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Abstract

A retraction from a structure P to its substructure Q is a homomorphism from P onto Q that is
the identity on Q. We present an algebraic condition which completely characterises all posets and all
reflexive graphs Q with the following property: the class of all posets or reflexive graphs, respectively,
that admit aretraction onto Q isfirst-order definable.

Keywords: retraction, homomorphism, graphs, posets, first-order definability

1 Introduction

Let 7 be a vocabulary that may contain only relation and constant symbols. Throughout the paper we use
the same boldface and slanted capital |etters to denote a structure and its universe, respectively. Recall that
a homomor phism from a w-structure P to a w-structure Q is a mapping h from P to () such that, for any
relation symbol R in 7, we have h(T) € RQ whenever 7 € RP, and, for any constant symbol ¢ € m, we
have h(cp) - Q. If, in addition, Q is a substructure of P and # fixes every element of ) then h is said to
be aretraction.

Homomorphism and retraction problems have been an object of intensive study in combinatorics, logic,
and computer science. The homomorphism problem for afixed 7-structure Q (denoted H om/(Q)) iswhether
a given r-structure P admits a homomorphism to Q. The retraction problem for Q (denoted Ret(Q)) is
defined similarly. The homomorphism and retraction problems are equivalent to constraint satisfaction
problems that are much studied in computer science (and, in particular, in finite model theory) and artificial
intelligence (see, eqg., [5, 7, 14, 33]).

Note that Hom(Q) and Ret(Q) can be viewed as classes of structures that admit a homomorphism or
retraction, respectively, to Q. Hence one can try to describe these classes (or their complements —Hom/(Q)

*A short version of this paper appeared in the Proceedings of the 19th Symposium on Logic in Computer Science (L1CS 2004).



and - Ret(Q)) in variouslogics (see, e.9., [1, 8,9, 14, 22]). In this paper, we will describe the complements
because they are homomorphism-closed and it is perhaps more customary to consider homomorphism-
closed classes (see, e.g., [14, 15]). If Q isastructure over therelational vocabulary 7w, and Q@ = {q1, ..., qx}
then, in order to describe Ret(Q) or —Ret(Q) in logics, it is natural to consider structures over the vo-
cabulary 0 = w U {cy,...,c} obtained from = by adding k£ constant symbols ¢y, ..., ¢, viewing Q asa

o-structure such that cZ.Q = ¢; for al 4, and assuming that all o-structures P under consideration contain Q,

that is, the constants interpret in P as a substructure isomorphic to Q under the map cf’ — q;. A closely
related problem to Ret(Q) is the one-or-all list homomorphism problem which can be viewed as the ho-
momorphism problem, where, in addition, each element of the input structure is assigned a list of possible
target values in Q, and each of these lists consists either of a single element or of @ itself. More formally,
let 7 =7 U{Ry,..., Ry} where Ry, ..., R are unary relation symbols, and view Q as a 7-structure with

R? = {¢;} for @l i. We denote by Hom(Q) the class of all 7-structures P admitting a homomorphism to
Q (asar-structure). Such problems have been considered for graphs (see, e.g., [13]). It iseasy to notice that
from the computational complexity point of view Ret(Q) and Hom.(Q) are always equivalent. However,
it is not so evident, if true at al, that these problems have the same descriptive complexity (that is, for any
logic L, they are definable or not definable in L. simultaneously).

In this paper we will consider two important special cases of problems Ret(Q) and Hom.(Q): those
where 7 consists of asingle binary relation symbol and Q is either a poset or areflexive (undirected) graph.
(Notethat Hom/(Q) for such structuresistrivial). Retractions play an important role in the structure theory
of graphs and orders [11, 17, 18]. The computational complexity of these problems has been extensively
studied [13, 14, 16, 23, 27, 31] in an attempt to distinguish tractabl e cases from NP-compl ete ones. However,
this seemsto be avery difficult problem in general becauseitisknown [13, 14] that every constraint satisfac-
tion problem can be encoded as Ret(Q) for asuitable poset or for a suitable reflexive graph Q, and general
constraint satisfaction problems are known to be very difficult to classify. Here we will study the descriptive
complexity of these problems: classify problems Ret(Q) and Hom(Q) (for al possible Q) with respect
to definability in agiven logic L. More specifically, we take L to be the most studied logic FO (first-order
logic), and we give a complete classification for this case. Atserias [1] characterized all first-order defin-
able problems of the form Hom(Q), where Q is any finite structure, as those having finitary duality (see
also[29]). Theresultsof [1] concern alarger class of problems than the one considered in this paper, but our
characterization is different and more explicit — in particular, it implies that reflexive graphs and posets Q
for which problems Ret(Q) and Hom.(Q) are first-order definable can be recognized in polynomial time.
We remark that our results are also similar in spirit to the classification of Fixed Subgraph Homeomorphism
problems for directed graphs with respect to definability in logical program language Datalog(#) and in the
infinitary logic Ly, ,(#) [20, 21].

Our proofs are based on agebraic and combinatorial characterisations of certain graphs and posets [24,
25, 26] and on the Ehrenfeucht-Fraissé method for proving inexpressibilty in FO [12, 20]. An n-ary op-
eration f on arelational structure Q is said to be a polymorphism of Q if it is a homomorphism from the
Cartesian power Q™ to Q. For posets and graphs, thismeansthat if @, b € Q™ aresuch that (a;, b;) € 6 for all
i (where ¢ istherelation in Q) then we also have (f (@), f(b)) € 6. If f isapolymorphism of aposet then f
isalso said to be monotone on it. We now define operations that play a most important role in this paper. An
n-ary (n > 3) operation f satisfying the condition that, for any a, f(x1,...,z,) = a whenever at least n — 1
of the z;'s are equal to « is called a near-unanimity (NU) operation. It is known that, for relational struc-
tures with a NU polymorphism, the problem Hom(Q) can be solved in polynomial time [14, 19]. For the
sake of brevity, we shall call posets or graphs with a NU polymorphism NU-posets and NU-graphs. Along
with connectedness, this will be the property responsible for FO-definability (see Theorems 3.1 and 4.1).
It was shown in [24, 25, 26] that for connected posets and reflexive graphs, this property is equivalent on
the one hand to the finiteness of obstructions for Hom.(Q), which we use to prove FO-definability, and



on the other hand to connectedness of certain substructuresin powers of Q, which we use together with the
Ehrenfeucht-Fraisse method to show that the NU property is also a necessary condition for FO-definability.

The NU property has attracted much attention in algebra and combinatorics (see, e.g., [4, 10, 19, 24, 25,
26, 34]). Examples of reflexive NU-graphs include all chordal reflexive graphs while no reflexive cycle of
length at least 4 has a NU polymorphism [4]. A poset is called a lattice if every pair of its elements has a
least upper bound and a greatest lower bound. Lattices are the simplest examples of NU-posets. Examples
of posets without NU polymorphisms are non-dismantlable posets, including al posetsin which every non-
minimal element covers at least two elements, and every non-maximal element is covered by at least two
elements (e.g., crownsin Fig. 2) [26]. A combinatorial characterisation of (reflexive) NU graphs and NU
posets was obtained in [25, 26] (see Theorem 2.1).

