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Abstract

While neural networks have been successfully used in a number of machine learning applications, logical
languages have been the standard for the representation of argumentative reasoning. In this paper, we establish
a relationship between neural networks and argumentation networks, combining reasoning and learning in the
same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for
translating argumentation networks into standard neural networks. We then show a correspondence between the
two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks,
and it enables the accrual of arguments through learning as well as the parallel computation of arguments.

Keywords: Neural-Symbolic Systems, Value-based Argumentation Frameworks, Hybrid Systems.

1 Introduction

The study of formal models of argumentation has long been a subject of intensive investigation
in several areas, notably in logic, philosophy, decision making, artificial intelligence, and law
[5, 6, 8, 9, 15, 17, 22, 27, 28, 34]. In artificial intelligence, models of argumentation have been
one of the approaches used in the representation of commonsense, nonmonotonic reasoning. They
have been particularly successful when modelling chains of defeasible arguments so as to reach a
conclusion [25, 26]. Although logic-based models have been the standard for the representation of
argumentative reasoning [6, 16], such models are intrinsically related to artificial neural networks,
as we will show in this paper.

Neural networks have been successfully used in a number of computational learning applications
[20, 24]. By establishing a relationship between neural networks and argumentation networks, we
aim to provide a model in which the learning of arguments can be combined with reasoning capa-
bilities within the same framework. In more general terms, the integration of reasoning and learning
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has been advocated by Valiant as a key challenge for computer science [31].
In this paper, we introduce a neural argumentation algorithm, which is responsible for translating

value-based argumentation networks into standard neural networks with the use of neural-symbolic
systems [11]. Neural-symbolic systems concern the application of problem-specific symbolic knowl-
edge within the neurocomputing paradigm. They have been used to combine neural network-based
learning systems with nonmonotonic, epistemic, and temporal symbolic knowledge representation
and reasoning [13, 14].

We show that the neural network created by the neural argumentation algorithm executes a sound
computation of the prevailing arguments in the argumentation network. This shows that the two
representations are equivalent. However, arguments will frequently attack one another in such a way
that cycles are formed. In such cases, a notion of relative strength of the arguments may be required
to decide which arguments should prevail. Still, in some cases, circularities may lead to an infinite
loop in the computation. To tackle this problem, we propose the use of a learning mechanism.
Learning can be used to resolve circularities by the iterative change of the strength of arguments as
new information becomes available. Learning and its relation to accrual, cumulative argumentation
[32, 27] in neural networks will also be discussed.

Our long-term goal is to facilitate learning capabilities in value-based argumentation frame-
works, as arguments may evolve over time, with certain arguments being strengthened and others
weakened. At the same time, we seek to enable the parallel computation of argumentation frame-
works by making use of the machinery of neural networks.

The remainder of the paper is organised as follows. In Section 2, we present the basic concepts
of value-based argumentation, neural networks, and neural-symbolic systems used throughout the
paper. In Section 3, we introduce the neural argumentation algorithm, and prove that the neural
network executes a sound computation of the argumentation network, and therefore that the transla-
tion is correct. In Section 4, we investigate how learning may help overcome circularities, and how
neural networks may support accrual, cumulative argumentation. Section 5 concludes the paper and
discusses directions for future work.

2 Background

In this section, we present the basic concepts of value-based argumentation frameworks used
throughout this paper. We also define neural networks and introduce neural-symbolic learning sys-
tems.

2.1 Value-based Argumentation Frameworks

We start by describing the notion of value-based argumentation frameworks, following Bench-
Capon’s work [4]. In order to record the values associated with arguments, Bench-Capon has ex-
tended Dung’s argumentation framework [15] by adding to it a set of values and a function mapping
arguments to values. A notion of relative strength of arguments may then be defined by an audience,
which essentially creates an ordering on the set of values. As a result, if an argument A attacks an
argument B and the value of B is preferred over the value of A then it may be the case that A is
accepted, and yet A is not able to defeat B. Therefore, a distinction between attacks and defeats -
which are typically defined as successful attacks - is used [9, 26].

Definition 1 [15] An argumentation network has the form A = < α, attack >, where α is a set of
arguments, and attack ⊆ α2 is a relation indicating which arguments attack which other arguments.
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Definition 2 [4] A value-based argumentation framework is a 5-tuple V AF = < α, attacks, V, val,
P >, where α is a finite set of arguments, attacks is an irreflexive binary relation on α, V is a non-
empty set of values, val is a function mapping elements in α to elements in V , and P is a set of
possible audiences, where we may have as many audiences as there are orderings on V . For every
A ∈ α, val(A) ∈ V.

