function fromV to W.
Then,u is a coherent choice function.

Proof g is obviously a choice function. It remains to show that itofierent.

Supposd/,W € V,V C W, andv € puy(W)NV. We showv € p5(V).

To do so, suppose the contrary, i.e. suppogep (V).

Then,am € V,wehaved Z e V,Z CV,v e Z,andv ¢ f(Z).

But,V C W, thusZ C W. Therefore, by definition of.y, v & py (W), which is impossible. |J

Lemma 31 Let V be a setV, W, andX subsets ofP(V), f a function fromV to W, andu a
coherent choice function frot to X suchthat/ V € 'V, f(V) = Mp,v)).
ThenVV €V, f(V) = MT(,uf(V))-

Proof LetV € V. We showf(V) = Mz, (v))-

Case 13w e u(V),v & psp(V).

As (V) CV,we havev € V.

Thus, by definition ofuy, 3W € V, W C V,v € W,andv & f(W) = Mrp.cwy) 2 u(W).

On the other hand, asis coherenty (V) N W C u(W). Thus,v € u(W), which is impossible.
Case 2u(V) C us(V).

Case 2.13v € pus(V), v & f(V).

Then3IW e V, W CV,v e W,andv ¢ f(IV). Indeed, just tak&” itself for the choice ofV'.
Thereforep & p¢(V'), which is impossible.

Case 2.2us (V) C f(V).

Then,f(V)) = Mruvy) € Mr,vy) € Mrrvy) = Mrouggon,) = Moy = F(V).

Now, everything is ready to show the representation result.
Notation 32 Let (F, V, =) be a semantic structure ahda relation orP(F) x F.
Then, consider the following conditiok:T" C F,
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(|N5) 'N(F) = T({U e Mr:VACF,ifve Ma C Mr, thenv € M\N(A)})-

Proposition 33 Let (F,V, =) be a semantic structure apda relation oriP(F) x F.
Then,|~ is a preferential consequence relation[5) holds.

Proof Direction: “—".

There exists a coherent choice functjpfrom D to P(V) such that' I C F, (') = T'(u(Mr)).
Let f be the function fronD to D such that/ V' € D, we havef (V) = My, vy)-

By Lemmd3ly V € D, we havef (V) = My, (v))-

Note thatv " C F, f(Mp) = MT(M(MF)) = M|N(1“)-

We show that|~5) holds. Letl’ C F.

Then,~(T') = T(u(Mr)) = T(Mr(uary)) = T(f(Mr)) = T(Mr(u, mry)) = T (pg(Mr)) =
T{ve Mpr:YW eD,ifveW C My, thenv € f(W)}) =

T({ve Mpr:VYACF,ifve Ma C My, thenv € f(Ma)}) =

T({U e Mr:VACF,ifve Ma C Mr, thenv € ]\/I\N(A)})-

Direction: “ «".

Supposeé-~ satisfieq|~5).

Let f be the function fronD to D such that/ I C F, we havef (Mr) = M ().

Note thatf is well-defined. Indeed, I, A C F andMr = Ma, then, by(|~5), ~(T') = ~(A).
In addition, by(~5), we clearly have/T' C F, ~(T') = T'(p(Mr)).

And finally, by Lemmd3Dy. is a coherent choice function. j

3.3 The discriminative and definability preserving case

In this section, we will characterize certain families of pRferential-discriminative consequence
relations. To do so, we will develop new technigues (esfigdciammadZ0 anf41 below). We need
basic notations and an inductive construction:

Notation 34 IN denotes the natural numbers including{0; 1,2, ..., }.

IN* denotes the strictly positive natural numbefrs; 2, ..., }.

Z denotes the integers.

Leti, j € Z. Then,[i, j] denotes the set of all € ZZ such that < k < j.

Let £ be a languagey a binary connective of, F the set of all wffs ofC, andjy, 5o, . .., B € F.
Whenever we writgd; vV B2 V...V G, wemear(...((81 V B2) VB3) V...V Br_1) V By

Definition 35 Let £ be a language; a unary connective of, F the set of all wffs ofZ, (F,V, =)
a semantic structuréy a relation oriP(F) x F, andl’ C F. Then,

H (D) :={-BeF: ek rI)\rT)and-8 ¢ (T, ~I))}.
Leti € IN with : > 2. Then,

.f CJ BerR@ @), Hi(T),..., Hi—1(I')) \ (') and
Hi(T) = {~BeF: { —8 & H(T, (D), Hy(T), ..., Hir (1)) b

icINT
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Definition 36 SupposeL is a language; a unary connective of, Vv a binary connective of, F
the set of all wifs ofZ, (F,V, |=) a semantic structure, atd a relation orP(F) x F.
Then, consider the following conditiong:I', A C F,V «, 8 € F,

(r6) if 5 € (I, () \ (') and—a € F(T, ('), =5), thena: & ~(I);

(h7) if a € F(T, (I)) \ (I) andB € H(T, f(T), =) \ (), thena v 8 & (D),
(~8) if a € ~(I), then—a & H(T', ~(1));

(R9) it A CH(T), then(I) U H(T) C H(A, ~(A), H(A),T);

()~10) if T C H(A) CH(T, ~(T), H(D)), thenj~(T") U H(T") C H(A, ~(A), H(A));
(k~11) if T is consistent, thep-(T") is consistent]” C |~(T'), and-(~(T)) = ~(T).
Note that those conditions are purely syntactic when treagaroof system available for.