Note that it is not possible to bound the arity of NU polymorphisms to define NU-graphs or NU-posets,
since by results of [4, 10], for every n > 3, there is a NU-poset and a reflexive NU-graph having no NU
polymorphisms of arity less than n. On the positive note, NU-graphs and NU-posets can be recognized in
polynomial time (in the size of the structure) [24, 25].

2 Prediminaries

Fix a structure Q = (Q;0) where @ = {q1,...,qr} and 0 is a binary relation on Q. There are two
vocabularies that we consider throughout:

e 0 ={F,ci,...,c,} consisting of one binary relation symbol E and k constant symbols ¢y, .. ., cx;
and

e 7 = {E Ry,...,Ry} consisting of one binary relation symbol E and k unary relation symbols
Ri,..., Ry.

The structure Q will also be interpreted both as a o-structure and a 7-structure, where EQ is 6, c? IS q;
and R? is{q:} foral 1 <i < k. It will always be clear from the context which vocabulary is assumed.
Similarly, any o-structure P can be viewed as a 7-structure with RF = {cF'}.

Asmentioned above, we consider the following two casesfor Q: (A) Q isagraph, which we assumeto
be reflexive (i.e. with al loops) and symmetric (i.e. undirected) or (B) Q isaposet, i.e. where § isreflexive,
anti-symmetric and transitive.

A o-structure P is said to contain Q if the constants interpret in P as a substructure isomorphic to Q
under themap cf — ¢;.

Our results will rely on the following concept of obstruction (also called zig-zag in the case of posets)
introduced in [34]. We define a partial ordering on 7-structures as follows: we write that H < H' if (i)
H C H, (i) E¥ € EY and (iii) R = RF' N H foral 1 < i < k. Clearly if H < H’ then theinclusion
map is a homomorphism from H to H'.

An obstruction for the graph (resp. poset) Q isa7-structure H where H isagraph (resp. poset) such that
(1) there is no homomorphism (of 7-structures) from H to Q, (2) H is minimal with respect to property (1)
(in the ordering <) and (3) the unary relations in H are pairwise digoint. It is clear that for any 7-structure
P which isagraph or poset, there is no homomorphism from P to Q if and only if some unary relations of
P intersect or H < P for some obstruction H for Q. Note that there are other notions of obstruction used
in the study of homomorphisms (see, e.g., [8]).

We shall also need the following notion from universal algebra: let Q be a graph (resp. poset) and
let n > 1: Q" denotes the Cartesian power of Q, that is, (@,b) € £Q" if and only if (a;,b;) € 6 for
al 1 < i < n. Anidempotent subalgebra of Q™ isasubset X C Q™ that can be described as follows:
there exists atriple (Y, (y1,...,yn),7y) WhereY isagraph (resp. poset), y; € Y foral i =1,...,n and



~ is a partial map from Y to Q with domain Y’ with the following property: X consists of al n-tuples
(0(y1),...,0(yn)) where§ : Y — @ runs through all edge-preserving (resp. monotone) maps whose
restrictionto Y’ isequal to .

The name “idempotent subalgebra’ comes from an equivalent algebraic description which goes as fol-
lows. An m-ary operation f on Q iscalled idempotent if f(x,...,z) =z fordlx € Q. A subset X C Q"
is an idempotent subalgebraof Q™ if and only if it is preserved by al idempotent polymorphisms of Q, that
is, f(ai,...,an) € X for al m-ary idempotent polymorphisms f of Q and dl @, ...,a,, € X, m > 1,
where f acts on tuples componentwise.

Another equivalent defintion for idempotent subalgebrasis that they are exactly those subsets X of Q",
n > 1, which can be defined by primitive positive first-order formulas (with n free variables) in @ (as a
T-structure). Equivalence of the last two definitions follows from Theorems 1.2.3 and 2.1.3 in [30], while
equivalence of the first and the third definitionsis rather straightforward.

A combinatorial characterisation of NU posets and NU graphs is based on the notion of dismantling. A
graph G issaid to dismantle to its subgraph G, if thereisasequence G/, . . ., G/, of subgraphs of G such
that G| = G1, G}, = Go,and, fori =1,...n—1, G}, isobtained from G; by removing avertex v; such
that v; is dominated by some other vertex u; in G/, (i.e., every neighbour of v;, including v; itself, in G; is
also a neighbour of «;). Similarly, a poset P is said to dismantle to its subposet P, if there is a sequence
P’,..., P, of subposets of Py suchthat P} = Py, P}, = Py, and, fori = 1,...n — 1, P}, isobtained
from P by removing a vertex v; such that v; is dominated by some other vertex w; in the comparability
graph of P.. If Q isagraph or a poset, then the diagonal of Q? is its subgraph (subposet, respectively)
induced by all nodes of the form (x, ). It is easy to see that the diagonal of Q? isisomorphicto Q.

The following result was proved in [24, 26] for posets and in [25] for graphs.

Theorem 2.1 Let Q be a connected graph or poset. Then the following are equivalent:
1. there are finitely many obstructions for Q;
2. Q admits an NU polymorphism (of some arity);
3. for everyn > 1, every idempotent subalgebra of Q™ is connected;

4. Q? dismantlesto its diagonal.

Note that, for posets, it is enough to take to n = 1 in condition 3 of the above theorem [26], but, for
graphs, we need to consider all n > 1 [25].

We also need the following: if P isac- or 7-structure, let P denote its symmetric, reflexive closure, i.e.
the similar structure on the same universe such that (z,z) € E¥ foral 2 € P and (z,y) € E¥ whenever
(z,y) € E¥ or (y,z) € E¥. Thefollowing isimmediate: there is a homomorphism from P to the graph
Q if and only if there is a homomorphism from P to Q; and if there is a homomorphism from P to P’ then
thereis one from P to P’.

Finally, we define for each r-structure a sentence in the language of + which will encode the given
structure, see [6] and [9]: let H be a7-structureand let H = {h, ..., h;}. Denote by Ty the 7-sentence

Elxhl - Elxhl(/\ E((L‘h, a:h/)) A (/\ Rz(l'h))

where the first conjunction is taken over al pairs (h, h') € EH and the second over al h € RH and all
1<i<k.

When the structure has the property that its unary relations are pairwise digoint and each contain at most
one element, we can define a sentence in the language of o which will encode the given structure: let H be
such a 7-structure. Denote by H’ the set of al h € H suchthat h ¢ R for al i. Forevery h € H, set
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hs =, if h € H and hy = ¢;, where h € R otherwise. Suppose H' = {hy,...,hs}. Denote by Sy the
o-sentence
3, ... 3an, (/\ E(hs, 1))

where the conjunction is taken over al pairs (h, h') such that (h, h') € EH.
The first statement in the next lemmalis a special case of aresult in [6]. Both proofs are staightforward.

Lemma 2.2 Let H and P be r-structures and let P’ be a o-structure.
1. thesentence Ty istruein P if and only if there is a homomor phism from H to P;

2. if P # c;f" whenever ¢; # ¢;, and R contains at most one element for all 1 < i < k, then the
sentence Sy istruein P’ if and only if there is a 7-homomorphism from H to P’.

