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Abstract

Categorisation of objects into classes is currently supported by (at least) two ‘orthog-
onal’ methods. In logic-based approaches, classifications are defined through ontologies or
knowledge bases which describe the existing relationships among terms. Description logic
(DL) has become one of the most successful formalisms for representing such knowledge
bases, in particular because theoretically well-founded and efficient reasoning tools have
been readily available.

In numerical approaches, classifications are obtained by first computing similarity (or
proximity) measures between objects and then categorising them into classes by means
of Voronoi tessellations, clustering algorithms, nearest neighbour computations, etc.

In many areas such as bioinformatics, computational linguistics or medical informatics,
these two methods have been used independently of each other: although both of them
are often applied to the same domain (and even by the same researcher), up to now no
formal interaction mechanism has been developed.

In this paper, we propose a DL-based integration of the two classification methods.
Our formalism, called SL + ALCQIO, extends the expressive DL ALCQIO by means
of the constructors of the similarity logic SL which allow definitions of concepts in terms
of both comparative and absolute similarity. In the combined knowledge base the user
should declare the similarity spaces where the new operators are interpreted.

Of course, SL+ALCQIO can only be useful if classifications with this logic are sup-
ported by automated reasoning tools. We lay theoretical foundations for the development
of such tools by showing that reasoning problems for SL+ALCQIO can be decomposed
into the corresponding problems for its DL-part ALCQIO and similarity part SL. Then
we investigate reasoning in SL and prove that consistency and many other reasoning
problems are ExpTime-complete for this logic. Using this result and a recent complexity
result of Pratt-Hartmann for ALCQIO, we prove that reasoning in SL + ALCQIO is
NExpTime-complete.

As the ‘closer’ operator of SL has the same expressive power as the standard implica-
tion > of conditional logic, these results may have interesting consequences for conditional
logic as well.

Keywords: similarity logic, description logic, ontology, complexity, conditional logic.

1 Introduction

Classification — “the actual or ideal arrangement together of those which are like, and the
separation of those which are unlike” (see [28, 23] and references therein) — is said to be one of

1



the main objectives of science, the Linnaean taxonomy and the Mendeleev periodic table being
probably the best known witnesses. Modern classification and conceptualisation problems
in bioinformatics, linguistics or the World Wide Web are characterised by huge numbers of
objects to be categorised and/or their very complex structures. Building adequate ‘ontologies’
for such areas and developing powerful tools for dealing with them have been recognised
among the most important and urgent tasks, and can be regarded as a real challenge for the
knowledge representation and reasoning (KR&R) community.

There are (at least) three general ways of categorising things into classes:

• by establishing logical relationships between them (e.g., ‘a mother is a woman with a
child’),

• by identifying prototypical (the most representative) instances of classes against which
the surrounding ‘poorer’ instances are categorised (e.g., a colour is blueish if it is more
similar to the prototypical colour blue than to the prototypical colours green, red, etc.),

• by means of clustering, that is, by partitioning a set of objects into subsets (clusters),
so that the objects in each subset are more similar to each other than to the objects in
other subsets.

From the KR point of view, the main difference between these approaches is that the first one
is logic-based and usually involves building knowledge bases or ontologies in such formalisms
as description logic or (fragments of) first-order logic, while the last two are ‘quantitative’
in that they are based on implicit or explicit similarity (or proximity) measures and use nu-
merical computations (say, Voronoi tessellations, nearest neighbour or clustering algorithms).
Successful examples of the logic-based approach are such well-known ontologies in medicine
and bioinformatics as SNOMED (www.snomed.org) or GO (www.geneontology.org). On
the other hand, in those (still huge) areas of bioinformatics, computational linguistics, etc.
where there exist vast amounts of poorly investigated and unstructured data, the quantita-
tive, similarity-based methods (say, using alignment algorithms and tools like BLAST [1])
often seem to be the only choice.

The apparent ‘qualitative–quantitative orthogonality’ of these approaches was probably
the reason why they have not been formally integrated — despite the fact that researchers in
bioinformatics and linguistics as well as ‘ordinary people’ in their everyday life use all these
methods frequently and in parallel (see, e.g., [40]). We will illustrate this point by two simple
examples from the ‘World of Whisky.’ The classification at www.whiskymag.com can easily be
represented in a sufficiently expressive description logic. For instance, the definition ‘vatted
malt Speyside whisky is malt whisky blended from several distilleries located in the Speyside
region of Scotland ’ can be formalised as

Vatted malt Speyside whisky ≡

Malt whisky⊓ ≥ 2 made by.Distillery ⊓ ∀made by.∃is located in.{Speyside}

One would hardly like to replace this clear axiom with a quantitative similarity-based repre-
sentation. In general, we do not see any evidence that ontologies could be built purely on the
basis of, say, conceptual similarity spaces in the sense of [10].

On the other hand, it appears to be extremely difficult to define by means of logical rela-
tions the taste characteristics of whiskies in terms of natural factors such as the geographical
region, the type of rock from which the water source originates, the amount of peat, etc.
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For example, the classification of malt whiskies according to their taste in [37] is based on
computing a proximity matrix and does not correspond to more traditional regional (and
other) classifications (‘the regional classification is really only helpful today if you are trying
to visit a distillery’). Again, there appears to be no evidence that logic-based formalisms
could replace such similarity-based classifications.

Given that both approaches are applied for classifying objects from the same domain (and,
moreover, can potentially correct errors of each other1), it seems natural to try to integrate
them into a single knowledge representation formalism and support it with suitable reasoning
and classification tools.

In this paper we propose an integration of logic-based and similarity-based approaches of
the following form. A knowledge base consists of three ingredients: a set of axioms fixing
the terminology (usually called a TBox), a set of assertions about individuals (an ABox),
and a declaration of similarity spaces that are used in the TBox and ABox. The TBox
defines logical relations between concepts as it is by now standard in description logics (DLs);
see the example above. However, in contrast to standard DLs, we do not only consider
definitions within abstract spaces of concepts, but also those based on similarity measures
(these similarity measures should not be confused with semantic similarity considered, e.g.,
in [27]). First, we allow definitions by means of ‘comparative similarity.’ To be able to use
comparative similarity in concept definitions, the user has to declare a similarity space by
means of an atomic concept comprising the elements of the space and certain constraints on
the space (saying that it is symmetric and/or satisfies the triangle inequality; for a discussion
of these properties of similarity see, e.g., [35]). For example, in the World of Whisky, one
could declare a similarity space for comparing ‘tastes’ by introducing a concept name Taste

which comprises the set of all elements of the (possibly not completely specified) similarity
space with a similarity measure dTaste on it. Using the role has taste and its inverse taste of,
the ontology designer can first introduce the taste of a whisky (e.g., of Caol Ila) by the axiom

T Caol Ila ≡ Taste ⊓ ∃taste of. {Caol Ila}

and then define, for example,

Peaty malt ≡ Single malt ⊓ ∃has taste.
(
T Caol Ila ⇇Taste T Macallan⊔· · ·⊔T Glenmorangie

)
.

Intuitively, this TBox axiom states that peaty malt whiskies are those single malt whiskies
that are more similar regarding their taste to (the prototype) Caol Ila than to (the prototypes)
Macallan, . . . , Glenmorangie. Notice that, as Taste is a concept, we can further refine the
notion of taste in the TBox by means of various flavour and taste descriptors: for example,

Taste ⊑ ∃has taste descriptor. (Winey ⊔ Woody ⊔ · · · ⊔ Peaty).

Along with comparative similarity, the user has an option to define concepts in terms of
‘absolute similarity’ which can, for example, be found using numerical techniques in the
proximity matrix:

T Caol Ila ⊑ ¬∃<0.67
Taste

∃taste of.Medium sweet whisky

says that the taste of Caol Ila cannot be too close (at most 0.67 close) to the taste of medium
sweet whiskies.

1For example, the clustering algorithm in [19] places the Hungarian language into the same family as
Turkish, which contradicts the existing ontologies.
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Besides the TBox, the knowledge base contains an ABox which provides data about con-
crete objects. First, one can specify within description logic:

Lagavulin : Dry whisky Lagavulin Distillery is located in Islay

where the former says that Lagavulin is a dry whisky. Second, one can include information
about similarities between concrete objects by writing down (part of the) proximity matrix
in assertions of the form

dTaste(ℓ1, ℓ2) = 0.15 dTaste(ℓ3, ℓ4) < 1

The resulting knowledge representation formalism, called SL+ALCQIO, is a combination
of two logics. One of them is a suitable DL (see [2] for a survey); in this paper we consider
the expressive DL ALCQIO, but it could be replaced with any other ‘well-behaved’ DL. The
second one is the similarity logic SL, which itself is a combination of two logics:

• the logic MS of ‘absolute’ similarity with concept constructors of the form ∃<aC and
∃≤aC, that is, ‘in the a-neighbourhood of C’ (excluding or including the boundary),
where a is a positive rational number (this and other similar logics were first introduced
and investigated in [17, 38, 22, 39]), and

• the logic CSL of ‘comparative’ similarity with the ‘closer’ operator C ⇇ D which is
interpreted by the set of all points in the similarity space that are closer to the instances
of C than to the instances of D. For example, it can be used to model statements like
‘X resembles C more than D.’ This logic was first introduced in [30]. CSL is closely
related to conditional logics [18, 29]; we will briefly discuss this connection in Section 5.

The applications of SL + ALCQIO we envisage are similar to the use of DL in the process
of ontology formation and maintenance, which means that reasoning with the logic is of
fundamental importance (to check whether the resulting classification is consistent, whether
it reflects properly the available knowledge, etc.); see [15, 24, 14] for the pure DL-reasoners
Fact, Pellet, and Racer.

The main contributions of this paper are as follows:

1. An analysis of the computational complexity of reasoning in the similarity logics SL
and CSL interpreted in various distance spaces (in particular, metric spaces) satisfying
the following application motivated min-condition: the distance between any two sets
is the minimum, rather than infimum, of the distances between their points. We show
that the satisfiability (or consistency) problem for either logic is ExpTime-complete
over standard distance spaces with min-condition, even under the binary coding of the
parameters in absolute distance operators of the logic SL. We also prove the finite
model property of the logics under consideration. The ExpTime upper bound proofs
depend heavily on whether the underlying distance spaces are assumed to be symmetric
or not: in the non-symmetric case the upper bound is established by an exponential
reduction to the emptiness problem for finite looping tree automata, whereas in the
symmetric case it is proved by an exponential reduction to the emptiness problem for
single complemented pair automata. (Note that the complexity of the logic MS of
‘absolute’ similarity has been determined in [39].)

2. A modular reasoning procedure for the combination SL+ALCQIO of SL and ALCQIO
is developed. Reasoning in this logic is shown to be NExpTime-complete.
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2 Similarity description logic

We begin by introducing the syntax and semantics of our logic. The language can be based on
any of the standard DLs with the nominal constructor, say, the very expressive DL SHOIQ
[16] which is the core of the ontology language OWL-DL. For simplicity, in this paper we
consider the DL ALCQIO, that is, SHOIQ without transitive roles and role hierarchies [2].

Language. Let NC be a countable set of concept names, NR a countable set of role names,
NO a countable set of object names, and S a finite set of names for similarity spaces. The set
R of roles is NR ∪ {R−1 | R ∈ NR}.

The concepts of the ‘similarity + description’ language SL + ALCQIO are defined in-
ductively as follows:

C,D ::= A | {ℓ} | C ⊓ D | ¬C | ≤nR.C | ≥nR.C

C ⇇s D | ∃<a
s C | ∃≤a

s C (1)

where A ranges over NC, R over R, ℓ over NO, n over the natural numbers N, a over the
positive rational numbers Q>0, and s over the names for similarity spaces from S. As usual,
∃R.C stands for ≥1R.C. We also use ⊔, ⊥ (for ∅), and ⊤ (for the whole space) as the standard
Boolean abbreviations.

A knowledge base (KB, for short) in this language is a triple of the form Σ = (T Σ,AΣ,DΣ),
where

• T Σ is a finite set (called a TBox ) of subsumption relations C ⊑ D between concepts C
and D of SL + ALCQIO,

• AΣ is a finite set (called an ABox ) of assertions of the form

ℓ1 : C, ℓ1Rℓ2, ds(ℓ1, ℓ2) < a, ds(ℓ1, ℓ2) = a,

where C is a concept, R a role, s ∈ S, the ℓi are object names, ds is the distance (or
similarity) measure on the distance (similarity) space s (see below), and a ∈ Q>0,

• DΣ associates with each s ∈ S a pair (D1(s),D2(s)), where D1(s) is a concept name
from NC and D2(s) ⊆ {sym, tr} (to indicate whether the similarity space on D1(s) is
symmetric and/or satisfies the triangle inequality; see below for definitions).

As usual in DL, C ≡ D will be used as an abbreviation for two subsumption axioms C ⊑ D
and C ⊒ D.

Models. To introduce models interpreting such knowledge bases, we need a definition of a
distance (or similarity) space. Strictly speaking, the notions of distance and similarity are
dual, but it will be more convenient for us not to distinguish between them here.

A distance space is a structure of the form D = (D, d), where D is a nonempty set and
d, the distance function (or similarity measure), is a map from D × D to the set R≥0 of
nonnegative real numbers such that, for all x, y ∈ D, we have d(x, y) = 0 iff x = y. If d
satisfies two additional well-known properties

d(x, y) = d(y, x) (sym)

d(x, z) ≤ d(x, y) + d(y, z) (tr)
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then D is a standard metric space. The distance d(X,Y ) between two nonempty sets X and
Y of D is defined by

d(X,Y ) = inf{d(x, y) | x ∈ X, y ∈ Y }.