Proposition 37 SupposeL is a language; a unary connective of, Vv and A binary connectives
of £, F the set of all wffs ofC, (F,V, =) a semantic structure satisfyirigl1) and(A3), andp~ a
relation onP(F) x F. Then,

(0) p is a CP DP preferential-discriminative consequence waft (|~0), (~6), (~7), (F8),
(F+9), and(j~11) hold,;

(1) pisaCP DP LM preferential-discriminative consequencei@iaff (~0), (~6), (~7), (F8),
(F9), (l~10), and(}~11) hold.

SupposeF, V, =) satisfies(A2) too. Then,

(2) |~ is a DP preferential-discriminative consequence relaffo~0), (~6), (~7), (8), and
(r~9) hold,;

(3) b is a DP LM preferential-discriminative consequence relaiif (~0), (~6), (7), (K8),
(F+9), and(j~10) hold.

The proof of PropositioR 37 has been relegated at the endatibBEE3. We need first Notati¢nl34,
Definition[38 and Lemmds BB, 10, and 41 below. Here are somaypigchnical tools:

Definition 38 SupposeL is a language; a unary connective of, v a binary connective of, F
the set of all wffs ofC, (F,V, =) a semantic structure satisfyifd 1), |~ a relation orP(F) x F,
andI’ C F. Then,

M% = {1} S MF,\N(F) :dp € T(MF,|~(F)) \ PV(F), v ¢ Mﬂﬁ}.
Let: € IN with 7 > 2. Then,
M= {v € Mp por)\MpU. . .UM : 38 € T(Mp pory \MEU. . .UM D\ (D), v & Mg}
Mp= ) M}
ieNT
(D) := [{i € N : M} # 0}
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Supposeli} # (. Then, we denote bgi an element ofF, chosen arbitrarily, such that
dr e |N+,3’U1,’U2,...,’UT eV, andﬂﬁl,ﬁg,...,ﬁr € F with MIl‘ = {Ul,UQ,...,’UT},

Br=pB1VB2V...V B,

ande S [1,7"], ﬂj ¢ |’V(F), MF,\N(F) - Mg]., andvj ¢ Mﬂﬁj.
As M} # () and M is finite (thanks tq A1)), such an element exists.

Suppose € N, i > 2, and M # 0.
Then, we denote byl an element ofF, chosen arbitrarily, such that
dr e |N+,E|1)1,1)2,...,U7« eV, andﬂﬁl,ﬂQ,...,ﬂr e F with MIZ‘ = {1}1,1)2,...,1}7«},

Br=pB1VB2V...V B,

andv j € [1,7], 8; & ~(0), Mp pory \ M U...UM{™! C Mg, andv; & Mg, .
As M. # () and M. is finite, such an eIement exists.

SupposeVl|. # (. Then,
Bri=phveEv... vam

As M[. # 0, n(') > 1. In addition, we will show in Lemm&=39 below tha{(I") is finite and
Vi€ NT withi < n(l), ME # 0. Thus,8r is well-defined.

0 otherwise
GI):={aeF:ag (), nadépI), andTy(Mr jr)a) € T}
Here are some quick results about the purely technical tteflaed just above:

Lemma 39 SupposeL is a language; a unary connective of, Vv a binary connective of, F
the set of all wffs ofC, (F,V, =) a semantic structure satisfyifd 1), |~ a relation orP(F) x F,
I' C F,andi,j € N*. Then,

0) if i # j, thenMj N ML = 0;
1) if M =0, thenM: = 0;
2 Td(MF I~( F)) C |f\‘( ) iff MF = @,

(0)
(1)
(2)
(3) if i > 2, thenTy(Mp oy \ MEU ... UMY C (D) iff M= 0;
(4) n(T) is finite;

(5) if i < n(T), thenM;. # 0;

(6) if i > n(T), thenMi = 0;

(7) if ML # 0, thenM]. = MEu...uMP;

(8) Ta(Mr oy \ M) € ~(T).
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Proof Proofs of(0), (1), (2), and(3). Trivial.
Proof of (4). Obvious by(0) and(A1).

Proof of (5). Suppos&li € N, M} = () andi < n(T).
Then, by(1),Vj € N, j >4, M}, = 0.
Thus,|{j € N : M} # 0}| <i—1 < n(T), which is impossible.

Proof of (6). Supposeli € NT, M. # § andi > n(T).
Then, by(1),Vj € N, j <4, M} # 0.
Thus,|{j € N : M{ # 0} > i > n(T), which is impossible.

Proof of (7). Obvious by(6).

Proof of (8). Case 1:M{. = 0.

Then,Ty(Mr oy \ M{.) = Ty(Mp pry). In addition, M} = 0. Thus, by(2), we are done.
Case 2:M{. # 0.

Then, by(7), Tu(Mr jo(ry \ M{) = Ta(Mp oy \ M U ... U MEC)),

In addition,n(T") + 1 > 2 and, by(6), M. "(F)“ = (. Thus, by(3), we are done. |

We turn to an important lemma. Its main goal is to show thattvaitions(~6), (~7), and(|~8)
are sufficient to establish the following important equalit~(I') = Tu(Mr (1), z#(r)), Which
provides a semantic definition &f (in the discriminative manner).