3 Graph retraction problemsin FO

In this section Q isagraph. Recall that by a graph we always mean areflexive graph. Let —Ret(Q) denote
the class of all o-structuresthat contain Q but do not retract onto Q. Let —Hom.(Q) denote the class of all
T-structures that do not admit a 7-homomaorphism to Q.

Our main result for graphsis the following:

Theorem 3.1 Let Q be a graph. Then the following conditions are equivalent:
(1) theclass —Ret(Q) is FO-definable;
(2) theclass—Hom,(Q) is FO-definable;
(3) Q isa connected NU-graph.

Moreover, if any of these conditions holds then both of the above classes can be defined by a first-order
formula that contains neither negation nor universal quantification.

Notethat thelast statement of the theorem can also be abtained by combining thefirst part of the theorem
with the Finite Homomorphism Preservation Theorem [32] recently proved by Rossman.

We shall require the following notion from finite model theory (see [12] Definition 2.3.1):

Definition. Let A and A’ be two structures over the same vocabulary, and let m be a non-negative
integer. We say that A and A’ are said to be m-isomorphic if there exists a sequence (I;) <., with the
following properties:

1. Every I; isanon-empty set of partial isomorphisms from A to A’;

2. (Forth property) For every j < m, p € I;11 anda € Athereisaq € I; such that ¢ is an extension of
p and a isin the domain of ¢;

3. (Back property) For every j < m,p € I;11 andb € A’ thereisaq € I; such that ¢ is an extension of
pandbisintherangeof q.

The following result iswell known (see Theorem 2.2.12 and Corollary 2.3.4 of [12]).

Proposition 3.2 Let K be a class of finite structures such that, for every m > 1, there are m-isomorphic
structures A,,, and A/, with A,,, € K and A, & K. Then K is not FO-definable.

The main technical result used in the proof is the following lemma:
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Proposition 3.3 Let Q be a graph. If Q is not connected or admits no NU polymorphism then, for every
integer m > 1, there exist graphs P and P’ with the following properties:

(i) P and P’ contain Q;
(i) P and P’ are m-isomorphic (as o- or r-structures);
(iii) P retractsonto Q but P’ does not.

The proof of Proposition 3.3 isfound in Section 5.

Proof of Theorem 3.1. It follows from Propositions 3.2 and 3.3 that if Q is either disconnected or does
not admit an NU polymorphism then none of the two classes are FO-definable. So now assume that Q is
connected and admits an NU polymorphism. First we show that (2) holds. We build a sentence as follows:
by Theorem 2.1, there exist finitely many obstructions for Q, say Hy,...,H,,. Note that the H;'s are
obstructions in the class of all reflexive graphs, and general T-structures are not necessarily reflexive graphs
(with added unary relations), hence we consider the following sets. For every 1 < i < m, let £L(H;) denote
the set of all 7-structures G such that G = H;. Consider the sentence

(V V Te)vEe( \/ (Ri(x)AR;())),

i=1 GEL(H;) 1<i#j<k

where T is as defined in Section 2. We claim that this sentence captures precisely those r-structures that
admit no homomorphism to Q. Indeed, suppose that the sentence is true in a structure P. If the second
part of this sentence is true in P then trivially there is no homomorphism from P to Q. Assume that the
second part is false. This means that T is true in P for some structure G such that G = H; for some
i. Hence by Lemma 2.2 there exists a 7-homomorphism from G to P, and consequently a homomorphism
from H; to P. It follows that we cannot have a 7-homomorphism from P to Q. Conversely, suppose that
there is no homomorphism from P to Q and that the unary relationsin P are pairwise digoint; thus there
is no homomorphism from P to Q and hence there exists some i such that H; < P. We show that there
exists some G € L(H;) that admits a homomorphism in P. Indeed, we creste a substructure G of H; by
setting G = H;, ES = EMi 0 EP and RS = R? foral 1 < j < k. Clearly G isasubstructure of P and
furthermore G = H;;, since for each edge (z,y) € EHi with z # v, we have that either (z,y) or (y, z) is
in EF. Thusthe sentence T istruein P.

Next we show that (1) holds. Let £'(H;) denote the set of al 7-structures G such that G = H;, and
such that each R contains at most one element of G. Consider the sentence

VoV se

i=1 GeL!(H,)

where Sg isas defined in Section 2. We claim that a o-structure P containing Q does not retract onto Q if
and only if this sentence istrue in P. Suppose that Sg istruein P for some r-structure G € £'(H;). By
Lemma 2.2 there is a 7-homomorphism from G to P, and hence from H; to P; consequently there cannot
be a 7-homomorphism from P to Q; and hence no retraction either.

For the converse, suppose that thereisno retraction of P onto Q, i.e. thereisno o-homomorphism from
P to Q; then there is no T7-homomorphism either, and so there is no 7-homomorphism from P to Q. Now
proceed exactly as in the proof of (2): there exists an obstruction H; of Q such that H; < P; and simply
notice that, since P is a o-structure, the 7-structure G produced as above will have at most one element in
each unary relation. m



4 Poset retraction problemsin FO

Inthis section Q isaposet. Let ~PoRet(Q) denote the class of all posets that contain Q that do not retract
onto Q. Let ~PoHom.(Q) denote the class of al posets that do not admit a 7-homomorphism to Q.

We consider PoRet(Q) rather than Ret(Q) for the following reason: Ret(Q) is not FO-definable for
any poset Q with more than one element. Indeed, it follows from the proof of Theorem 4.1 that if Q is
not connected then Ret(Q) is not FO-definable. Assume that Q is connected and fix elementsa < b in
Q such that ¢ is minimal and b is maximal. One can dightly modify the construction in Exercise 2.3.9
of [12] to obtain m-isomorphic structures with the desired properties. Let P,, be the structure obtained
from Q by adding to EQ pairs forming two sufficiently long oriented (reflexive) paths a,,, .. .,a1 = a and
b= by,...,b, and also add a sufficiently long oriented (reflexive) cycle C' not connected with the rest of
the digraph. Let P), be the structure obtained from P,, by adding the pair (b,,, a,,) to EP and removing one
arc from the cycle C. Clearly, P, retracts onto Q (by sending al a;'sto a and al b;’sand C' to b) while P,
does not (because it contains a cycle with ¢ and b in it). One can show that, for every m > 0, thereisa
sufficiently large n such that P,, and P/, are m-isomorphic, which implies that, by Proposition 3.2, Ret(Q)
is not FO-definable.

The problem PoRet(Q) has been studied in connection with type reconstruction [2, 28] and constraint
satisfaction [14, 23], and is a natural choice for arestriction of Ret(Q).

Our main result for posetsis the following:

Theorem 4.1 Let Q be a poset. The following conditions are equivalent:
1. theclass —PoRet(Q) is FO-definable;
2. theclass —PoHom.(Q) is FO-definable;
3. Q isa connected NU-poset.