Bench-Capon also uses the notion of colouring in order to define preferences among audiences.
For example, consider audience red (which prefers red over blue) and audience blue (which prefers
blue over red), and the following value-based argumentation: A (coloured red) attacks B (coloured
blue) which attacks C (coloured blue). As a result, {A,C} are the prevailing arguments for audience
red; however, for audience blue the prevailing arguments are {A,B}. It is also important to note that
Bench-Capon defines the notions of objective and subjective acceptability of arguments. The first
are arguments acceptable no matter the choice of preferred values for every audience, whereas the
second are acceptable to some audiences. Arguments which are neither objectively nor subjectively
acceptable are called indefensible. Following Bench-Capon and the extension to argumentation
networks given in [3], we model the strength of arguments by defining a function v from attack to
{0, 1}, which gives the relative strength of an argument. Given αi, αj ∈ α, if v(αi, αj) = 1 then αi

is said to be stronger than αj . Otherwise, αi is said to be weaker than αj .
Let us briefly consider the relationship between argumentation frameworks and neural networks

informally. We can think of a neural network as a graph in which the vertices represent neurons
and the edges indicate the connections between neurons. In a neural network, each edge is labelled
with a real number indicating the relative weight of the connection. If we represent an argument as
a neuron then a connection from neuron i to neuron j can be used to indicate that argument i either
attacks or supports argument j. The weight of the connection can be seen as corresponding to the
strength of the attack or the support. Any real number can be assigned to the weight of a connection
in a neural network, and thus we will associate negative weights with attacks, and positive weights
with supporting arguments1, as detailed later on.

In order to compute the prevailing arguments in a neural network, one needs to take into consid-
eration the relative strength of the attacks as given, for example, by an audience. Since the strength
of the different arguments is represented by the weights of the network, and since learning is the
process of progressively changing the weights, it seems natural to use neural learning algorithms to
change the network as new information becomes available. We will investigate this in more detail in
Section 4. First, let us define neural networks precisely and introduce neural-symbolic systems.

2.2 Neural-Symbolic Learning Systems

An artificial neural network is a directed graph with the following structure: a unit (or neuron) in
the graph is characterised, at time t, by its input vector Ii(t), its input potential Ui(t), its activation
state Ai(t), and its output Oi(t). The units of the network are interconnected via a set of directed
and weighted connections such that if there is a connection from unit i to unit j then Wji ∈ R

denotes the weight of this connection. The input potential of neuron i at time t (Ui(t)) is obtained
by computing a weighted sum for neuron i such that Ui(t) =

∑
j WijIi(t) (see Figure 1). The

activation state Ai(t) of neuron i at time t - a bounded real or integer number - is then given by the
1Generally speaking, an argument i supports an argument j if the coordination of i and j reduces the likelihood of j

being defeated. There are different ways in which an argument may support another. For example, argument i may support
argument j by attacking an argument k that attacks j; or argument i may support j directly, e.g. by strengthening the value
of j [33]. In this paper, we use the terms attack and support in a loose way, since it will be sufficient to define precisely just
the notion of defeat.
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neuron’s activation function hi such that Ai(t) = hi(Ui(t)). Typically, hi is either a linear function,
a non-linear (step) function, or a sigmoid function (e.g.: tanh(x)). In addition, θi (an extra weight
with input always fixed at 1) is known as the threshold of neuron i. We say that neuron i is active
at time t if Ai(t) > θi. Finally, the neuron’s output value Oi(t) is given by its output function
fi(Ai(t)). Usually, fi is the identity function.

Wi1

Wi2

Win

Ui(t) Ai(t+∆t) Oi(t+∆t)

Ai(t)x1(t)

x2(t)

xn(t) -θi

1

Figure 1: The neuron or processing unit.

The units of a neural network can be organised in layers. A n-layer feedforward network is
an acyclic graph. It consists of a sequence of layers and connections between successive layers,
containing one input layer, n − 2 hidden layers, and one output layer, where n ≥ 2. When n = 3,
we say that the network is a single hidden layer network. When each unit occurring in the i-th layer
is connected to each unit occurring in the i + 1-st layer, we say that the network is fully-connected.

A multilayer feedforward network computes a function ϕ : Rr → Rs, where r and s are the
number of units occurring, respectively, in the input and output layers of the network. In the case of
single hidden layer networks, the computation of ϕ occurs as follows: at time t1, the input vector
is presented to the input layer. At time t2, the input vector is propagated through to the hidden
layer, and the units in the hidden layer update their input potential and activation state. At time t3,
the hidden layer activation state is propagated to the output layer, and the units in the output layer
update their input potential and activation state. At time t4, the output vector is read off the output
layer. In addition, most neural models have a learning rule, responsible for changing the weights
of the network progressively so that it learns to approximate ϕ given a number of training examples
(input vectors and their respective target output vectors).

In the case of backpropagation - the neural learning algorithm most successfully applied in
industry [29] - an error is calculated as the difference between the network’s actual output vector and
the target vector, for each input vector in the set of examples. This error E is then propagated back
through the network, and used to calculate the variation of the weights �W. This calculation is such
that the weights vary according to the gradient of the error, i.e. �W = −η∇E, where 0 < η < 1
is called the learning rate. The process is repeated a number of times in an attempt to minimise the
error, and thus approximate the network’s actual output to the target output, for each example. In
order to try and avoid shallow local minima in the error surface, a common extension of the learning
algorithm above takes into account, at any time t, not only the gradient of the error function, but also
the variation of the weights at time t− 1, so that �Wt = −η∇E + µ�Wt−1, where 0 < µ < 1 is
called the term of momentum. Typically, a subset of the set of examples available for training is left
out of the learning process so that it can be used for checking the network’s generalisation ability,
i.e. its ability to respond well to examples not seen during training.
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The Connectionist Inductive Learning and Logic Programming System C-ILP [11] is a massively
parallel computational model based on an artificial neural network that integrates inductive learning
and deductive reasoning. In C-ILP, a translation algorithm maps a logic program P into a single
hidden layer neural network N such that N computes the least fixed-point of P [23]. This provides
a massively parallel model for computing the stable model semantics of P [18]. In addition, N can
be trained with examples using a neural learning algorithm [29], having P as background knowl-
edge. The knowledge acquired by training can then be extracted [10], closing the learning cycle, as
advocated in [30].