Lemma 40 Suppose€C is a language; a unary connective of, vV andA binary connectives of,
F the set of all wifs ofZ, (F,V, =) a semantic structure satisfyifig1) and(A3), |~ a relation on
P(F) x F satisfying(j~6), (p7), and(}~8), andl’ C F. Then,

(0) if M{ #0,thensr & |~(T);

(1) it M{, # 0, thenMrp .y € Mg,
(2) if M} # 0, thenM{ N M_g. = 0;

(3) if M{, # 0, thenMp iy \ M € M_p,.;
(4) My oy \ My = Mr o) F(r);

(5) ~(T) = Ta(Mr vy, 7 (r));
(6) Mrp po(r),m(r) = Mr oy, F):
(7) () = Ta(Mr pur),m1(r))-

Proof Proof of(0), (1), and(2). Supposef}. # 0.
Then, it suffices to show by inductiol:i € [1, n(T")],
p3(i) (MpU...UM{)NM_ gy sy =0
p2(i) My C Mgy, vpi;

pi(@) BEV...V B & (D).
As M} #0,3r € NT,Jvi,vq,...,0, € V,and3py, Ba, ..., Br € F, ME = {v1,..., v},
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5111 =/ V...VB.,andVj € [1,7‘], ﬁj ¢ |N(1—‘), Mp_",\,(p) - MB]” andvj & Mﬁﬁj.
Then, it can be shown that:

(0.0) ps(1) holds;

(0.1) p2(1) holds;

(0.2) pi(1) holds.

Now, leti € [1,n(T") — 1] and suppose; (i), p2(i), andps(¢) hold.

As MY £0,3r € NT, 3wy, v9,... 0, €V, and3 By, Ba, ..., B € F,
MY = {vg, .. v ) BE = B V.V By, and

Vjellr], B ¢ p(T), Mp)‘,\,(p) \MFI U...UMp C Mﬁj, andvj & Mﬁﬁj.
Then, it can be shown that:

(0.3) ps(i + 1) holds;

(0.4) p2(z+1) holds.

Before turning tg; (i + 1), we need the following:

(0.5) BEV...VBEV BV BV...V B & (D),

(0.6) p1(¢+ 1) holds.

Proof of (0.0). If v; € M, thenv; ¢ Mg, But, by (A3), M_ 5 C M-g,.
Proof of (0.1). We haveMr ) € Mg, which is, by(A3), a subset of\/: .

Proof of (0.2). It suffices to show by inductior/ j € [1, 7],

q(]) BLV... \/Bj & 'N(F)

Obviously,q(1) holds.

Letj € [1,r — 1]. Suppose&(j). We showg(j + 1).

By (A3), we haveMr . ry € Mp,v..vp;-

On the other hand\/[p)‘N(F)ﬁ(B]vmij) - MF,|~(1") - Mﬁj+1.

Thus, byq(j) and(|~7) (whereais 51 v ...V g andgis 41), we getsy V...V By & (D).

Proof of(0.3). Letv € ME U ... U ME!. We show ¢ M_g1y. v pitt):

Case 1w € M{U...U M.

Then, byps(i), we havev & M_ 51, s:)- But, by(A3), M_ g1y, .vpirty © Moaiv.. vai)-
Case 2w € M.

Then,3j € [1,7],v = v;. Thus,w € M-5,. But, by (A3), Mﬂ(ﬁ%vmvﬁ;ﬂ) - M_\B;Jrl C M-g,.

Proof of(0.4). By p2(i), Mr ) € Mp1y._yp: Whichis, by(A3), a subset of\/ 1y vt

Proof of (0.5). It suffices to show by induction j € [1,7]:
q(j) BLV...VBEVBLV...V B & (I).

We will show:

(0.5.0)  Mp (1), ~(stv..vpi) © Mg,

Then, byp; (i), p2(i), (0.5.0), and(~7) (Wherea is AL V ...V B& andB is 1), ¢(1) holds.
Now, letj € [1,r — 1] and suppose(J).

Then, we will show:

(0-5-1) MF,\~(F),ﬁ(6;v...vB;v,@lv...ij) C Mﬁj+1-

In addition, byps(¢) and(A3), we get:

(052) MF)‘N(F) g Mﬁ%v...vﬁ}vﬁlv...vﬁj'
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By, (0.5.1), (0.5.2), ¢(j), and(7) (Wherea is BL V...V LV 31 V...V B andB is Bj11),
we get tha(j + 1) holds.

Proof 0f(050) Letv € MF,|~(F),ﬁ(ﬂ%‘V...\/ﬂ1ﬂ)' Then,v S Mﬁ(ﬂ%‘\/\/ﬂ{.‘)
Thus, byps (i), v € ME U ... U Mf. Thereforep € Mr iy \ M U... UM\ C Mg, .

Proof of (0.5.1). Letv € M | () ~(siv...vpivs,v..vs,)- THhen, by(A3), v € M_ g1y vpi)
Therefore, bys (i), v & M{ U ... U M{. Thereforep € Mp oy \ M U... UM\ C Mg, ,.