If at least one of X, Y is empty then d(X,Y ) = ∞. Finally, if we actually have

d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y }, (min)

for any nonempty X,Y ⊆ D, then D is called a min-space. Every finite distance space is
obviously a min-space. From now on we will only work with min-spaces.2 This means, in
particular, that the topology induced by the distance spaces under consideration is trivial:
every set of the space is both closed and open. Such a restriction seems to be quite natural for
the intended applications, since most similarity spaces are either finite or can be approximated
by min-spaces (unlike those in spatial and temporal KR&R). It is of interest to observe that
a similar restriction is required in the semantics of conditional logics (where it is called the
limit assumption). The condition (min) and the relation between the logics considered here
and conditional logics will be discussed in more detail in Section 5.

Now, a Σ-type model (or interpretation) I consists of a nonempty domain ∆I and inter-
pretations

• ℓI ∈ ∆I , for each ℓ ∈ NO,

• AI ⊆ ∆I , for each A ∈ NC,

• RI ⊆ ∆I × ∆I , for each R ∈ NR,

• (R−1)I = (RI)−1, for each R ∈ NR,

• a min-space sI = (AI
s , dIs ) such that D1(s) = As ∈ NC, AI

s 6= ∅, and sI satisfies the
constraints in D2(s), for each s ∈ S.

Given a Σ-type model I, we define inductively the extension CI of a concept C:

{ℓ}I = {ℓI}, (¬C)I = ∆I \ CI , (C1 ⊓ C2)
I = CI

1 ∩ CI
2 ,

(≤nR.C)I =
{
x ∈ ∆I

∣∣ |{y ∈ CI | xRIy}| ≤ n
}
,

(≥nR.C)I =
{
x ∈ ∆I

∣∣ |{y ∈ CI | xRIy}| ≥ n
}
,

(C1 ⇇s C2)
I = {x ∈ AI

s | dIs (x,CI
1 ∩ AI

s ) < dIs (x,CI
2 ∩ AI

s )},

(∃<a
s C)I = {x ∈ AI

s | ∃y ∈ (AI
s ∩ CI) dIs (x, y) < a},

(∃≤a
s C)I = {x ∈ AI

s | ∃y ∈ (AI
s ∩ CI) dIs (x, y) ≤ a}.

And if T is a set of concepts, we write T I for
⋂

C∈T CI . Finally, a Σ-type model I satisfies
a concept inclusion C ⊑ D iff CI ⊆ DI . It satisfies ℓ : C iff ℓI ∈ CI , ℓ1Rℓ2 iff ℓI1RIℓI2 ,
ds(ℓ1, ℓ2) < a iff dIs (ℓI1 , ℓI2 ) < a, and ds(ℓ1, ℓ2) = a iff dIs (ℓI1 , ℓI2 ) = a. A Σ-type model I
satisfies Σ if is satisfies all concept inclusions and assertions in Σ.

Example. A small part of a knowledge base representing the ‘World of Whisky’ in the
language SL + ALCQIO is given in the introduction. Here we show how this language can
be used for prototype clustering. Suppose that we are given a similarity space defined on (the

2The logic of comparative similarity interpreted over arbitrary metric spaces has been considered in [31].
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extension of) a concept D, and we want to define new concepts Ci representing those elements
of the space that have some property C and are more similar to the prototypical object ℓi

(interpreted by ai) than to the objects ℓj and ℓk (interpreted by aj and ak, respectively),
where {i, j, k} = {1, 2, 3}. The terms

{ℓi} ⇇ {ℓj} ⊔ {ℓk}, for {i, j, k} = {1, 2, 3},

define the Voronoi tessellation of the space D corresponding to the set {a1, a2, a3}; see Fig. 1
where D is interpreted by the Euclidean plane R2. The ‘clusters’ Ci we need can be defined
then as Ci = C ⊓ ({ℓi} ⇇ {ℓj} ⊔ {ℓk}).

.

.

a1 a2

a3

Figure 1: Closer operator and Voronoi tessellation.

Reasoning problems. The first important reasoning problem when dealing with a given
KB Σ is its consistency, that is, the question:

• Is there a Σ-type model satisfying Σ?

Other standard reasoning tasks include:

• Concept satisfiability relative to a KB: given a concept C and a KB Σ, does there exist
a Σ-type model I satisfying Σ and such that CI 6= ∅?

• Subsumption relative to a KB: given a concept inclusion C ⊑ D and a KB Σ, is it the
case that every model I satisfying Σ also satisfies C ⊑ D?

• Instance checking relative to a KB: given a concept C, an object name ℓ, and a KB Σ,
is it the case that every model I satisfying Σ satisfies ℓ : C?

All these tasks are reducible to each other. For example, there exists a model I satisfying Σ
where CI 6= ∅ iff Σ ∪ {ℓ : C} is consistent, for some fresh object name ℓ. Or, every model
satisfying Σ satisfies ℓ : C as well iff Σ ∪ {ℓ : ¬C} is not consistent.
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Component logics. The logic SL + ALCQIO consists of two components. The first line
of (1) defines ALCQIO concepts. In every ALCQIO knowledge base Σ = (T Σ,AΣ,DΣ) the
third component is empty and the first two are restricted to the language of ALCQIO.

The other component logic is the new similarity logic SL. Its concepts are constructed
using nominals {ℓ}, the Booleans ⊓, ¬, and the similarity operators ⇇, ∃<a, and ∃≤a. In fact,
SL+ALCQIO contains as many ‘copies’ of this logic as the cardinality of S (the number of
similarity spaces) prescribes (we then use the subscript s to distinguish between them).

An SL-model I is a distance space (∆I , dI) together with interpretations ℓI and AI of
the object and concept names. The extension CI of an SL-concept C is computed as defined
above. An SL knowledge base Σ = (T Σ,AΣ,DΣ) is restricted to the language of SL and DΣ

contains just a single similarity space.

3 Decidability and complexity of SL + ALCQIO

The first main result of this paper is the following

Theorem 1. The consistency and concept satisfiability problems formulated above for SL +
ALCQIO KBs Σ are NExpTime-complete. The subsumption and instance checking problems
(relative to knowledge bases) are coNExpTime-complete. These complexity results hold for both
unary and binary codings of the numerical parameters in number restrictions and similarity
operators.

The NExpTime lower bound under unary coding of parameters follows from the fact that
already consistency of ALCQIO knowledge bases is NExpTime-hard [34]. In what follows
we, therefore, concentrate on the corresponding upper bound under the binary coding of
parameters.

An almost obvious idea of how to prove this theorem would be to try to decompose
SL + ALCQIO into the fusion [4] of its component logics. Indeed, one can polynomially
reduce the reasoning problems for SL+ALCQIO to the corresponding problems for the fusion
of the description logic ALCQIO and the similarity logics SLs, s ∈ S. But unfortunately such
a reduction does not help to determine the computational complexity of the reasoning tasks.
What is more important is that the reduction does not even provide us with a decidability
proof. The reason is that all known transfer results for fusions, with the exception of [11],
rely upon the assumption that the component languages do not contain nominals. In the
language we consider here, however, the presence of nominals is crucial (to model, for example,
prototypical reasoning). The transfer result of [11] does apply to logics with nominals. Yet,
we cannot use it for our logic because it makes the strong assumption that there are no
‘hidden’ nominals in the components in the sense that they must not be able to express,
using a TBox, that certain concepts C have to be interpreted as singleton sets unless there
actually exists an object name ℓ such that {ℓ} ≡ C follows from the TBox (this property is
called nominal-closedness in [11]). The logic ALCQIO does not have this property. Indeed,
consider the TBox T with two axioms

A ≡ (= 1R−1.{ℓ}), {ℓ} ≡ (= 1R.A),

where (=1R.C) stands for (≤1R.C)⊓ (≥1.R.C). Then, in every model of T , A is interpreted
as a singleton set, but there is no nominal {ℓ′} such that {ℓ′} ≡ A follows from T .
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In spite of these difficulties, we show in the remaining part of this section that a NExpTime
decision procedure for SL + ALCQIO can be obtained as a modular combination of an
existing decision procedure for ALCQIO (actually, we take a decision procedure for C2, the
two-variable fragment of first-order logic with counting [26]) and a decision procedure for SL
developed in Section 4.

Before turning on to technical details, we observe that without loss of generality we
can always assume that the ABox of a given KB is empty. Indeed, the assertion ℓ : C is
equivalent to {ℓ} ⊑ C, ℓ1Rℓ2 is equivalent to {ℓ1} ⊑ ∃R.{ℓ2}, ds(ℓ1, ℓ2) < a is equivalent to
{ℓ1} ⊑ ∃<a

s {ℓ2}, and ds(ℓ1, ℓ2) = a is equivalent to {ℓ1} ⊑ ∃≤a
s {ℓ2}, {ℓ1} ⊑ ¬∃<a

s {ℓ2}. In
what follows we always assume that our knowledge bases have empty ABoxes.

The decision procedure for SL+ALCQIO. We now show how the consistency problem
for an arbitrary KB Σ with empty ABox can be split into the consistency problems for SL
and ALCQIO knowledge bases.

Let S be the set of names for similarity spaces in Σ. Define the length l(Σ) of Σ by taking

l(Σ) =
∣∣S

∣∣ +
∑

C⊑D∈T Σ

(
l(C) + l(D)

)
,

where l(C) is the length of C under the binary coding of numerical parameters. Let P(Σ)
be the set of all rational numbers (we will call them parameters) occurring in the similarity
operators (∃<a

s and ∃≤a
s ) from Σ, and let

P+(Σ) = {b = a1 + · · · + an | ai ∈ P(Σ), b ≤ maxP(Σ)}.

We have |P (Σ)| < l(Σ) and |P+(Σ)| ≤ max P (Σ)/ gcd P (Σ) (where gcd P (Σ) is the greatest
common divisor of the numbers in P (Σ)). Therefore |P+(Σ)| < 2l(Σ). Set ∃sD = D ⇇s ⊥.
Note that ∃s behaves like the existential modality on the spaces AI

s [12], that is, (∃sD)I = AI
s

if DI ∩ AI
s 6= ∅, and (∃sD)I = ∅ otherwise.

Denote by cl(Σ) the smallest set of concepts containing all concepts from Σ and closed
under the following rules:

• cl(Σ) is closed under taking subconcepts and single negation,

• if D1 ⇇s D2 ∈ cl(Σ) then ∃sD1,∃sD2 ∈ cl(Σ),

• if ∃<a
s D ∈ cl(Σ) or ∃≤a

s D ∈ cl(Σ) then ∃sD ∈ cl(Σ),

• if ∃sD ∈ cl(Σ) and a ∈ P+(Σ) then ∃<a
s D,∃≤a

s D ∈ cl(Σ).

Then the size of cl(Σ) is at most exponential in l(Σ). Indeed, cl(Σ) can be constructed in the
following way: we take sub(Σ), the closure Σ under subconcepts, then add the required terms
of the form ∃sD, ∃≤a

s D, and ∃<a
s D, and finally close the resulting set under single negations.

Thus, we have
|cl(Σ)| ≤ l(Σ) · (2|P+(Σ)| + 1) · 2 ≤ 4 · l(Σ) · 2l(Σ).

A very important notion in our construction is that of a type over Σ. Namely, a type over
Σ is a subset T of cl(Σ) such that the following conditions are satisfied:

• D1 ⊓ D2 ∈ T iff D1,D2 ∈ T , for every D1 ⊓ D2 ∈ cl(Σ),

• ¬D ∈ T iff D /∈ T , for every ¬D ∈ cl(Σ),
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• if ∃<a
s D ∈ T then ∃≤a

s D ∈ T ,

• if ∃≤a
s D ∈ T then ∃<b

s D,∃≤b
s D,∃sD ∈ T for all b > a in P+(Σ),

• if D1 ⇇s D2 ∈ T and ∃≤a
s D2 ∈ T then ∃<a

s D1 ∈ T ,

• if ∃sD ∈ T for some D, then As ∈ T .

It is to be noted that although the size of cl(Σ) can be exponential in l(Σ), we still have at
most exponentially many distinct types over Σ. This follows from the fact that, for any type
T and any ∃sD ∈ T , there is always exactly one ζ in the list

≤0, <a, ≤a (for a ∈ P+(Σ)), <∞ (2)

such that ∃ζ
sD belongs to T and we have ∃ξ

sD ∈ T for every ξ that is ‘weaker’ than this ζ (we
naturally assume here that ∃≤0

s D = D, ∃<∞
s D = ∃sD, and ≤a is stronger than <b, which

is stronger than ≤b, for all a < b). Therefore, every type is determined by the following
information, for every D ∈ sub(Σ): (i) whether D belongs to T , and (ii) the strongest ζ in

(2) with ∃ζ
sD ∈ T , whenever ∃sD ∈ T . Hence, the number of types over Σ is bounded by

(2|P+(Σ)| + 2)|sub(Σ)| ≤ (2 · 2l(Σ))l(Σ).

Given an interpretation I and an element u of its domain, define the type T I(u) of u in
I by taking

T I(u) = {C ∈ cl(Σ) | u ∈ CI}.

It is easily seen that this is indeed a type over Σ. We remind the reader that types of a similar
form are basic ingredients of various worst-case optimal algorithms in description, modal, and
temporal logics [36, 25]. In the definition above, however, we had to be particularly careful
in order to avoid creating double-exponentially many types.