Moreover, if any of these conditions holds then both of the above classes can be defined by a first-order
formula that contains neither negation nor universal quantification.

Similarly to Theorem 3.1, the last statement of the theorem can also be obtained by combining the first
part of the theorem with the Finite Homomorphism Preservation Theorem.

The proof of the result is similar to the graph case, with two notable differences. first, the glueing
construction we use in the poset caseis more involved than in the case of graphs, because we must guarantee
that the resulting structure istransitive. On the other hand, it has been shownin[24] that if aconnected poset
Q admits no NU polymorphism then it has a disconnected idempotent subalgebra, so we do not need to
consider higher powers of Q (thisresult isnot valid for graphs, see [25]). Therest of the proof of Theorem
4.1 isquite similar to that of Theorem 3.1 (and isin fact dightly simpler because thereis no need to consider
symmetric reflexive closures of relations). The main technical result used in the proof is the following
proposition, proven in Section 6.

Proposition 4.2 Let Q be a poset. If Q is not connected or admits no NU polymor phism then, for every
integer m > 1, there exist posets P and P’ with the following properties:

1. P and P’ contain Q;
2. P and P’ are m-isomorphic (aso- or 7-structures);

3. P retractsonto Q but P’ does not.



Proof of Theorem 4.1. Just as in Theorem 3.1 it is immediate from Lemma 4.2 that if Q is either dis-
connected or admits no NU polymorphism then —PoRet(Q) and ~PoHom(Q) are not FO-definable.
So now assume that Q is connected and admits an NU polymorphism. First we show that (2) holds. We

build a sentence as follows: by Theorem 2.1, there exist finitely many obstructionsfor Q, say Hy, . .., H,,.
Consider the sentence .

(V Ta) v (Ge( \/  (Ri(x) A Rj(2))).

i=1 1<i#j<k

We claim that this sentence captures precisely those posets that admit no 7-homomorphism to Q. Indeed,
suppose that the sentence is true in the structure P. If the second part of this sentence is true then trivialy
there is no homomorphism, so assume that is is false. This means that 73, istruein P for some . Hence
there exists a 7-homomorphism from H; to P. It follows that we cannot have a 7-homomorphism from P
to Q. Conversaly, suppose that there is no homomorphism from P to Q and the unary relationsin P are
pairwise digoint; thus there exists some ¢ such that H; < P. Thus the sentence Ty, istruein P.

Next we show that (1) holds. Let Hy,..., H; denote all the obstructions for Q such that each RZH
contains at most one element of H;. Consider the sentence

l
\/ Sw..
=1

We claim that a poset P containing Q does not retract onto Q if and only if this sentence is true in P.
Suppose that Sy, istrue in P for some ¢. This implies that there is a 7-homomorphism from H; to P
(viewed as aT-structure), and consequently there cannot be a 7-homomaorphism from P to Q; it follows that
there is no o-homomorphism either.

For the converse, suppose that P does not retract onto Q; this means that there is no o-homomorphism
of P to Q, and no 7-homomorphism either. Now proceed exactly as in the proof of (2): there exists an
obstruction H; of Q such that H; < P; and simply notice that, since P is a o-structure, the obstruction H;
will have at most one element in each unary relation. m

5 Proof of Proposition 3.3

We shall begin with a general construction akin to the well-known attaching construction in topology (see,
e.g., Definition 13.13 in [3]). Let T and Q be graphs, let C C T be asubgraph of 7"andlet ¢ : C — Q
be edge-preserving. We construct anew graph T4 obtained by glueing T and Q, identifying elements of C
with their corresponding imagesin Q. More formally, let K denote the digoint union of the graphs T and
Q, and define a partial function ¢’ from K to Q by

oy oz ifr e,
‘b(m){q, it 6(x) = g.

Let C’ denote the domain of ¢’. Notice that by definition ¢/(z) = ¢(x) foral « € C. Itisclear that ¢’ is
edge-preserving on C’. Define an equivalencerelation on K asfollows: letx ~ yif x = y or ¢/'(z) = ¢'(y).
The base set of the graph T, is the set of equivalence classes of the relation ~; denote the class of element
x by [z]. We declare [z][y] to be an edge of T, if uv isan edge of K for somew € [z] and some v € [y]. (It
isimmediate that the resulting binary relation is reflexive and symmetric.)

Fact 5.1 (i) T4 containsa copy Q' of Q;
(ii) T, retracts onto Q' if and only if there exists a homomorphism ¢ : T — Q that extends ¢.
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Proof. (i) Let ¢1,q2 € Q. Then obviously [¢1] = [go] if and only if ¢y = ¢g2. Now suppose that
[q1][g2] is an edge of T,,. This means there exist ¢; ~ v and v ~ ¢ where uv is an edge of K; but then
¢ = ¢'(u) and ¢'(v) = ¢o impliesthat 12 isan edge of Q. (ii) If r isaretraction of T, onto Q' define
¢(z) = i(r([z])) where i is the isomorphism from Q' to Q; it is easy to verify that thisis the desired map.
Conversely, let ¢ be an extension of ¢. Clearly ¢ is an extension of ¢’ when this last map is restricted to 7.
Define r([z]) = [¢(x)] if z ¢ Q and r([z]) = [x] otherwise. Thisiswell defined: indeed, if [x] = [y] and
without loss of generality = ¢ @, then ¢/ (z) = ¢/ (y) and clearly we have ¢(x) = ¢(y) if y € Q; otherwise
we certainly have ¢/(z) = y = ¢(z). Now we show that r is a homomorphism: let [x][y] be an edge, i.e.

x ~wuandv ~ ywhereuv isan edge of K. But then r([z]) = [¢(u)] and [¢(v)] = r([y]) and we are done.
|

5.1 The construction of the graphs

Let Q be a graph which is either disconnected or does not admit an NU polymorphism. By Theorem 2.1
there exists an idempotent subalgebra X of afinite power of Q which isnot connected (if Q is disconnected
take X = Q). More precisely, there exists atriple (Y, (y1,...,yn),7y) Where Y isagraph, y; € Y for all
i=1,...,nandyisapartia map fromY to Q with domain Y’ with the following property: if X denotes
the subset of Q™ that consists of all n-tuples

(5(y1)7"'76(yn))

where § : Y — Q runs through homomorphisms whose restriction to Y is equal to ~, then X is not
connected. Let (x1,...,2,) and (2}, ..., ) bein distinct components of X.

Notice that by choosing » as small as possible we may assume that y; ¢ Y’ for al 1 < i < n; for
otherwise we could simply project X onto the remaining coordinates to obtain a disconnected idempotent

subalgebrain asmaller power of Q.

Let I = 2p > 2 be an even integer, and let C; denote the reflexive cycle on | elements, i.e. the graph on
theset {0,1,...,l—1} whereij isanedgeif and only if |i — j| < 1 (summodulo ). Consider also the graph
C, U C,, thedigoint union of two cycles on p elements. We shall assume that the underlying set of vertices
of thisgraph is the same as that of C;, where {0, ..., p — 1} will be one copy of C, and {p,...,2p — 1} the
other.