Proof of (0.6). By p»(i) and(A3), we getMr ) € M,Bllv...vﬁli C Mﬁ}v...vﬁ}vﬁlv...vﬁr-
In addition, by(A3), we 9etM_ 51y vpivev..vs,) = Mﬂ(ﬁ%‘vwvﬁffl).

Therefore, by(0.5) and(j~6) (wherea is L V...V Bt andBis BLV ...V BEV B V...V B,),
we get thap; (< + 1) holds.

Proof of (3). SupposeVi[. # 0, v € Mr ) \ My, andv & M-g,..
Then, by(0), (1), and definition of\/{, we gety € M) which is impossible by LemnfaR8).

Proof of (4). Case 1:M{. + ().

By (3), we get one directiond/r |y \ M € Mp (1), g-

By (2), we get the other directiont/r (1) -5, € Mp o) \ M.
Case 2.M{ = 0.

Then, obvioustMp_,‘N(p) \ Mf = Mp_",\,(p) = Mp7|N(p)7F(p).

Proof of (5). Direction: “C".
Case 1:M{. # 0.
Suppose the contrary of what we want to show, i.e. supgese |~(T'), a & Ty(Mr (1), -4 )-
Then,Mr,‘N(r)ﬁﬂF - M|N(1“) C M,,. ThUS:MF,\fv(F),ﬁBF C M_,.
Consequently, by0), (1), and([~6), we geta & |~(T"), which is impossible.
Case 2:M{. = 0.
Leta € I’V(F) Then,MnMF) - M|N(1“) C M,. In addition, by(|'V8), MF,\N(F) g M-_,.
Consequently;z S Td(MF,|~(F)) = Td(MF,\rv(F),F(F))-
Direction: “2". Obvious by(4) and Lemm&39g).

Proof of (6). Direction: “C".

Case 1:M{. = 0.

Case 1.1H, (T") # 0.

Then,3a € F, « ¢ PV(F), MF,|~(F) C M,, andMnMF) g M_,. Thus,a € Td(MF,|~(P))-

Therefore, by(5), a € |~(T"), which is impossible.

Case 1.2H;(T) = 0.

Clearly,¥i € N, if H;(I') = 0, thenH;,,(T) = (. Therefore (") = () = F(T).

Case 2:M{. # 0.

As, MI/‘ - MF,\~(F)| we get, by(2), MP,\~(F) g M—‘ﬁr'

Thus, by(0) and(1), we get-3r € H,(I") € H(T'). Therefore Mgy € Mp(r).
Direction: “D".

Case 1:M{ = 0.

Verbatim the proof of Case 1 of directiog”.
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Case 2:M{. # 0.

Then, the following holds:

(6.0) Vi € NT, Mp,j(r).~gr € Mr jo(r), Hy (D). ... H,(T):

Now, suppose the contrary of what we want to show, i.e. suppos

Jv e MF,‘N(P),ﬁIQF, v ¢ MF,\N(F),H(F)- Then,w Q MH(F)- But, cIearIy,MH(p) = ﬂi€|N+ MHi(F)-
Thereforedi € N*, v & My, ), which is impossible by6.0).

Proof of (6.0). We show by inductionyi € INY,

p()) My (), ~gr © Mp o(r), Hy (D), Hi (D)

We will show

(6.0.0) p(1) holds.

Leti € N, suppose(i) holds, and supposei + 1) does not hold.
Then,3v € Mr (1), ~pr, v & Mr (1), By (I),....Hi i1 (1)

ThUS,ﬂj S [1,i+ 1], v ¢ MHJ-(F)-

Casely =1.

Then, 35 € F, Mp7|N(p) C Mg, b & |N(F), andv ¢ M-_g.

Thusv € M{ N M_g., which is impossible by?2).

Case 2 > 2.

Then,3 B € F, Mp vy, i, (r),...1,_,(r) © Mp, B & p(I), andv & M_p.
But, by Lemmd3H7), by (4), andp(i), we get

My, \ MU U MEY) = My ey \ My = Mrpmy,—pe © Mo (), m,(0),o ) S
Mr o),m,(r),... 1, (1) © Mg.

Thereforep € MI’J(F)“, which is impossible by LemniaBR®).

Proof of (6.0.0). Suppose the contrary of what we want to show, i.e.
SUPPOSE} v € Mr, (1), ~pr ¥V & Mr (), 1y ()

Then,w & My, (ry. Thus,3 3 € F, Mp )y € Mg, B & ~(T), andv & M_g.
Thusv € M. Thereforep € M{. N M_g,., which is impossible by2).

Proof of (7). Obvious by(5) and(6). |}

We turn to a second important lemma. Its main purpose is tavghat any DP choice function
representing (in the discriminative manner) a relatiosatisfies the following remarkable equality:
pu(Mr) = Mr o), a(r), which enables us to definefrom .