To design a modular consistency checking algorithm for SL+ALCQIO knowledge bases,
we define ‘abstractions’ of concepts that will be used as inputs for the component algorithms.
For each C of the form ∃<a

s D, ∃≤a
s D, D1 ⇇s D2, ≤nR.D and ≥nR.D we reserve a fresh

concept name AC , the surrogate of C. Now, given an arbitrary concept C, denote by CDL

the result of replacing in C all outermost occurrences of subconcepts of the form ∃<a
s D,

∃≤a
s D, D1 ⇇s D2 with their surrogates. Let cl(Σ)DL (or TDL) be the set of all CDL such

that C ∈ cl(Σ) (respectively, C ∈ T ).
Similarly, for each s ∈ S and each concept C, denote by Cs the result of replacing in C all

outermost occurrences of subconcepts of the form ≤nR.D, ≥nR.D, ∃<a
s′ D, ∃≤a

s′ D, D1 ⇇s′ D2,
for s′ 6= s, with their surrogates. Note that cl(Σ)DL = cl(ΣDL), cl(Σ)s = cl(Σs), and if T is a
type over cl(Σ), then TDL and T s are types over cl(Σ)DL and cl(Σ)s, respectively.

Say that a set T of types over cl(Σ)DL is ALCQIO-realisable if there exists an interpre-
tation I such that

T = {T I(u) | u ∈ ∆I}. (3)

Similarly, we say that a set T of types over cl(Σ)s is SL-realisable if there exists an SL-model
I with domain AI

s such that (3) holds.
A modular nondeterministic consistency checking procedure for knowledge bases over

SL + ALCQIO is sketched in Fig. 2.
It is easily seen that if there is no set T with the properties listed in Fig. 2, then Σ is

inconsistent. Indeed, suppose that Σ is consistent. Take a Σ-type model I satisfying Σ.
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Given a knowledge base Σ (without an ABox),

1. Guess a nonempty set T of types over Σ.

2. Check whether the following conditions hold:

– if C ⊑ D ∈ T Σ then ¬C ∈ T or D ∈ T , for all T ∈ T ,

– if ∃sD ∈ T for some T ∈ T , then ∃sD ∈ T ′ for all T ′ ∈ T such that As ∈ T ′.

3. Check whether the set {TDL | T ∈ T } of types over cl(Σ)DL is ALCQIO-realisable.

4. For each s ∈ S, check whether the set {T s | T ∈ T , As ∈ T } of types over cl(Σ)s is SL-realisable
in an interpretation satisfying the constraints in D2(s).

5. If the answer is YES for at least one guessed set T of types over Σ, then Σ is consistent;
otherwise it is inconsistent.

Figure 2: Decision procedure.

Define T by (3). It is straightforward to see that for this set T the algorithm in Fig. 2 returns
the answer YES.

The converse direction as well as the proof that this algorithm runs in NExpTime are based
on two theorems. The first one shows that item 3 in Fig. 2 can be checked in NExpTime:

Theorem 2. It is decidable in NExpTime (in the size of Σ) whether a set T of types over an
ALCQIO knowledge base Σ is realisable. This holds for the binary coding of the numerical
parameters in the qualified number restriction operators.

Proof. It is well known that ALCQIO can be regarded as a fragment of C2, the two-variable
fragment of first-order logic with counting [2, page 152]. A recent result of Pratt-Hartmann
[26] shows that the satisfiability problem for C2-formulas is NExpTime-complete under the
binary coding of counting quantifiers. We cannot apply this result directly to the problem
stated in the theorem because the C2-formula encoding the realisability of T is already ex-
ponential in the size l(Σ) of Σ. However, Pratt-Hartmann’s proof is type-based in the sense
that in order to decide (in NExpTime) whether a C2-formula ϕ is satisfiable, it guesses a set
of types over the formula ϕ (together with some additional information about the types) and
then checks whether this set of types is realisable (again together with a number of additional
constraints). A close inspection of Pratt-Hartmann’s procedure shows that it still runs in
NExpTime if the input is not a formula but a set of types whose realisability is to be checked.
We now sketch this reduction to Pratt-Hartmann’s proof in more detail. For C2 we use the
notation of [26], which the reader should have at hand.

Suppose that T is a set of types over an ALCQIO knowledge base Σ0 (here we use Σ0

rather than Σ because Pratt-Hartmann uses the symbol Σ to denote a certain signature).
Instead of 1-types over arbitrary C2-formulas with one free variable x, Pratt-Hartmann uses
1-types over literals with the free variable x. Therefore, we first reformulate the problem of
checking realisability of a set of types as the problem of realising a set of types over literals
together with a formula. For every non-atomic concept C, which does not start with a
negation symbol, we introduce a new atomic concept AC , and set AC = C for every atomic
C in cl(Σ0). Now define, for every concept C in cl(Σ0), a concept Cs by taking Cs = AC if
C does not start with a negation symbol, and Cs = ¬AD if C = ¬D. For T ∈ T , we then set
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T s = {Cs | C ∈ T}. Let Γ be the collection of the following TBox axioms:

A{ℓ} ≡ {ℓ}, AD1⊓D2
≡ Ds

1 ⊓ Ds
2, A≤nR.D ≡ (≤nR.Ds), A≥nR.D ≡ (≥nR.Ds),

where {ℓ},D1 ⊓ D2,≤nR.D,≥nR.D ∈ cl(Σ). It can be shown that there exists a model
realising T iff there exists a model realising {T s | T ∈ T } and satisfying Γ. Observe that the
types in {T s | T ∈ T } contain literals only. We remind the reader of the standard translation
from ALCQIO concepts into C2 (with two variables x, y). First, we may regard atomic
concepts A of ALCQIO as unary predicate symbols and roles names R as binary predicate
symbols. Now we define inductively a translation C♯ of an ALCQIO-concept C by taking:

{ℓ}♯ = A{ℓ}(x), A♯ = A(x), (¬C)♯ = ¬C♯, (C1 ⊓ C2)
♯ = C♯

1 ∧ C♯
2,

(≤ nR.C)♯ = ∃≤ny (R(x, y) ∧ C♯[y/x]), (≥ nR.C)♯ = ∃≥ny (R(x, y) ∧ C♯[y/x]).

Then there exists a model realising {T s | T ∈ T } and satisfying Γ iff there exists a model (for
C2) which satisfies exactly the 1-types

τ =
{
{C♯(x) | C ∈ T s} | T ∈ T

}

and also satisfies

Φ = {∀x(C♯(x) ↔ D♯(x)) | C ≡ D ∈ Γ} ∪ {∃=1A{ℓ}(x) | {ℓ} occurs in cl(Σ0)}.

Thus, it remains to show that we can decide the latter problem in NExpTime. Suppose that
φ =

∧
Φ and τ are given. Observe that

∧
Φ is polynomial in l(Σ0). Compute φ∗ as in [26,

Lemma 1] and take the number C from that lemma, which will be denoted here (for obvious
reasons) by M . An inspection of the proof of [26, Lemma 1] shows that there exists a model
with domain of size ≥ M satisfying exactly the 1-types in τ and φ iff there exists a model of
size ≥ M satisfying exactly the types in τ and φ∗.

Clearly, satisfiability of exactly the types in τ and φ in a model of size ≤ M is decidable
in NExpTime. Thus, it remains to show that satisfiability of exactly the types in τ and φ∗ in
a model is decidable in NExpTime. (Observe that φ∗ is a C2-formula over a larger signature
than φ. Thus, the 1-types over this signature are sets properly containing 1-types over the
signature of φ and, in particular, the 1-types from τ .)

Now, in the proof of [26, Theorem 2] it is shown that φ∗ is satisfiable iff (†) there exists a
chromatic, M -bounded frame F over a certain signature Σ extending the signature of φ∗ of
dimension N ≤ X (for the number X defined in [26]), such that F has an extended solution
and F |= φ∗. Condition (†) can be checked in NExpTime. The important observation for us
is that a frame F = (σ, I, θ) consists of a sequence σ = (σ1, . . . , σN ) of so-called star-types,
where a star-type σ is a pair (π, v) in which π is a 1-type, and that Pratt-Hartmann actually
proves that there is a witness frame F for (†) iff there exists a model satisfying φ∗ which
satisfies exactly the 1-types occurring in the sequence of star-types of F . It follows that there
exists a model satisfying exactly the types in τ and φ∗ iff there exists a chromatic, M -bounded
frame F over a certain signature Σ extending the signature of φ∗ of dimension N ≤ X, such
that F has an extended solution, F |= φ∗, and

• every 1-type from a star-type in F contains a 1-type from τ ;

• for every 1-type from τ , there exists a 1-type from a star-type in F which contains τ .
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These two additional conditions can be checked in exponential time (in Σ0), and it follows that
checking (†) with those two additional conditions on the frame F is decidable in NExpTime
as well.

We now formulate the second main result of this paper which gives an ExpTime decision
procedure for the similarity logic SL. It also establishes in (ii) that item 4 in Fig. 2 can be
checked in ExpTime. Under (iii) it lists the property required to show the correctness of our
algorithm. In fact, (iii) is the crucial property of SL which enables us to provide a modular
decision procedure despite the fact that ALCQIO is not nominal-closed. Roughly speaking,
it states that satisfiable types, which do not contain a nominal, can be satisfied in an arbitrary
number of points in a model.

Theorem 3. (i) The consistency problem for SL knowledge bases is ExpTime-complete for
the binary coding of the numerical parameters in the similarity operators.

(ii) It is decidable in ExpTime (in the size of Σ) whether a set T of types over an SL
knowledge base Σ is realisable in a model satisfying the given constraints from {sym, tr}. This
holds for the binary coding of the numerical parameters in the similarity operators.

(iii) Moreover, let T1, . . . , Tn be an enumeration of all those types from T that do not
contain nominals, and let k1, . . . , kn be a sequence of some positive numbers from N∪{ω}. If
T is realisable then it is realisable in a model I such that |T I

1 | = k1, . . . , |T I
n | = kn.

A proof of this theorem will be given in Section 4.
Let us see now that the algorithm in Fig. 2 is correct. Suppose that the procedure returns

‘YES’ for some set T of types over Σ.
By item 3 in Fig. 2, we find an interpretation I which realises {TDL | T ∈ T }. As

ALCQIO is a fragment of first-order logic, we can assume that ∆I is countable.
Consider any s ∈ S. Let Ts = {T ∈ T | As ∈ T} and T s = {T s | T ∈ T , As ∈ T}. By item

4 in Fig. 2, T s is realisable. And we see that, for each T ∈ T , either the types T s and TDL

both contain a nominal {ℓ} or neither of them contains {ℓ}. Therefore, by Theorem 3 (iii),
there exists a model Is realising T s such that |(T s)Is | = |(TDL)I |, for all T ∈ Ts.

For every pair (s, T ) with T ∈ Ts, take a bijection fs,T from (T s)Is onto (TDL)I and let

fs =
⋃

T∈Ts

fs,T .

Then fs is a bijection from ∆Is onto AI
s (recall that every point satisfies exactly one type).

Consider any C ∈ cl(Σ) and s ∈ S, and let T ′ = {T ∈ T | C,As ∈ T}. Then (Cs)Is =⋃
T∈T ′(T s)Is and (CDL)I =

⋃
T∈T ′(TDL)I . Hence, for all s ∈ S and C ∈ cl(Σ),

(CDL)I ∩ AI
s = fs((C

s)Is). (4)

Suppose now that C is of the form ∃<a
s D, ∃≤a

s D, or D ⇇s D′. Then, by the definition of a
type, every T ∈ T with C ∈ T contains As. Moreover, C ∈ T iff AC ∈ TDL. Since I realises
T DL, and Is realises T s, we obtain (AC)I ⊆ (As)

I .
Now define a new model J with domain ∆I by taking the interpretation of atomic concepts

and role names from I and defining, for all s ∈ S and x, y ∈ AI
s ,

dJs (x, y) = dIs
s (f−1

s (x), f−1
s (y)).
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We prove by induction that CJ = (CDL)I , for all C ∈ cl(Σ). The basis of induction and the
case of Booleans are obvious.

Let C = ≤nR.D. Then RJ = RI and DJ = DI by the construction of J and the
induction hypothesis. Now CJ = (CDL)I follows immediately from the truth condition for
≤nR. The case C = ≥nR.D is considered in the same way.

Let C = ∃<a
s D. Then Cs = ∃<a

s Ds, CDL = AC , and (AC)I ⊆ AI
s . Hence, in view of

(4), it suffices to prove that CJ = fs((C
s)Is). By the induction hypothesis and (4), we have

DJ ∩ AJ
s = (DDL)I ∩ AI

s = fs((D
s)Is). Therefore, by the truth condition for ∃<a

s and the
definition of dJ ,

u ∈ CJ iff ∃v ∈ (DJ ∩ AJ
s ) dJs (u, v) < a

iff ∃v ∈ fs((D
s)Is) dIs

s (f−1(u), f−1(v)) < a

iff ∃w ∈ (Ds)Is dIs
s (f−1(u), w) < a iff f−1(u) ∈ (Cs)Is .

The cases C = ∃≤a
s D and C = D ⇇s D′ are considered similarly.

Thus, J realises T . And for every subsumption C ⊑ D ∈ T Σ, we have that ¬C ∈ T or
D ∈ T , by the first condition of item 2 in Fig. 2. This means that J satisfies Σ.

4 The similarity logic SL

In this section we prove Theorem 3. Recall that in SL we do not have qualified number
restrictions. Moreover, we deal with only one similarity space, and so can omit indexes from
the distance operators and write simply ∃<a, ∃≤a, ⇇.

An SL-model I was defined as a min-space (∆I , dI) together with interpretations ℓI and
AI of the object and concept names. We are going to prove Theorem 3 for two types of SL
knowledge bases Σ:

• the non-symmetric case: DΣ states that the min-spaces to be considered satisfy the
triangle inequality only,

• the symmetric case: DΣ states that the min-spaces to be considered are actually metric
spaces (satisfying both (tr) and (sym)).

The proofs for the remaining two cases are easily obtained by a straightforward modification
(in fact, simplification because the closer operator ⇇ does not ‘feel’ the triangle inequality;
see [30]) of the proofs for the cases above (for example, we only need the first lines of (7) and
(8), and only items (2) in Lemmas 5 and 9; condition 4.3 should also be removed from the
definition of a bouquet).