Let us exemplify how C-ILP’s translation algorithm works. Each rule (rl) of P is mapped from
the input layer to the output layer of N through one neuron (Nl) in the single hidden layer of N .
Intuitively, the translation algorithm from P to N has to implement the following conditions: (c1)
the input potential of a hidden neuron Nl can only exceed its threshold θl, activating Nl, when all
the positive antecedents of rl are assigned truth-value true while all the negative antecedents of rl

are assigned false; and (c2) the input potential of an output neuron A can only exceed its threshold
(θA), activating A, when at least one hidden neuron Nl that is connected to A is activated.

Example 3 (C-ILP) Consider the logic program P = {B∧C∧ ∼ D → A;E ∧F → A;B}, where
∼ stands for negation [23]. From P , the C-ILP translation algorithm produces the network N of
Figure 2, setting weights (W ) and thresholds (θ) in a way that conditions (c1) and (c2) above are
satisfied. Note that, if N ought to be fully-connected, any other link (not shown in Figure 2) should
receive weight zero initially. Each input and output neuron of N is associated with an atom of P .
As a result, each input and output vector of N can be associated with an interpretation for P . Note
also that each hidden neuron Nl corresponds to a rule rl of P such that neuron N1 will be activated
if neurons B and C are activated while neuron D is not; output neuron A will be activated if either
N1 or N2 is activated; and output neuron B will be activated if N3 is, while N3 is always activated
regardless of the input vector (i.e. B is a fact). To compute the stable models of P , the output vector
is recursively given as the next input to the network such that N is used to iterate the fixed-point
operator of P [11]. For example, output neuron B should feed input neuron B. N will eventually
converge to a stable state which is identical to the stable model of P provided that P is an acceptable
program [2]. For example, given any initial activation in the input layer of Nr (network of Figure 2
recurrently connected), it always converges to a stable state in which neuron B is activated and all
the other neurons are not. We associate this with literal B being assigned truth-value true, while all
the other literals are assigned truth-value false, which represents the unique fixed-point of P .

In the case of argumentation networks, it will be sufficient to consider definite logic programs
(i.e. programs without ∼). In this case, the neural network will contain only positive weights (W ).
We will then extend such a positive network to represent attacks by using negative weights from the
network’s hidden layer to its output layer, as explained in detail in what follows.

3 Argumentation Neural Networks

In this section, we introduce the algorithm that allows us to translate value-based argumentation
networks into neural networks. Firstly, let us see how the translation works in a typical argumentation
example, namely, the moral debate example [4].

Hal, a diabetic, loses his insulin in an accident through no fault of his own. Before collapsing into
a coma, he rushes to the house of Carla, another diabetic. She is not at home, but Hal breaks into her
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Figure 2: A neural network for logic program P .

house and uses some of her insulin. Was Hal justified? Does Carla have a right to compensation?
The following are some of the arguments involved in the example.

A: Hal is justified, he was trying to save his life;

B: It is wrong to infringe the property rights of another;

C: Hal compensates Carla;

D: Hal is endangering Carla’s life;

E: Carla has abundant insulin;

F : If Hal is too poor to compensate Carla he should be allowed to take the insulin as no
one should die because they are poor.

Arguments and counter-arguments can be arranged in an argumentation network, as in Figure 3,
where an arrow from argument X to argument Y indicates that X attacks Y . For example, the fact
that it is wrong to infringe Carla’s right of property (B) attacks Hal’s justification (A).

In the argumentation network of Figure 3, some aspects may change as the debate progresses
and actions are taken, with the strength of an argument in attacking another changing in time. We
see this as a learning process that can be implemented using a neural network in which the weights
encode the strength of the arguments. The neural network for the set of arguments {A,B,D} is
depicted in Figure 4. The network is single hidden layer with inputs (A,B,D), outputs (A,B,D)
and hidden layer (h1,h2,h3). Solid arrows represent positive weights and dotted arrows represent
negative weights. Arguments are supported by positive weights and attacked by negative ones.
Argument A (input neuron A), for example, supports itself (output neuron A) with the use of hidden
neuron h1. Similarly, argument B supports itself (via h2), and so does argument D (via h3). From
the argumentation network, B attacks A, and D attacks A; the attacks are implemented in the neural
network by the negative weights (see dotted lines in Figure 4) with the use of h2 and h3, respectively.

The network of Figure 4 is a standard feedforward neural network that can be trained with the use
of a standard neural learning algorithm. Learning would change the initial weights of the network
(or the initial beliefs on the strength of arguments and counter-arguments), according to examples
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Figure 3: The moral debate argumentation network.

A B D

h1 h2 h3

A B D

Figure 4: A neural network for arguments A, B, D.

(input and output patterns) of the relationship between arguments A, B and D. This will become
clearer in Section 4, where we shall give examples of learning argumentation.