Lemma 41 Suppos€ is a language; a unary connective of, \V andA binary connectives of, 7
the set of all wifs ofZ, (F, V, =) a semantic structure satisfyifg1) and(A43), V C P(V), uaDP
choice function fronD to V, |~ the relation onP(F) x F such that'T' C F, (") = Ty(u(Mr)),
andI’ C F. Then:

(0) u(Mr) € Mr ury;
(1) |~ satisfieq|~6);
(2) |~ satisfieq|~7);
(3) |~ satisfieq|~8);
(4) MO p(Mr) = 0;
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(5) Mr po(r). 1 (u(ar)) = #(Mr);

(6) if My # 0, thenMrp vy, zry = pu(Mr).
F,V, =) satisfieg A2) too, then:

(7) if M{. =0, thenMgry = Mz, ()
(8) if My, =0, thenMrp .y € Mgy,

(9) Mr ory,mr) = p(Mr).

If 1 is coherency preserving, then again:
(10) Mr pury,m(ry = p(Mr).

Proof Proof of(0). We showu(Mr) € My (r). Letv € u(Mr) anda € ~(T').
Then,a € Ty(u(Mr)). Thus,u(Mr) C M,. Thus,w € M, and we are done.
In addition, obviouslyu(Mr) € Mr. Thereforeu(Mr) € Mr N My = Mp (1.

)
)
If (
)
)
)

Proof of (1). Leta, 8 € F and supposg € H(T, (') \ ~(T") and—a € H(T', ~(T'), =5).
Then, by(0), u(Mr) € Mr. vy C M. But, 3 & (o(I') = Ta(u(My)). Thus,u(My) C M-p.
Consequentlyu(Mr) € Mr,ur),~3 € M-q. Thereforeq ¢ Ty(pu(Mr)) = ().

Proof of (2). Let«, 8 € F and suppose € H(T', ~(T')) \ (') ands € H(T, (), —a) \ ~(T).
Then, by( ) (MF) - Mp_",\,(p) C M,. But,« € Td( ( )) ThUS,/L(MF) C M-,.
Thus,u(Mr) € Mrp ur),~a € Mp. But, 3 & Tq(u(Mr)). Thereforeu(Mr) € M-s.
Thus, by(A3), u(Mr) € M-o N M-p = M_ ). Consequentlyy vV 3 & Ty(pu(Mr)) = ().

Proof of (3). Leta € |~(I"). Then,a € Ty(p(Mr)). Thus,u(Mr) € M.
Thus, by(O), MF,|~(F) < M_,.

Proof of (4). Case 1:M{. = (. Obvious.

Case 2:M{. # 0.

It is sufficient to show by inductiori? i € [1,n(T")],

p(i) (MEU...UME)Np(Mr) = 0.

We will show:

(4.0) p(1) holds.

Leti € [1,n(T) — 1]. Suppose(i). We showp(i + 1).

Case LM N op(Mr) = 0.

Then, byp(i), we obviously geb(i + 1).

Case 23 v € M N p(Mr).

Thend g e F, 8 & ~(I), MF,|~(F) \Ml—l\ U...U Mf‘ C Mg, andv ¢ M.

Therefore, by(0) andp(i), u(Mr) € My oy \ Mt U... U M} C Mg. But, u(Mr) € M-3.
Consequently3 € Ty(u(Mr)) = ~(T"), which is impossible.

Proof of (4.0). Suppose the contrary of1), i.e. supposé& v € My N u(Mr).
Then3p e F, Q PV(F), MF,|~(F) - Mﬁ andv ¢ Mﬂﬁ.

Therefore, by(0), u(Mr) C Mg. On the other hangy(Mr) € M-g.
Therefores € Ty(u(Mr)) = ~(T'), which is impossible.
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Proof of (5). As u(Mr) € D,3T" C F, My = p(Mr).

ThereforeMT(H(MF)) = MT(MF/) = My = ILL(MF).

Thus, My w(r), 7. (u(Mr)) = M1 (u(M10)), T (u(r)) = Mrr(u(ar)- BUt T C T'(u(Mr)).
ThereforeMnT(M(MF)) = MT(H(JWF)) = ILL(MF).

Proof of (6). Suppose\/}. # (). Direction: “C”.

Case 13w € MF,|~(F) \ MIlw u...u M?(F), v MTC(;L(MF))'

Then,3a € Te(u(Mr)), v € M,.

By LemmaZ{)3), Lemmd3Q(7), and(A3), Mp oy \ Mt U...U MM € Mg, C M (30 na)-
By (0) and Lemm&4Q1), u(Mr) € Mp. N My = M—— (g rq)-

Therefore~(fr A ) & Ta(u(Mr)) = ().

Inaddition,v & My 2 M-~ (g pa)-

Consequentlyy € MF(FHl (take—(Br A «) for the 8 of the definition ofM).

Therefore, by Lemm@3®), we get a contradiction.

Case ZMF,\N(F) \ Mll U...U M?(F) - MTC(,u(Mr))'

Then, by Lemm&406), LemmdZD(4), Lemmd38(7), and by(5), we get

M o), a1y = Mrpoy \ MEU .. UMY € Mr o) 1 uaey) = p(Mr)-
Direction: “2>".

By (0), (4), Lemmd4D(4), and Lemm@406), we get

p(Mr) € My oy \ Mf = Mr oy, rry = Mr ey, m1D).-

Proof of (7). Suppose\/}. = (). Direction: “2".

Suppose the contrary of what we want to show, i.e. suppase My, (,(ar)), v € Mg (r)-

Then3a € G(T), v & M,.