For all possible types of constraints, the ExpTime lower bound required for Theorem 3
(i) was proved in [30] even for the language without nominals and operators of the form ∃<a

and ∃≤a. The proof was by reduction of the global consequence relation for the modal logic
K which is known to be ExpTime-hard [32]. Another encoding of the global consequence
relation for K using the operator ∃≤1 and the Booleans can be found in [39].

In order to ease presentation, in the proof of the ExpTime upper bound we will consider the
satisfiability problem for SL-concepts instead of the consistency problem for SL-knowledge
bases. We call an SL-concept C satisfiable in a class M of SL-models if there exists I ∈ M
such that CI 6= ∅. To see that consistency of SL-knowledge bases is reducible to satisfiability
of SL-concepts, recall first that we may assume that the ABox of Σ is empty. Also recall the
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definitions of the ‘universal modalities:’ ∃D = D ⇇ ⊥ and ∀D = ¬∃¬D. Now, Σ is consistent
iff ∀C is satisfiable in a model from the class M of all SL models meeting the constraints in
DΣ, where C =

d
{¬D1 ⊔ D2 | D1 ⊑ D2 ∈ T Σ}. The statements (ii) and (iii) of Theorem 3

will also be proved for sets of types over a concept C instead of sets of types over a knowledge
base Σ. It will become clear that this does not make any essential difference.

The structure of this section is now as follows. We start with a proof of the (bounded)
finite model property of concept satisfiability for both non-symmetric and symmetric cases.
This result will first be used to prove Theorem 3 (iii). And then it will be employed as a basic
ingredient for the proof of the upper bound of (i) for the non-symmetric and symmetric cases.
The crucial idea in this proof is that satisfiable SL-concepts can be satisfied in ‘abstract
tree distance spaces,’ and that satisfiability in these tree distance spaces can be reduced
(exponentially) to the emptiness problem for tree automata with one complemented pair,
which is known to be decidable in polynomial time [8]. Claim (ii) will then be a simple
corollary of the proof of (i).

4.1 The finite model property

Since here our concern is SL-concept satisfiability, we relativise the definitions of the closure,
type, etc. to concepts of the language SL.

So suppose an SL-concept C is given. Then P(C) is the set of all rational numbers
(parameters) occurring in C, and

P+(C) = {b = a1 + · · · + an | ai ∈ P(C), b ≤ maxP(C)}.

Denote by sub(C) the set of all subconcepts of C, and by cl(C) the smallest set of concepts
closed under the following rules:

• cl(C) contains sub(C) and is closed under taking single negation,

• if D1 ⇇ D2 ∈ cl(C) then ∃D1,∃D2 ∈ cl(C),

• if ∃<aD ∈ cl(C) or ∃≤aD ∈ cl(C) then ∃D ∈ cl(C),

• if ∃D ∈ cl(C) and a ∈ P+(C) then ∃<aD,∃≤aD ∈ cl(C).

As we have already observed, the size of cl(C) is at most exponential in the length l(C) of C
if the parameters are coded in binary.

If P+(C) = {a0, . . . , aN−1} with a0 < · · · < aN−1, then we set

aN = min{a + b | a, b ∈ P+(C), a + b > aN−1}, and P(C) = {a0, . . . , aN}. (5)

Given an SL-model I and its element u, define the type T I(u) of u in I by taking

T I(u) = {D ∈ cl(C) | u ∈ DI}.

Theorem 4. Let M be the class of metric min-models or the class of min-models with (tr).
If C is satisfiable in M then C is satisfiable in a finite model from M (whose size is at most
exponential in the length of C).

Proof. The proof uses a more or less standard filtration argument from modal logic (see, e.g.,
[5]). The main difficulty will be to define a proper distance function on the filtrated model.
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We consider first the case of M containing arbitrary (not necessarily symmetric) min-
models with (tr). In fact, the technique we use below works for a wider class of models where
(min) is relaxed to the following condition:

d(x, Y ) = min{d(x, y) | y ∈ Y }, (wmin)

for every point x and every nonempty set Y . Such models are called weak min-models.

Non-symmetric case. Suppose that C is satisfied in a weak min-model I with (tr). Our
aim is to construct a finite (not necessarily symmetric) model I with (tr) satisfying C.

Define an equivalence relation ∼ on ∆I by taking

u ∼ v iff T I(u) = T I(v), (6)

and let [u] = {v ∈ ∆I | u ∼ v}, for every u ∈ ∆. The model I will be based on the set

∆I = {[u] | u ∈ ∆I}. To define a suitable distance function on ∆I , some extra work has to
be done.

We first introduce two binary relations R<a and R≤a on ∆I , for every a ∈ P(C). Define

R<aN = R≤aN = ∆I × ∆I and, for a ∈ P+(C), set [u]R<a[v] iff the following conditions are
satisfied for all ∃D ∈ cl(C) and b, a+b ∈ P+(C):

v ∈ DI implies u ∈ (∃<aD)I ,

v ∈ (∃≤bD)I implies u ∈ (∃<a+bD)I .
(7)

Let d<([u], [v]) = min
{
a ∈ P(C)

∣∣ [u]R<a[v]
}
. It should be clear that these definitions do not

depend on the choice of u and v from [u] and [v].
Similarly, for a ∈ P+(C), we set [u]R≤a[v] iff the following conditions are satisfied for all

∃D ∈ cl(C) and b, a+b ∈ P+(C):

v ∈ DI implies u ∈ (∃≤aD)I ,

v ∈ (∃≤bD)I implies u ∈ (∃≤a+bD)I ,

v ∈ (∃<bD)I implies u ∈ (∃<a+bD)I .

(8)

Define d≤([u], [v]) = min
{
a ∈ P(C)

∣∣ [u]R≤a[v]
}
.

Let a ⊕ b = min{aN , a + b} for a, b ∈ P(C). It is straightforward to check the following
properties:

Lemma 5. For all a, b ∈ P(C) and u, v ∈ ∆I, we have:

(1) R<a ◦ R≤b ⊆ R<a⊕b, R≤a ◦ R<b ⊆ R<a⊕b, R≤a ◦ R≤b ⊆ R≤a⊕b,

(2) if d(u, v) < a then [u]R<a[v] and d<([u], [v]) ≤ a,

if d(u, v) ≤ a then [u]R≤a[v] and d≤([u], [v]) ≤ a,

d≤([u], [v]) ≤ d<([u], [v]).

Proof. (1) Assume that [u]R<a[v] and [v]R≤b[w]. If a ⊕ b = aN , then [u]R<a⊕b[w] always
holds. Now suppose that a ⊕ b = a + b < aN . To prove that [u]R<a⊕b[w], assume first
that w ∈ DI and ∃D ∈ cl(C). Then, by (8), v ∈ (∃≤bD)I and, by (7), u ∈ (∃<a+bD)I . Now
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assume that w ∈ (∃≤cD)I , ∃D ∈ cl(C), and c, c+a+b ∈ P+(C). Then, by (8), v ∈ (∃≤c+bD)I

and, by (7), u ∈ (∃<c+a+bD)I . The remaining two inclusions of (1) are proved similarly.
(2) Assume that d(u, v) < a. Then u ∈ (∃<aD)I follows from v ∈ DI by the truth

condition for ∃<a. Moreover, for the same reason v ∈ (∃≤bD)I implies u ∈ (∃<a∃≤bD)I .
Hence, by the triangle inequality for d, u ∈ (∃<a+bD)I . We have shown that [u]R<a[v]. Now
d<([u], [v]) ≤ a follows from the definition of the function d<. The remaining claims of (2)
are proved analogously.

Corollary 6. The functions d< and d≤ satisfy the triangle inequality. Moreover, for all
u, v,w ∈ ∆I, we have:

d<([w], [u]) ≤ d<([w], [v]) + d≤([v], [u]),

d<([w], [u]) ≤ d≤([w], [v]) + d<([v], [u]).

Proof. We only prove the triangle inequality for d<. The remaining inequalities are proved
in the same way. Suppose that d<([u], [v]) = a and d<([v], [w]) = b. Then [u]R<a[v] and
[v]R<b[w]. Therefore [v]R≤b[w]. By Lemma 5 (1), [u]R<a⊕b[w]. Hence d<([u], [w]) ≤ a⊕ b. It
follows that d<([u], [w]) ≤ d<([u], [v]) + d<([v], [w]).

Thus, d≤ and d< can be regarded as approximations for the distance function on ∆I we
need in the following sense: d≤([u], [v]) = a (or d<([u], [v]) = b) means that the distance from
[u] to [v] should be ≤ a (or < b, respectively). Moreover, given the amount of information we
have, d≤ and d< are the best approximations of this sort.

Let P(C) = {a0, . . . , aN} and a0 < · · · < aN as in (5). Then, having a strict inequality
d≤([u], [v]) = as < d<([u], [v]), we can conclude that the distance from [u] to [v] is actually
as. And if we actually have the equality d≤([u], [v]) = as = d<([u], [v]), then we can only
conclude that the distance from [u] to [v] is strictly between as−1 and as. In this case we will
define this distance as as − e, for some ‘sufficiently small’ e.

More precisely, for every as ∈ P(C), we introduce a set Es of sufficiently small positive
numbers that will serve as such adjusting values. To ensure that the triangle inequality still
holds for the modified distances, we need to fulfil the following requirements:

ar < as + at implies ar < as − es + at − et,

ar = as + at implies ar − er ≤ as − es + at − et,

for all r, s, t ≤ N and ei ∈ Ei. This can be achieved as follows. Define δ and ε0, . . . , εN by
taking

δ = min{a + b − c | a, b, c ∈ P(C) ∪ {0}, a + b > c}

δ/4 = εN , εN/4 = εN−1, . . . , ε1/4 = ε0.
(9)

Now, if K = |∆I | then we let Es be any (fixed) subset of the open interval (εs, 2εs) such that
|Es| = K2. For all s = 0, . . . , N , define

Js =
{

([u], [v]) ∈ ∆I × ∆I | d≤([u], [v]) = d<([u], [v]) = as and [u] 6= [v]
}

. (10)

Note that |Js| ≤ K2. For each [u] ∈ ∆I , fix some representative û ∈ [u], and, for each
([w], [v]) ∈ Js, choose a number ε([w], [v]) ∈ Es in such a way that the condition

ε([w], [v]) > ε([w], [u]) iff d(ŵ, [v]) < d(ŵ, [u])
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holds for all ([w], [v]) and ([w], [u]) in Js.

We are now in a position to define a distance function dI on ∆I : for all [u], [v] ∈ ∆I , let

• dI([u], [u]) = 0,

• dI([u], [v]) = d≤([u], [v]), if [u] 6= [v] and d≤([u], [v]) < d<([u], [v]),

• dI([u], [v]) = d≤([u], [v]) − ε([u], [v]), if [u] 6= [v] and d≤([u], [v]) = d<([u], [v]).

Finally, we set DI = {[u] | u ∈ DI} and ℓI = {ℓ}I , for every concept name D and every
object name ℓ.

Lemma 7. I is an SL-model satisfying the triangle inequality.

Proof. We need to show that dI is a distance function satisfying (tr). We have dI([u], [v]) = 0

by definition. And if [u] 6= [v] and d≤([u], [v]) = as then dI([u], [v]) ≥ as − 2εs > δ − δ/2 > 0.

Now consider [w], [v], [u] ∈ ∆I . We may assume that [w], [v], [u] are all different, since
otherwise the triangle inequality trivially holds. Let d≤([w], [v]) = as, d≤([v], [u]) = at and
d≤([w], [u]) = ar. By Corollary 6, ar ≤ as + at. If ar < as + at then as + at − ar ≥ δ,
εs, εt ≤ δ/4, and therefore

dI([w], [v]) + dI([v], [u]) − dI([w], [u]) > as + at − ar − 2εs − 2εt ≥ 0.

Suppose now that ar = as + at. Then as, at < ar, and hence εs, εt ≤ εr/4. Therefore, if
d<([w], [u]) = ar, then

dI([w], [v]) + dI([v], [u]) − dI([w], [u]) > − 2εs − 2εt + εr ≥ 0.

Thus, it remains to consider the case d<([w], [u]) > ar. But then, by Corollary 6, we have

d<([w], [v]) ≥ d<([w], [u]) − d≤([v], [u]) > ar − at = as,

d<([v], [u]) ≥ d<([w], [u]) − d≤([w], [v]) > ar − as = at.

Therefore, dI([w], [u]) = ar, dI([w], [v]) = as, and dI([v], [u]) = at, i.e., the triangle inequality
holds.

Thus, to complete the proof of Theorem 4 for the non-symmetric case, it is enough to
show the following:

Lemma 8. For all w ∈ ∆I and D ∈ cl(C), we have [w] ∈ DI iff w ∈ DI.

Proof. The proof is by induction on the construction of D. The basis of induction and the
Boolean cases are trivial.

Case D = D0 ⇇ D1. We can assume that DI
0 ,DI

1 6= ∅, since otherwise the claim follows
easily from the induction hypothesis. Let w ∈ (D0 ⇇ D1)

I . Then dI(ŵ,DI
0 ) < dI(ŵ,DI

1 )

where ŵ is the fixed representative of [w]. There exist v0 ∈ DI
0 and [v1] ∈ DI

1 such that

dI(ŵ, v0) = dI(ŵ,DI
0 ) and dI([w], [v1]) = dI([w],DI

1 ) (note that by the induction hypothesis

we also have [v0] ∈ DI
0 and v1 ∈ DI

1 ). We thus need to show that dI([w], [v0]) < dI([w], [v1]).
First, note that dI(ŵ, [v0]) = dI(ŵ,DI

0 ) < dI(ŵ,DI
1 ) ≤ dI(ŵ, [v1]). Next, we prove that

d<([w], [v0]) ≤ d≤([w], [v1]). Let d≤([w], [v1]) = a, so we may assume that a < aN , because
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otherwise the statement is trivial. We have [w] ∈ R≤a[v1] and ∃<aD0,∃
≤aD1 ∈ cl(C), since

D0 ⇇ D1 ∈ cl(C). Therefore v1 ∈ DI
1 implies ŵ ∈ (∃≤aD1)

I , whence ŵ ∈ (D0 ⇇ D1)
I implies

ŵ ∈ (∃<aD0)
I . Thus dI(ŵ, v0) ≤ dI(ŵ,DI

0 ) < a, and, by Lemma 5 (2), d<([w], [v0]) ≤ a, as
required.

