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Abstract

The present paper follows the line of research which consists in investigating consequence relations that are both
paraconsistent and plausible (generally non-monotonic too). More precisely, we lay the focus on preferential
consequence relations, i.e. those relations that can be defined by a binary preference relation on states labelled
by valuations (such as in Non-monotonic Reasoning). The first purpose of the paper is to provide characteriza-
tions for families of them, in a general framework that covers e.g. the ones of the well-known paraconsistent
logicsJ3 andFOUR. The second and main purpose is to provide, again in a generalframework, character-
izations for families of preferential-discriminative consequence relations. The latter are defined exactly as the
plain versions, except that among the conclusions, a formula is rejected if its negation is also present.

Remark 1 A previous version of this paper has been published:The Journal of Logic and Com-
putation, 15(3):263-294, 2005. The present version contains improvements about the presentation.
Consequently, section ordering, definition labels, proposition labels, etc. are different according to
whether the present or the previous version is considered.
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1 Introduction

In many situations, an agent is confronted with incomplete and/or inconsistent information and then
the classical consequence relation proves to be insufficient. Indeed, in case of inconsistent infor-
mation, it leads to accept every formula as a conclusion, which amounts to loose the whole in-
formation. Therefore, the agent needs another relation leading to non-trivial conclusions in spite
of the presence of contradictions. So, several paraconsistent consequence relations have been de-
veloped. In the present paper, we will pay attention in particular to certain many-valued ones
[Bel77b, Bel77a, DdC70, CMdA00, dACM02, AA94, AA96, AA98].They are defined in frame-
works where valuations can assign more than two different truth values to formulas. In fact, they
tolerate contradictions within the conclusions, but reject the principle of explosion according to
which a single contradiction entails the deduction of everyformula.

In case of incomplete information, the classical consequence relation also shows its limits. In-
deed, no risk is taken, the conclusions are sure, but too few.The agent often needs another relation,
more daring, leading to accept as conclusions formulas thatare not necessarily sure, but still plau-
sible. Eventually, some “hasty” conclusions will be rejected later, in the presence of additional
information. So, a lot of plausible (generally, non-monotonic) consequence relations have been de-
veloped. Gabbay, Makinson, Kraus, Lehmann, and Magidor investigated extensively properties that
should be satisfied by such relations [Gab85, Mak89, Mak94, KLM90, LM92]. In addition, central
tools to define plausible relations arechoice functions[Che54, Arr59, Sen70, AM81, Leh02, Leh01,
Sch92, Sch04]. Indeed, suppose we have at our disposal a functionµ, called a choice function, which
chooses in any set of valuationsV , those elements that are preferred, not necessarily in the absolute
sense, but when the valuations inV are the only ones under consideration. Then, it is natural to
concludeα (a formula) fromΓ (a set of formulas) iff every model forΓ chosen byµ is a model for
α. This constitutes a plausible (generally, non-monotonic)consequence relation.

In the present paper, we will lay the focus on a particular family of choice functions. Let us
present it. Suppose we are given a binary preference relation≺ on states labelled by valuations (in
the style of e.g. [KLM90, Sch04]). This defines naturally a choice function. Indeed, choose in any set
of valuationsV , each element which labels a state which is≺-preferred among all the states labelled
by an element ofV . Those choice functions which can be defined in this manner constitute the
aforementioned family. The consequence relations defined by this family will be calledpreferential
consequence relations.

For a long time, research efforts on paraconsistent relations and plausible relations were sep-
arated. However, in many applications, the information is both incomplete and inconsistent. For
instance, the semantic web or big databases inevitably contain inconsistencies. This can be due to
human or material imperfections as well as contradictory sources of information. On the other hand,
neither the web nor big databases can contain “all” information. Indeed, there are rules of which
the exceptions cannot be enumerated. Also, some information might be left voluntarily vague or in
concise form. Consequently, consequence relations that are both paraconsistent and plausible are
useful to reason in such applications.

Such relations first appear in e.g. [Pri91, Bat98, KL92, AA00, KM02]. The idea begins by taking
a many-valued framework to get paraconsistency. Then, onlythose models that are most preferred
according to some particular binary preference relation onvaluations (in the style of [Sho88, Sho87])
are relevant for making inference, which provides plausibility (and in fact also non-monotonicity).
In [AL01b, AL01a], A. Avron and I. Lev generalized the study to families of binary preference
relations which compare two valuations using, for each of them, this part of a certain set of formulas
it satisfies. The present paper follows this line of researchby combining many-valued frameworks
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and choice functions.
More explicitly, we will investigate preferential consequence relations in a general framework.

According to the different assumptions which will be made about the latter, it will cover various
kinds of frameworks, including e.g. the classical propositional one as well as some many-valued
ones. Moreover, in the many-valued frameworks, preferential relations lead to rational and non-
trivial conclusions is spite of the presence of contradictions and are thus useful to deal with both
incomplete and inconsistent information. However, they will not satisfy the Disjunctive Syllogism
(fromα and¬α ∨ β we can concludeβ), whilst they satisfy it in classical frameworks.

In addition, it is in the many-valued frameworks that new relations, which we will investigate
in detail, are really interesting:preferential-discriminative consequence relations. They are defined
exactly as the plain versions, except that among the conclusions, a formula is rejected if its negation
is also present. In classical frameworks, they do not bring something really new. Indeed, instead of
concluding everything in the face of inconsistent information, we will simply conclude nothing. On
the other hand, in many-valued frameworks, where the conclusions are rational even from inconsis-
tent information, the discriminative versions will rejectthe contradictions among them, rendering
them all the more rational.

The contribution of the present paper can now be summarized in one sentence: we characterized,
in a general framework, several (sub)families of preferential(-discriminative) consequence relations.
In many cases, our characterizations are purely syntactic.This has a lot of advantages, let us quote
some important ones. Take some syntactic conditions that characterize a family of those consequence
relations. This gives a syntactic point of view on this family defined semantically, which enables us
to compare it to conditions known on the “market”, and thus toother consequence relations. This
can also give rise to questions like: if we modified the conditions in such and such a natural-looking
way, what would happen on the semantic side? More generally,this can open the door to questions
that would not easily come to mind otherwise or to techniquesof proof that could not have been
employed in the semantic approach. Finally, this can help tofind or improve proof systems based on
the family, like a Gentzen proof system for instance.

Several characterizations can be found in the literature for preferential relations (e.g. [Gab85,
Mak89, Mak94, KLM90, LM92, Leh02, Leh01, Sch92, Sch96, Sch00, Sch04]). We will provide
some new ones, though, to do so, we have been inspired by techniques of K. Schlechta [Sch04].
In fact, our innovation is rather related to the discriminative version. To the author knowledge, the
present paper is the first systematic work of characterization for preferential-discriminative conse-
quence relations.

The rest of the paper is organized as follows. In Section 2.1,we introduce our general framework
and the different assumptions which sometimes will be made about it. We will see that it covers in
particular the many-valued frameworks of the well-known paraconsistent logicsFOUR andJ3. In
Section 2.2, we present choice functions and some of their well-known properties. We will see which
properties characterize those choice functions that can bedefined by a binary preference relation on
states labelled by valuations. In Section 2.3, we define preferential(-discriminative) consequence
relations and give examples in both the classical and the many-valued frameworks. We will also
recall a characterization which involves the well-known systemP of Kraus, Lehmann, and Magidor.
In section 3, we provide our characterizations. Finally, weconclude in Section 4.
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2 Background

2.1 Semantic structures

2.1.1 Definitions and properties

We will work with general formulas, valuations, and satisfaction. A similar approach has been taken
in two well-known papers [Mak05, Leh01].

Definition 2 We say thatS is asemantic structureiff S = 〈F ,V , |=〉 whereF is a set,V is a set,
and|= is a relation onV × F .

Intuitively, F is a set of formulas,V a set of valuations for these formulas, and|= a satisfaction
relation for these objects (i.e.v |= α means the formulaα is satisfied in the valuationv, i.e. v is a
model forα).

Notation 3 Let 〈F ,V , |=〉 be a semantic structure,Γ ⊆ F , andV ⊆ V . Then,
MΓ := {v ∈ V : ∀ α ∈ Γ, v |= α},
T (V ) := {α ∈ F : V ⊆Mα},
D := {V ⊆ V : ∃ Γ ⊆ F ,MΓ = V }.
SupposeL is a language,¬ a unary connective ofL, andF the set of all wffs ofL. Then,
Td(V ) := {α ∈ F : V ⊆Mα andV 6⊆M¬α},
Tc(V ) := {α ∈ F : V ⊆Mα andV ⊆M¬α},
C := {V ⊆ V : ∀ α ∈ F , V 6⊆Mα or V 6⊆M¬α}.

Intuitively, MΓ is the set of all models forΓ andT (V ) the set of all formulas satisfied inV . Every
element ofT (V ) belongs either toTd(V ) or Tc(V ), according to whether its negation is also in
T (V ). D is the set of all those sets of valuations that are definable bya set of formulas andC the
set of all those sets of valuations that do not satisfy both a formula and its negation. As usual,MΓ,α,
T (V, v) stand for respectivelyMΓ∪{α}, T (V ∪ {v}), etc.

Remark 4 The notationsMΓ, T (V ), etc. should contain the semantic structure on which they are
based. To increase readability, we will omit it. There will never be any ambiguity. We will omit
similar things with other notations in the sequel, for the same reason.

A semantic structure defines a basic consequence relation:

Notation 5 We denote byP the power set operator.
Let 〈F ,V , |=〉 be a semantic structure.
We denote by⊢ the relation onP(F)×F such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ ⊢ α iff MΓ ⊆Mα.

Let |∼ be a relation onP(F)×F . Then,
|∼(Γ) := {α ∈ F : Γ |∼ α}.
SupposeL is a language,¬ a unary connective ofL, F the set of all wffs ofL, andΓ ⊆ F .
Then, we say thatΓ is consistentiff ∀ α ∈ F , Γ 6⊢ α or Γ 6⊢ ¬α.

The following trivial facts hold, we will use them implicitly in the sequel:
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Remark 6 Let 〈F ,V , |=〉 be a semantic structure andΓ,∆ ⊆ F . Then:
MΓ,∆ = MΓ ∩M∆;
⊢(Γ) = T (MΓ);
MΓ = M⊢(Γ);
Γ ⊆ ⊢(∆) iff ⊢(Γ) ⊆ ⊢(∆) iff M∆ ⊆MΓ.

Sometimes, we will need some of the following assumptions about a semantic structure:

Definition 7 Suppose〈F ,V , |=〉 is a semantic structure.
Then, define the following assumptions about it:

(A1) V is finite.

SupposeL is a language,¬ a unary connective ofL, andF the set of all wffs ofL. Then, define:

(A2) ∀ Γ ⊆ F , ∀ α ∈ F , if α 6∈ T (MΓ) and¬α 6∈ T (MΓ), thenMΓ ∩Mα 6⊆M¬α.

Suppose∨ and∧ are binary connectives ofL. Then, define:

(A3) ∀ α, β ∈ F , we have:
Mα∨β = Mα ∪Mβ ;
Mα∧β = Mα ∩Mβ ;
M¬¬α = Mα;
M¬(α∨β) = M¬α∧¬β;
M¬(α∧β) = M¬α∨¬β.

Clearly, those assumptions are satisfied by classical semantic structures, i.e. structures whereF , V ,
and|= are classical. In addition, we will see, in Sections 2.1.2 and 2.1.3, that they are satisfied also
by certain many-valued semantic structures.

2.1.2 The semantic structure defined byFOUR

The logicFOUR was introduced by N. Belnap in [Bel77a, Bel77b]. This logic is useful to deal
with inconsistent information. Several presentations arepossible, depending on the language under
consideration. For the needs of the present paper, a classical propositional language will be sufficient.
The logic has been investigated intensively in e.g. [AA94, AA96, AA98], where richer languages,
containing an implication connective⊃ (first introduced by A. Avron [Avr91]), were considered.

Notation 8 We denote byA a set of propositional symbols (or atoms).
We denote byLc the classical propositional language containingA, the usual constantsfalse and
true, and the usual connectives¬, ∨, and∧.
We denote byFc the set of all wffs ofLc.