Case 1« € T(Mp (1))

Asa € G(I'), o & ~(I'). Thus, by LemmB2405), o & Ta(Mr jo(r))-

Thereforep € T.(Mr o (ry). Consequently, by0), o € T¢.(u(Mr)).

Thus,v € M, which is impossible.

Case 2:~a € T(Mrp (1))

Asa € G(I'), ~a & p(I). Thus, by Lemm&305), ~o & Ty(Mr o(r))-

Thereforea € Te(Mr o ry). Consequently, byA3), o € T..(Mp (1))

Therefore, by(0), o € T,.(u(Mr)). Thus,v € M,, which is impossible.

Case 3 « Q T(MF,|~(F)) and-aq ¢ T(MP,\~(P))-

Then, by(A2), Mr | (1), € M-qa. Thereforeq € Ty(Mr jo(r),a)-

But,a € G(T'). Thus,T4(Mr j(ry,a) € (). Thus,a € ~(I'). Thus,a ¢ G(T'), impossible.
Direction: “C".

Suppose the contrary of what we want to show, i.e. supgase My, v & My, (u(r))-

Then, we will show:

(7.0) 3a € To(u(Mr)), |Mr ry.al < [n(Mr)]

But, u(Mr) € M, and, by(0), u(Mr) € Mr ). Thereforeu(Mr) € Mrp u(r),q-

Thus,|u(Mr)| < |Mp . (r),«|, Which is impossible by7.0).

Proof of (7.0). We haved § € T,.(u(Mr)), v & Ms.

By (A1), [Mr ~(r),s| is finite. To show(7.0), it suffices to show by induction (in the decreasing
direction):V i € Z with i < [Mrp j(ry,sl,
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p(i) 3 € T(u(Mr)), v & Mo and[ M (r) ol — |u(Mr)| < i.

Obviously,p(|Mr - (r),s|) holds (take’).

Leti € Z with i < |MF (1,5 and supposg(i) holds. We showp(i — 1).

We haved a € Te(u(Mr)), v & Mo and|Mp oy o| — [u(Mr)| <.

Case 1Td(MF,|~(1"),a) - I’V(F)

As a € T.(u(Mr)) and(A3) holds, we getra € T, (u(Mr)).

But, T,.(u(Mr)) N Tg(u(Mr)) = 0. Thus, neitherr nor -« belongs tal; (u(Mr)) = ().
Consequentlyy € G(T'). Thus,w € M, which is impossible.

Case 23 3 € Ty(Mr jur),a), B & ().

By (0), u(Mr) C MF ~(r)- Onthe other hangy(Mr) € M,,. Thus,u(Mr) € Mr o r),a € Mp.
But, 8 & |~(I') = Ty(u(Mr)). Thereforep(Mr) C M_p.

Consequently(Mr) € My, N M-g = Mar-pg andu(Mr) € M- € M_(or-p)-
Thereforep A =5 € Te(pu(Mr)).

Moreovery & My 2 Mon-g.

In addition,Mrp | (r),an-s € Mr jo(r),ar WSt Mp | r).0 € M-g 2 Mp ju(ry,an-g-
Thus|Mp pory,an-sl < [Mr poqry.al — L ThUS M o) ansgl — ln(Mr)| < i — 1.
Thereforep(i — 1) holds (takex A —=f).

Proof of (8). Supposé\f{. = 0.

Now, suppose the contrary of what we want to showd.e.€ Mr .y, v € Mg (r)-

Then3Ja € G(T), v & M,.

Case 1o € T(Mrp o).

As,a € G(I'), a & ~(T'). Therefore, by Lemm@3®), o & Ta(Mr o (r))-

Thus,a € Te(Mr o r)). Therefore Mt .y € M,. Consequently; € M., which is impossible.
Case 2:-a € T(Mrp (1))

As,a € G(I'), ~a & ~(T'). Therefore, by Lemm@3®), ~a & Ta(Mr | (r))-

Thus,—~a € Te(Mp ). Therefore, by A3), M ry € M——o = M,.

Consequentlyy € M, which is impossible.

Case 3« §Z T(Mpﬁ‘,\,(p)) and—ao € T(MFJN(F)).

Then, by(A2), Mr | (1), € M-a. Thus,a € Tq(Mr . (r),«)- But,a € G(I'). Thus,a & ~(T").
Therefore Ty (Mr (r,o) € ~(I'). Consequentlyy ¢ G(T'), which is impossible.

Proof of (9). Case 1:M{. = 0.

By Lemmd4(6), Mr . (r),z(r) = Mr o(r),r(r) = Mp jo(r)-

But, by (8), (7), and(5), Mt . (ry = Mr jvr),c@) = M, o), 1. (u(rr)) = #(Mr).
Case 2:M{. # (). Obvious by(6).

Proof of (10).

Case 1:M{ = 0.

Case 1.13v € MF,\N(F)! v ¢ MTC(M(MF))‘

Case 1.1.1I' is not consistent.

Then3a € T.(u(Mr)), v € M, and, ad is not consistengl § € F, Mr C Mg andMr C M_g.
We have]\/[p,‘w(p) C Mr C Mg € Mgy-a.

Moreoveru(Mr) € Mpr C M-g. Thus,u(Mr) € M-g N My = M_(gy-q)-

Therefore3 V —~a & Ty(u(Mr)) = ~(T).