We now have three subcases. If d≤([w], [v1]) < d<([w], [v1]), then by definition we have

dI([w], [v0]) < d<([w], [v0]) < d≤([w], [v1]) = dI([w], [v1]). If d≤([w], [v0]) < d<([w], [v0]) then
d≤([w], [v1]) − d≤([w], [v0]) ≥ δ, ε([w], [v1]) < δ/2, and therefore

dI([w], [v1]) − dI([w], [v0]) ≥ d≤([w], [v1]) − ε([w], [v1]) − d≤([w], [v0]) > 0.

Finally, if d≤([w], [v0]) = d<([w], [v0]) and d≤([w], [v]) = d<([w], [v]) then

dI([w], [v1]) − dI([w], [v0]) = − ε([w], [v1]) + ε([w], [v0]) > 0,

since dI(ŵ, [v0]) < dI(ŵ, [v1]).

In the same way one can show that w /∈ (D0 ⇇ D1)
I implies dI([w],DI

1 ) ≤ dI([w],DI
0 ).

Case D = ∃<aD0. Let w ∈ (∃<aD0)
I , i.e., there is v ∈ DI

0 with dI(w, v) < a. Then

dI([w], [v]) < d<([w], [v]) ≤ a in view of Lemma 5 (2), and [v] ∈ DI
0 by the induction hypoth-

esis.
Conversely, suppose that [v] ∈ DI

0 for some [v] with dI([w], [v]) < a. Then d≤([w], [v]) ≤ a,
and v ∈ DI

0 by the induction hypothesis. If d≤([w], [v]) = d<([w], [v]), then d<([w], [v]) ≤ a,
wR<av and, therefore, w ∈ (∃<aD0)

I , since v ∈ DI
0 . And if d≤([w], [v]) < d<([w], [v]), then

d≤([w], [v]) = dI([w], [v]) < a. Let d≤([w], [v]) = b. Then [w]R≤b[v] and, since v ∈ DI
0 , we

have w ∈ (∃≤bD0)
I ⊆ (∃<aD0)

I .

Case D = ∃≤aD0. Let w ∈ (∃≤aD0)
I , i.e., there is v ∈ DI

0 with dI(w, v) ≤ a. Then

dI([w], [v]) ≤ d≤([w], [v]) ≤ a in view of Lemma 5 (2); and [v] ∈ DI
0 by the induction hypoth-

esis. Conversely, suppose [v] ∈ DI
0 for some [v] with dI([w], [v]) ≤ a. Then d≤([w], [v]) ≤ a,

i.e., [w]R≤a[v], and v ∈ DI
0 by the induction hypothesis. Therefore, w ∈ (∃≤aD0)

I .

Symmetric case. Now let I be a metric min-model. We first note one important property
that follows from condition (min). For every A,B,C ⊆ ∆I , A 6= ∅, we have

if ∀a ∈ A dI(a,B) < dI(a,C) then dI(A,B) < dI(A,C). (11)

Indeed, let dI(A,B) = dI(a0, B) and dI(A,C) = dI(a1, C) for some a0, a1 ∈ A. Then
dI(a0, B) ≤ dI(a1, B) < dI(a1, C).

As in the previous case, to construct a finite model I from I we first introduce the
equivalence relation ∼ on ∆I by (6), denote by [u] the equivalence class of u ∈ ∆I , and set

∆I = {[u] | u ∈ ∆I}. For every a ∈ P(C), define relations R<a and R≤a by (7) and (8). Let
S<a = R<a ∩ (R<a)−1 and S≤a = R≤a ∩ (R≤a)−1. Now we set

d<([u], [v]) = min
{
a ∈ P(C)

∣∣ [u]S<a[v]
}
,

d≤([u], [v]) = min
{
a ∈ P(C)

∣∣ [u]S≤a[v]
}
.

As an easy corollary of Lemma 5 we obtain

Lemma 9. For all a, b ∈ P(C) and all u, v ∈ ∆I, we have
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(1) S<a ◦ S≤b ⊆ S<a⊕b, S≤a ◦ S<b ⊆ S<a⊕b, S≤a ◦ S≤b ⊆ S≤a⊕b,

(2) if d(u, v) < a then [u]S<a[v] and d<([u], [v]) ≤ a,

if d(u, v) ≤ a then [u]S≤a[v] and d≤([u], [v]) ≤ a,

d≤([u], [v]) ≤ d<([u], [v]).

Corollary 10. The functions d< and d≤ are symmetric and satisfy the triangle inequality.

As in the previous case, we introduce δ, εs, Es, and Js; see (9)–(10). Now, for every s ≤ N
and ([w], [v]) ∈ Js, we choose ε([w], [v]) in Es in such a way that the condition

ε([w], [v]) < ε([w′], [v′]) iff d([w], [v]) > d([w′], [v′]) (12)

holds for all ([w], [v]) and ([w′], [v′]) in Js. Again, this is possible because |Js| ≤ |Es|. Note
that (12) guarantees that ε is a symmetric function.

We are now in a position to define the metric function dI : for [u], [v] ∈ ∆I ,

• dI([u], [u]) = 0,

• dI([u], [v]) = d≤([u], [v]), if [u] 6= [v] and d≤([u], [v]) < d<([u], [v]),

• dI([u], [v]) = d≤([u], [v]) − ε([u], [v]), if [u] 6= [v] and d≤([u], [v]) = d<([u], [v]).

Finally, we set DI = {[u] | u ∈ DI} and ℓI = {ℓ}I for every concept name D and every
object name ℓ.

Lemma 11. I is a metric model.

Proof. The proof is almost the same as the proof of Lemma 7. The only difference is the
symmetry condition, where it is enough to observe that the functions d<, d≤ and d are
symmetric, whence ε is symmetric, and so is dI .

Lemma 12. For all w ∈ ∆I and D ∈ cl(C), we have [w] ∈ DI iff w ∈ DI.

Proof. The proof (by induction on the construction of D) is similar to that of Lemma 8. The
only essential difference is that here we use property (11) instead of picking up representatives
in each class [w].

Case D = D0 ⇇ D1. We assume that DI
0 6= ∅ and DI

1 6= ∅; otherwise the lemma follows
easily from the induction hypothesis. Let w ∈ (D0 ⇇ D1)

I . Then dI(w′,DI
0 ) < dI(w′,DI

1 )
for every w′ ∈ [w], and so dI([w],DI

0 ) < dI([w],DI
1 ) in view of (11). There exist w0 ∈ [w],

v0 ∈ DI
0 and [v1] ∈ DI

1 such that dI(w0, v0) = dI([w],DI
0 ) and dI([w], [v1]) = dI([w],DI

1 ).

By the induction hypothesis, [v0] ∈ DI
0 and v1 ∈ DI

1 . So we need to show that dI([w], [v0]) <

dI([w], [v1]). Notice first that dI([w], [v0]) = dI([w],DI
0 ) < dI([w],DI

1 ) ≤ dI([w], [v1]). Next
we prove d<([w], [v0]) ≤ d≤([w], [v1]). Let d≤([w], [v1]) = a. We may assume that a < aN

because otherwise the statement is trivial. We have [w0]S
≤a[v1] and ∃<aD0,∃

≤aD1 ∈ cl(C),
since D0 ⇇ D1 ∈ cl(C). Then v1 ∈ DI

1 implies w0 ∈ (∃≤aD1)
I , and so w0 ∈ (D0 ⇇

D1)
I implies w0 ∈ (∃<aD0)

I . Thus dI(w0, v0) ≤ dI(w0,D
I
0 ) < a, and, by Lemma 9 (2),

d<([w], [v0]) ≤ a, as required.
Consider three subcases. If d≤([w], [v1]) < d<([w], [v1]), then by definition we have

dI([w], [v0]) < d<([w], [v0]) ≤ d≤([w], [v1]) = dI([w], [v1]).
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If d≤([w], [v0]) < d<([w], [v0]) then d≤([w], [v1]) − d≤([w], [v0]) ≥ δ, ε([w], [v1]) < δ/2 and,
therefore,

dI([w], [v1]) − dI([w], [v0]) ≥ d≤([w], [v1]) − ε([w], [v1]) − d≤([w], [v0]) > 0.

Finally, if d≤([w], [v0]) = d<([w], [v0]) and d≤([w], [v]) = d<([w], [v]) then

dI([w], [v1]) − dI([w], [v0]) = − ε([w], [v1]) + ε([w], [v0]) > 0,

since dI([w], [v0]) < dI([w], [v1]). Similarly, starting from w /∈ (D0 ⇇ D1)
I , we obtain

dI([w],DI
1 ) ≤ dI([w],DI

0 ).
The remaining part of the proof is similar to that of Lemma 8.

This completes the proof of Theorem 4.

Remark 13. Theorem 4 and its proof give a nondeterministic exponential time algorithm for
checking satisfiability of a given concept C. Indeed, as we have already observed, the size
of P(C) and cl(C) is exponential in l(C). Moreover, the number of different types is also
exponential in l(C), since every type T is determined by the following:

• for every subterm D of C, whether D belongs to T ,

• for every subterm of C of the form ∃D, what is a minimal value b (if any) such that
∃≤bD belongs to T , and whether ∃<bD belongs to T .

Therefore, if C is satisfied in a class of models M under consideration, then C is satisfied in a
finite model in M of exponential in l(C) size. Moreover, the distance function of this model
can possess the values from a prescribed set of exponential in l(C) size. So the existence of
such a model can be detected nondeterministically in exponential in l(C) time.

4.2 Proof of Theorem 3 (iii)

Fix an SL-concept C. First we relativise the general definition of a type over a KB Σ to the
case of a single concept. Namely, we say that a subset T of cl(C) is a type for C if it satisfies
the following conditions:

• D1 ⊓ D2 ∈ T iff D1,D2 ∈ T , for every D1 ⊓ D2 ∈ cl(C),

• ¬D ∈ T iff D /∈ T , for every ¬D ∈ cl(C),

• if ∃<aD ∈ T then ∃≤aD ∈ T ,

• if ∃≤aD ∈ T then ∃<bD,∃≤bD,∃D ∈ T for all b > a in P+(Σ),

• if D1 ⇇ D2 ∈ T and ∃≤aD2 ∈ T then ∃<aD1 ∈ T ,

(The last condition of the definition of types over Σ is irrelevant in this case because all models
now are based on a single similarity space.) As we observed above, the number of types for
C is exponential in l(C).

Let T be a realisable set of types, let T1, . . . , Tn be an enumeration of those of them that
do not contain nominals, and let Tn+1, . . . , Tm be the remaining types in T . As we saw in the
proof of Lemma 4, if T is realised in some model, then it is also realised in a (finite) model I
such that T I(u) 6= T I(v) whenever u 6= v. In other words, every type from T is realised by
precisely one point from I. Denote by ui the point realising Ti, i = 1, . . . ,m.
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Now let k1, . . . , kn with ki ∈ N>0 ∪{ω} be given, and let kj = 1 for j = n + 1, . . . ,m. Our
aim is to construct, starting from I, a model J such that |TJ

1 | = k1, . . . , |T
J
m | = km. Let Ui

be a set of cardinality ki − 1. We assume that all of the Ui and ∆I are pairwise disjoint. Let
U+

i = Ui ∪ {ui} and let d = min{dI(u, v) | u, v ∈ ∆I , u 6= v}. Construct a new model J by
taking

• ∆J = U+
1 ∪ · · · ∪ U+

m,

• dJ (u, v) = dI(ui, uj) for u ∈ U+
i , v ∈ U+

j , i 6= j,

• dJ (u, v) = d for u, v ∈ Ui, u 6= v,

• ℓJ = ℓI , for every object name ℓ,

• u ∈ AJ iff u ∈ U+
i and ui ∈ AI , for every concept name A.

It is readily checked by induction that the model J is as required.

4.3 Proof of Theorem 3 (i)

Now we show that the concept satisfiability problem for SL is decidable in ExpTime for the
binary coding of parameters. Fix again an arbitrary SL-concept C.

For each a ∈ P(C), we introduce a fresh symbol a− and set

Q(C) = P+(C) ∪ {a− | a ∈ P(C)} ∪ {0}

(note that Q(C) contains a−N , but not aN ). Define a linear order < on Q(C) in such a way
that 0 is its minimal element, and b < a− < a < a−N whenever b < a in P+(C).

We are now in a position to introduce the ‘building material’ for constructing models from
types.