We recall a possible meaning for the logicFOUR (more details can be found in [CLM99, Bel77a,
Bel77b]). Consider a system in which there are, on the one hand, sources of information and, on the
other hand, a processor that listens to them. The sources provide information about the atoms only,
not about the compound formulas. For each atomp, there are exactly four possibilities: either the
processor is informed (by the sources, taken as a whole) thatp is true; or he is informed thatp is
false; or he is informed of both; or he has no information about p.

Notation 9 Denote by0 and1 the classical truth values and define:
f := {0}; t := {1}; ⊤ := {0, 1}; ⊥ := ∅.
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The global information given by the sources to the processorcan be modelled by a functions fromA
to {f , t,⊤,⊥}. Intuitively, 1 ∈ s(p) means the processor is informed thatp is true, whilst0 ∈ s(p)
means he is informed thatp is false.

Then, the processor naturally builds information about thecompound formulas froms. Before
he starts to do so, the situation can be be modelled by a function v from Fc to {f , t,⊤,⊥} which
agrees withs about the atoms and which assigns⊥ to all compound formulas. Now, takep andq in
A and suppose1 ∈ v(p) or 1 ∈ v(q). Then, the processor naturally adds1 to v(p ∨ q). Similarly, if
0 ∈ v(p) and0 ∈ v(q), then he adds0 in v(p ∨ q). Of course, such rules hold for¬ and∧ too.

Suppose all those rules are applied recursively to all compound formulas. Then,v represents the
“full” (or developed) information given by the sources to the processor. Now, the valuations of the
logicFOUR can be defined as exactly those functions that can be built in this manner (i.e. likev)
from some of these sources-processor systems. More formally,

Definition 10 We say thatv is a four-valued valuationiff v is a function fromFc to {f , t,⊤,⊥}
such thatv(true) = t, v(false) = f and∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote byV4 the set of all four-valued valuations.

The definition may become more accessible if we see the four-valued valuations as those functions
that satisfy Tables 1, 2, and 3 below:

v(α) v(¬α)
f t

t f

⊤ ⊤
⊥ ⊥

Table 1.

v(β)
f t ⊤ ⊥

v(α)

f f t ⊤ ⊥
t t t t t

⊤ ⊤ t ⊤ t

⊥ ⊥ t t ⊥
v(α ∨ β)

Table 2.

v(β)
f t ⊤ ⊥

v(α)

f f f f f

t f t ⊤ ⊥
⊤ f ⊤ ⊤ f

⊥ f ⊥ f ⊥
v(α ∧ β)

Table 3.

In the logicFOUR, a formulaα is considered to be satisfied iff the processor is informed that it is
true (it does not matter whether he is also informed thatα is false).

Notation 11 We denote by|=4 the relation onV4 ×Fc such that∀ v ∈ V4, ∀ α ∈ Fc, we have
v |=4 α iff 1 ∈ v(α).

When theFOUR semantic structure〈Fc,V4, |=4〉 is under consideration, proof systems for⊢ are
available. For instance, A. Avron and O. Arieli provided several ones in e.g. [AA94, AA96, AA98].

Note that theFOUR semantic structure satisfies(A3). In addition, ifA is finite, then(A1)
is also satisfied. However,(A2) is not satisfied by this structure. In Section 2.1.3, we turn to a
many-valued semantic structure which satisfies(A2).
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2.1.3 The semantic structure defined byJ3

The logicJ3 was introduced in [DdC70] to answer a question posed in 1948 by S. Jaśkowski, who
was interested in systematizing theories capable of containing contradictions, especially if they occur
in dialectical reasoning. The step from informal reasoningunder contradictions and formal reasoning
with databases and information was done in [CMdA00] (also specialized for real database models in
[dACM02]), where another formulation ofJ3 calledLFI1 was introduced, and its first-order version,
semantics and proof theory were studied in detail. Investigations ofJ3 have also been made in e.g.
[Avr91], where richer languages than ourLc were considered.

The valuations of the logicJ3 can be given the same meaning as those of the logicFOUR,
except that the consideration is restricted to those systems where the sources, taken as a whole,
always give some information about an atom. More formally,

Definition 12 We say thatv is a three-valued valuationiff v is a function fromFc to {f , t,⊤} such
thatv(true) = t, v(false) = f and∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote byV3 the set of all three-valued valuations.

As previously, the definition may become more accessible if we see the three-valued valuations as
those functions that satisfy Tables 4, 5, and 6 below:

v(α) v(¬α)
f t

t f

⊤ ⊤
Table 4.

v(β)
f t ⊤

v(α)
f f t ⊤
t t t t

⊤ ⊤ t ⊤
v(α ∨ β)

Table 5.

v(β)
f t ⊤

v(α)
f f f f

t f t ⊤
⊤ f ⊤ ⊤

v(α ∧ β)
Table 6.

We turn to the satisfaction relation.

Notation 13 We denote by|=3 the relation onV3 ×Fc such that∀ v ∈ V3, ∀ α ∈ Fc, we have
v |=3 α iff 1 ∈ v(α).

When theJ3 semantic structure〈Fc,V3, |=3〉 is considered, proof systems for⊢ are available. Some
have been provided in e.g. [Avr91, DdC70] and in chapter IX of[Eps90].
TheJ3 structure satisfies(A3) and(A2). In addition, ifA is finite, then it satisfies(A1) too.

2.2 Choice functions

2.2.1 Definitions and properties

In many situations, an agent has some way to choose in any set of valuationsV , those elements that
are preferred (the bests, the more normal, etc.), not necessarily in the absolute sense, but when the
valuations inV are the only ones under consideration. In Social Choice, this is modelled by choice
functions [Che54, Arr59, Sen70, AM81, Leh02, Leh01].
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Definition 14 LetV be a set,V ⊆ P(V), W ⊆ P(V), andµ a function fromV toW.
We say thatµ is achoice functioniff ∀ V ∈ V, µ(V ) ⊆ V .

Several properties for choice functions have been put in evidence by researchers in Social Choice.
Let us present two important ones (a better presentation canbe found in [Leh01]). SupposeW is
a set of valuations,V is a subset ofW , andv ∈ V is a preferred valuation ofW . Then, a natural
requirement is thatv is a preferred valuation ofV . Indeed, in many situations, the larger a set is,
the harder it is to be a preferred element of it, and he who can do the most can do the least. This
property appears in [Che54] and has been given the name Coherence in [Mou85].

We turn to the second property. SupposeW is a set of valuations,V is a subset ofW , and suppose
all the preferred valuations ofW belong toV . Then, they are expected to include all the preferred
valuations ofV . The importance of this property has been put in evidence by [Aiz85, AM81] and
has been given the name Local Monotonicity in e.g. [Leh01].

Definition 15 LetV be a set,V ⊆ P(V), W ⊆ P(V), andµ a choice function fromV toW.
We say thatµ is coherentiff ∀ V,W ∈ V,

if V ⊆W, thenµ(W ) ∩ V ⊆ µ(V ).

We say thatµ is locally monotonic(LM) iff ∀ V,W ∈ V,

if µ(W ) ⊆ V ⊆W, thenµ(V ) ⊆ µ(W ).

In addition to their intuitive meanings, these properties are important because, as was shown by
K. Schlechta in [Sch00], they characterize those choice functions that can be defined by a binary
preference relation on states labelled by valuations (in the style of e.g. [KLM90]). We will take a
closer look at this in Section 2.2.2.

When a semantic structure is under consideration, two new properties can be defined. Each of
them conveys a simple and natural meaning.

Definition 16 Let 〈F ,V , |=〉 be a semantic structure,V ⊆ P(V), W ⊆ P(V), andµ a choice
function fromV toW.
We say thatµ is definability preserving(DP) iff

∀ V ∈ V ∩D, µ(V ) ∈ D.

SupposeL is a language,¬ a unary connective ofL, andF the set of all wffs ofL.
We say thatµ is coherency preserving(CP) iff

∀ V ∈ V ∩C, µ(V ) ∈ C.

Definability Preservation has been put in evidence first in [Sch92]. One of its advantages is that when
the choice functions under consideration satisfy it, we will provide characterizations with purely
syntactic conditions. To the author knowledge, the presentpaper is the first to introduce Coherency
Preservation. An advantage of this property is that when thechoice functions under consideration
satisfy it, we will not need to assume(A2) to show our characterizations (in the discriminative case).
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2.2.2 Preference structures

Binary preference relations on valuations have been investigated by e.g. B. Hansson to give se-
mantics for deontic logics [Han69]. Y. Shoham rediscoveredthem to give semantics for plausible
non-monotonic logics [Sho88, Sho87]. Then, it seems that Imielinski is one of the first persons to
introduce binary preference relations on states labelled by valuations [Imi87]. They have been used
to give more general semantics for plausible non-monotoniclogics, see e.g. [KLM90, LM92, Sch92,
Sch96, Sch00, Sch04]. Let us present them.

Definition 17 We say thatR is a preference structure on a setV iff R = 〈S, l,≺〉 whereS is a set,
l is a function fromS to V , and≺ is a relation onS × S.

In fact, preference structures are essentially Kripke structures. The difference lies in the interpre-
tation of≺. In a Kripke structure, it is seen as an accessibility relation, whilst, in a preference
structure, it is seen as a preference relation. We recall a possible meaning for preference structures
(see e.g. [KLM90, Sch04] for details about meaning). Intuitively, V is a set of valuations for some
languageL andS a set of valuations for some languageL′ richer thanL. The elements ofS are
called states.l(s) corresponds precisely to this part ofs that is about the formulas ofL only. We call
l a labelling function. Finally,≺ is a preference relation, i.e.s ≺ s′ meanss is preferred tos′.

We turn to well-known properties for preference structures.

Definition 18 SupposeV is a set,R = 〈S, l,≺〉 is a preference structure onV , S ⊆ S, s ∈ S,
V ⊆ V , andV ⊆ P(V).
We say thatR is transitive(resp.irreflexive) iff ≺ is transitive (resp. irreflexive).
We say thats is preferredin S iff ∀ s′ ∈ S, s′ 6≺ s.
L(V ) := {s ∈ S : l(s) ∈ V } (intuitively,L(V ) contains the states labelled by the elements ofV ).
We say thatR is V-smooth(aliasV-stoppered) iff ∀ V ∈ V, ∀ s ∈ L(V ),
eithers is preferred inL(V ) or there existss′ preferred inL(V ) such thats′ ≺ s.

A preference structure defines naturally a choice function.The idea is to choose in any set of valu-
ationsV , each element which labels a state which is preferred among all the states labelled by the
elements ofV .

Definition 19 SupposeR = 〈S, l,≺〉 is a preference structure on a setV .
We denote byµR the function fromP(V) toP(V) such that∀ V ⊆ V ,

µR(V ) = {v ∈ V : ∃ s ∈ L(v), s is preferred inL(V )}.

In [Sch00], Schlechta showed that Coherence and Local Monotonicity characterize those choice
functions that can be defined by a preference structure. Details are given in the proposition just
below. It is an immediate corollary of Proposition 2.4, Proposition 2.15, and Fact 1.3 of [Sch00].

Proposition 20 Taken from [Sch00].
LetV be a set,V andW subsets ofP(V), andµ a choice function fromV toW. Then,

(0) µ is coherent iff there exists a transitive and irreflexive preference structureR on V such that
∀ V ∈ V, we haveµ(V ) = µR(V ).

Suppose∀ V,W ∈ V, we haveV ∪W ∈ V andV ∩W ∈ V. Then,
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(1) µ is coherent and LM iff there exists aV-smooth, transitive, and irreflexive preference structure
R onV such that∀ V ∈ V, we haveµ(V ) = µR(V ).

In fact, in [Sch00], the codomain ofµ is required to be its domain:V. However, this plays no role
in the proofs. Therefore, verbatim the same proofs are validwhen the codomain ofµ is an arbitrary
subsetW of P(V). Both myself and Schlechta checked it.

2.3 Preferential(-discriminative) consequence relations

2.3.1 Definitions

Suppose we are given a semantic structure and a choice function µ on the valuations. Then, it is
natural to conclude a formulaα from a set of formulasΓ iff every model forΓ chosen byµ is a
model forα. More formally:

Definition 21 SupposeS = 〈F ,V , |=〉 is a semantic structure and|∼ a relation onP(F)×F .
We say that|∼ is a preferential consequence relationiff there exists a coherent choice functionµ
fromD toP(V) such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆Mα.

In addition, ifµ is LM, DP, etc., then so is|∼.

These consequence relations are called “preferential” because, in the light of Proposition 20, they
can be defined equivalently with preference structures, instead of coherent choice functions. They
lead to “jump” to plausible conclusions which will eventually be withdrawn later, in the presence of
additional information. Therefore, they are useful to dealwith incomplete information. We will give
an example with a classical semantic structure in Section 2.4.1.

In addition, if a many-valued semantic structure is considered, they lead to rational and non-
trivial conclusions is spite of the presence of contradictions and are thus useful to treat both incom-
plete and inconsistent information. However, they will notsatisfy the Disjunctive Syllogism. We
will give an example with theFOUR semantic structure in Section 2.4.2.

Now, we turn to a qualified version of preferential consequence. It captures the idea that the
contradictions in the conclusions should be rejected.

Definition 22 SupposeL is a language,¬ a unary connective ofL, F the set of all wffs ofL,
〈F ,V , |=〉 a semantic structure, and|∼ a relation onP(F)×F .
We say that|∼ is a preferential-discriminative consequence relationiff there is a coherent choice
functionµ fromD toP(V) such that∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆Mα andµ(MΓ) 6⊆M¬α.

In addition, ifµ is LM, DP, etc., then so is|∼.

If a classical semantic structure is considered, the discriminative version does not bring something
really new. Indeed, the only difference will be to conclude nothing instead of everything in the
face of inconsistent information. On the other hand, with a many-valued structure, the conclusions
are rational even from inconsistent information. The discriminative version will then reject the
contradictions in the conclusions, rendering the latter all the more rational.
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In Definitions 21 and 22, the domain of the choice function isD. This is natural as only the
elements ofD play a role in the definition of a preferential(-discriminative) consequence relation.
This point of view has been adopted in e.g. [Leh01] (see Section 6). Now, one might want a
definition with choice functions of which the domain isP(V). In fact, some families of relations
can be defined equivalently withD orP(V). For instance, as is noted in [Leh01], ifµ is a coherent
choice function fromD to P(V), then the functionµ′ from P(V) to P(V) defined byµ′(V ) =
V ∩ µ(MT (V )) is a coherent choice function which agrees withµ onD.

Several characterizations for preferential consequence relations can be found in the literature
(e.g. [KLM90, LM92, Leh02, Leh01, Sch92, Sch96, Sch00, Sch04]). In particular, we will recall
(in Section 2.4) a characterization that involves the well-known systemP of [KLM90].

As said previously, in the light of Proposition 20, preferential(-discriminative) consequence re-
lations could have been introduced equivalently with preference structures. We opted for coherent
choice functions for two reasons. First, they give a clearermeaning. Indeed, properties like Co-
herence have simple intuitive justifications, whilst preference structures contain “states”, but it is
not perfectly clear what a state is in daily life. By the way, in [KLM90], Kraus, Lehmann, and
Magidor did not consider preference structures to be ontological justifications for their interest in
the formal systems investigated, but to be technical tools to study those systems and in particular
settle questions of interderivability and find efficient decision procedures (see the end of Section 1.2
of [KLM90]).

Second, in the proofs, we will work directly with choice functions and their properties, not with
preference structures. By the way, the techniques developed in the present paper (especially in the
discriminative case) can certainly be adapted to new properties.

2.4 The systemP

Gabbay, Makinson, Kraus, Lehmann, and Magidor investigated extensively properties which should
be satisfied by plausible non-monotonic consequence relations [Gab85, Mak89, Mak94, KLM90,
LM92]. A certain set of properties, called the systemP, plays a central role in this area. It is
essentially due to Kraus, Lehmann, and Magidor [KLM90] and has been investigated further in
[LM92]. Let’s present it.

Definition 23 SupposeL is a language containing the usual connectives¬ and∨, F the set of all
wffs of L, 〈F ,V , |=〉 a semantic structure, and|∼ a relation onF × F .
Then, the systemP is the set of the six following conditions:∀ α, β, γ ∈ F ,

Reflexivity α |∼ α

Left Logical Equivalence
⊢ α↔ β α |∼ γ

β |∼ γ

Right Weakening
⊢ α→ β γ |∼ α

γ |∼ β

Cut
α ∧ β |∼ γ α |∼ β

α |∼ γ

Cautious Monotonicity
α |∼ β α |∼ γ

α ∧ β |∼ γ

11



Or
α |∼ γ β |∼ γ

α ∨ β |∼ γ

Note thatα ∧ β is a shorthand for¬(¬α ∨ ¬β). Similarly,α→ β andα↔ β are shorthands. Note
again thatP withoutOr is calledC. The systemC is closely related to the cumulative inference
which was investigated by Makinson in [Mak89]. In addition,it seems to correspond to what Gabbay
proposed in [Gab85]. Concerning the ruleOr, it corresponds to the axiom CA of conditional logic.

All the properties inP are sound if we readα |∼ β as “β is a plausible consequence ofα”.
In addition,P is complete in the sense that it characterizes those consequence relations that can be
defined by a smooth transitive irreflexive preference structure. This is what makesP central. More
formally:

Definition 24 Suppose〈F ,V , |=〉 is a semantic structure.
Then,Df := {V ⊆ V : ∃ α ∈ F , V = Mα}.
SupposeL is a language containing the usual connectives¬ and∨, andF the set of all wffs ofL.
Then define the following condition:∀ v ∈ V , ∀ α, β ∈ F , ∀ Γ ⊆ F ,

(KLM0) v |= ¬α iff v 6|= α;

(KLM1) v |= α ∨ β iff v |= α or v |= β.

(KLM2) if for every finite subset∆ of Γ, M∆ 6= ∅, thenMΓ 6= ∅.

Note that(KLM2) is called “assumption of compactness” in [KLM90].

Proposition 25 [KLM90] SupposeL is a language containing the usual connectives¬ and∨, F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(KLM0)–(KLM2), and|∼ a
relation ofF × F .
Then,|∼ satisfies all the properties ofP iff there exists aDf -smooth transitive irreflexive preference
structureR onV such that∀ α, β ∈ F , α |∼ β iff µR(Mα) ⊆Mβ .

Note that|∼ is a relation onF × F , notP(F) × F . This difference is crucial. Indeed, if we adapt
the conditions ofP in the obvious way to relations onP(F) × F and if we replaceDf by D in
Proposition 25, then the latter does no longer hold. This negative result was shown by Schlechta in
[Sch92].

Now, by Propositions 20 and 25, we immediately get the following representation theorem:

Proposition 26 Suppose Definition 21 (of preferential consequence relations) is adapted in the ob-
vious way to relations onF×F (essentially, replaceD byDf ),L is a language containing the usual
connectives¬ and∨, F the set of all wffs ofL, |∼ a relation onF × F , and〈F ,V , |=〉 a semantic
structure such that(KLM0)–(KLM2) hold and∀ V,W ∈ Df , V ∪W ∈ Df andV ∩W ∈ Df .
Then, LM preferential consequence relations are preciselythose relations that satisfy the systemP.

2.4.1 Example with a classical semantic structure

Let L be a classical propositional language of which the atoms arer, q, andp. Intuitively, r means
Nixon is a republican,q means Nixon is a quaker, andp means Nixon is a pacifist. LetF be the set
of all wffs of L, V the set of all classical two-valued valuations ofL, and|= the classical satisfaction
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relation for these objects. Then,V is the set of the 8 following valuations:v0, v1, v2, v3, v4, v5, v6,
andv7, which are defined in the obvious way by the following table:

r q p

v0 0 0 0
v1 0 0 1
v2 0 1 0
v3 0 1 1
v4 1 0 0
v5 1 0 1
v6 1 1 0
v7 1 1 1

Now, consider the class of all republicans and the class of all quakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normal iffhe is a pacifist. And, consider that a
valuationv is more normal than a valuationw from the point of view of a classC iff

• Nixon is an individual ofC in bothv andw;

• Nixon is normal inv;

• Nixon is not normal inw.

In the following graph, there is an arrow from a valuationv to a valuationw iff v is more normal
thanw from the point of view of some class:

Given those considerations a natural preference structureonV isR = 〈V , l,≺〉, wherel is identity
and≺ is the relation such that∀ v, w ∈ V , we havev ≺ w iff (1) or (2) below holds (i.e. there is an
arrow fromv tow):

(1) v |= r andv |= ¬p andw |= r andw 6|= ¬p;

(2) v |= q andv |= p andw |= q andw 6|= p.

Finally, let |∼ be the preferential consequence relation defined by the coherent choice functionµR.
Then,|∼ leads us to “jump” to plausible conclusions from incompleteinformation and to revise

previous “hasty” conclusions in the face of new and fuller information. For instance,r |∼ ¬p and
{r, p} 6|∼ ¬p andq |∼ p and{q,¬p} 6|∼ p.

However, |∼ is not paraconsistent. In addition, some sets of formulas are rendered useless,
because there is no preferred model for them, though there are models for them. For instance,
{q, r} |∼ α, ∀ α ∈ F .
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2.4.2 Example with theFOUR semantic structure

Consider theFOUR semantic structure〈Fc,V4, |=4〉 and supposeA = {r, q, p} (these objects have
been defined in Section 2.1.2). In addition, make the same considerations about Nixon, the classes,
normality, etc., as in Section 2.4.1, except that this time avaluationv is considered to be more normal
than a valuationw from the point of view of a classC iff

• in bothv andw, the processor is informed that Nixon is an individual ofC;

• in v, he is informed that Nixon is normal and not informed of the contrary;

• in w, he is not informed that Nixon is normal.

See Section 2.1.2 for recalls about the sources-processor systems. Given those considerations a
natural preference structure onV4 isR = 〈V4, l,≺〉, wherel is identity and≺ is the relation such
that∀ v, w ∈ V4, we havev ≺ w iff (1) or (2) below holds (i.e.v is more normal thanw from the
point of view of some class):

(1) v |= r andv |= ¬p andv 6|= p andw |= r andw 6|= ¬p;

(2) v |= q andv |= p andv 6|= ¬p andw |= q andw 6|= p.

Let |∼ be the preferential consequence relation defined by the coherent choice functionµR.
Then, again we “jump” to plausible conclusions and revise previous “hasty” conclusions. For

instance,r |∼ ¬p and{r, p} 6|∼ ¬p andq |∼ p and{q,¬p} 6|∼ p.
In addition, |∼ is paraconsistent. For instance,{p,¬p, q} |∼ p and {p,¬p, q} |∼ ¬p and

{p,¬p, q} |∼ q and{p,¬p, q} 6|∼ ¬q. And, it happens less often that a set of formulas is ren-
dered useless because there is no preferred model for it, though there are models for it. For instance,
this time,{q, r} |∼ p and{q, r} |∼ ¬p and{q, r} |∼ q and{q, r} 6|∼ ¬q and{q, r} |∼ r and
{q, r} 6|∼ ¬r.

However,|∼ does not satisfy the Disjunctive Syllogism. Indeed, for instance,{¬r, r ∨ q} 6|∼ q.

3 Contributions

The main contributions of the present paper are summarized below. We characterized (in many cases,
by purely syntactic conditions) families of preferential and preferential-discriminative consequence
relations. Sometimes, we will need to make some assumptionsabout the semantic structure under
consideration. However, no assumption will be needed for the three following families:

• the preferential consequence relations (Section 3.2);

• the DP preferential consequence relations (Section 3.1);

• the DP LM preferential consequence relations (Section 3.1).

We will assume(A1) and(A3) for:

• the CP preferential-discriminative consequence relations (Section 3.4);

• the CP DP preferential-discriminative consequence relations (Section 3.3);

• the CP DP LM preferential-discriminative consequence relations (Section 3.3).
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And, we will need(A1), (A2), and(A3) for:

• the preferential-discriminative consequence relations (Section 3.4);

• the DP preferential-discriminative consequence relations (Section 3.3);

• the DP LM preferential-discriminative consequence relations (Section 3.3).