Inaddition,v & My 2 M_(gy-q)-

Consequentlyy € M} (take3 v —« for the 3 of the definition ofM).
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Thus,v € M{, which is impossible.

Case 1.1.2T" is consistent.

Thus,Mr € C. Therefore, ag is coherency preserving(Mr) € C. Thus,T.(u(Mr)) = 0.
Therefore Mr, (,(nryy = V- Thus,w € My, (,(arry), Which is impossible.

Case 1.2Mr () € Mr, (u(ar))-

Then, by Lemm&406), Mr. (1), m(r) = Mr vy, p(r) = Mr o) = Mo (), 7. (u(Mr)) -

Therefore, by(5), Mr o),z ) = p(Mr).

Case 2:M{. # (. Obvious by(6). |}

n(

Now comes the proof dProposition[37 (which is stated at the beginning of Section 3.3).

Proof Proof of(0). Direction: “—".
There exists a CP DP coherent choice funcjidnom D to P (V) such that
VT C F, (T) = Ta(u(Mr)).
We will show:
(0.0) |~ satisfieg~0).
By LemmdZl(1), (2), and(3), |~ satisfieg|~6), (|~7), and(}~8).
By LemmdZl(10) and Coherence qf, |~ satisfieg|~9).
We will show:
(0.1) |~ satisfies satisfieg~11).
Direction: “«".
Supposé~ satisfies(|~0), (6), (7). (P-8), (~9), and(p~11).
Then, letu be the function fronD to P(V) such that' T' C F, u(Mr) = Mrp (1), 5 (r)-
We will show:
(0.2) wis well-defined.
Clearly,u is a DP choice function.
In addition, ag~ satisfieg|~9), v is coherent.
We will show:
(0.3) pis CP.
And finally, by Lemmd2l(7), VT C F, () = Tu(u(Mr)).

Proof of (0.0). LetT", A C F and suppose(I') = F(A). Then, Mt = Ma.
Therefore~(T') = Tu(u(Mr)) = Ta(u(Ma)) = p(A).

Proof of (0.1). LetI" C F and supposE is consistent.

Then,Mr € DN C. Thus, ag:is CP,u(Mr) € C. ThereforeTy(u(Mr)) = T'(u(Mr)).
Consequently’ € T'(Mr) € T(u(Mr)) = Ta(u(Mr)) = p~(I).

In addition,MMF) = MTd(M(MF)) = MT(N(JWF))' BUt,,LL(MF) e C. ThUS,MT(H(]WF)) e C.
Consequently~(T") is consistent.

And finally, (') = Ta(u(Mr)) = T((Mr)) = T(Mr(ury)) = T(Mpry) = H((D)).

Proof of (0.2). LetI", A C F and suppos@/r = MAa.
Then,=(T') = =(A). Thus, by((~0), ~(T') = ~(A).
ConsequentlyH(F) = H(A) ThereforeMF)‘N(F)7H(l—\) = MA,|N(A),H(A)-

Proof of (0.3). Supposd” €e DN C. Then, 3T C F,V = M.

Case 1:H,(T") # 0.
Thus 3B € F,B ¢ ~(T') andMrp . ry C Mg.
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By (~11), T C ~(T) andk(j~(T)) = ~(T). Thus,Mr | (ry = M ). Thus,M\ ry € Mpg.
Therefores € T(Mry) = F(~(T')) = ('), which is impossible.

Case 2:H,(T") = 0.

Then,H(I‘) = 0. ThUS,,LL(V) = ,LL(MF) = MF,\N(F),H(F) = M|N(1“)-

But, by ()~11), r~(I') is consistent. Thereford/,.r € C.

proof of (1). Direction: “—".
Verbatim the proof of0), except that in additiop is LM.
Then, by Lemm&4110) and LM, |~ satisfieg|~10).
Direction: “«".
Verbatim the proof of0), except that in additiop- satisfieg|~10).
Then, by definition ofs and(j~10), p is LM.

Proof of (2). Direction: “—".
Verbatim the proof of0), except that: is no longer CP, whilsfA2) now holds.
Note that, in(0), CP was used only to sho{#~11) and(}~9).
But, (~11) is no longer required to hold.
In addition, by Lemm&419) and Coherence qf, (|~9) holds.
Direction: “«".
Verbatim the proof of0), except that~11) does no longer hold, whil§t42) now holds.
However, in(0), (j~11) was used only to show thatis CP, which is no longer required.
Note that we do not need to uéd2) in this direction.

Proof of (3). Direction “—".
Verbatim the proof of0), except thaj: is no longer CP, whilst: is now LM and(A2) now holds.
Note that, in(0), CP was used only to sho{#~11) and(|~9).
But, (~11) is no longer required.
In addition, by Lemm&419) and Coherence qf, (|~9) holds.
Similarly, by LemmdZ}(9) and Local Monotonicity of:, (~10) holds.
Direction: “+".
Verbatim the proof of0), except that|~11) does no longer hold, whilgk~10) and(A2) now holds.
Note that, in(0), (;~11) was used only to show thatis CP, which is no longer required.
Now, by definition ofu and by(|~10), u is LM.
Note that we do not need to uéd2) in this direction. JJ

3.4 The discriminative and not necessarily definability preerving case

Unlike in Sectio 3B, the conditions of this section willth@ purely syntactic. The translation of
properties like Coherence in syntactic terms is blocke@dbse we do no longer have the following
useful equality;u(Mr) = Mr (), z(ry, Which holds when the choice functions under considera-
tion are definability preserving (but this is not the caseehefhanks to Lemmds B0 ahdl 31 (stated
in Sectior3:R), we will provide a solution with semi-syrttaconditions.