Lemma5.2 Letm > 1,1 =2-3"t3 and p = 3™*3, Then the graphs C; and C, U C, are m-isomorphic
via a sequence (1) j<m suchthat f(0) = 0and f(p) = pforall f € I; andall j.

Proof: Let A and A’ be obtained from C; and C,, U C,, respectively, by endowing both of them with two
unary relations {0} and {p}. By Hanf’s Locality Lemma (see [12] Theorem 2.4.1) structures A and A’ are
(m + 2)-isomorphic. To see this, notice that both graphs have exactly the same number of occurrences of
every 3™2-ball type: one, if the ball is centered at 0 or p, two if it is not centered at 0 or p but contains
one of them and finally (2 - 3"+% — 4. 3™*2 — 2) if the ball does not contain 0 or p. Let (I});<m2 bethe
sequence whose existence is guaranteed by Hanf’s Lemma. For any 0 < j < m, let I; contain those f in Ij’.
such that f(0) = 0 and f(p) = p. By applying the forth property on 1], ,, with0 andin I}, ; with p we
can guarantee that /,,, (and consequently (/;), j < m) isnonempty. "

We shall now construct graphs S and T starting from the above graphs. We shall take n digoint copies
of the cycle C; (respectively the union of cyclesC,, U C,) andweglue!l copiesof Y in thefollowing manner
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(see Fig. 1): the element y; of the j-th copy of Y isidentified to the element j of the i-th cycle (respectively,

of the i-th union of cyclesC,, U C,). Moreprecisely, let U bethe digoint union of / copiesof Y, say Y x {z}
forz € {0,...,1 — 1}. Let C (resp. D) denote the digoint union of n cycles C; (respectively the union of
cyclesC, U C,), say {t} x C; (resp. {t} x (C, U C,))fort € {1,...,n}. Let x (resp. v) be the partial
map from U to C' (respectively to D) that sends (y;, z) to (4, z); then Sisthe graph U,,, and T is the graph
U,.

Y x{0} Yx{1} Yx ..

Figure 1: A partial view of the coloured graphs Y glued to the n cycles C;.

Another way of viewing this: the graph S (and similarly for T) is obtained from the digoint copies
Y x {z} by adding the edges (v;, 7)(vi, k) when jk isan edgein C;.
Define partial maps ¢ and ¢ from S and T, respectively, to Q asfollows:

v(y), if t = (y, z) forsomey € Y,
Ty If t= (y170)7
x, ift = (yi,p).

Fact 5.3 The maps ¢ and ¢ are edge-preserving.

Proof. We prove the result for ¢. Let ¢1t2 be an edge in the domain of ¢. Notice that these elements
must be in the same copy of Y, i.e. t; = (u, z) and ta = (v, 2) where uv isan edge of Y. If z # 0 and
z # p then ¢ isequal to v and we aredone. If z = 0, let ¢ be an extension of ~ such that §(y;) = x; for all
1 <4 < mn:itmustexist, since (z1,...,z,) € X. Clearly ¢ isarestriction of 6 (onY x {0}) and henceis
edge-preserving. The case z = pisidentical. m

Fact 5.4 (i) The map ) admits an edge-preserving extension to 'T'; (ii) the map ¢ admits no edge-preserving
extensionto S.

Proof. (i) Since (z1,...,z,) and (2, ...,z ) belong to X, there exist extensions ¢ and ¢’ of  fromY

rrn

to Q that map (y1,...,yn) to (z1,...,z,) and (24, ..., z},) respectively. Define an extension 3 of ) by

r'n
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B(t) = i(y), ift = (y, z) with z < p,
| d(y), ift = (y,z) withz > p.
Since our graphs are reflexive, thisis an edge-preserving extension of ).
(i) Suppose that there exists an edge-preserving extension 5 of ¢; thenforany 0 < z < [ — 1 the

restriction of 5 to Y x {z} can be seen an extension of ~, and hence the tuple (5(y1, 2), - . ., B(yn, 2)) iSin
X. But then we have apath (5(y1,0), - - ., 8(yn,0)), (B(y1,1), ., B(yn, 1)), -, (B(yr,p), - - B(yn, p))
in X from (z1,...,xy,) to (2], ...,a), acontradiction with the choice of these two tuples.

Corollary 5.5 The graph T retracts onto Q'; the graph S, does not retract onto Q'.

Proof. Follows from Facts 5.1, 5.3and 5.4. n

5.2 Proof of m-isomorphism

To finish the proof of Proposition 3.3 we will show that T, and S, are the desired graphs P and P’ (if we
identify Q with Q'). It remains to prove that the graphs S, and T, are m-isomorphic. Let (I;),<. bethe
sequence whose existence is guaranteed by Lemma 5.2 we proceed to construct a sequence (fj) j<m. FIX
0 <j <m.Forany f € I;, define a partial map f from S, to T,, asfollows: let B be any element of S.
If B contains no element in the domain of ¢, then B = {(y, z)} and we put f(B) = [(y, f(z))] provided
z isinthe domain of f, otherwise we leave f(B) undefined; if B contains an element in the domain of ¢,
then it contains a unique element ¢ € Q and we define f(B) = [q]. Finally, define I; = {f : f € I,} for dll
0<jy<m.

Lemmas5.6 The graphs S; and T, are m-isomorphic via (fj) j<m; Moreover every partial isomorphism
in every I; in the sequence fixes every element of Q'

Proof. Fix some0 < j < m and some f € I;. Itisclear that the function f iswell-defined and that it
fixesall elementsin @', i.e. f([¢]) = [¢] foral ¢ € Q.

Claim 1. Let B € Sy. Then BN Q # O if and only if f(B) N Q # 0.

Proof of Claim 1. One direction is obvious by definition of f. Now supposethat f(B) N Q # 0 and let
(y,z) € B. If (y, ) isin the domain of ¢ we are done. Otherwise f(B) = [(y, f(z))] intersects Q so either
y isinthe domain of ~, and hence (v, z) isin the domain of ¢, or elsey = y; for somei and f(z) € {0, p};
by the properties of f we get that = € {0, p} which again shows that (y, z) isin the domain of ¢. In both
cases, we conclude by definition of S that B N Q # 0.

Claim 2. Themap f isinjective.

Proof of Claim 2. Let f(B) = f(B'). Thereare two cases: (i) if f(B) = f(B') intersects Q then by
the last claim both B and B’ intersect Q; if ¢ € BN Q and ¢ € B’ N Q then by definition of f we have
that [¢q] = f(B) = f(B') = [¢] and hence ¢ = ¢ so B = B'. (ii) if f(B) = f(B’) does not intersect Q
then we have by Claim 1 that B = {(y,2)} and B’ = {(v/,2')} for somey,y’ € Y and 2,2’ € C,;. By
definition of f and the last claim we get that (y, f(z)) = (v/, f(2)) and, since f is injective, we conclude
that (y, z) = (v/, 2’) sowe are done.