3.1 The non-discriminative and definability preserving case

The characterizations in this section have already been given in Proposition 3.1 of [Sch00], under the
assumption that a classical propositional semantic structure is considered. Using the same techniques
as those of Schlechta, we show that his characterizations hold with any semantic structure.

Notation 27 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F .
Then, consider the following conditions:∀ Γ,∆ ⊆ F ,

(|∼0) if ⊢(Γ) = ⊢(∆), then|∼(Γ) = |∼(∆);

(|∼1) ⊢(|∼(Γ)) = |∼(Γ);

(|∼2) Γ ⊆ |∼(Γ);

(|∼3) |∼(Γ,∆) ⊆ ⊢(|∼(Γ),∆);

(|∼4) if Γ ⊆ ⊢(∆) ⊆ |∼(Γ), then|∼(Γ) ⊆ |∼(∆).

Note that those conditions are purely syntactic when there is a proof system available for⊢ (which
is the case with e.g. the classical,FOUR, andJ3 semantic structures).

Proposition 28 Let S = 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F . Then,

(0) |∼ is a DP preferential consequence relation iff(|∼0), (|∼1), (|∼2), and(|∼3) hold;

(1) |∼ is a DP LM preferential consequence relation iff(|∼0), (|∼1), (|∼2), (|∼3), and(|∼4) hold.

Proof Proof of(0). Direction: “→”.
By hypothesis, there exists a DP coherent choice functionµ fromD toP(V) such that∀ Γ ⊆ F ,
|∼(Γ) = T (µ(MΓ)). We will show:
(0.0) |∼ satisfies(|∼0);
(0.1) |∼ satisfies(|∼1);
(0.2) |∼ satisfies(|∼2).
Before turning to(|∼3), we need a preliminary result:
(0.3) ∀ Γ ⊆ F , we haveµ(MΓ) = M|∼(Γ);
(0.4) |∼ satisfies(|∼3).

Direction: “←”.
Suppose|∼ satisfies(|∼0), (|∼1), (|∼2), and(|∼3).
Let µ be the function fromD toP(V) such that∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ).
Then,µ is well-defined.
Indeed, IfΓ,∆ ⊆ F andMΓ = M∆, then⊢(Γ) = ⊢(∆), thus, by(|∼0), |∼(Γ) = |∼(∆).
In addition,µ is obviously DP. We show the following which ends the proof:
(0.5) µ is a choice function;
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(0.6) µ is coherent;
(0.7) ∀ Γ ⊆ F , we have|∼(Γ) = T (µ(MΓ)).

Proof of(0.0). Let Γ,∆ ⊆ F and suppose⊢(Γ) = ⊢(∆).
Then,MΓ = M∆. Thus,|∼(Γ) = T (µ(MΓ)) = T (µ(M∆)) = |∼(∆).

Proof of(0.1). Let Γ ⊆ F . Then,⊢(|∼(Γ)) = ⊢(T (µ(MΓ))) = T (MT (µ(MΓ))) = |∼(Γ).

Proof of(0.2). Let Γ ⊆ F . Then,Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = |∼(Γ).

Proof of(0.3). Let Γ ⊆ F . As,µ is DP,µ(MΓ) ∈ D.
Thus,∃ Γ′ ⊆ F , µ(MΓ) = MΓ′ . Therefore,µ(MΓ) = MΓ′ = MT (MΓ′ ) = MT (µ(MΓ)) = M|∼(Γ).

Proof of(0.4). Let Γ,∆ ⊆ F . As,MΓ,∆ ⊆MΓ andµ is coherent,µ(MΓ) ∩MΓ,∆ ⊆ µ(MΓ,∆).
Therefore,|∼(Γ,∆) = T (µ(MΓ,∆)) ⊆ T (µ(MΓ) ∩MΓ,∆) = T (µ(MΓ) ∩M∆).
Thus, by(0.0), |∼(Γ,∆) ⊆ T (M|∼(Γ) ∩M∆) = T (M|∼(Γ),∆) = ⊢(|∼(Γ),∆).

Proof of(0.5). Let Γ ⊆ F . Then,µ(MΓ) = M|∼(Γ), which is, by(|∼2), a subset ofMΓ.

Proof of(0.6). Let Γ,∆ ⊆ F and supposeMΓ ⊆M∆.
Then,µ(M∆) ∩MΓ = M|∼(∆) ∩MΓ = M|∼(∆),Γ.
But, by(|∼3), M|∼(∆),Γ ⊆M|∼(∆,Γ) = µ(M∆,Γ) = µ(MΓ).

Proof of(0.7). Let Γ ⊆ F . Then, by(|∼1), |∼(Γ) = ⊢(|∼(Γ)) = T (M|∼(Γ)) = T (µ(MΓ)).

Proof of(1). Direction: “→”.
Verbatim the same proof as for(0), except that in additionµ is LM.
We use it to show that|∼ satisfies(|∼4).
LetΓ,∆ ⊆ F and supposeΓ ⊆ ⊢(∆) ⊆ |∼(Γ).
Then, by(0.3), µ(MΓ) = M|∼(Γ) ⊆M⊢(∆) = M∆ ⊆MΓ.
Therefore, asµ is locally monotonic,µ(M∆) ⊆ µ(MΓ).
Thus,|∼(Γ) = T (µ(MΓ)) ⊆ T (µ(M∆)) = |∼(∆).

Direction: “←”.
Verbatim the same proof as for(0), except that in addition(|∼4) is satisfied.
We use it to show thatµ is locally monotonic.
LetΓ,∆ ⊆ F and supposeµ(MΓ) ⊆M∆ ⊆MΓ.
Then,M|∼(Γ) ⊆M∆ ⊆MΓ. Therefore,Γ ⊆ T (MΓ) ⊆ T (M∆) = ⊢(∆).
On the other hand,⊢(∆) = T (M∆) ⊆ T (M|∼(Γ)) = ⊢(|∼(Γ)) which is, by(|∼1), equal to|∼(Γ).
Thus, by(|∼4), we have|∼(Γ) ⊆ |∼(∆). Therefore,µ(M∆) = M|∼(∆) ⊆M|∼(Γ) = µ(MΓ).

3.2 The non-discriminative and not necessarily definability preserving case

In this section, we will characterize the family of all preferential consequence relations. Unlike in
Section 3.1, our conditions will not be purely syntactic (i.e. using only⊢, |∼, etc.). In fact, properties
like Coherence cannot be translated in syntactic terms because the choice functions under consider-
ation are not necessarily definability preserving. Indeed,we do no longer have at our disposal the
remarkable equality:µ(MΓ) = M|∼(Γ), which is of great help to perform the translation and which
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holds precisely because of Definability Preservation.
In Proposition 5.2.11 of [Sch04], K. Schlechta provided a characterization of the aforementioned

family, under the assumption that a classical propositional semantic structure is considered. Note that
most of his work is done in a very general, in fact algebraic, framework. Only at the end, he applied
his general lemmas in a classical framework to get the characterization. The conditions he gave, as
ours, are not purely syntactic (e.g. they involve the notionof model, etc.). Moreover, some limits of
what can be done in this area have been put in evidence by Schlechta. Approximatively, he showed
in Proposition 5.2.15 of the same book that, in an infinite classical framework, there does not exist
a characterization containing only conditions which are universally quantified, of limited size, and
using only simple operations (like e.g.∪, ∩, \).

The purpose of the present section is to provided a new characterization, more elegant than the
one of Schlechta and that hold with any semantic structure. To do so, we have been inspired by
the algebraic part of the work of Schlechta (see Proposition5.2.5 of [Sch04]). Technically, the idea
begins by building from any functionf , a coherent choice functionµf such that wheneverf “covers”
some coherent choice function, it necessarily coversµf .

Definition 29 LetV be a set,V andW subsets ofP(V), andf a function fromV toW.
We denote byµf the function fromV toP(V) such that∀ V ∈ V,

µf (V ) = {v ∈ V : ∀W ∈ V, if v ∈W ⊆ V, thenv ∈ f(W )}.

Lemma 30 Let V be a set,V andW subsets ofP(V), andf a function fromV to W.
Then,µf is a coherent choice function.

Proof µf is obviously a choice function. It remains to show that it is coherent.
SupposeV,W ∈ V, V ⊆W , andv ∈ µf (W ) ∩ V . We showv ∈ µf (V ).
To do so, suppose the contrary, i.e. supposev 6∈ µf (V ).
Then, asv ∈ V , we have∃ Z ∈ V, Z ⊆ V , v ∈ Z, andv 6∈ f(Z).
But,V ⊆W , thusZ ⊆W . Therefore, by definition ofµf , v 6∈ µf (W ), which is impossible.

Lemma 31 Let V be a set,V, W, andX subsets ofP(V), f a function fromV to W, andµ a
coherent choice function fromV toX such that∀ V ∈ V, f(V ) = MT (µ(V )).
Then,∀ V ∈ V, f(V ) = MT (µf (V )).

Proof Let V ∈ V. We showf(V ) = MT (µf (V )).
Case 1:∃ v ∈ µ(V ), v 6∈ µf (V ).
As µ(V ) ⊆ V , we havev ∈ V .
Thus, by definition ofµf , ∃W ∈ V, W ⊆ V , v ∈W , andv 6∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
On the other hand, asµ is coherent,µ(V ) ∩W ⊆ µ(W ). Thus,v ∈ µ(W ), which is impossible.
Case 2:µ(V ) ⊆ µf (V ).
Case 2.1:∃ v ∈ µf (V ), v 6∈ f(V ).
Then,∃W ∈ V, W ⊆ V , v ∈ W , andv 6∈ f(W ). Indeed, just takeV itself for the choice ofW .
Therefore,v 6∈ µf (V ), which is impossible.
Case 2.2:µf (V ) ⊆ f(V ).
Then,f(V ) = MT (µ(V )) ⊆MT (µf (V )) ⊆MT (f(V )) = MT (MT (µ(V ))) = MT (µ(V )) = f(V ).

Now, everything is ready to show the representation result.

Notation 32 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F .
Then, consider the following condition:∀ Γ ⊆ F ,
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(|∼5) |∼(Γ) = T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈M|∼(∆)}).

Proposition 33 Let 〈F ,V , |=〉 be a semantic structure and|∼ a relation onP(F)×F .
Then,|∼ is a preferential consequence relation iff(|∼5) holds.

Proof Direction: “→”.
There exists a coherent choice functionµ fromD toP(V) such that∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Let f be the function fromD to D such that∀ V ∈ D, we havef(V ) = MT (µ(V )).
By Lemma 31,∀ V ∈ D, we havef(V ) = MT (µf (V )).
Note that∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) = M|∼(Γ).
We show that(|∼5) holds. LetΓ ⊆ F .
Then,|∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (f(MΓ)) = T (MT (µf (MΓ))) = T (µf(MΓ)) =
T ({v ∈MΓ : ∀W ∈ D, if v ∈W ⊆MΓ, thenv ∈ f(W )}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈ f(M∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈M|∼(∆)}).

Direction: “←”.
Suppose|∼ satisfies(|∼5).
Let f be the function fromD to D such that∀ Γ ⊆ F , we havef(MΓ) = M|∼(Γ).
Note thatf is well-defined. Indeed, ifΓ,∆ ⊆ F andMΓ = M∆, then, by(|∼5), |∼(Γ) = |∼(∆).
In addition, by(|∼5), we clearly have∀ Γ ⊆ F , |∼(Γ) = T (µf(MΓ)).
And finally, by Lemma 30,µf is a coherent choice function.

3.3 The discriminative and definability preserving case

In this section, we will characterize certain families of DPpreferential-discriminative consequence
relations. To do so, we will develop new techniques (especially Lemmas 40 and 41 below). We need
basic notations and an inductive construction:

Notation 34 IN denotes the natural numbers including 0:{0, 1, 2, . . . , }.
IN+ denotes the strictly positive natural numbers:{1, 2, . . . , }.
ZZ denotes the integers.
Let i, j ∈ ZZ. Then,[i, j] denotes the set of allk ∈ ZZ such thati ≤ k ≤ j.
LetL be a language,∨ a binary connective ofL, F the set of all wffs ofL, andβ1, β2, . . . , βr ∈ F .
Whenever we writeβ1 ∨ β2 ∨ . . . ∨ βr, we mean(. . . ((β1 ∨ β2) ∨ β3) ∨ . . . ∨ βr−1) ∨ βr.