In Figure 4, generally speaking, if the absolute value of the weight from neuron h1 to output
neuron A (i.e. the strength of A) is greater than the sum of the absolute values of the weights from
neurons h2 and h3 to A (i.e. the strength of the attacks on A), one should be able to say that argument
A prevails (in which case output neuron A should be active in the neural network). Let us implement
this form of reasoning using C-ILP neural networks.

The neural argumentation algorithm introduced below takes a value-based argumentation frame-
work as input and produces a C-ILP neural network as output. These networks use a semi-linear
activation function h(x) = 2

1+e−x − 1 and inputs in {−1, 1}, where 1 represents true and −1 repre-
sents false.2 In addition, parameter Amin (0 < Amin < 1) indicates the minimum activation for a
neuron to be considered active. The algorithm then defines the set of weights of the neural network
as a function of Amin such that the neural network computes the prevailing arguments according
to the argumentation framework. The values of the weights derive from the proof of Theorem 5,
which shows that the neural network indeed executes a sound computation of the argumentation
framework.

Neural Argumentation Algorithm

1. Given a value-based argumentation framework A with arguments
α1, α2, ..., αn, let:

2A differentiable function such as h(x) is needed for a gradient descent learning algorithm such as backpropagation. The
use of {−1, 1} has been proved more efficient for learning than the use of {0, 1}, since values close to zero imply in very
small changes of the weights during learning [7].
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P = {r1 : α1 → α1, r2 : α2 → α2, ..., rn : αn → αn}.
2. Number each atom of P from 1 to n and create the input and output

layers of a neural network N such that the i − th neuron represents the
i − th atom of P.

3. Given 0 < Amin < 1, calculate W ≥ (1�Amin) · (ln (1 + Amin) − ln (1 − Amin)).

4. For each rule rl of P (1 ≤ l ≤ n) do:

(a) Add a neuron Nl to the hidden layer of N;

(b) Connect neuron αl in the input layer of N to hidden neuron Nl and
set the connection weight to W;

(c) Connect hidden neuron Nl to neuron αl in the output layer of N and
set the connection weight to W.

5. For each (αi, αj) ∈ attack,3 do:

(a) Connect hidden neuron Ni to output neuron αj ;

(b) If v(αi, αj) = 0 then set the connection weight to

W ′ > h−1(Amin) − WAmin;

(c) If v(αi, αj) = 1 then set the connection weight to

W ′ < (h−1(−Amin) − W )/Amin.

6. Set the threshold of each neuron in N to zero.

7. Set g(x) = x as the activation function of the neurons in the input
layer of N.4

8. Set h(x) = 2
1+e−x − 1 as the activation function of the neurons in the

hidden and output layers of N.5

Note that, differently from the general C-ILP translation algorithm, in which rules may have any
number of literals in the antecedent [11], here there is always a single literal αi in the antecedent
of each rule ri. This allows us to use threshold zero in the algorithm above. Note also that, in the
algorithm, W > 0 and W ′ < 0. This fits well with the idea of arguments having strengths (W ), and
attacks also having strengths (W ′). In practice, the values of W and W ′ could be defined, e.g., by
an audience using some form of voting system [4].

The notion of an argument that supports another seems natural in argumentation neural networks.
If argument αi supports argument αj , this may be implemented easily in the neural network by the
addition of a rule of the form αi → αj to program P .6 We need to make sure that the neural network

3Recall that if v(αi, αj) = 1 then αi should defeat αj , and if v(αi, αj) = 0 then αi should not defeat αj . The notion
of defeat will be defined precisely in the sequel.

4In this way, the activation of the neurons in the input layer of N , given by each input vector i ∈ {−1, 1}n, will represent
an interpretation for P , where 1 represents true and −1 represents false.

5In this way, a gradient-based learning algorithm, such as backpropagation, can be applied to N .
6In this way, an accumulation of arguments (α1, ..., αn), neither being individually stronger than the argument they attack

(αn+1), might produce an input potential n · W ′ that overcomes the strength W of αn+1. This is naturally the way that
neural networks work, and it relates to the accrual of arguments. We will discuss this in more detail in the next section.
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computes the prevailing arguments of the argumentation framework. For example, if an argument
αi attacks an argument αj , and αi is stronger than αj , then neuron αi should be able to deactivate
neuron αj . Conversely, if αi is weaker than αj , and no other argument attacks αj , then neuron αi

should not be allowed to deactivate neuron αj . The following definition captures this.

Definition 4 (N computes A) Let (αi, αj) ∈ attacks. Let Aα(t) denote the activation state of
neuron α at time t. We say that a neural network N computes an argumentation framework A if (i)
whenever v(αi, αj) = 1, if Aαi

(t) > Amin and Aαj
(t) > Amin then Aαj

(t + 1) < −Amin;7 and
(ii) whenever v(αi, αj) = 0, if Aαi

(t) > Amin and Aαj
(t) > Amin and for every αk (k �=i,j) such

that (αk, αj) ∈ attacks, Aαk
(t) < −Amin then Aαj

(t + 1) > Amin.

We now show that the translation from argumentation frameworks to neural networks is correct.

Theorem 5 (Correctness of Argumentation Algorithm) For each argumentation network A there
exists a feedforward neural network N with exactly one hidden layer and semi-linear neurons such
that N computes A.