A bouquet for C is a triple B = (TB,≤B, dB) where

• TB is a set of types for C such that 2 ≤ |TB| ≤ l(C),

• ≤B is a linear quasi-order on TB with a unique minimal element TB ∈ TB, and

• dB is a map from TB to Q(C),

and the following conditions are satisfied, for all T, T ′ ∈ TB:

(B1) dB(T ) = 0 iff T = TB,

(B2) T ≤B T ′ implies dB(T ) ≤ dB(T ′),

(B3) dB(T ) = dB(T ′) ∈ P+(C) implies T ≤B T ′ ≤B T ,

(B4) D1 ⇇ D2 ∈ TB iff D1 ⇇ D2 ∈ cl(C), there is T ∈ TB for which D1 ∈ T , and D2 /∈ T ′

whenever T ′ ≤B T ,

(B5) ∃<aD ∈ TB iff ∃<aD ∈ cl(C) and there is T ∈ TB such that dB(T ) ≤ a− and D ∈ T ,

(B6) ∃≤aD ∈ TB iff ∃≤aD ∈ cl(C) and there is T ∈ TB such that dB(T ) ≤ a and D ∈ T ,

(B7) ∃D ∈ TB iff ∃D ∈ T ,

(B8) if a, b, a+b ∈ P+(C) and ∃D ∈ cl(C), then

∃<aD ∈ T and dB(T ) ≤ b imply ∃<a+bD ∈ TB,

∃≤aD ∈ T and dB(T ) ≤ b− imply ∃<a+bD ∈ TB,

∃≤aD ∈ T and dB(T ) ≤ b imply ∃≤a+bD ∈ TB.
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We will write T ≃B T ′ for T ≤B T ′ ≤B T , and T <B T ′ for T ≤B T ′ 6≤B T .
We use the notion of a bouquet to encode the local requirements ensuring that the type

TB can be realised. A ‘typical’ bouquet is constructed as follows.
Let I be a model and w ∈ ∆I . For every ∃D ∈ T I(w) with D /∈ T I(w), choose a

point v ∈ DI with a minimal distance dI(w, v); let V denote the set of all selected points.
We have |V | < l(C), since D ∈ sub(C), for every ∃D ∈ cl(C); and we clearly can assume
that T I(v1) 6= T I(v2) for any distinct v1, v2 ∈ V . If |V | ≥ 1, then we define the bouquet
(T I

V (w),≤w, dw) induced by w and V in I by taking:

T I
V (w) = {T I(w)} ∪ {T I(v) | v ∈ V },

T I(v1) ≤w T I(v2) iff dI(w, v1) ≤ dI(w, v2),

dw(T I(v)) =






a, if dI(w, v) = a ∈ P+(C),

a−, if dI(w, v) < a = min{b ∈ P+(C) | dI(w, v) ≤ b},

a−N , if dI(w, v) > aN−1.

Note that if we require a certain type T realised in I to be a member
of the bouquet then we can add to V a point v such that d(w, v) is minimal with T = T I(v)

and form the bouquet induced by w and V ∪ {v}. In particular, if I realises at least two
distinct types, then we can always find a set V such that w and V induce a bouquet.

Note also that the number of all bouquets is exponential in l(C).
In what follows we will only be working with models satisfying at least two distinct types,

because checking satisfiability of a concept in a model satisfying only one type reduces to the
case of pure Boolean concepts, which is decidable in NP.

Again we consider two cases.

Non-symmetric case. Let N be the set of nominals occurring in C. A set B of bouquets
is said to be nominal ready if there is a set {Tℓ | ℓ ∈ N} of types such that

B = {B | B is a bouquet, {ℓ} ∈ T ∈ TB implies T = Tℓ}.

Thus, every nominal ready set is determined by a certain set {Tℓ | ℓ ∈ N} of the size < l(C),
hence there exist only exponentially many in l(C) nominal ready sets.

Let k = l(C). As usual, {1, . . . , k}∗ denotes the set of all finite sequences of elements of
{1, . . . , k}. By the full k-ary tree over {1, . . . , k}∗ we mean the tree that contains the empty
sequence ǫ as its root, and the immediate successors (children) of each node α are precisely
the nodes αi, where 1 ≤ i ≤ k. Given some set L (of labels), a function K : {1, . . . , k}∗ → L
will be called an L-labelled tree over {1, . . . , k}∗.

A Hintikka tree satisfying C is a B-labelled tree K over {1, . . . , k}∗, for some nominal
ready set B of bouquets, such that the following conditions are satisfied (where, as before,
TK(α) denotes the unique ≤K(α)-minimal element of the set of types TK(α) in the bouquet
K(α)):

(H1) C ∈ TK(ǫ),

(H2) for every nominal ℓ ∈ N , there exists a type in K(ǫ) containing {ℓ},

(H3) for every α ∈ {1, . . . , k}∗, K(α) is a bouquet such that

TK(α) \ {TK(α)} = {TK(αi) | 1 ≤ i ≤ k},

and TK(α) ∈ TK(αi), for all 1 ≤ i ≤ k.
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Theorem 14. For every concept C, the following conditions are equivalent:

(a) C is satisfiable in a min-model with (tr) and at least two distinct types,

(b) there exists a Hintikka tree over {1, . . . , k}∗ satisfying C, where k = l(C).

Proof. (a) ⇒ (b) Suppose that CI 6= ∅ in some model I with the triangle inequality and at
least two distinct types. We define a Hintikka tree K satisfying C by induction as follows.
First take some w ∈ CI and set

K(ǫ) = (T I
V (w),≤w, dw),

where (T I
V (w),≤w, dw) is a bouquet induced by w and a suitable set V ⊆ W containing {ℓ}I

for all ℓ that occur in C.
Suppose now that we have already defined K(α), for some α ∈ {1, . . . , k}∗:

K(α) = (T I
Vα

(wα),≤wα , dwα),

where (T I
Vα

(wα),≤wα , dwα) is induced by wα and a suitable set Vα. For each j ∈ {1, . . . , k},
choose some wαj ∈ Vα so that Vα = {wα1, . . . , wαk}, and let

K(αj) = (T I
Vαj

(wαj),≤wαj
, dwαj

),

where (T I
Vαj

(wαj),≤wαj
, dwαj

) is the bouquet induced by wαj and a suitable set Vαj which

contains some v with T I(v) = T I(wα).
It is easy to see that the resulting K is a Hintikka tree satisfying C.

(b) ⇒ (a) Let K be a Hintikka tree over {1, . . . , k}∗ satisfying C. First we define a distance
space (∆0, d0) with the domain {1, . . . , k}∗ in the following way.

To begin with, take an arbitrary node α and define d0 for α and its successors α1, . . . , αk.
Let δ and ε0, . . . , εN be defined by (9). For every s ≤ N , let

Iα,s = {i | 1 ≤ i ≤ k, dK(α)(TK(αi)) = a−s }.

Then we choose ε(α,αi) ∈ (εs, 2εs), for all i ∈ Iα,s, in such way that

ε(α,αi) ≥ ε(α,αj) iff TK(αi) ≤K(α) TK(αj),

for all i, j ∈ Iα,s. Now define

d0(α,αi) =

{
a, if dK(α)(TK(αj)) = a ∈ P+(C),

a − ε(α,αj), if dK(α)(TK(αj)) = a− ∈ Q(C) \ P+(C).

Now we can extend d0 to the whole set ∆0 as follows. Let d0(α,α) = 0, d0(αi, α) = aN , and,
for every αj1 · · · jn,

d0(α,αj1 · · · jn) = d0(α,αj1) + · · · + d0(αj1 · · · jn−1, αj1 · · · jn),

d0(αj1 · · · jn, α) = d0(αj1 · · · jn, αj1 · · · jn−1) + · · · + d0(αj1, α).

Finally, for every two nodes αj1 · · · jn and αj′1 · · · j
′
n′ such that j1 6= j′1, we let

d0(αj1 · · · jn, αj′1 · · · j
′
n′) = d0(αj1 · · · jn, α) + d0(α,αj′1 · · · j

′
n′).
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One can easily see that

TK(αi) ≤K(α) TK(αj) iff d0(α,αi) ≤ d0(α,αj) (13)

for all α ∈ {1, . . . , k}∗ and 1 ≤ i, j ≤ k.
Finally, we define an interpretation I0 on the space (∆0, d0) by taking, for every concept

name A ∈ NC and every object name ℓ ∈ NO,

AI0 = {α ∈ {1, . . . , k}∗ | A ∈ TK(α)},

ℓI0 = {α ∈ {1, . . . , k}∗ | {ℓ} ∈ TK(α)}.

Observe that this interpretation is not ‘real’ because object names can be interpreted by
non-singleton sets, but let us forget about this for the moment.

Lemma 15. Let α, β ∈ {1, . . . , k}∗ and D ∈ TK(β), for some ∃D ∈ cl(C). Then either
D ∈ TK(α), or D ∈ TK(αj) and d0(α,αj) ≤ d0(α, β), for some j ∈ {1, . . . , k}.

Proof. First, using condition (B7), it is not hard to show by induction on the length of
α ∈ {1, . . . , k}∗ that

∃C ′ ∈ TK(α) iff ∃C ′ ∈ TK(ǫ),

for all ∃C ′ ∈ cl(C). Therefore, TK(α) contains ∃D.
If D ∈ TK(α) then we are done. Suppose that D /∈ TK(α). Then α 6= β and we can choose

j ∈ {1, . . . , k} such that d0(α,αj) is minimal with D ∈ TK(αj).
If β is not a successor of α then, by the definition of d0, d0(α,αi) < aN ≤ d0(α, β), as

required. So, let β = αj1 · · · jn and proceed by induction on n.

n = 1: This means that β = αj1, and we are done again.

n = 2: Let a = d0(α,αj), b = d0(α,αj1), c = d0(αj1, β), and r, s, t be such that

dK(α)(TK(αj)) ∈ {a−r , ar}, dK(α)(TK(αj1)) ∈ {a−s , as}, dK(αj1)(TK(β)) ∈ {a−t , at}.

We need to show a ≤ b + c. If ar < as + at then we have

b + c − a > (as + at − ar) − 2εs − 2εt ≥ δ − δ/2 − δ/2 = 0.

Therefore, we may assume that as + at ≤ ar, in particular s, t < r and as + at ∈ P+(C). Four
cases are possible now: b < as, c < at; b < as, c = at; b = as, c < at; and b = as, c = at.
As all of them are similar, and we only consider the second one as most demonstrative.

Since D ∈ TK(β), we have ∃≤atD ∈ TK(αj1) by (B6), whence ∃<as+atD ∈ TK(α) by (B8),
and dK(α)(TK(αj)) ≤ (as + at)

− in view of (B5) and by the choice of j. Thus, ar = as + at,
a = a−r , and

b + c − a > − 2εs − 2εt + εr ≥ 0,

since εr, εs ≤ εr/4.

n > 2: Let α′ = αj1. By the induction hypothesis, there exists j′ ∈ {1, . . . , k} such that
D ∈ TK(α′j′) and d0(α

′, α′j′) ≤ d0(α
′, β). Again by the induction hypothesis, there exists

j ∈ {1, . . . , k} such that D ∈ TK(αj) and d0(α,αj) ≤ d0(α,α′j′). Hence

d0(α,αj) ≤ d0(α,α′) + d0(α
′, α′j′) ≤ d0(α,α′) + d0(α

′, β) = d0(α, β),

according to the definition of d0.
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Lemma 16. For every D ∈ cl(C), we have α ∈ DI0 iff D ∈ TK(α).

Proof. The proof is by induction on the construction of D. The basis of induction and the
Boolean cases are trivial.

Case D = D0 ⇇ D1. Let α ∈ (D0 ⇇ D1)
I0 , i.e., d0(α,DI0

0 ) < d0(α,DI0

1 ). By Lemma 15,

d0(α,DI0

0 ) = d0(α,DI0

0 ∩ X), where X = {α} ∪ {αj | 1 ≤ j ≤ k}. (14)

Hence, there exists β ∈ DI0

0 ∩ X such that d0(α, β) < d0(α, β′) for all β′ ∈ DI0

1 ∩ X. By
the induction hypothesis and (13), this means that D0 ∈ TK(β) and TK(β) <K(α) T , for all
T ∈ TK(α) with D1 ∈ T . Thus D0 ⇇ D1 ∈ TK(α) by (B4).

For the converse, suppose D0 ⇇ D1 ∈ TK(α), i.e., by (B4), there exists T ∈ TK(α) such
that D0 ∈ T and T <K(α) T ′ for all T ′ ∈ TK(α) with D1 ∈ T ′. Let T = TK(α′) for some

α′ ∈ X. Then α′ ∈ DI0

0 by the induction hypothesis. If DI0

1 = ∅ then α ∈ (D0 ⇇ D1)
I0 holds

trivially. Let DI0

1 6= ∅. By Lemma 15, there is β′ ∈ DI0

1 ∩X such that d0(α,DI0

1 ) = d0(α, β′).
By the induction hypothesis, we have D1 ∈ TK(β′), and so TK(α′) <K(α) TK(β′), whence

d0(α,α′) < d0(α, β′) by (13). But then α ∈ (D0 ⇇ D1)
I0 by the choice of α′ and β′.

Case D = ∃<aD0. Let α ∈ (∃<aD0)
I0 , i.e., d0(α,DI0

0 ) < a. By Lemma 15, we have (14).
Hence there exists β ∈ DI0

0 ∩X such that d0(α, β) < a. By the induction hypothesis and the
definition of d0, we obtain that D0 ∈ TK(β) and dK(α)(TK(β)) ≤ a−. Thus ∃<aD0 ∈ TK(α) by
(B5).

For the converse, let ∃<aD0 ∈ TK(α), i.e., by (B4), dK(α)(T ) ≤ a− and D0 ∈ T for some

T ∈ TK(α). Let T = TK(α′) for some α′ ∈ X. Then α′ ∈ DI0

0 by the induction hypothesis,

and d0(α,α′) < a by the definition of d0. But then α ∈ (∃<aD0)
I0 .

Case D = ∃≤aD0 is similar to the previous one.

Thus, it remains to fix the problem with nominals, which can be done as follows. We apply
to the pseudo-interpretation I0 the ‘filtration’ procedure described in the proof of Theorem 4.
Since, by definition, the Hintikka tree K is labelled by a nominal ready set of bouquets and
since the filtration results in a model where each type can be realised only once, we then
obtain an SL-model satisfying C where each set of the form {ℓ} is interpreted by a singleton
set.