Definition 35 LetL be a language,¬ a unary connective ofL, F the set of all wffs ofL, 〈F ,V , |=〉
a semantic structure,|∼ a relation onP(F)×F , andΓ ⊆ F . Then,

H1(Γ) := {¬β ∈ F : β ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) and¬β 6∈ ⊢(Γ, |∼(Γ))}.

Let i ∈ IN with i ≥ 2. Then,

Hi(Γ) := {¬β ∈ F :

{

β ∈ ⊢(Γ, |∼(Γ), H1(Γ), . . . , Hi−1(Γ)) \ |∼(Γ) and
¬β 6∈ ⊢(Γ, |∼(Γ), H1(Γ), . . . , Hi−1(Γ))

}.

H(Γ) :=
⋃

i∈IN+

Hi(Γ).
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Definition 36 SupposeL is a language,¬ a unary connective ofL, ∨ a binary connective ofL, F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure, and|∼ a relation onP(F)×F .
Then, consider the following conditions:∀ Γ,∆ ⊆ F , ∀ α, β ∈ F ,

(|∼6) if β ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) and¬α ∈ ⊢(Γ, |∼(Γ),¬β), thenα 6∈ |∼(Γ);

(|∼7) if α ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) andβ ∈ ⊢(Γ, |∼(Γ),¬α) \ |∼(Γ), thenα ∨ β 6∈ |∼(Γ);

(|∼8) if α ∈ |∼(Γ), then¬α 6∈ ⊢(Γ, |∼(Γ));

(|∼9) if ∆ ⊆ ⊢(Γ), then|∼(Γ) ∪H(Γ) ⊆ ⊢(∆, |∼(∆), H(∆),Γ);

(|∼10) if Γ ⊆ ⊢(∆) ⊆ ⊢(Γ, |∼(Γ), H(Γ)), then|∼(Γ) ∪H(Γ) ⊆ ⊢(∆, |∼(∆), H(∆));

(|∼11) if Γ is consistent, then|∼(Γ) is consistent,Γ ⊆ |∼(Γ), and⊢(|∼(Γ)) = |∼(Γ).

Note that those conditions are purely syntactic when there is a proof system available for⊢.

Proposition 37 SupposeL is a language,¬ a unary connective ofL, ∨ and∧ binary connectives
of L, F the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1) and(A3), and|∼ a
relation onP(F)×F . Then,

(0) |∼ is a CP DP preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),
(|∼9), and(|∼11) hold;

(1) |∼ is a CP DP LM preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),
(|∼9), (|∼10), and(|∼11) hold.

Suppose〈F ,V , |=〉 satisfies(A2) too. Then,

(2) |∼ is a DP preferential-discriminative consequence relationiff (|∼0), (|∼6), (|∼7), (|∼8), and
(|∼9) hold;

(3) |∼ is a DP LM preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),
(|∼9), and(|∼10) hold.

The proof of Proposition 37 has been relegated at the end of Section 3.3. We need first Notation 34,
Definition 38 and Lemmas 39, 40, and 41 below. Here are some purely technical tools:

Definition 38 SupposeL is a language,¬ a unary connective ofL, ∨ a binary connective ofL, F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1), |∼ a relation onP(F)×F ,
andΓ ⊆ F . Then,

M1
Γ := {v ∈MΓ,|∼(Γ) : ∃ β ∈ T (MΓ,|∼(Γ)) \ |∼(Γ), v 6∈M¬β}.

Let i ∈ IN with i ≥ 2. Then,

M i
Γ := {v ∈MΓ,|∼(Γ)\M

1
Γ∪. . .∪M

i−1
Γ : ∃β ∈ T (MΓ,|∼(Γ)\M

1
Γ∪. . .∪M

i−1
Γ )\|∼(Γ), v 6∈M¬β}.

M ′
Γ :=

⋃

i∈IN+

M i
Γ

n(Γ) := |{i ∈ IN+ : M i
Γ 6= ∅}|
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SupposeM1
Γ 6= ∅. Then, we denote byβ1

Γ an element ofF , chosen arbitrarily, such that
∃ r ∈ IN+, ∃ v1, v2, . . . , vr ∈ V , and∃ β1, β2, . . . , βr ∈ F with M1

Γ = {v1, v2, . . . , vr},

β1
Γ = β1 ∨ β2 ∨ . . . ∨ βr,

and∀ j ∈ [1, r], βj 6∈ |∼(Γ), MΓ,|∼(Γ) ⊆Mβj
, andvj 6∈M¬βj

.
AsM1

Γ 6= ∅ andM1
Γ is finite (thanks to(A1)), such an element exists.

Supposei ∈ IN, i ≥ 2, andM i
Γ 6= ∅.

Then, we denote byβi
Γ an element ofF , chosen arbitrarily, such that

∃ r ∈ IN+, ∃ v1, v2, . . . , vr ∈ V , and∃ β1, β2, . . . , βr ∈ F with M i
Γ = {v1, v2, . . . , vr},

βi
Γ = β1 ∨ β2 ∨ . . . ∨ βr,

and∀ j ∈ [1, r], βj 6∈ |∼(Γ), MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M i−1

Γ ⊆Mβj
, andvj 6∈M¬βj

.
AsM i

Γ 6= ∅ andM i
Γ is finite, such an element exists.

SupposeM ′
Γ 6= ∅. Then,

βΓ := β1
Γ ∨ β2

Γ ∨ . . . ∨ β
n(Γ)
Γ

As M ′
Γ 6= ∅, n(Γ) ≥ 1. In addition, we will show in Lemma 39 below thatn(Γ) is finite and

∀ i ∈ IN+ with i ≤ n(Γ), M i
Γ 6= ∅. Thus,βΓ is well-defined.

F (Γ) :=

{

{¬βΓ} if M ′
Γ 6= ∅

∅ otherwise

G(Γ) := {α ∈ F : α 6∈ |∼(Γ), ¬α 6∈ |∼(Γ), andTd(MΓ,|∼(Γ),α) ⊆ |∼(Γ)}

Here are some quick results about the purely technical toolsdefined just above:

Lemma 39 SupposeL is a language,¬ a unary connective ofL, ∨ a binary connective ofL, F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1), |∼ a relation onP(F)×F ,
Γ ⊆ F , andi, j ∈ IN+. Then,

(0) if i 6= j, thenM i
Γ ∩M

j
Γ = ∅;

(1) if M i
Γ = ∅, thenM i+1

Γ = ∅;

(2) Td(MΓ,|∼(Γ)) ⊆ |∼(Γ) iff M1
Γ = ∅;

(3) if i ≥ 2, thenTd(MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M i−1

Γ ) ⊆ |∼(Γ) iff M i
Γ = ∅;

(4) n(Γ) is finite;

(5) if i ≤ n(Γ), thenM i
Γ 6= ∅;

(6) if i > n(Γ), thenM i
Γ = ∅;

(7) if M ′
Γ 6= ∅, thenM ′

Γ = M1
Γ ∪ . . . ∪M

n(Γ)
Γ ;

(8) Td(MΓ,|∼(Γ) \M
′
Γ) ⊆ |∼(Γ).
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Proof Proofs of(0), (1), (2), and(3). Trivial.

Proof of(4). Obvious by(0) and(A1).

Proof of(5). Suppose∃ i ∈ IN+, M i
Γ = ∅ andi ≤ n(Γ).

Then, by(1), ∀ j ∈ IN+, j ≥ i, M j
Γ = ∅.

Thus,|{j ∈ IN+ : M j
Γ 6= ∅}| ≤ i− 1 < n(Γ), which is impossible.

Proof of(6). Suppose∃ i ∈ IN+, M i
Γ 6= ∅ andi > n(Γ).

Then, by(1), ∀ j ∈ IN+, j ≤ i, M j
Γ 6= ∅.

Thus,|{j ∈ IN+ : M j
Γ 6= ∅}| ≥ i > n(Γ), which is impossible.

Proof of(7). Obvious by(6).

Proof of(8). Case 1:M ′
Γ = ∅.

Then,Td(MΓ,|∼(Γ) \M
′
Γ) = Td(MΓ,|∼(Γ)). In addition,M1

Γ = ∅. Thus, by(2), we are done.
Case 2:M ′

Γ 6= ∅.

Then, by(7), Td(MΓ,|∼(Γ) \M
′
Γ) = Td(MΓ,|∼(Γ) \M

1
Γ ∪ . . . ∪M

n(Γ)
Γ ).

In addition,n(Γ) + 1 ≥ 2 and, by(6), Mn(Γ)+1
Γ = ∅. Thus, by(3), we are done.

We turn to an important lemma. Its main goal is to show that theconditions(|∼6), (|∼7), and(|∼8)
are sufficient to establish the following important equality: |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)), which
provides a semantic definition of|∼ (in the discriminative manner).

Lemma 40 SupposeL is a language,¬ a unary connective ofL, ∨ and∧ binary connectives ofL,
F the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1) and(A3), |∼ a relation on
P(F)×F satisfying(|∼6), (|∼7), and(|∼8), andΓ ⊆ F . Then,

(0) if M ′
Γ 6= ∅, thenβΓ 6∈ |∼(Γ);

(1) if M ′
Γ 6= ∅, thenMΓ,|∼(Γ) ⊆MβΓ ;

(2) if M ′
Γ 6= ∅, thenM ′

Γ ∩M¬βΓ = ∅;

(3) if M ′
Γ 6= ∅, thenMΓ,|∼(Γ) \M

′
Γ ⊆M¬βΓ;

(4) MΓ,|∼(Γ) \M
′
Γ = MΓ,|∼(Γ),F (Γ);

(5) |∼(Γ) = Td(MΓ,|∼(Γ),F (Γ));

(6) MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ);

(7) |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)).

Proof Proof of(0), (1), and(2). SupposeM ′
Γ 6= ∅.

Then, it suffices to show by induction:∀ i ∈ [1, n(Γ)],
p3(i) (M1

Γ ∪ . . . ∪M i
Γ) ∩M¬(β1

Γ
∨...∨βi

Γ
) = ∅;

p2(i) MΓ,|∼(Γ) ⊆Mβ1
Γ
∨...∨βi

Γ
;

p1(i) β1
Γ ∨ . . . ∨ βi

Γ 6∈ |∼(Γ).
AsM1

Γ 6= ∅, ∃ r ∈ IN+, ∃ v1, v2, . . . , vr ∈ V , and∃β1, β2, . . . , βr ∈ F , M1
Γ = {v1, . . . , vr},
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β1
Γ = β1 ∨ . . . ∨ βr, and∀ j ∈ [1, r], βj 6∈ |∼(Γ), MΓ,|∼(Γ) ⊆Mβj

, andvj 6∈M¬βj
.

Then, it can be shown that:
(0.0) p3(1) holds;
(0.1) p2(1) holds;
(0.2) p1(1) holds.
Now, let i ∈ [1, n(Γ)− 1] and supposep1(i), p2(i), andp3(i) hold.
AsM i+1

Γ 6= ∅, ∃ r ∈ IN+, ∃ v1, v2, . . . , vr ∈ V , and∃ β1, β2, . . . , βr ∈ F ,
M i+1

Γ = {v1, . . . , vr}, β
i+1
Γ = β1 ∨ . . . ∨ βr, and

∀ j ∈ [1, r], βj 6∈ |∼(Γ), MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M i

Γ ⊆Mβj
, andvj 6∈M¬βj

.
Then, it can be shown that:
(0.3) p3(i + 1) holds;
(0.4) p2(i + 1) holds.
Before turning top1(i + 1), we need the following:
(0.5) β1

Γ ∨ . . . ∨ βi
Γ ∨ β1 ∨ β2 ∨ . . . ∨ βr 6∈ |∼(Γ);

(0.6) p1(i + 1) holds.

Proof of(0.0). If vj ∈M1
Γ, thenvj 6∈M¬βj

. But, by(A3), M¬β1
Γ
⊆M¬βj

.

Proof of(0.1). We haveMΓ,|∼(Γ) ⊆Mβ1 which is, by(A3), a subset ofMβ1
Γ
.