Claim 3. Themap f is edge-preserving.
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Proof of Claim 3. Let BB’ be an edge of S;, i.e. thereexist u € B and v € B’ such that uv isan edge
of S; we show that f(B)f(B’) isan edgein T, (assuming both are defined). The result is obvious if both
B and B’ meet Q. Suppose next that neither meets Q: then B = {(y, 2z)} and B’ = {(v/, 2’) } and either (i)
2z =2, and yy' isan edge of Y so the result follows easily, or (i) y = 3/ = y; forsome1 < i < n, 22’ is
anedgeof C; and z ¢ {0, p}; thus f(z)f(2') is an edge and the result follows once again. By symmetry
we may now suppose without loss of generality that B = [¢] and B’ = {(¥/,2')}. Then (y, z) is adjacent
to (y', 2’) for some (y, z) in the domain of ¢. Then there are two cases: (i) z = 2/, and yy' is an edge
of Y. Then ¢ ((y, f(2))) = & (y, f(2)) and (¢/, f(2)) are adjacent o f(B)f(B') is an edge in Ty; (ii)
y =19y = y; forsomei, z € {0,p} and 2z’ isan edge of C,;. But f is edge-preserving so (y;, f(z)) is
adjacent to (y;, f(2)) in T and, since f fixes 0 and p, we get that ¢((y;, f(2))) = ¢, so we are done.

Claim 4. Theinverse of the map f is edge-preserving.

Proof of Claim 4. Suppose that f(B)f(B’) isan edge in T, i.e. there are elements u € f(B) and
v € f(B') such that uv isan edge of T. We show that BB’ is an edge of S;,. Suppose first that both blocks
meet Q, say ¢ € f(B) and ¢’ € f(B') whereq, ¢ € Q. Then of course ¢¢ isan edge of Q, and by Claim
1 and definition of f we get that B = [q] is adjacent to [¢'] = B’. Secondly, suppose that neither block
meets Q. Then f(B) = {(y, /(2))} and f(B') = {(¢. f(='))} where (y, f(=))(y/, /(') is an edge in
T. This means that either (i) f(z) = f(2’) and yy’ isan edge of Y, and, since f is injective, we get that
z=290(y,2)(y,7)isanedgeof S, or (i) y = v/ = y; for somei and f(z)f(z’) isan edge of C, U C,.
Since f € I;, we get that 22’ is an edge of C; and the rest follows easily. Finally suppose that f(B) = [q]
and f(B') = {(y/, f(#'))}. Then there exists some (y, w) in the domain of v such that ¢((y, w)) = ¢ and
(y,w)(y', f(z')) isanedgein T. If w = f(2’) and yy’ is an edge of Y, then by Claim 1 (y/,2') € B’
and it is adjacent to (y, 2’) in S, and either y isin the domain of v or y = y; and 2’ = f(2’) € {0,p} s0
(y,7') € B and we aredone. Otherwise we havethat y =y’ = y; for somei, wf(2’) isan edge of C,, U C,
and w € {0,p}. Butthen f(w) = w and f isapartial isomorphism so w2’ is an edge of C;, and the rest
follows easily.

We have now proved that the sets j consist only of partial isomorphisms. Finally, we prove:

Claim 5. The sequence (/;) j<., hasthe ‘back and forth’ property.

Proof of Claim5. Let j < m and let f € I;+1. Let B € Sy (the other case, B’ € Ty, isidentical.) If
B intersects ) then it isin the domain of f and we are done (we may certainly suppose that the sequence
(I;);<m isdecreasing.) So now assume that B does not meet Q, so B = {(y, 2)} where (y, z) isnot in the
domain of £, which meansthat z is not in the domain of f. By the back and forth property of the sequence
(1j)j<m wecanfind g € I; such that z isin its domain and g is an extension of f. But then it is clear that

(y, z) isinthedomain of g € fj and that g isan extension of f. m

6 Proof of Proposition 4.2

6.1 A construction

Let T and Q be posets, let C C T and let ¢ : C' — @ be amonotone map. We construct a new poset T,
obtained by glueing T and Q, identifying an element of C' withitsimagein @). More formally, let K denote
the digioint union of the posets 7' and @, and define a partial function ¢’ from K to Q by

x, ifreq),
¢'(x) = { q, if thereexist u < z < v such that
d(u) = ¢(v) = q.
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Let C” denote the domain of ¢’. Notice that by definition ¢/(z) = ¢(z) foral z € C.
A subset A of aposet P iscalled convexif b € A whenever a < b < cwitha,c € A.

Fact 6.1 (i) ¢'~'(q) isconvexin K for all ¢ € Q; (ii) ¢’ is monotone on .

Proof. (i) Let x < y < zwith¢/(z) = ¢'(2) = q. If any of z, y, z isequal to ¢ then so are the others so
we are done. Otherwise, by definition of ¢’ thereexist u < x and z < v such that ¢(u) = ¢(v) = ¢ hence
@' (y) = q. (i) Letz <y inC". If one of theseisin () we are done. Otherwise, thereexistu < zx andy < v

such that ¢'(z) = ¢(u) < d(v) = ¢'(y). m

Define an equivalencerelation on K asfollows: let z ~ y if 2 = y or ¢/(z) = ¢/(y). The base set of the
poset Ty is the set of equivalence classes of the relation ~; denote the class of element x by [z]. We define
[z] C [y] if u < v for somewu € [z] and some v € [y]. The ordering on T, is the transitive closure of the
relation C. (In what follows, we shall denote the ordering on any poset by the same symbol <, asusual.)

Fact 6.2 Therelation C defines a partial order.

Proof. Therelation is clearly reflexive and transitive so we must show that C is acyclic. Suppose that
we have a sequence of elements of K asfollows:

T1~Y1 S T2~y T3 Ty ~ Yn < Tpg1 ~ 1.

We must show that [z1] = [z2] = -+ = [z,]. If 2; = y; for al i but one then we are done. Otherwise, there
exists some i < j such that x; # y; and x; # y;. Choose i < j as close to one another as possible in the
cycle: thenwegetthat y; < z;41 < --- <z < z; sothat ¢'(x;) < ¢'(z;) by Fact 1 (ii). Repeating this
argument for all indices k such that z;, # v, showsthat ¢’ is constant on those elements of the sequence
where it is defined; and by Fact 1 (i) it followsthat in fact ¢’ is defined for all elements of the sequence. m

Fact 6.3 (i) T, contains a copy Q' of Q; (ii) T retractsonto Q if and only if there exists a monotone map
¢ : T — Q that extends ¢.