We are now in a position to prove the ExpTime upper bound by a reduction to the
emptiness problem for finite looping tree automata; see [36, 33]. Recall that a finite looping
tree automaton A for infinite k-ary trees is a quadruple (Σ, Q,Γ, Q0), where

• Σ is a (nonempty) finite alphabet,

• Q is a (nonempty) finite set of states of the automaton,

• Γ ⊆ Σ × Q × Qk is a transition relation,

• Q0 ⊆ Q is a (nonempty) set of start states of the automaton.

Let T be a Σ-labelled tree over {1, . . . , k}∗. A run of A on T is a function R : {1, . . . , k}∗ → Q
such that

• R(ǫ) ∈ Q0, and

•
(
T (α), R(α), (R(α1), . . . , R(αk))

)
∈ Γ for all nodes α of T .
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A accepts T if there exists a run R of A on T . The following emptiness problem for looping
automata is decidable in polynomial time [33]: given a looping automaton for k-ary trees,
decide whether the set of trees it accepts is empty.

To reduce the satisfiability problem for SL-concepts C in M, we associate with every
concept C and every nominal ready set B of bouquets for C a finite looping automaton
AB

C = (Σ, Q,Γ, Q0) which is defined as follows:

• Σ is the set of types occurring in bouquets from B,

• Q = B,

• Q0 = {B ∈ B | C ∈ TB, B contains a type containing ℓ, for every ℓ in C},

•
(
T,B0, (B1, . . . ,Bk)

)
∈ Γ iff TB0

= T , TB0
\{TB0

} = {TB1
, . . . , TBk

}, and TB0
∈ TBi

,
for 1 ≤ i ≤ k.

It follows immediately from Theorem 14 and the given definitions that the runs of AB
C on

Σ-labelled trees are exactly the B-labelled Hintikka trees satisfying C.

Lemma 17. A concept C is satisfiable in a min-model (with at least two types) iff there exists
a nominal ready set B such that AB

C accepts at least one tree.

As there are only exponentially many different nominal ready sets B and as AB
C is only

exponential in l(C), the satisfiability problem in min- (and finite) models which satisfy the
triangle inequality is decidable in ExpTime.

Symmetric case. The construction of the min-model in the proof of Theorem 14 cannot
be directly extended to the symmetric case because we had there d0(αi, α) = aN > d0(α,αi).
The straightforward idea of defining d0(αi, α) = d0(α,αi) could lead to the situation where
d0(α,αi) ≥ d0(αi, αij) ≥ d0(αij, αijk) ≥ . . . and infinitely many ≥ are actually >. The
corresponding metric model would not be then a min-model. Our first task is to guarantee
that such situations are impossible.

With each Hintikka tree K we associate a certain node-colouring c. The set of colours
is: inc (for increasing), const (for constant), and dec (for decreasing), and c is a map from
{1, . . . , k}∗ to {inc, const, dec} defined by the following rules. The root ǫ and its immediate
successors 1, . . . , k are coloured in the same way, say, c(ǫ) = c(1) = · · · = c(k) = inc. And for
every αij ∈ {1, . . . , k}∗ we set

c(αij) =






dec, if TK(αij) <K(αi) TK(α),

const, if TK(αij) ≃K(αi) TK(α),

inc, if TK(α) <K(αi) TK(αij).

We call K a min-tree if the following conditions hold:

(H4) dK(αi)(TK(α)) ≤ dK(α)(TK(αi)), for all α ∈ {1, . . . , k}∗ and 1 ≤ i ≤ k,

(H5) every branch with infinitely many dec nodes also contains infinitely many inc nodes.

Note first that we can obviously ‘prune’ Hintikka trees with ‘loops’ in the following sense:

27



Lemma 18. Let K be a Hintikka tree satisfying C, and let α0, α1, . . . , αn, αn+1 be a path in
K such that (K(α0),K(α1)) = (K(αn),K(αn+1)). For β ∈ {1, . . . , k}∗, let

K♯(β) = K(β♯), where β♯ =

{
αn+1β1, if β = α1β1 for some β1 6= ǫ,

β, otherwise.

Then K♯ is also a Hintikka tree satisfying C, and c♯(β) = c(β♯), for all β ∈ {1, . . . , k}∗, where
c♯ and c are the colourings of K♯ and K, respectively.

Let K be a Hintikka tree and α = (α1, . . . , αn) be a path in K. We say that α is a
descending path of degree m if c(α1), . . . , c(αn) ∈ {dec, const} and α contains exactly m nodes
coloured with dec.

Lemma 19. Let K be a min-tree over {1, . . . , k}∗ satisfying C. Let h = b2
C , where bC is the

number of all bouquets for C. Then there exists a min-tree H over {1, . . . , k}∗ satisfying C
and such that every descending path in H is of degree < h.

Proof. Call a descending path α0, . . . , αn+1 in K special if n > 1, c(α1) = c(αn+1) = dec, and
(K(α0),K(α1)) = (K(αn),K(αn+1)). We say that α0, . . . , αn+1 is maximal if no path of the
form α0, . . . , αr with r > n + 1 is special in K. In view of (H5), every special path in K is
contained in a maximal one.

We note also that every descending path β1, . . . , βl of degree ≥ h gives rise to some special
path. Indeed, let β0 be the immediate predecessor of β1. Since K(α) 6= K(αi) for all αi ∈
{1, . . . , k}∗, the number of possible combinations (K(βm−1),K(βm)) is less than h, i.e., less
than the number of βm with c(βm) = dec. Therefore (K(βm−1),K(βm)) = (K(βn−1),K(βn))
for some 1 ≤ m < n ≤ l with c(βm) = c(βn) = dec, i.e., βm−1, . . . , βn is a special path.

Let α0 be a node of minimal length in K that starts some special path. Let α0, . . . , αn+1

be a maximal special path. By pruning the tree as described in Lemma 18, we obtain a
min-tree K♯ satisfying C and such that no special path in K♯ can start with the pair α0, α1

or with a node shorter than α0. Indeed, suppose that α0, . . . , αm+1 is a special path in K♯.
Then

α0, α1, . . . , αn+1, α
♯
2, . . . α

♯
m, α♯

m+1

is a special path in K, contrary to the maximality assumption.
Suppose now that β0, . . . , βm+1 is a special path in K♯ such that β0 is shorter than α0.

If α1 = βl for some l ≤ m then we arrive to a contradiction in the same way as before.
Otherwise, we have β♯

l = βl for all l ≤ m+1. Hence β0, . . . , βm+1 is a special path in K itself,
and β0 is shorter than α0, which is again a contradiction.

Thus we can construct a sequence K0,K1,K2, . . . of min-trees satisfying C such that, for
all m < n in N and α ∈ {1, . . . , k}m,

K0 = K, Kn(α) = Km(α), Kn contains no special path starting with α.

Define a labelled tree H by taking

H(α) = Kn(α), whenever α ∈ {1, . . . , k}n,

for all n ∈ N. Then H is a min-tree satisfying C and containing no special paths, in particular,
no descending paths of degree ≥ h.
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We are now in a position to prove the following:

Theorem 20. For every concept C, the following conditions are equivalent:

(a) C is satisfiable in some metric min-model with at least two distinct types,

(b) there exists a min-tree satisfying C over {1, . . . , k}∗, where k = l(C).

Proof. (a) ⇒ (b) Suppose that CI 6= ∅ in some metric model I with at least two distinct types.
Let K be the Hintikka tree K constructed in the same way as in the proof of Theorem 14,
(a) ⇒ (b). We only need to show that (H4) and (H5) hold for K.

(H4) follows from the requirement TK(α) ∈ TK(αi) for all αi ∈ {1, . . . , k}∗ [see (H3)] and
the construction of bouquets.

Now suppose that (H5) does not hold, i.e., there exists a branch (αm | m ∈ N) in K
such that c(αm) ∈ {dec, const} for all m, and c(αm) = dec, for infinitely many m. As the set
{T I(αm) | m ∈ N} is finite and TK(αm) 6= TK(αm+1) for every m, we must have two distinct
types T, T ′ such that the set of pairs

X =
{
(αm, αm+1)

∣∣ (TK(αm), TK(αm+1)) = (T, T ′)
}

is infinite. For each m ∈ N, take the point wαm ∈ ∆I which induces the node αm. As I is
symmetric and by the construction of bouquets, we have d(wαm , wαm+1

) ≥ d(wαm+1
, wαm+2

)
whenever c(αm+2) = const, and d(wαm , wαm+1

) > d(wαm+1
, wαm+2

) whenever c(αm+2) = dec.
Now let Z ⊆ ∆I and Z ′ ⊆ ∆I be defined by

Z = {wαm | (αm, αm+1) ∈ X} and Z ′ = {wαm+1
| (αm, αm+1) ∈ X}.

As I is a min-model, there are points u ∈ Z and u′ ∈ Z ′ such that dI(u, u′) = dI(Z,Z ′). By
the definition of bouquets induced by points of I, we may assume that (u, u′) gives rise to a
(αr, αr+1) ∈ X. Now take some (αs, αs+1) ∈ X such that s > r and a dec node occurs between
αr and αs. Let v and v′ be the points from I inducing αs and αs+1. Since all αm, m ∈ N, are
dec or const nodes we come to the conclusion that dI(v, v′) < dI(u, u′) = dI(Z,Z ′), which is
a contradiction.

(b) ⇒ (a) Let K be a min-tree satisfying C. In view of Lemma 19, we can assume that
every descending path in K is of degree < h = b2

C .
Define a metric space (∆1, d1) over {1, . . . , k}∗ in the following way. First, we introduce

d1 for every node and its successors by induction. Let δ and ε0, . . . , εN be defined by (9). For
every s ≤ N , let Es be an arbitrary fixed subset of (εs, 2εs) of cardinality h · k, and let Fs be
a countable subset of (εs,min Es) with the order type of the negative integers.

For every α ∈ {1, . . . , k}∗, set

Iα,s = {i | 1 ≤ i ≤ k, dK(α)(TK(αi)) = a−s }.

For every s ≤ N , choose ε(ǫ, i) ∈ Fs, for i ∈ Iǫ,s, in such a way that

ε(ǫ, i) ≥ ε(ǫ, j) iff TK(i) ≤K(ǫ) TK(j),

for all i, j ∈ Iǫ,s. Then we define

d1(ǫ, i) =

{
a, if dK(ǫ)(TK(j)) = a ∈ P+(C),

a − ε(ǫ, j), if dK(ǫ)(TK(j)) = a− ∈ Q(C) \ P+(C).

Now suppose that d1(α
′, α) is already defined, where α′ is the immediate predecessor of α.

For all s ≤ N , choose ε(α,αi) ∈ Es ∪ Fs, for i ∈ Iα,s, satisfying the following conditions:
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(D1) if c(αi) = const and d1(α
′, α) ≥ as, then ε(α,αi) ∈ Fs,

(D2) if c(αi) = const and d1(α
′, α) < as, then ε(α,αi) = ε(α′, α) = as − d1(α

′, α),

(D3) if c(αi) = inc, then ε(α,αi) ∈ Fs,

(D4) if c(αi) = dec, then

ε(α,αi) = min{x ∈ Es | x > ε(α,αj), for all j ∈ Iα,s with TK(αi) <K(α) TK(αj)},

(D5) ε(α,αi) ≥ ε(α,αj) iff TK(αi) ≤K(α) TK(αj), for all i, j ∈ Iα,s.

The next lemma shows that the sets Es are large enough to satisfy these conditions.

Lemma 21. Let ε(α,αi) ∈ Es, for some αi ∈ {1, . . . , k} and s ≤ N . Then αi is the end of
some descending path of positive degree. Let m be degree of the longest such path, and E(αi)
denote the set {x ∈ Es | x ≤ ε(α,αi)}. Then |E(αi)| ≤ m · k.

Proof. Note first that α cannot be empty, since ε(α,αi) /∈ Fs. Let α′ be the immediate
predecessor of α.

Claim 1. Let α1, . . . , αn+1 be a path such that αn+1 = αi and c(α1) 6= const = c(αm), for all
2 ≤ m ≤ n+1. Then c(α1) = dec and ε(αm, αm+1) = ε(α,αi), for all m < n.

The proof is by induction on n.

Case n = 0: then c(αi) 6= const. But c(αi) = inc implies ε(α,αi) ∈ Fs, contrary to
ε(α,αi) ∈ Es. Hence c(αi) = dec, as required.

Case n > 0: then c(αi) = const, i.e., TK(αi) ≃K(α) TK(α′). By applying (B2) and (H4) we
obtain a−s = dK(α)(TK(αi)) = dK(α)(TK(α′)) ≤ dK(α′)(TK(α)). So we have either d1(α

′, α) ≥ as,
or d1(α

′, α) = as − ε(α′, α). In the former case we obtain ε(α,αi) ∈ Fs by (D1), contrary to
ε(α,αi) ∈ Es. Therefore ε(α,αi) = ε(α′, α) by (D2), i.e., ε(α′, α) ∈ Es, and we are done by
the induction hypothesis (note that α′ = αn−1).

Claim 2. Let E′(αi) = {x ∈ Es | as − d1(α
′, α) < x ≤ ε(α,αi)}. Then |E′(αi)| ≤ k.

In view of Claim 1, we have c(αi) ∈ {dec, const}. Suppose that c(αi) = const. Then, again
by Claim 1, we obtain that as − d1(α,α′) = ε(α′, α) = ε(α,αi), i.e., |E′(αi)| = 0.

We assume therefore that c(αi) = dec. Then TK(α′) <K(α) TK(αi) and by applying (B2)
and (H4) we obtain a−s = dK(α)(TK(αi)) ≤ dK(α)(TK(α′)) ≤ dK(α′)(TK(α)). So we have either
d1(α

′, α) ≥ as or d1(α
′, α) = as − ε(α′, α).