Proof of(0.2). It suffices to show by induction:∀ j ∈ [1, r],
q(j) β1 ∨ . . . ∨ βj 6∈ |∼(Γ).
Obviously,q(1) holds.
Let j ∈ [1, r − 1]. Supposeq(j). We showq(j + 1).
By (A3), we haveMΓ,|∼(Γ) ⊆Mβ1∨...∨βj

.
On the other hand,MΓ,|∼(Γ),¬(β1∨...∨βj) ⊆MΓ,|∼(Γ) ⊆Mβj+1 .
Thus, byq(j) and(|∼7) (whereα is β1 ∨ . . . ∨ βj andβ is βj+1), we getβ1 ∨ . . . ∨ βj+1 6∈ |∼(Γ).

Proof of(0.3). Let v ∈M1
Γ ∪ . . . ∪M i+1

Γ . We showv 6∈M¬(β1
Γ
∨...∨β

i+1
Γ

).

Case 1:v ∈M1
Γ ∪ . . . ∪M i

Γ.
Then, byp3(i), we havev 6∈M¬(β1

Γ
∨...∨βi

Γ
). But, by(A3), M¬(β1

Γ
∨...∨β

i+1
Γ

) ⊆M¬(β1
Γ
∨...∨βi

Γ
).

Case 2:v ∈M i+1
Γ .

Then,∃ j ∈ [1, r], v = vj . Thus,v 6∈M¬βj
. But, by(A3), M¬(β1

Γ
∨...∨β

i+1
Γ

) ⊆M¬β
i+1
Γ
⊆M¬βj

.

Proof of(0.4). By p2(i), MΓ,|∼(Γ) ⊆Mβ1
Γ
∨...∨βi

Γ
which is, by(A3), a subset ofMβ1

Γ
∨...∨β

i+1
Γ

.

Proof of(0.5). It suffices to show by induction∀ j ∈ [1, r]:
q(j) β1

Γ ∨ . . . ∨ βi
Γ ∨ β1 ∨ . . . ∨ βj 6∈ |∼(Γ).

We will show:
(0.5.0) MΓ,|∼(Γ),¬(β1

Γ
∨...∨βi

Γ
) ⊆Mβ1 .

Then, byp1(i), p2(i), (0.5.0), and(|∼7) (whereα is β1
Γ ∨ . . . ∨ βi

Γ andβ is β1), q(1) holds.
Now, letj ∈ [1, r − 1] and supposeq(j).
Then, we will show:
(0.5.1) MΓ,|∼(Γ),¬(β1

Γ
∨...∨βi

Γ
∨β1∨...∨βj) ⊆Mβj+1 .

In addition, byp2(i) and(A3), we get:
(0.5.2) MΓ,|∼(Γ) ⊆Mβ1

Γ
∨...∨βi

Γ
∨β1∨...∨βj

.
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By, (0.5.1), (0.5.2), q(j), and(|∼7) (whereα is β1
Γ ∨ . . . ∨ βi

Γ ∨ β1 ∨ . . . ∨ βj andβ is βj+1),
we get thatq(j + 1) holds.

Proof of(0.5.0). Let v ∈MΓ,|∼(Γ),¬(β1
Γ
∨...∨βi

Γ
). Then,v ∈M¬(β1

Γ
∨...∨βi

Γ
).

Thus, byp3(i), v 6∈M1
Γ ∪ . . . ∪M i

Γ. Therefore,v ∈MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M i

Γ ⊆Mβ1 .

Proof of(0.5.1). Let v ∈MΓ,|∼(Γ),¬(β1
Γ
∨...∨βi

Γ
∨β1∨...∨βj). Then, by(A3), v ∈M¬(β1

Γ
∨...∨βi

Γ
).

Therefore, byp3(i), v 6∈M1
Γ ∪ . . . ∪M i

Γ. Therefore,v ∈MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M i

Γ ⊆Mβj+1 .

Proof of(0.6). By p2(i) and(A3), we getMΓ,|∼(Γ) ⊆Mβ1
Γ
∨...∨βi

Γ
⊆Mβ1

Γ
∨...∨βi

Γ
∨β1∨...∨βr

.
In addition, by(A3), we getM¬(β1

Γ
∨...∨βi

Γ
∨β1∨...∨βr) = M¬(β1

Γ
∨...∨βi+1

Γ
).

Therefore, by(0.5) and(|∼6) (whereα is β1
Γ ∨ . . . ∨ βi+1

Γ andβ is β1
Γ ∨ . . . ∨ βi

Γ ∨ β1 ∨ . . . ∨ βr),
we get thatp1(i+ 1) holds.

Proof of(3). SupposeM ′
Γ 6= ∅, v ∈MΓ,|∼(Γ) \M

′
Γ, andv 6∈M¬βΓ.

Then, by(0), (1), and definition ofM i
Γ, we getv ∈M

n(Γ)+1
Γ , which is impossible by Lemma 39(6).

Proof of(4). Case 1:M ′
Γ 6= ∅.

By (3), we get one direction:MΓ,|∼(Γ) \M
′
Γ ⊆MΓ,|∼(Γ),¬βΓ

.
By (2), we get the other direction:MΓ,|∼(Γ),¬βΓ

⊆MΓ,|∼(Γ) \M
′
Γ.

Case 2:M ′
Γ = ∅.

Then, obviously,MΓ,|∼(Γ) \M
′
Γ = MΓ,|∼(Γ) = MΓ,|∼(Γ),F (Γ).

Proof of(5). Direction: “⊆”.
Case 1:M ′

Γ 6= ∅.
Suppose the contrary of what we want to show, i.e. suppose∃ α ∈ |∼(Γ), α 6∈ Td(MΓ,|∼(Γ),¬βΓ

).
Then,MΓ,|∼(Γ),¬βΓ

⊆M|∼(Γ) ⊆Mα. Thus,MΓ,|∼(Γ),¬βΓ
⊆M¬α.

Consequently, by(0), (1), and(|∼6), we getα 6∈ |∼(Γ), which is impossible.
Case 2:M ′

Γ = ∅.
Letα ∈ |∼(Γ). Then,MΓ,|∼(Γ) ⊆M|∼(Γ) ⊆Mα. In addition, by(|∼8), MΓ,|∼(Γ) 6⊆M¬α.
Consequently,α ∈ Td(MΓ,|∼(Γ)) = Td(MΓ,|∼(Γ),F (Γ)).

Direction: “⊇”. Obvious by(4) and Lemma 39(8).

Proof of(6). Direction: “⊆”.
Case 1:M ′

Γ = ∅.
Case 1.1:H1(Γ) 6= ∅.
Then,∃ α ∈ F , α 6∈ |∼(Γ), MΓ,|∼(Γ) ⊆ Mα, andMΓ,|∼(Γ) 6⊆ M¬α. Thus,α ∈ Td(MΓ,|∼(Γ)).
Therefore, by(5), α ∈ |∼(Γ), which is impossible.
Case 1.2:H1(Γ) = ∅.
Clearly,∀ i ∈ IN+, if Hi(Γ) = ∅, thenHi+1(Γ) = ∅. Therefore,H(Γ) = ∅ = F (Γ).
Case 2:M ′

Γ 6= ∅.
As,M ′

Γ ⊆MΓ,|∼(Γ), we get, by(2), MΓ,|∼(Γ) 6⊆M¬βΓ .
Thus, by(0) and(1), we get¬βΓ ∈ H1(Γ) ⊆ H(Γ). Therefore,MH(Γ) ⊆MF (Γ).

Direction: “⊇”.
Case 1:M ′

Γ = ∅.
Verbatim the proof of Case 1 of direction “⊆”.
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Case 2:M ′
Γ 6= ∅.

Then, the following holds:
(6.0) ∀i ∈ IN+, MΓ,|∼(Γ),¬βΓ

⊆MΓ,|∼(Γ),H1(Γ),...,Hi(Γ).
Now, suppose the contrary of what we want to show, i.e. suppose
∃ v ∈MΓ,|∼(Γ),¬βΓ

, v 6∈MΓ,|∼(Γ),H(Γ). Then,v 6∈MH(Γ). But, clearly,MH(Γ) =
⋂

i∈IN+ MHi(Γ).

Therefore,∃ i ∈ IN+, v 6∈MHi(Γ), which is impossible by(6.0).

Proof of(6.0). We show by induction:∀i ∈ IN+,
p(i) MΓ,|∼(Γ),¬βΓ

⊆MΓ,|∼(Γ),H1(Γ),...,Hi(Γ).
We will show
(6.0.0) p(1) holds.
Let i ∈ IN+, supposep(i) holds, and supposep(i+ 1) does not hold.
Then,∃ v ∈MΓ,|∼(Γ),¬βΓ

, v 6∈MΓ,|∼(Γ),H1(Γ),...,Hi+1(Γ).
Thus,∃ j ∈ [1, i+ 1], v 6∈MHj(Γ).
Case 1:j = 1.
Then,∃ β ∈ F , MΓ,|∼(Γ) ⊆Mβ, β 6∈ |∼(Γ), andv 6∈M¬β.
Thusv ∈M1

Γ ∩M¬βΓ , which is impossible by(2).
Case 2:j ≥ 2.
Then,∃ β ∈ F , MΓ,|∼(Γ),H1(Γ),...,Hj−1(Γ) ⊆Mβ, β 6∈ |∼(Γ), andv 6∈M¬β.
But, by Lemma 39(7), by (4), andp(i), we get

MΓ,|∼(Γ) \ M
1
Γ ∪ . . . ∪ M

n(Γ)
Γ = MΓ,|∼(Γ) \ M

′
Γ = MΓ,|∼(Γ),¬βΓ

⊆ MΓ,|∼(Γ),H1(Γ),...,Hi(Γ) ⊆
MΓ,|∼(Γ),H1(Γ),...,Hj−1(Γ) ⊆Mβ.

Therefore,v ∈M
n(Γ)+1
Γ , which is impossible by Lemma 39(6).

Proof of(6.0.0). Suppose the contrary of what we want to show, i.e.
suppose∃ v ∈MΓ,|∼(Γ),¬βΓ

, v 6∈MΓ,|∼(Γ),H1(Γ).
Then,v 6∈MH1(Γ). Thus,∃ β ∈ F , MΓ,|∼(Γ) ⊆Mβ , β 6∈ |∼(Γ), andv 6∈M¬β.
Thusv ∈M1

Γ. Therefore,v ∈M ′
Γ ∩M¬βΓ , which is impossible by(2).

Proof of(7). Obvious by(5) and(6).

We turn to a second important lemma. Its main purpose is to show that any DP choice functionµ
representing (in the discriminative manner) a relation|∼ satisfies the following remarkable equality:
µ(MΓ) = MΓ,|∼(Γ),H(Γ), which enables us to defineµ from |∼.

Lemma 41 SupposeL is a language,¬ a unary connective ofL,∨ and∧ binary connectives ofL,F
the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1) and(A3), V ⊆ P(V), µ a DP
choice function fromD toV, |∼ the relation onP(F)×F such that∀Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)),
andΓ ⊆ F . Then:

(0) µ(MΓ) ⊆MΓ,|∼(Γ);

(1) |∼ satisfies(|∼6);

(2) |∼ satisfies(|∼7);

(3) |∼ satisfies(|∼8);

(4) M ′
Γ ∩ µ(MΓ) = ∅;
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(5) MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ);

(6) if M ′
Γ 6= ∅, thenMΓ,|∼(Γ),H(Γ) = µ(MΓ).

If 〈F ,V , |=〉 satisfies(A2) too, then:

(7) if M ′
Γ = ∅, thenMG(Γ) = MTc(µ(MΓ));

(8) if M ′
Γ = ∅, thenMΓ,|∼(Γ) ⊆MG(Γ);

(9) MΓ,|∼(Γ),H(Γ) = µ(MΓ).

If µ is coherency preserving, then again:

(10) MΓ,|∼(Γ),H(Γ) = µ(MΓ).

Proof Proof of(0). We showµ(MΓ) ⊆M|∼(Γ). Let v ∈ µ(MΓ) andα ∈ |∼(Γ).
Then,α ∈ Td(µ(MΓ)). Thus,µ(MΓ) ⊆Mα. Thus,v ∈Mα and we are done.
In addition, obviously,µ(MΓ) ⊆MΓ. Therefore,µ(MΓ) ⊆MΓ ∩M|∼(Γ) = MΓ,|∼(Γ).