Proof First, we need to show that the neural network computes P . When ri : αi → αi ∈ P ,
we need to show that (a) if αi > Amin in the input layer then αi > Amin in the output layer.
We also need to show that (b) if αi < −Amin in the input layer then αi < −Amin in the output
layer. (a) In the worst case, the input potential of hidden neuron Ni is W · Amin, and the output
of Ni is h(W · Amin). We want h(W · Amin) > Amin. Then, again in the worst case, the input
potential of output neuron αi will be W · Amin, and we want h(W · Amin) > Amin. As a result,
W > h−1(Amin)/Amin needs to be verified, which gives W > (1�Amin) · (ln (1 + Amin) −
ln (1 − Amin)), as in the algorithm. The proof of (b) is analogous to the proof of (a). Now, we
need to show that the addition of negative weights to the neural network implements the attacks in
the argumentation framework. When v(αi, αj) = 1, we want to ensure that the activation of output
neuron αj is smaller than −Amin whenever both hidden neurons Ni and Nj are active. In the worst
case scenario, Ni has activation Amin while Nj has activation 1. We have h(W + AminW ′) <
−Amin. Thus, we need W ′ < (h−1(−Amin) − W )/Amin; this is satisfied by the argumentation
algorithm. Similarly, when v(αi, αj) = 0, we want to ensure that the activation of output neuron αj

is larger than Amin whenever both hidden neurons Ni and Nj are active. In the worst case scenario,
now Ni has activation 1 while Nj has activation Amin. We have h(AminW + W ′) > Amin. Thus,
we need W ′ > h−1(Amin)−WAmin. Again, this is satisfied by the argumentation algorithm. This
completes the proof.

4 Argument Computation and Learning

In this section, we consider the computation of arguments in neural networks. We start by giving
an example. We then consider the case in which arguments attack each other forming a cycle in the
argumentation network. This may result in an infinite computation in the neural network. To tackle
this problem, we propose the use of learning as a way of breaking the circularity. Learning can be
seen as a way of implementing the accrual of arguments. We conclude the section by discussing this
issue. There is interesting further research on each of these topics. In this section, our purpose is to

7We use −Amin for mathematical convenience, so that neuron α is said to be not active if Aα(t) < −Amin, and active
if Aα(t) > Amin.
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introduce a range of issues for argumentation neural networks, but we are far from exhausting the
subject.

Once we have translated argumentation networks into neural networks, our next step is to run the
neural network to find out which arguments prevail. To run the network, we connect output neurons
to their corresponding input neurons using weights Wr = 1 (see Figure 5) so that, for example, the
activation of output neuron A is fed into input neuron A at the next time round [21]. This implements
chains such as A attacks B, B attacks C, C attacks D, and so on, by propagating activation around
the network. The following example illustrates this computation in the case of the moral debate
example introduced above.

Example 6 (Moral Debate Neural Network) We apply the neural argumentation algorithm to the
argumentation network of Figure 3, and obtain the neural network of Figure 5. From the algorithm,
we know that we should have Amin > 0 and W > 0. Let us take Amin = 0.5 and W = 5 (recall
that W is the weight of solid arrows in the network). Following [16], let us consider the problem by
grouping arguments according to the features of life, property and fact. Arguments A, D and F are
related to the right of life, arguments B and C are related to property rights, and argument E is a fact.
We may argue whether property is stronger than life, but facts are always the strongest. If property
is stronger than life then v(B,A) = 1, v(D,A) = 1, v(C,B) = 1, v(C,D) = 1, v(E,D) = 1,
and v(F,C) = 0. From the neural argumentation algorithm, when v(αi, αj) = 0 we must have
W ′ > −1.4, and when v(αi, αj) = 1 we must have W ′ < −12.2. The actual value of each attack
may depend on an audience. Nevertheless, provided that the above conditions on W ′ are satisfied,
the network will compute the expected prevailing arguments according to Theorem 5, as follows: F
does not defeat C, C defeats B, E defeats D and, as a result, we obtain {A,C,E} as the acceptable
set of arguments. Now, if life is considered stronger than property then v(F,C) = 1. As a result,
F defeats C and, since C is defeated, it cannot defeat B, which in turn cannot defeat A (because
life is stronger than property). Thus, the network converges to the state {A,B,E,F} of acceptable
arguments.8 This shows that two different lines of value-based argumentation will provide the same
answer to the question of whether Hall was justified (A), but two different answers to the question
of whether Carla has the right to compensation (C).

4.1 Circular Argumentation

Arguments may frequently attack one another in such a way that cycles are formed. In such cases,
the relative strength of the arguments will decide which of them should prevail, if any. In [3], as part
of a study of the dynamics of argumentation networks [8], Barringer, Gabbay and Woods discuss
how to handle loops during the computation of arguments. They differentiate between syntactic
and semantic loops, in that the former occurs as cycles in the argumentation network (e.g., when
argument A attacks argument B and vice-versa), while the latter also depends on the strength of the
arguments involved in the loop.