Proof. (i) Let g1,q2 € Q. Then obviously [q1] = [ge] if and only if ¢ = ¢2. Now suppose that
[q1] C [g2]) INT. Thismeansthere exist g1 ~ u < v ~ go. Butthen ¢ = ¢'(u) < ¢'(v) = ¢o. (ii) If ris
aretraction of T, onto Q define ¢(z) = r([x]); it is easy to verify that thisis the desired map. Conversely,
let ¢ be an extension of ¢. Clearly ¢ is an extension of ¢’ when this last map is restricted to 7. Define
r([z]) = [¢(x)] if z ¢ Q and r([z]) = [x] otherwise. Thisiswell defined: indeed, if [z] = [y] and without
loss of generdlity z ¢ Q, then ¢'(z) = ¢'(y) and clearly we have ¢(x) = ¢(y) if y ¢ Q; otherwise we
certainly have ¢/ (z) = y = ¢(z). Now we show that  is monotone. Let [z] C [y],i.e. 2 ~ u < v ~ y. But

then r([z]) = [¢(u)] E [¢(v)] =r([y]). =
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6.2 Theconstruction of the posets

Let Q be a poset which is either disconnected or does not admit an NU polymorphism. By Theorem 2.1
there exists an idempotent subalgebra X of some power Q™ which is not connected (if Q is disconnected
take X = Q). Infact, by aresult of [24] we may assume that n = 1. More precisely, there exists a triple
(Y, y0,v) whereY isaposet, yo € Y and y isapartial map from Y to Q with domain Y with the following
property: if X denotesthe subset of () that consistsof all 4(yp) wheres : Y — Q runsthrough al monotone
maps whose restriction to Y’ is equal to ~y, then X isnot connected. Let x and z’ be in distinct components
of X.

We claim that we may choose (Y, o, ) with the following properties: (i) if y € Y’ iscomparableto y,
then y(y) & {z,2'} and (i) if y < ¢/ in Y’ theny(y) < v(v/').

Indeed, the first condition follows from the fact that = and 2’ are both in X and are incomparable. For
the second statement: clearly ~ is monotone on its domain (since X in nonempty) so if (ii) does not hold
then we have v(y) = v(y') = g forsomey < ¢/ in Y’ and some ¢ € Q. Obviously we may assume in
that case that y(u) = g foral y < u < y/. Itiseasy to see that one may ‘fuse’ al these elementsinto one
to obtain anew triple (Y1, 3o, 1) With the same properties as before, namely that X is the set of al §(yo),
where ¢ ranges over the set of al monotone extensions of ~y; (simply define a partiadl map o from Y to the
one-element poset with domain {u : y < u < ¢} and use the construction of section 6.1).

Let p be an even integer and [ = 2p. Let C; denote the crown on [ elements, that is, the poset on the
set {0,1,...,1—1} wherei < jif andonly if i iseven and |i — j| = 1 (sum modulo /). Consider aso
the graph C, U C,, the digoint union of two crowns on p elements. We shall assume that the underlying
set of vertices of this poset is the same as that of C;, where {0,...,p — 1} will be one copy of C,, and
{p,...,2p — 1} the other (see Figure 2).

0 8
0 8
Figure 2: The posets Cy and Cs U Cg.

We now view the above as coloured posets, i.e. structures with one binary relation (their ordering) and
two constants, namely 0 and p. We claim that these structures are m-isomorphic.

Lemma6.4 Letm > 1,1 = 4-3™3, andp = 2-3™13, Then the posets C; and C,, U C,, are m-isomorphic
via a sequence (/;) j<n, suchthat f(0) = 0 and f(p) = pfor all f € I; andall j.

Proof. The proof is almost identical to that of Lemma 5.2 above. The only differenceisthat [ and p are
doubled here, since the size of a crown is always an even number. m

We shall now construct posets S and T starting from the above posets. We glue copies of Y (at i) to
every element of the crown and the union of crowns. More precisely, let U be the digjoint union of | copies
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of Y,say Y x {z} forz € {0,...,1 — 1}. Let u (resp. v) be the partial map from U to C; (respectively to
C, U C,) that sends (1o, 2) to z; then Sisthe poset U, and T is the poset U, .

YA

AN
s

0

Figure 3: A coloured poset Y, and a partial view of the poset S. Darkened verticesin the copiesof Y arein
the domain of .

Define partial maps ¢ and ¢ from .S and T, respectively, to @, asfollows:

v(y), if t = (y, z) for somey € Y,
x, if t = (v0,0),

/

') ift = (yo,p)-

Fact 6.5 The maps ¢ and i) are monotone.

Proof. We prove the result for ¢. Let t; < ¢5 bein the domain of ¢. Suppose first that these elements are
in the same copy of Y, i.e. t1 = (y1,2) and to = (y2,2) Where y; < yo. If neither is equal to y, then
o(t1) = v(y1) < v(y2) = ¢(t2). Otherwise suppose without loss of generdlity that y; = yo and that z = 0;
we must show that © < ~(y2). But, since x € X, there exists an monotone extension 7 of ~ such that
F(yo) = = SO we are done.

Now suppose that ¢; and ¢, are in different copies of Y. Then we have that ¢; = (y1,21) and ty =
(y2, z2) Where y; < yo < yo and z; < zo. By definition of ¢ at most one of y1, 2 is equa to yo and hence
the preceding argument applies here aswell. m

Fact 6.6 (i) The map v admits a monotone extension to T; (ii) The map ¢ admits no monotone extension to
S.

Proof. (i) Since z, 2’ € X, there exist extensions ~y,. and ~y,- of v fromY to Q that map y, to = and 2’
respectively. Define an extension 3 of ) by

| v(y), ift = (y,z) withz < p,
Bl = { Yo (), ift = (y, 2) with z > p.

It is easy to verify that thisis a monotone extension of .
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(ii) Since z and 2’ arein distinct components of X and C; is connected, clearly our claim will follow if
we can prove that any extension of ¢ must map every (yo, z) to X. And indeed, if 5 is an extension of ¢
thenitsrestrictionto Y x {z} isan extension of -, so we are done. u

Corollary 6.7 The poset T, retracts onto Q; the poset Sy does not retract onto Q.

Proof. Follows from Facts 6.3, 6.5 and 6.6. m

We require one last auxiliary result before prove the posets S, and T, are m-isomorphic. We show that
the blocks of the equivalence relation involved in the construction of the posets Sy and T, have asimple
structure: the only blocks with more than one element are those that contain an element in the domain of ¢

().

Lemma 6.8 Any element B of S (respectively Ty is of the following form: (i) B = {(y, z)} for somey
which is not in the domain of v and z ¢ {0, p}, or (ii) B = {(y, z)} where z € {0,p} and y # yo or (iii)
B = {(y17 21)7 A (yn; Zn)a Q} Where {(yl; 21)7 A (ym Zn)} = (b_l(q) (respectlvely’l/}_l(q))

Proof. We consider only the case S,;, the other isidentical. Recall that the elements of S, are the blocks
of the equivalence defined by v ~ v if u = v or ¢'(u) = ¢'(v). Suppose that ¢'(u) = ¢'(v) where u is
in S; by definition of ¢ this means that there exist elements (y,2) < u < (v, 2’) and ¢ € @ such that
o((y,2)) = o((y,2')) = q. Wehavethat y < yo < 3/ and z < 2. It follows easily from our claim on the
triple (Y, yo,7) that y = 3 and z = 2/, and hence u isin the domain of ¢. The claim follows easily from
thisfact. m

We are now in a position to prove that the posets S, and T, are m-isomorphic. Let (I;) <. be the
sequence whose existence is guaranteed by Lemma 6.4: we proceed to construct a sequence (fj) j<m. FIX
0<j<m.Forany f € I;, define apartial map f from Sy to T, asfollows: by Lemma 6.8, the elements
of Sy are of two kinds: (a) if B contains no element in the domain of ¢, then B = {(y, z)} and we put
f(B) = [(y, f(z))] provided z isin the domain of f, otherwise we leave f(B) undefined; (b) if B contains
an element in the domain of ¢, then it contains a unique element ¢ € Q and we define f(B) = [q]. Finally,

define I; = {f: f € I;} foral 0 < j < m.