Notation 42 Let £ be a language; a unary connective of, F the set of all wifs ofZ, (F,V, )
a semantic structure, and a relation orfP(F) x F.
Then, consider the following conditiok:T" C F,

(INIQ) F(F, I’V(F),H(F)) = T({v € Mp : VA C F, if ve Ma C My, thenv € M\N(A),H(A)})-
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Proposition 43 Let £ be a language; a unary connective of, VV andA binary connectives of,
F the set of all wffs ofZ, (F, V), =) a semantic structure satisfyirig 1) and(A3), andp~ a relation
onP(F) x F. Then,

(0) |~ is a CP preferential-discriminative consequence relafiaf~0), (6), (~7), (~8), (f11)
and(p~12) hold.

SupposeéF, V, =) satisfies(A2) too. Then,

(1) |~ is apreferential-discriminative consequence relatib(if0), (~6), (~7), (~8), and(j~12)
hold.

Proof Proof of(1). Direction: “—".

There exists a coherent choice functiofrom D to P(V) such thav'T' C F, ~(T") = Ta(u(Mr)).

Then,|~ satisfies obviously~0).

Let f be the function fronD to D such that/ V € D, f(V) = My, v))-

Then, by Lemm&3W V € D, f(V) = My, (v))-

Moreovery T C F, f(MF) = MT(M(MF)) - MT(MF) = Mr.

Therefore f is a choice function.

Obviously, f is DP.

In addition,vI" C F, |N( ) (,U,(Mp)) = Td(MT(p(Mp))) = Td(f(Mp)).

Consequently, by Lemnial1), (2), and(3), |~ satisfieg|~6), (~7), and(|~8).

In addition, by Lemm&3419), VF CF, f(Mr) = Mr oy, m()-

We show that~ satisfieg|~12). LetI’ C F.

Then,=(T', (I'), H(I')) = T'(Mr,jo(r),m(r)) = T(f(Mr)) =
T{ve Mr: VW eD,ifveW C Mr,thenv € f(IW)}) =
T({ve Mpr:VACF,ifve MaC Mp,thenv € f(Ma)}) =
({’U € Mpr:VACF,ifve Ma C Mr,thenv € MA (A )H(A)})
({’U € Mr:VAC F, if v e MaC Mr, thenv € M|~(A),H A)})

Direction: “«".

Supposé~0), (6), (7), (~8), and(j~12) hold.

Let f be the function fronD to D such that/ T C F, f(Mr) = Mr . (r), a(r)-

By ([~0), f is well-defined.

By Lemma@])(?) vVI'CF, IN( )= Td(Ml",\m/(F),H(F))-

Thereforey T' C F, |~(T') = Tu(f(Mr)).

By (r12), VI C F, f(Mr) = MT(M(MF))'

Thereforey T' C F, p(T') = Tu(f(Mr)) = Ta(Mr., (ary)) = Ta(pg(Mr)).

But, by Lemmd=30;: is a coherent choice function.

T(Mr(upmry)) =T (g (Mr)) =

Proof of (0). Direction: “—".
Verbatim the proof of 1), except that A2) does no longer hold, whilgt is now CP.
Note that(A2) was used only to apply Lemrial4d) to getV T’ C F, f(Mr) = Mrp (), m(r)-
But, we will get this equality by another mean.
Indeed, ift” € DN C, then, ag.is CP,u(V) € C, thusMr(,(vy) € C, thusf(V) € C.
Thereforef is CP.
Consequently, by Lemnial10), we gety I C F, f(Mr) = Mrp vy, m(r)-
In addition, by verbatim the proof @f).1) of Propositior37 |~ satisfieg|~11).
Direction: “«".
Verbatim the proof of 1), except that A2) does no longer hold, whilgt now satisfieg|~11).
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But, in this direction{ A2) was not used iff0).

It remains to show that; is CP.

By verbatim the proof of0.3) of Propositior:3l7, we get thetis CP.

LetV € DNC. Then,f(V) € C. Thus,Mr,,(v) € C. Thus,u;(V) € C and we are done. ||

4 Conclusion

We provided, in a general framework, characterizationgdonilies of preferential(-discriminative)
consequence relations. Note that we have been inspiredebywdink of Schlechta in the non-
discriminative case, whilst we developed new techniquekideas in the discriminative case. In
many cases, our conditions are purely syntactic. In facemthe choice functions under consider-
ation are not necessarily definability preserving, we pedisolutions with semi-syntactic condi-
tions. We managed to do so thanks to Lemmas 3@ahd 31. Anstitegething is that we used them
both in the plain and the discriminative versions. This sgjg that they can be used in yet other
versions. In addition, we are quite confident that LemmasntIZE can be used to characterize
other families of consequence relations defined in the idisicative manner by DP choice functions
(not necessarily coherent, unlike all the families inwggstizd here).
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