In this way, if A is considerably stronger than B or vice-versa, no semantic loop will exist despite
the fact that there is a (syntactic) loop in the network; the relative strength of the arguments resolves
the loop. Even if A and B both have similar strengths, one possible interpretation is that neither
argument should prevail. This would also resolve the loop and, as we shall see in the sequel, the
dynamics of argumentation neural networks follows this interpretation. Still, there are situations
in which the network oscillates between stable states, which indicates the existence of alternative,

8The complete set of argument values in this case is: v(B, A) = 0, v(D, A) = 1, v(C, B) = 1, v(C, D) = 0,
v(E, D) = 1, and v(F, C) = 1. The constraints on W ′ are calculated in the same way as before.
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Figure 5: The moral-debate example as a neural network.

conflicting sets of arguments. This problem may be resolved by changing the strength of certain
arguments. Such a change may either be due to the fact that new information has become available,
or it may come from the investigation of the oscillating behaviour of the argumentation network
itself, as exemplified below.

Example 7 (Argument Computation) Take the case in which an argument A attacks an argument B,
and B attacks an argument C, which in turn attacks A in a cycle, as shown in Figure 6. In order to
implement this in a neural network, we need three hidden neurons (h1, h2, h3), positive weights to
explicitly represent the fact that A supports itself (via h1), B supports itself (via h2), and so does
C (via h3). In addition, we need negative weights from h1 to B, from h2 to C, and from h3 to A
to implement attacks (see Figure 7). If the value of argument A (i.e. the weight from h1 to A) is
stronger than the value of argument C (the weight from h3 to C, which is expected to be the same
in absolute terms as the weight from h3 to A), C cannot attack and defeat A. As a result, A is active
and succeeds in attacking B (since we assume that the weights from h1 and h2 to B have the same
absolute value). Since B is not active, C will be active, and a stable state {A,C} will be reached.
In Bench-Capon’s model [4], this is precisely the case in which colour blue is assigned to A and B,
and colour red is assigned to C with blue being stronger than red. Note that the order in which we
reason does not affect the final result (the stable state reached). For example, if we had started with
B successfully attacking C, C would not have been able to defeat A, but then A would successfully
defeat B, which would, this time round, not be able to successfully defeat C, which in turn would be
active in the final stable state {A,C}.

A B

C
Figure 6: Circular arguments.
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In Example 7, a syntactic loop exists in that the attacks in the argumentation network form a loop
in Figure 6. However, there is no semantic loop, as the computation of the arguments converges to
a stable state, as exemplified above. Even if the strength of the arguments were all the same, the
neural network of Figure 7 would converge to { }, as follows: assume that solid arrows have weight
W , and dotted arrows have weight −W in the network of Figure 7. Let (A,B,C) = [1, 1, 1] denote
the network’s input vector. Thus, h(W ) will be the activation state of each hidden neuron, where
h is the activation function of such neurons. Then, W · h(W ) − W · h(W ) = 0 will be the input
potential of each output neuron, and thus h(0) = 0 (recall that θ = 0) will be the activation state of
each output neuron A, B, and C. Now, given input vector (A,B,C) = [0, 0, 0], the activation state
of each hidden neuron will be zero, and then the activation state of each output neuron will be zero.
As a result, the network converges to a stable state { } in which no argument prevails. This stable
state is reached after a single computation step from [1, 1, 1] to [0, 0, 0].

A B C

h1 h2 h3

A B C

Figure 7: A circular argumentation neural network.

According to Definition 4, an argument prevails if its associated neuron has activation in the
interval (Amin, 1] with Amin > 0. Dually, whenever an argument is defeated, its associated neuron
should have activation in the interval [−1,−Amin). In the case of circular argumentation networks,
however, there is a third possibility when arguments cancel each other and the neurons’ activations
lie in the interval [−Amin, Amin], typically converging to zero, as illustrated above. In this case, we
know that arguments do not prevail, and it might be useful in some situations to make a distinction
between a clear defeat and a failure to prevail. We will return to this issue when we consider ar-
gument learning. First, we need to study the more involved situation where the network oscillates
between states.

Unfortunately, not all argumentation neural networks are as well-behaved as the ones considered
so far. Take the case in which an argument A attacks two arguments B and C; B and C in turn
both attack an argument D, and D attacks A in a cycle, as depicted in Figure 8. Assume that all the
attacks have the same strength. Figure 9 shows the neural network for the argumentation network
of Figure 8. Assume, as before, that solid arrows have weight W , and dotted arrows have weight
−W . Given input (A,B,C,D) = [1, 1, 1, 1], from Figure 9, it is clear that the values of output
neurons A, B, and C will be zero, as the weights W and −W cancel each other out. The input
potential of output neuron D, however, will be −W · h(W ), and so the value of output neuron D
will be OD = h(−W · h(W )). The next time round, the input potential of output neuron A will
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be −W · h(OD · W ), and A will have a positive activation h(−W · h(OD · W )). As a result, if A
successfully defeats B and C then D prevails, and thus defeats A. In this case, B and C prevail, and
defeat D, in a cycle.

A

B

C

D

Figure 8: Semantic circularity.

Let us look at this cycle in more detail in the neural network. Let us assume, for convenience,
that W = 1, h(x) = 1 if x ≥ 1, h(x) = −1 if x ≤ −1, and h(x) = x for −1 < x < 1.9 We start
with input vector [1, 1, 1, 1], and obtain output vector [0, 0, 0,−1]. We then use [0, 0, 0,−1] as input
to obtain output [1, 0, 0,−1]. Let us use 
→ to denote the above mapping from input to output vectors,
so that we have: [1, 1, 1, 1] 
→ [0, 0, 0,−1] 
→ [1, 0, 0,−1] 
→ [1,−1,−1,−1] 
→ [1,−1,−1, 1] 
→
[0,−1,−1, 1] 
→ [−1,−1,−1, 1] 
→ [−1, 0, 0, 1] 
→ [−1, 1, 1, 1] 
→ [−1, 1, 1,−1] 
→ [0, 1, 1,−1] 
→
[1, 1, 1,−1] 
→ [1, 0, 0,−1] 
→ ... 
→ [1, 0, 0,−1] ..., which shows that we have reached an infinite
loop.