Lemma6.9 The posets S, and T, are m-isomorphic via (fj)jgm; moreover every partial isomorphismin
every I; of the sequence fixes every element of Q.

Proof. Fix some0 < j < m and some f € I;. Itisclear that the function f iswell-defined and that it
fixesall elementsin @, i.e. f([¢]) = [¢] fordll g € Q.

Claim 1. Let B € S,. Then BN Q # (if and only if f(B) N Q # 0.

Proof of Claim 1. One direction is obvious by definition of f. Now supposethat f(B) N Q # 0 and let
(y,z) € B. By Lemma6.8 (y, f(z)) isin the domain of ¢, i.e. either y isin the domain of ~, and hence
(y,z) isinthe domain of ¢, or elsey = yp and f(z) € {0, p}; by the properties of f we get that z € {0, p}
which again shows that (y, z) isin the domain of ¢. In both cases, we conclude by definition of .Sy that
BNQ #0.

Claim 2. Themap f isinjective.
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Proof of Claim 2. Let f(B) = f(B’). By Lemma6.8 therearetwo cases: (i) if f(B) = f(B') intersects
Q then by the last claim both B and B’ intersect Q; if ¢ € BN Q and ¢ € B’ N Q then by definition of f
we havethat [¢] = f(B) = f(B') = [¢/] andhenceq = ¢’ so B = B'. (ii) if f(B) = f(B') do not intersect
Q then we have by Claim 1 that B = {(y,2)} and B’ = {(¢/, 2')} for somey,y € Y and z, 2’ € C;. By
definition of f and the last claim we get that (y, f(z)) = (v, f(z)) and, since f is injective, we conclude

that (y, 2) = (v/, 2') so we are done.

Claim 3. Themap f is monotone.
Proof of Claim 3. Let B < B’ in S, i.e. |et there be a sequence of blocks B = By, ..., B, = B’ and
elements u;, v; € B; such that

U SV~ U SV Up1 ~ Up—1 < Up.

Suppose that the block B; isnot in the domain of f. Thisimpliesthat it cannot meet  and hence by Lemma
6.8 we have that
Ui—1 < Vg = U < Vil

so that block B; may actually be removed from the sequence. Hence it will suffice to prove that if B and B’
are such that there exist u € B and v € B’ suchthat u < v then f(B) < f(B') in'T,,.

Theresult is obviousif both B and B’ meet ). Suppose now that neither meets Q: then B = {(y, 2)}
and B = {(v/,2/)} wherey < yo < ¢ and z < 2/; thus f(z) < f(2') and the result follows easily.
Suppose now that B = [¢] and B’ = {(v/,2’)}. Then (y, z) < (v/, 2") for some (y, z) in the domain of ¢.
Thismeansthat y < yp <y’ and z < 2’. If y isin the domain of , then (y, f(2’)) < (v/, f(#')) in T, and
(y, f(2)) isin the domain of «; by definition of ¢ and ) we get that

O((y, f(2) =1(y) = d((y,2)) = ¢

hence

f(B) = ld) = [y, FCN <[/, F(Z)] = F(B).
Otherwise, we have that y = yo and z € {0, p}; we suppose that » = 0 the other case being identical. By
Lemma 6.4 we havethat 0 = f(0) < f(2') s0 (y,2) < (v, f(2')) and thus f(B) < f(B') inTy. Thelast
case, where B = {(y, 2)} and B’ = [¢], isquite similar.

Claim 4. Theinverse of the map f is monotone. )
Proof of Claim 4. Suppose that f(B) < f(B') inTy, i.e. let there be a sequence of blocks f(B) =
By,...,B, = f(B’) and lements u;, v; € B; such that

Uy SV~ U2 SV3Up1 ~ Up—1 < Un.

Asin Claim 3, it is easy to see that we may assume that every block B; isintheimage of f; and henceit will
sufficeto provethefollowing assertion: if thereexist elementsu € f(B) andv € f(B’) suchthat u < v then
B < B'inS,. Supposefirst that both blocks meet Q, say ¢ € f(B) and ¢’ € f(B') whereq, ¢’ € Q. Then
of course g < ¢', and by Claim 1 and definition of f wegetthat B = [¢] < [¢'] = B'. Secondly, suppose that
neither block meets Q. Then f(B) = {(y, f(2))} and f(B') = {(y/, f(='))} where (y, (=) < (/. (')
inT. Thismeansthat y < yo < ' inY and f(z) < f(2/)inC, U C,. Since f € I;, weget that z < 2’
and the rest follows easily. Thirdly suppose that f(B) = [¢] and f(B’) = {(y/, f(z'))}. Then there exists
some (y, w) in the domain of v such that ¢ ((y,w)) = ¢ and (y,w) < (v/, f(2’)) in T. This means that
y<yo<yinYandw < f(z')inC, U C,. Supposefirst that y(y) = ¢. Butthen (y, ') < (v/,2') in S
and, sincey(y) = ¢, we obtain that

B=lq =y <[, =B
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If on the other hand y = yp and w € {0, p}, we get that (assuming once again without loss of generality that
w=10) f(0) =0 < f(2') and hence 0 < 2/; it followsthat (yo,0) < (¢/, 2") in' S and thus

B =[q] = [(y50,0)] < [(¢/, )] = B'.
The fourth case, where B = {(y, z)} and B’ = [¢] issimilar.

We have now proved that the sets j consist only of partial isomorphisms. Finally, we prove:

Claim 5. The sequence (/;) j<., hasthe ‘back and forth’ property.

Proof of Claim5. Let j < m and let f € I;11. Let B € Sy (the other case, B’ € Ty, isidentical.) If
B intersects Q then it is in the domain of f and we are done (we may certainly suppose that the sequence
(I;);<m isdecreasing.) So now assume that B does not meet Q, so B = {(y, z)} where (y, z) isnot in the
domain of f, which meansthat z is not in the domain of f. By the bach and forth property of the sequence
(I;)j<m Wwemay find g € I; such that z isinitsdomain and g is an extension of f. But thenit is clear that
(y,2) isinthe domain of § € I; and that § is an extension of f. m

7 Conclusion

We have completely characterised posets and reflexive graphs for which poset retraction and graph retrac-
tion problems, respectively, are definable in first-order logic. We believe that this line of research can be
successfully continued by considering other logics and other classes of structures. The key to our results
is Theorem 2.1 relating finiteness of obstructions and certain connectedness properties, which in the case
of posets and reflexive graphs happens to be captured by NU polymorphisms. To make further progressin
looking for an algebraic desciption of homomorphism and retraction problemsin FO, it seems necessary to
obtain more information about how the two above properties are linked for more general structures. Results
of [1, 29] may provide some insight into this.
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