Proof of(1). Letα, β ∈ F and supposeβ ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) and¬α ∈ ⊢(Γ, |∼(Γ),¬β).
Then, by(0), µ(MΓ) ⊆MΓ,|∼(Γ) ⊆Mβ. But,β 6∈ |∼(Γ) = Td(µ(MΓ)). Thus,µ(MΓ) ⊆M¬β.
Consequently,µ(MΓ) ⊆MΓ,|∼(Γ),¬β ⊆M¬α. Therefore,α 6∈ Td(µ(MΓ)) = |∼(Γ).

Proof of(2). Letα, β ∈ F and supposeα ∈ ⊢(Γ, |∼(Γ)) \ |∼(Γ) andβ ∈ ⊢(Γ, |∼(Γ),¬α) \ |∼(Γ).
Then, by(0), µ(MΓ) ⊆MΓ,|∼(Γ) ⊆Mα. But,α 6∈ Td(µ(MΓ)). Thus,µ(MΓ) ⊆M¬α.
Thus,µ(MΓ) ⊆MΓ,|∼(Γ),¬α ⊆Mβ . But,β 6∈ Td(µ(MΓ)). Thereforeµ(MΓ) ⊆M¬β.
Thus, by(A3), µ(MΓ) ⊆M¬α ∩M¬β = M¬(α∨β). Consequently,α ∨ β 6∈ Td(µ(MΓ)) = |∼(Γ).

Proof of(3). Letα ∈ |∼(Γ). Then,α ∈ Td(µ(MΓ)). Thus,µ(MΓ) 6⊆M¬α.
Thus, by(0), MΓ,|∼(Γ) 6⊆M¬α.

Proof of(4). Case 1:M ′
Γ = ∅. Obvious.

Case 2:M ′
Γ 6= ∅.

It is sufficient to show by induction:∀ i ∈ [1, n(Γ)],
p(i) (M1

Γ ∪ . . . ∪M i
Γ) ∩ µ(MΓ) = ∅.

We will show:
(4.0) p(1) holds.
Let i ∈ [1, n(Γ)− 1]. Supposep(i). We showp(i+ 1).
Case 1:M i+1

Γ ∩ µ(MΓ) = ∅.
Then, byp(i), we obviously getp(i+ 1).
Case 2:∃ v ∈M i+1

Γ ∩ µ(MΓ).
Then,∃ β ∈ F , β 6∈ |∼(Γ), MΓ,|∼(Γ) \M

1
Γ ∪ . . . ∪M i

Γ ⊆Mβ, andv 6∈M¬β.
Therefore, by(0) andp(i), µ(MΓ) ⊆MΓ,|∼(Γ) \M

1
Γ ∪ . . . ∪M i

Γ ⊆Mβ. But,µ(MΓ) 6⊆M¬β.
Consequently,β ∈ Td(µ(MΓ)) = |∼(Γ), which is impossible.

Proof of(4.0). Suppose the contrary ofp(1), i.e. suppose∃ v ∈M1
Γ ∩ µ(MΓ).

Then,∃ β ∈ F , β 6∈ |∼(Γ), MΓ,|∼(Γ) ⊆Mβ andv 6∈M¬β.
Therefore, by(0), µ(MΓ) ⊆Mβ. On the other hand,µ(MΓ) 6⊆M¬β .
Therefore,β ∈ Td(µ(MΓ)) = |∼(Γ), which is impossible.
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Proof of(5). As µ(MΓ) ∈ D, ∃ Γ′ ⊆ F , MΓ′ = µ(MΓ).
Therefore,MT (µ(MΓ)) = MT (MΓ′ ) = MΓ′ = µ(MΓ).
Thus,MΓ,|∼(Γ),Tc(µ(MΓ)) = MΓ,Td(µ(MΓ)),Tc(µ(MΓ)) = MΓ,T (µ(MΓ)). But,Γ ⊆ T (µ(MΓ)).
Therefore,MΓ,T (µ(MΓ)) = MT (µ(MΓ)) = µ(MΓ).

Proof of(6). SupposeM ′
Γ 6= ∅. Direction: “⊆”.

Case 1:∃ v ∈MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M

n(Γ)
Γ , v 6∈MTc(µ(MΓ)).

Then,∃ α ∈ Tc(µ(MΓ)), v 6∈Mα.

By Lemma 40(3), Lemma 39(7), and(A3), MΓ,|∼(Γ) \M
1
Γ ∪ . . .∪M

n(Γ)
Γ ⊆M¬βΓ ⊆M¬(βΓ∧α).

By (0) and Lemma 40(1), µ(MΓ) ⊆MβΓ ∩Mα = M¬¬(βΓ∧α).
Therefore,¬(βΓ ∧ α) 6∈ Td(µ(MΓ)) = |∼(Γ).
In addition,v 6∈Mα ⊇M¬¬(βΓ∧α).

Consequently,v ∈M
n(Γ)+1
Γ (take¬(βΓ ∧ α) for theβ of the definition ofM i

Γ).
Therefore, by Lemma 39(6), we get a contradiction.

Case 2:MΓ,|∼(Γ) \M
1
Γ ∪ . . . ∪M

n(Γ)
Γ ⊆MTc(µ(MΓ)).

Then, by Lemma 40(6), Lemma 40(4), Lemma 39(7), and by(5), we get
MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ) \M

1
Γ ∪ . . . ∪M

n(Γ)
Γ ⊆MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ).

Direction: “⊇”.
By (0), (4), Lemma 40(4), and Lemma 40(6), we get
µ(MΓ) ⊆MΓ,|∼(Γ) \M

′
Γ = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ),H(Γ).

Proof of(7). SupposeM ′
Γ = ∅. Direction: “⊇”.

Suppose the contrary of what we want to show, i.e. suppose∃ v ∈MTc(µ(MΓ)), v 6∈MG(Γ).
Then,∃ α ∈ G(Γ), v 6∈Mα.
Case 1 :α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), α 6∈ |∼(Γ). Thus, by Lemma 40(5), α 6∈ Td(MΓ,|∼(Γ)).
Therefore,α ∈ Tc(MΓ,|∼(Γ)). Consequently, by(0), α ∈ Tc(µ(MΓ)).
Thus,v ∈Mα, which is impossible.
Case 2:¬α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), ¬α 6∈ |∼(Γ). Thus, by Lemma 40(5), ¬α 6∈ Td(MΓ,|∼(Γ)).
Therefore,¬α ∈ Tc(MΓ,|∼(Γ)). Consequently, by(A3), α ∈ Tc(MΓ,|∼(Γ)).
Therefore, by(0), α ∈ Tc(µ(MΓ)). Thus,v ∈Mα, which is impossible.
Case 3 :α 6∈ T (MΓ,|∼(Γ)) and¬α 6∈ T (MΓ,|∼(Γ)).
Then, by(A2), MΓ,|∼(Γ),α 6⊆M¬α. Therefore,α ∈ Td(MΓ,|∼(Γ),α).
But,α ∈ G(Γ). Thus,Td(MΓ,|∼(Γ),α) ⊆ |∼(Γ). Thus,α ∈ |∼(Γ). Thus,α 6∈ G(Γ), impossible.

Direction: “⊆”.
Suppose the contrary of what we want to show, i.e. suppose∃ v ∈MG(Γ), v 6∈MTc(µ(MΓ)).
Then, we will show:
(7.0) ∃ α ∈ Tc(µ(MΓ)), |MΓ,|∼(Γ),α| < |µ(MΓ)|
But,µ(MΓ) ⊆Mα and, by(0), µ(MΓ) ⊆MΓ,|∼(Γ). Therefore,µ(MΓ) ⊆MΓ,|∼(Γ),α.
Thus,|µ(MΓ)| ≤ |MΓ,|∼(Γ),α|, which is impossible by(7.0).

Proof of(7.0). We have∃ δ ∈ Tc(µ(MΓ)), v 6∈Mδ.
By (A1), |MΓ,|∼(Γ),δ| is finite. To show(7.0), it suffices to show by induction (in the decreasing
direction):∀ i ∈ ZZ with i ≤ |MΓ,|∼(Γ),δ|,
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p(i) ∃ α ∈ Tc(µ(MΓ)), v 6∈Mα and|MΓ,|∼(Γ),α| − |µ(MΓ)| ≤ i.
Obviously,p(|MΓ,|∼(Γ),δ|) holds (takeδ).
Let i ∈ ZZ with i ≤ |MΓ,|∼(Γ),δ| and supposep(i) holds. We showp(i− 1).
We have∃ α ∈ Tc(µ(MΓ)), v 6∈Mα and|MΓ,|∼(Γ),α| − |µ(MΓ)| ≤ i.
Case 1:Td(MΓ,|∼(Γ),α) ⊆ |∼(Γ).
As α ∈ Tc(µ(MΓ)) and(A3) holds, we get¬α ∈ Tc(µ(MΓ)).
But,Tc(µ(MΓ)) ∩ Td(µ(MΓ)) = ∅. Thus, neitherα nor¬α belongs toTd(µ(MΓ)) = |∼(Γ).
Consequently,α ∈ G(Γ). Thus,v ∈Mα, which is impossible.
Case 2:∃ β ∈ Td(MΓ,|∼(Γ),α), β 6∈ |∼(Γ).
By (0), µ(MΓ) ⊆MΓ,|∼(Γ). On the other hand,µ(MΓ) ⊆Mα. Thus,µ(MΓ) ⊆MΓ,|∼(Γ),α ⊆Mβ.
But,β 6∈ |∼(Γ) = Td(µ(MΓ)). Therefore,µ(MΓ) ⊆M¬β.
Consequently,µ(MΓ) ⊆Mα ∩M¬β = Mα∧¬β andµ(MΓ) ⊆M¬α ⊆M¬(α∧¬β).
Therefore,α ∧ ¬β ∈ Tc(µ(MΓ)).
Moreover,v 6∈Mα ⊇Mα∧¬β.
In addition,MΓ,|∼(Γ),α∧¬β ⊆MΓ,|∼(Γ),α, whilstMΓ,|∼(Γ),α 6⊆M¬β ⊇MΓ,|∼(Γ),α∧¬β.
Thus|MΓ,|∼(Γ),α∧¬β| ≤ |MΓ,|∼(Γ),α| − 1. Thus,|MΓ,|∼(Γ),α∧¬β| − |µ(MΓ)| ≤ i− 1.
Therefore,p(i− 1) holds (takeα ∧ ¬β).

Proof of(8). SupposeM ′
Γ = ∅.

Now, suppose the contrary of what we want to show, i.e.∃ v ∈MΓ,|∼(Γ), v 6∈MG(Γ).
Then,∃ α ∈ G(Γ), v 6∈Mα.
Case 1:α ∈ T (MΓ,|∼(Γ)).
As,α ∈ G(Γ), α 6∈ |∼(Γ). Therefore, by Lemma 40(5), α 6∈ Td(MΓ,|∼(Γ)).
Thus,α ∈ Tc(MΓ,|∼(Γ)). Therefore,MΓ,|∼(Γ) ⊆Mα. Consequently,v ∈Mα, which is impossible.
Case 2:¬α ∈ T (MΓ,|∼(Γ)).
As,α ∈ G(Γ), ¬α 6∈ |∼(Γ). Therefore, by Lemma 40(5), ¬α 6∈ Td(MΓ,|∼(Γ)).
Thus,¬α ∈ Tc(MΓ,|∼(Γ)). Therefore, by(A3), MΓ,|∼(Γ) ⊆M¬¬α = Mα.
Consequently,v ∈Mα, which is impossible.
Case 3:α 6∈ T (MΓ,|∼(Γ)) and¬α 6∈ T (MΓ,|∼(Γ)).
Then, by(A2), MΓ,|∼(Γ),α 6⊆M¬α. Thus,α ∈ Td(MΓ,|∼(Γ),α). But,α ∈ G(Γ). Thus,α 6∈ |∼(Γ).
Therefore,Td(MΓ,|∼(Γ),α) 6⊆ |∼(Γ). Consequently,α 6∈ G(Γ), which is impossible.