Can we learn anything from the sequence of arguments computed by the network? Initially, there
is a situation in which A seems to prevail. Then, A and D together prevail. Then, D alone; then B,
C, and D together; then B and C only; and finally A, B, and C, before we go back to the situation in
which A alone seems to prevail. One way to deal with this problem would be to simply assume that
the loop itself indicates that no argument should prevail at the end. One may argue, however, that
this does not really solve the problem. Alternatively, one could try and use the information obtained
by the computation of arguments itself as an indication of how one should go about trying to solve
the loop. In the example above, for instance, it seems that either {A,D} or {B,C} could serve as a
basis for a stable set of arguments. Nevertheless, more information would be needed, and the loop
itself could serve as the trigger for a search for new information. In the case of the network of Figure
9, one could start by searching for information in support for {A,D} and in support for {B,C}, and
only then in support for the other combinations. It seems that the only real solution to the problem
of semantic loops is to have new information in the form of new evidence about the relative strength
of the arguments and to learn from it, as we discuss in the following section.

4.2 Argument Learning

Consider again the neural network of Figure 9. Suppose that new evidence becomes available in
favour of arguments A and C so that we would like both arguments to prevail. We do not know
how this should affect arguments B and D, but we know that, now, given input vector [1, 1, 1, 1], we
would like the network of Figure 9 to produce output [1, ?, 1, ?], instead of [0, 0, 0,−1]. Since we do
not have any information about B or D, the natural candidates for ? are the original values (so that
[1, ?, 1, ?] becomes [1, 0, 1,−1]). This will produce an error of zero for output neurons B and D
during learning, which is the best way of reflecting the lack of new information about such concepts.
An error of zero will produce no change on the weights directly associated with B and D, but of

9This gives an approximation of the standard sigmoid activation function.
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Figure 9: A neural network encoding semantic circularity.

course the changes of other weights may affect the overall result of the network. Let us exemplify
this in the case of the network of Figure 9 for our training example [1, 1, 1, 1] 
→ [1, 0, 1,−1].

We use the standard backpropagation learning algorithm10 [29]. The use of backpropagation is
made possible because the network is recurrently connected only when it comes to the computation
of the arguments, not during learning. The recurrent connections are important for the reasoning
process, having weights always fixed at 1. During learning, we are interested in establishing a new
mapping from the input to the output, and thus a learning algorithm that applies to feedforward
networks, such as backpropagation, suffices. We use W = 4.0 (solid arrows in Figure 9), and
W ′ = −4.0 (dotted arrows in Figure 9).11 Recall that θ = 0 and that any other connection not
shown in Figure 9 is given weight zero initially.

After training, the thresholds of output neurons A (θA) and C (θC) have been changed to −0.8,
the weights from h1 to A (WA,h1) and from h3 to C (WC,h3) have been changed to 4.8, and the
weights from h4 to A (WA,h4) and from h1 to C (WC,h1) have been changed to −3.2. In addition,
some very minor changes have occurred in the weights linking the input to the hidden layer of the
network and, as expected, no changes have occurred in the weights leading to output neurons B or
D, namely WB,hi

and WD,hi
, 1 ≤ i ≤ 4 (recall that, for the purpose of learning, the network is

fully-connected).
The computation of the arguments in the trained network is as follows. In addition to the tran-

sition from [1, 1, 1, 1] to [1, 0, 1,−1] learned as expected, the network then maps [1, 0, 1,−1] into
[1,−1, 1,−1], which is a stable state. The newly learned sequence [1, 1, 1, 1] 
→ [1, 0, 1,−1] 
→
[1,−1, 1,−1] 
→ [1,−1, 1,−1] is now loop free; stable state [1,−1, 1,−1] corresponds to the ac-
ceptance of {A,C} as prevailing arguments.

As another example, let us consider the Nixon diamond problem. In the traditional Nixon dia-
mond problem, Nixon is a quaker (Q) and a republican (R). Quakers are generally pacifists (P ),
while republicans are generally non-pacifists (¬P ). This produces an inconsistency in a number of
formalisations of the problem [1]. Briefly, if the strength of the support for Nixon’s pacifism is the
same as the strength of the support for his non-pacifism, the neural network will conclude that both

10We use tanh as activation function, a learning rate of 0.1, and a term of momentum of 0.4. We train the network on the
single training example ([1, 1, 1, 1], [1, 0, 1,−1]) until a mean square error of 0.01 is reached.

11This is because tanh(4.0) = 0.999, while tanh(1.0) = 0.761. As a result, W = 4.0 gives a good approximation for
h(W ) = 1, as in our previous assumption.
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P and ¬P prevail. If, in addition, we assume that P attacks ¬P , and vice-versa, ¬P attacks P , both
with the same strength, then the stable state of the neural network will contain neither P nor ¬P .
Finally, if we are faced with a situation in which we need to choose between P and ¬P , we could
learn to enforce a stable state in the network in which one but not the other argument prevails.