Proof of(9). Case 1:M ′
Γ = ∅.

By Lemma 40(6), MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ).
But, by(8), (7), and(5), MΓ,|∼(Γ) = MΓ,|∼(Γ),G(Γ) = MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ).
Case 2:M ′

Γ 6= ∅. Obvious by(6).

Proof of(10).
Case 1:M ′

Γ = ∅.
Case 1.1:∃ v ∈MΓ,|∼(Γ), v 6∈MTc(µ(MΓ)).
Case 1.1.1:Γ is not consistent.
Then,∃α ∈ Tc(µ(MΓ)), v 6∈Mα and, asΓ is not consistent,∃β ∈ F , MΓ ⊆Mβ andMΓ ⊆M¬β.
We haveMΓ,|∼(Γ) ⊆MΓ ⊆Mβ ⊆Mβ∨¬α.
Moreover,µ(MΓ) ⊆MΓ ⊆M¬β. Thus,µ(MΓ) ⊆M¬β ∩Mα = M¬(β∨¬α).
Therefore,β ∨ ¬α 6∈ Td(µ(MΓ)) = |∼(Γ).
In addition,v 6∈Mα ⊇M¬(β∨¬α).
Consequently,v ∈M1

Γ (takeβ ∨ ¬α for theβ of the definition ofM1
Γ).

27



Thus,v ∈M ′
Γ, which is impossible.

Case 1.1.2:Γ is consistent.
Thus,MΓ ∈ C. Therefore, asµ is coherency preserving,µ(MΓ) ∈ C. Thus,Tc(µ(MΓ)) = ∅.
Therefore,MTc(µ(MΓ)) = V . Thus,v ∈MTc(µ(MΓ)), which is impossible.
Case 1.2:MΓ,|∼(Γ) ⊆MTc(µ(MΓ)).
Then, by Lemma 40(6), MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ) = MΓ,|∼(Γ),Tc(µ(MΓ)).
Therefore, by(5), MΓ,|∼(Γ),H(Γ) = µ(MΓ).
Case 2:M ′

Γ 6= ∅. Obvious by(6).

Now comes the proof ofProposition 37(which is stated at the beginning of Section 3.3).

Proof Proof of(0). Direction: “→”.
There exists a CP DP coherent choice functionµ fromD toP(V) such that
∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
We will show:
(0.0) |∼ satisfies(|∼0).
By Lemma 41(1), (2), and(3), |∼ satisfies(|∼6), (|∼7), and(|∼8).
By Lemma 41(10) and Coherence ofµ, |∼ satisfies(|∼9).
We will show:
(0.1) |∼ satisfies satisfies(|∼11).

Direction: “←”.
Suppose|∼ satisfies(|∼0), (|∼6), (|∼7), (|∼8), (|∼9), and(|∼11).
Then, letµ be the function fromD toP(V) such that∀ Γ ⊆ F , µ(MΓ) = MΓ,|∼(Γ),H(Γ).
We will show:
(0.2) µ is well-defined.
Clearly,µ is a DP choice function.
In addition, as|∼ satisfies(|∼9), µ is coherent.
We will show:
(0.3) µ is CP.
And finally, by Lemma 40(7), ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).

Proof of(0.0). Let Γ,∆ ⊆ F and suppose⊢(Γ) = ⊢(∆). Then,MΓ = M∆.
Therefore,|∼(Γ) = Td(µ(MΓ)) = Td(µ(M∆)) = |∼(∆).

Proof of(0.1). Let Γ ⊆ F and supposeΓ is consistent.
Then,MΓ ∈ D ∩C. Thus, asµ is CP,µ(MΓ) ∈ C. Therefore,Td(µ(MΓ)) = T (µ(MΓ)).
Consequently,Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = Td(µ(MΓ)) = |∼(Γ).
In addition,M|∼(Γ) = MTd(µ(MΓ)) = MT (µ(MΓ)). But,µ(MΓ) ∈ C. Thus,MT (µ(MΓ)) ∈ C.
Consequently,|∼(Γ) is consistent.
And finally, |∼(Γ) = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = ⊢(|∼(Γ)).

Proof of(0.2). Let Γ,∆ ⊆ F and supposeMΓ = M∆.
Then,⊢(Γ) = ⊢(∆). Thus, by(|∼0), |∼(Γ) = |∼(∆).
Consequently,H(Γ) = H(∆). Therefore,MΓ,|∼(Γ),H(Γ) = M∆,|∼(∆),H(∆).

Proof of(0.3). SupposeV ∈ D ∩C. Then,∃ Γ ⊆ F , V = MΓ.
Case 1:H1(Γ) 6= ∅.
Thus,∃ β ∈ F , β 6∈ |∼(Γ) andMΓ,|∼(Γ) ⊆Mβ.
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By (|∼11), Γ ⊆ |∼(Γ) and⊢(|∼(Γ)) = |∼(Γ). Thus,MΓ,|∼(Γ) = M|∼(Γ). Thus,M|∼(Γ) ⊆Mβ.
Therefore,β ∈ T (M|∼(Γ)) = ⊢(|∼(Γ)) = |∼(Γ), which is impossible.
Case 2:H1(Γ) = ∅.
Then,H(Γ) = ∅. Thus,µ(V ) = µ(MΓ) = MΓ,|∼(Γ),H(Γ) = M|∼(Γ).
But, by(|∼11), |∼(Γ) is consistent. Therefore,M|∼(Γ) ∈ C.

proof of(1). Direction: “→”.
Verbatim the proof of(0), except that in additionµ is LM.
Then, by Lemma 41(10) and LM, |∼ satisfies(|∼10).

Direction: “←”.
Verbatim the proof of(0), except that in addition|∼ satisfies(|∼10).
Then, by definition ofµ and(|∼10), µ is LM.

Proof of(2). Direction: “→”.
Verbatim the proof of(0), except thatµ is no longer CP, whilst(A2) now holds.
Note that, in(0), CP was used only to show(|∼11) and(|∼9).
But, (|∼11) is no longer required to hold.
In addition, by Lemma 41(9) and Coherence ofµ, (|∼9) holds.

Direction: “←”.
Verbatim the proof of(0), except that(|∼11) does no longer hold, whilst(A2) now holds.
However, in(0), (|∼11) was used only to show thatµ is CP, which is no longer required.
Note that we do not need to use(A2) in this direction.

Proof of(3). Direction “→”.
Verbatim the proof of(0), except thatµ is no longer CP, whilstµ is now LM and(A2) now holds.
Note that, in(0), CP was used only to show(|∼11) and(|∼9).
But, (|∼11) is no longer required.
In addition, by Lemma 41(9) and Coherence ofµ, (|∼9) holds.
Similarly, by Lemma 41(9) and Local Monotonicity ofµ, (|∼10) holds.

Direction: “←”.
Verbatim the proof of(0), except that(|∼11) does no longer hold, whilst(|∼10) and(A2) now holds.
Note that, in(0), (|∼11) was used only to show thatµ is CP, which is no longer required.
Now, by definition ofµ and by(|∼10), µ is LM.
Note that we do not need to use(A2) in this direction.

3.4 The discriminative and not necessarily definability preserving case

Unlike in Section 3.3, the conditions of this section will not be purely syntactic. The translation of
properties like Coherence in syntactic terms is blocked because we do no longer have the following
useful equality:µ(MΓ) = MΓ,|∼(Γ),H(Γ), which holds when the choice functions under considera-
tion are definability preserving (but this is not the case here). Thanks to Lemmas 30 and 31 (stated
in Section 3.2), we will provide a solution with semi-syntactic conditions.

Notation 42 Let L be a language,¬ a unary connective ofL, F the set of all wffs ofL, 〈F ,V , |=〉
a semantic structure, and|∼ a relation onP(F)×F .
Then, consider the following condition:∀ Γ ⊆ F ,

(|∼12) ⊢(Γ, |∼(Γ), H(Γ)) = T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈M|∼(∆),H(∆)}).
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Proposition 43 Let L be a language,¬ a unary connective ofL, ∨ and∧ binary connectives ofL,
F the set of all wffs ofL, 〈F ,V , |=〉 a semantic structure satisfying(A1) and(A3), and|∼ a relation
onP(F)×F . Then,

(0) |∼ is a CP preferential-discriminative consequence relationiff (|∼0), (|∼6), (|∼7), (|∼8), (|∼11)
and(|∼12) hold.

Suppose〈F ,V , |=〉 satisfies(A2) too. Then,

(1) |∼ is a preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8), and(|∼12)
hold.

Proof Proof of(1). Direction: “→”.
There exists a coherent choice functionµ fromD toP(V) such that∀Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
Then,|∼ satisfies obviously(|∼0).
Let f be the function fromD to D such that∀ V ∈ D, f(V ) = MT (µ(V )).
Then, by Lemma 31,∀ V ∈ D, f(V ) = MT (µf (V )).
Moreover,∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) ⊆MT (MΓ) = MΓ.
Therefore,f is a choice function.
Obviously,f is DP.
In addition,∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)) = Td(MT (µ(MΓ))) = Td(f(MΓ)).
Consequently, by Lemma 41(1), (2), and(3), |∼ satisfies(|∼6), (|∼7), and(|∼8).
In addition, by Lemma 41(9), ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
We show that|∼ satisfies(|∼12). LetΓ ⊆ F .
Then,⊢(Γ, |∼(Γ), H(Γ)) = T (MΓ,|∼(Γ),H(Γ)) = T (f(MΓ)) = T (MT (µf(MΓ))) = T (µf (MΓ)) =
T ({v ∈MΓ : ∀W ∈ D, if v ∈W ⊆MΓ, thenv ∈ f(W )}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈ f(M∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈M∆,|∼(∆),H(∆)}) =
T ({v ∈MΓ : ∀∆ ⊆ F , if v ∈M∆ ⊆MΓ, thenv ∈M|∼(∆),H(∆)}).

Direction: “←”.
Suppose(|∼0), (|∼6), (|∼7), (|∼8), and(|∼12) hold.
Let f be the function fromD to D such that∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
By (|∼0), f is well-defined.
By Lemma 40(7), ∀ Γ ⊆ F , |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)).
Therefore,∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)).
By (|∼12), ∀ Γ ⊆ F , f(MΓ) = MT (µf (MΓ)).
Therefore,∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)) = Td(MT (µf (MΓ))) = Td(µf (MΓ)).
But, by Lemma 30,µf is a coherent choice function.

Proof of(0). Direction: “→”.
Verbatim the proof of(1), except that(A2) does no longer hold, whilstµ is now CP.
Note that(A2) was used only to apply Lemma 41(9) to get∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, we will get this equality by another mean.
Indeed, ifV ∈ D ∩C, then, asµ is CP,µ(V ) ∈ C, thusMT (µ(V )) ∈ C, thusf(V ) ∈ C.
Thereforef is CP.
Consequently, by Lemma 41(10), we get∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of(0.1) of Proposition 37,|∼ satisfies(|∼11).

Direction: “←”.
Verbatim the proof of(1), except that(A2) does no longer hold, whilst|∼ now satisfies(|∼11).
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But, in this direction,(A2) was not used in(0).
It remains to show thatµf is CP.
By verbatim the proof of(0.3) of Proposition 37, we get thatf is CP.
LetV ∈ D∩C. Then,f(V ) ∈ C. Thus,MT (µf (V )) ∈ C. Thus,µf (V ) ∈ C and we are done.

4 Conclusion

We provided, in a general framework, characterizations forfamilies of preferential(-discriminative)
consequence relations. Note that we have been inspired by the work of Schlechta in the non-
discriminative case, whilst we developed new techniques and ideas in the discriminative case. In
many cases, our conditions are purely syntactic. In fact, when the choice functions under consider-
ation are not necessarily definability preserving, we provided solutions with semi-syntactic condi-
tions. We managed to do so thanks to Lemmas 30 and 31. An interesting thing is that we used them
both in the plain and the discriminative versions. This suggests that they can be used in yet other
versions. In addition, we are quite confident that Lemmas 40 and 41 can be used to characterize
other families of consequence relations defined in the discriminative manner by DP choice functions
(not necessarily coherent, unlike all the families investigated here).
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