Suppose we need to make a decision about Nixon’s pacifism. We need to seek new information.
We find out that Nixon is a football fan (F ), and that football fans are normally non-pacifists. We
then use this information to convince ourselves that Nixon is indeed a non-pacifist. We need to add
an input, a hidden, and an output neuron to our original network to represent F . Then, to make sure
that F attacks and defeats P , we simply train the following example [1, 1, 1, 1, 1] 
→ [1, 1,−1, 1, 1],
given arguments Q,R, P,¬P, F in this order.

There are also situations in which the number of times that an example occurs should be relevant
to the decision about the strength of an argument. In such cases, since the backpropagation algorithm
does not really emphasise this aspect, alternative forms of learning would need to be investigated
and compared with backpropagation. We believe this is an interesting research area with many open
research issues to be addressed in the near future as we combine neural networks-based learning,
case-based reasoning, and argumentation theory.

4.3 Cumulative (accrual) Argumentation

We have mentioned that neural networks deal with cumulative argumentation in the sense that a
number of arguments, neither being individually stronger than a given argument, may defeat this ar-
gument collectively. There is some controversy on whether arguments accrue. While Pollock denies
the existence of cumulative argumentation [27], Verheij defends that arguments can be combined
either by subordination or by coordination, and may accrue in stages [32]. In this section, we give
an example of accrual by coordination, which happens to be a natural property of neural networks.

Consider the following scenario. Suppose you are the head of state of a country who needs to
decide whether or not to go to war in order to remove a violent dictator from power. First, you
consider the prospects of the loss of lives of fellow countrymen and women in action, and the killing
of innocent civilians, which form a strong argument against going to war. Let us call this argument
A1. In support for the war, according to documented evidence from your intelligence services, the
dictator possesses chemical and biological weapons, having made use of such weapons in the past.
We call this argument A2. You also happen to posses what you believe is credible information about
the fact that the dictator has recently acquired uranium from another country, most probably in order
to continue with an unauthorised nuclear weapons capability programme. Let this be argument A3.
In addition, recent information sources indicate that the dictator has the capability and the will -
having done so in the past - to attack neighbouring countries. Let us name this argument A4. Finally,
you receive evidence that the dictator has provided safe haven for well-known members of an active
international terrorist network. This is argument A5. The task at hand is to decide whether or not it
is right to remove the dictator.

Let B denote the proposition it is right to remove the Dictator, and consider the situation in
which A1 attacks B while A2, ..., A5 support B. Assume, further, that A1 is stronger than B,
i.e. v(A1, B) = 1. We apply the neural argumentation algorithm and obtain the neural network
of Figure 10. Taking Amin = 0.5, we calculate W > 2.2. Taking, e.g., W = 3, we calculate
W ′ < −4.5. Let us take W ′ = −5.

According to the algorithm, W = 3 and W ′ = −5 form an acceptable set of weights. Although
A1 is supposed to defeat B if contrasted with any of A2, ..., A5, the cumulative support of A2, ..., A5

for B actually allows it to prevail. This can be seen in the network by inspecting the input potential
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of neuron B, which is approximately (4 ·W ) + W ′ = 7, i.e. a relatively large positive value, which
activates neuron B. Of course, a different outcome could be obtained by ensuring that W ′ is large
enough (in absolute terms) to counteract the influence of all the other arguments together. A value
of W ′ = −16, for example, would produce an input potential of −4, which would be sufficient
to deactivate neuron B. Of course, these values should depend on your degree of belief on the
arguments to go to war and against it, or on the influence of a number of examples (e.g., previous
cases) from which you could learn to make an informed decision.

A1 A2 A3 A4

h1 h2 h3

B

h4

A5

h5

Figure 10: Cumulative support Argumentation.

5 Conclusion and Future Work

In this paper, we have presented a new hybrid model of computation that allows for the deduction and
learning of argumentative reasoning. The model combines value-based argumentation frameworks
and neural-symbolic learning systems by providing a translation from argumentation networks to
neural networks. A theorem then shows that such a translation is correct. We have shown that the
model works not only for acyclic argumentation networks, but also for circular networks, and it
enables cumulative argumentation through learning.

Larger-scale experiments on learning argumentation over time are currently being conducted.
Complexity issues regarding the parallel computation of argumentation neural networks in contrast
with standard value-based argumentation frameworks are also being investigated. We believe that a
neural implementation of this reasoning process may, in fact, be advantageous from a purely com-
putational point of view due to the massive parallelism of neural networks.

As future work, we shall consider fibring neural networks [12] and their relation to the general
argumentation framework of Williamsom and Gabbay [35]. This framework incorporates, in addi-
tion to the notions of attack and support, the idea of recursive causality, according to which causal
relations may take causal relations as input values; for example, the fact that smoking causes cancer
may cause the government to restrict smoking advertising [35]. This corresponds to fibring neural
networks, allowing nodes to behave as networks in a recursive way, and weights to be defined as
functions of the values of other networks. Finally, the model presented here could be extended so as
to consider probabilistic weights in argumentation frameworks, in the style of [19]. This would allow
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for a quantitative approach to argumentation in an integrated model of reasoning under uncertainty
and inductive learning.
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