Consider first the case d1(α
′, α) ≥ as. Then, for all j ∈ Iα,s such that c(αj) ∈ {const, inc},

we obtain ε(α,αj) ∈ Fs by (D1) or (D3). Let

{j ∈ Iα,s | c(αj) = dec} = {j1, . . . , jl}, where TK(αjr) ≤K(α) TK(αjs) for r ≤ s. (15)

Then, in view of (D4), we obtain

ε(α,αj1) = min Es,

ε(α,αjr+1) = ε(α,αjr) or min{x ∈ Es | x > ε(α,αjr)}, for all r < l.

Therefore, |E′(αi)| ≤ |Iα,s| ≤ k.
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Suppose now that d1(α
′, α) = as−ε(α′, α). Then, for all j ∈ Iα,s with c(αj) ∈ {const, inc},

we have TK(αi) ≤K(α) TK(α′), and so ε(α′, α) ≥ ε(α,αj) by (D5). Consider again (15). Then,
in view of (D4), we obtain

ε(α,αj1) = min{x ∈ Es | x > ε(α′, α)},

ε(α,αjr+1) = ε(α,αjr) or min{x ∈ Es | x > ε(α,αjr)}, for all r < l.

Therefore, |E′(αi)| ≤ |Iα,s| ≤ k.

Let us now return to the proof of Lemma 21. In view of Claim 1, we can consider the
longest descending path α0, . . . , αn+1 with αn+1 = αi. We prove |E(αi)| ≤ m ·k by induction
on n.

Case n = 0: then c(α) = inc and, in view of Claim 1, c(αi) = dec, i.e., m = 1. As before,
we have either d1(α

′, α) ≥ as or d1(α
′, α) = as − ε(α′, α). And since c(α) = inc, we have

ε(α′, α) ∈ Fs in the latter case by (D5). Therefore, in any case, as − d1(α
′, α) < x for all

x ∈ Es. We obtain |E(αi)| ≤ k ≤ m · k by Claim 2.

Case n > 0: then c(αi) ∈ {dec, const} and m ≥ 1 by Claim 1. Suppose first that
c(αi) = const. Then, in view of Claim 1, E(αi) = E(α) and the degree of the longest
descending path which ends at α is m as well. We obtain |E(αi)| ≤ m · k by the induction
hypothesis.

Suppose now that c(αi) = dec. Then, as before, we have either d1(α
′, α) ≥ as or

d1(α
′, α) = as − ε(α′, α). If d1(α

′, α) ≥ as or ε(α′, α) ∈ Fs, then E(αi) = E′(αi), and so
|E(αi)| ≤ k(≤ m · k) by Claim 2. Assume therefore that d1(α

′, α) = as − ε(α′, α), where
ε(α′, α) ∈ Es. Then the longest descending path with the end α is of degree m − 1. Hence
|E(α)| ≤ (m − 1)k by the induction hypothesis, and |E′(αi)| ≤ k by Claim 2. Finally, we
obtain |E(αi)| = |E(α) ∪ E′(αi)| ≤ m · k.

Thus, we can set

d1(α,αi) =

{
a, if dK(α)(TK(αj)) = a ∈ P+(Σ),

a − ε(α,αj), if dK(α)(TK(αj)) = a− ∈ Q(C) \ P+(Σ).

It is not hard to see that

TK(αi) ≤K(α) TK(αj) iff d1(α,αi) ≤ d1(α,αj) (16)

for all α ∈ {1, . . . , k}∗ and 1 ≤ i, j ≤ k.
We extend d1 to the whole tree K as follows. Let d1(α,α) = 0 and, for every node

αj1 · · · jn,
d1(α,αj1 · · · jn) = d1(α,αj1) + · · · + d1(αj1 · · · jn−1, αj1 · · · jn).

Finally, for every two nodes αj1 · · · jn and αj′1 · · · j
′
n′ such that j1 6= j′1 we let

d1(αj1 · · · jn, αj′1 · · · j
′
n′) = d1(α,αj1 · · · jn) + d1(α,αj′1 · · · j

′
n′).

All the remaining distances are defined by symmetry.
Now we can we define an interpretation I1 on the space (∆1, d1) by taking, for every

concept name A ∈ NC and every object name ℓ ∈ NO,

AI1 = {α ∈ {1, . . . , k}∗ | A ∈ TK(α)},

ℓI1 = {α ∈ {1, . . . , k}∗ | {ℓ} ∈ TK(α)}.
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Observe that, as before, this interpretation is not ‘real’ because object names can be inter-
preted by non-singleton sets, but let us forget about this for the moment.

Lemma 22. Let α, β ∈ {1, . . . , k}∗ and D ∈ TK(β), for some ∃D ∈ cl(C). Then either
D ∈ TK(α), or D ∈ TK(αj) and d1(α,αj) ≤ d1(α, β), for some j ∈ {1, . . . , k}.

Proof. First, using condition (B7), it is not hard to show by induction on the length of
α ∈ {1, . . . , k}∗ that

∃C ′ ∈ TK(α) iff ∃C ′ ∈ TK(ǫ),

for all ∃C ′ ∈ cl(C). Therefore TK(α) contains ∃D.
If D ∈ TK(α) then we are done. So suppose that D /∈ TK(α). Then α 6= β and there is

j ∈ {1, . . . , k} such that D ∈ TK(αj).
Let α = γi1 . . . im and β = γj1 . . . jn. We proceed by induction on m + n.

m = 0, n = 1: this means that β = αj1, and so we are done again.

m = 1, n = 0: this means that α = βi1, and so TK(β) ∈ TK(α) by (H3). Take j ∈ {1, . . . , k}
such that TK(αj) = TK(β). Then c(αj) = const, and hence d1(α,αj) ≤ d1(α, β) by (D1) or
(D2), as required.

m = 1, n = 1: choose j ∈ {1, . . . , k} such that d1(α,αj) is minimal with D ∈ TK(αj). Let
a = d0(α,αj), b = d0(γ, α), c = d0(γ, β), and r, s, t be such that

dK(α)(TK(αj)) ∈ {a−r , ar}, dK(γ)(TK(α)) ∈ {a−s , as}, dK(γ)(TK(β)) ∈ {a−t , at}.

We need to show that a ≤ b + c. If ar < as + at then we have

b + c − a > (as + at − ar) − 2εs − 2εt ≥ δ − δ/2 − δ/2 = 0.

Therefore, we may assume that as + at ≤ ar, in particular s, t < r and as + at ∈ P+(C).
Four cases are possible now: b < as, c < at; b < as, c = at; b = as, c < at; and b = as,
c = at. As all of them are similar, and we only consider the second one, which is the most
demonstrative.

Note first that dK(α)(TK(γ)) ≤ a−s by (H4). Now, since D ∈ TK(β), we have ∃≤atD ∈
TK(γ) by (B6), whence ∃<as+atD ∈ TK(α) by (B8) and the observation above. Therefore,
dK(α)(TK(αj)) ≤ (as + at)

− by (B5) and the choice of j. Thus, ar = as + at, a = a−r , and

b + c − a > − 2εs − 2εt + εr ≥ 0,

since εr, εs ≤ εr/4.

The case m = 2, n = 0 is considered similarly to the previous one, while the case m = 0,
n = 2 remains the same as in the non-symmetric case.

m > 2: Let α′ = γi1 . . . im−1. By the induction hypothesis, there exists j′ ∈ {1, . . . , k}
such that D ∈ TK(α′j′) and d1(α

′, α′j′) ≤ d1(α
′, β). Again by the induction hypothesis, there

exists j ∈ {1, . . . , k} such that D ∈ TK(αj) and d1(α,αj) ≤ d1(α,α′j′). Hence

d1(α,αj) ≤ d1(α,α′) + d1(α
′, α′j′) ≤ d1(α,α′) + d1(α

′, β) = d1(α, β),

by the definition of d1.

The case n > 2 is similar.
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Lemma 23. For every D ∈ cl(C), we have α ∈ DI1 iff D ∈ TK(α)

Proof. The proof is similar to the proof of Lemma 16.

Thus, it remains to fix the problem with nominals, which can be done as follows. We apply
to the pseudo-interpretation I1 the ‘filtration’ procedure described in the proof of Theorem 4.
Since, by definition, the min-tree K is labelled by a nominal ready set of bouquets and since
the filtration results in a model where each type can be realised only once, we then obtain an
SL-model satisfying C where each set of the form {ℓ} is interpreted by a singleton set.

A single complemented pair automaton A on infinite k-ary trees is a tuple (Σ, Q,Γ, Q0, F ),
where

• (Σ, Q,Γ, Q0) is a looping tree automaton as defined above,

• F is a pair of disjoint sets of states from Q; it will be convenient for us to assume that
F = (dec, inc) and dec, inc ⊆ Q.

A accepts a Σ-labelled tree T over {1, . . . , k}∗ iff there exists a run R of A on T such that, for
every path i0i1 . . . in T , if R(i0i1 . . . ij) ∈ dec for infinitely many j, then R(i0i1 . . . ij) ∈ inc

for infinitely many j as well.
As was shown in [8], the emptiness problem for single complemented pair automata is

decidable in polynomial time. We show now how to reduce the satisfiability problem for
SL-concepts in symmetric models to the emptiness problem for these automata.

A coloured C-bouquet is a pair (B, c) where B = (TB,≤B, dB) is a bouquet for C and c
is a function from TB to {dec, inc, const}.

With every concept C and every nominal ready set B of coloured C-bouquets we associate
a single complemented pair automaton AB

C = (Σ, Q,∆, Q0, F ) by taking

• Σ to be the set of types occurring in coloured bouquets of B,

• Q = B,

• Q0 = {(B, c) ∈ B | C ∈ TB, B contains a type with ℓ for every ℓ in τ},

• dec = {(B, c) ∈ B | c(TB) = dec},

• inc = {(B, c) ∈ B | c(TB) = inc},

•
(
T, (B0, c0), (B1, c1), . . . , (Bk, ck)) ∈ Γ iff TB0

= T , TB0
\ {TB0

} = {TB1
, . . . , TBk

},
TB0

∈ TBi
, ci(TBi

) = c0(TBi
), and dBi

(TB0
) ≤ dB0

(TBi
) for 1 ≤ i ≤ k, and for all

T ′ ∈ TBi
\ {TBi

},

– ci(T
′) = inc iff T <Bi

T ′,

– ci(T
′) = const iff T ′ ∼Bi

T ,

– ci(T
′) = dec iff T ′ <Bi

T .

It follows immediately from Theorem 20 and the given definitions that the runs of AB
C on

Σ-labelled trees are exactly the B-labelled Hintikka-trees satisfying C.

Lemma 24. A concept C is satisfiable in a symmetric min-model (with at least two distinct
types) iff there exists a nominal ready set B of coloured C-bouquets such that AB

C accepts at
least one tree.

As there are only exponentially many different nominal ready sets B of coloured C-
bouquets and as AB

C is only exponential in l(C), the satisfiability problem in symmetric
min-models is decidable in ExpTime.
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4.4 Proof of Theorem 3 (ii)

As in the proof of Theorem 3 (iii), we show this result for types over an SL-concept C rather
than types over a knowledge base Σ. Suppose that a set T of types over a concept C is given.
We first consider the problem of checking realisability in a min-space satisfying the triangle
inequality (but not necessarily symmetric).

Denote by B the set of bouquets for C with types from T . For every T0 ∈ T construct a
finite looping automaton AT0

= (Σ, Q,Γ, Q0) as follows:

• Σ is the set T ,

• Q = B,

• Q0 = {B ∈ B | T0 ∈ TB},

•
(
T,B0, (B1, . . . ,Bk)

)
∈ Γ iff TB0

= T , TB0
\ {TB0

} = {TB1
, . . . , TBk

}, and TB0
∈ TBi

,
for 1 ≤ i ≤ k.

Now the decision procedure runs as follows:

• Check whether T is nominal ready in the sense that for each ℓ in C there exists only
one T ∈ T such that {ℓ} ∈ T . If this is not case, then T is not realisable. Otherwise
we go to the next step.

• Check whether for each ∃D ∈ cl(C), if there exists T ∈ T such that ∃D ∈ T , then
∃D ∈ T ′ for all T ′ ∈ T . If this is not the case, then T is not realisable. Otherwise we
go to the next step.

• Check, for each T ∈ T , whether (i) T is satisfied in a min-model with one point or
(ii) AT accepts at least one tree. If (i) or (ii) hold for all T ∈ T , then T is realisable.
Otherwise it is not realisable.

It follows immediately from our previous results that if this procedure states that T is not
realisable, then T is not realisable indeed. Moreover, the procedure clearly terminates after
exponentially many steps. Now suppose that the procedure claims that T is realisable. By
the definition of AT , for each T ∈ T there exists a min-model IT which realises a subset of
T containing T . In view of the finite model property we can assume all these models to be
finite.

We first construct a ‘disjoint union’ I of the models IT , T ∈ T , as follows. Take

d = max{dIT (u, v) | u, v ∈ ∆IT , T ∈ T },

and then define

∆I =
⋃{

∆IT × {T} | T ∈ T
}
,

dI
(
(u, T ), (v, T ′)

)
=

{
dIT (u, v), if T = T ′,

d + 1, if T 6= T ′,

ℓI =
{
(ℓIT , T ) | T ∈ T

}
, for every object name ℓ,

AI =
⋃

{AIT × {T} | T ∈ T }, for every concept name A.

It is not hard to check that I is a min-model with (tr) which satisfies exactly the types from
T . However, the object names may be interpreted by non-singleton sets in I. Therefore we
apply to I the ‘filtration’ procedure above to construct the required model I.
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Let us now consider the problem of realisability in metric min-spaces. Denote by B′ the set
of coloured bouquets with types from T . For every T0 ∈ T construct a single complemented
pair automaton A′

T0
= (Σ, Q,Γ, Q0, F ) as follows:

• Σ is the set T ,

• Q = B′,

• Q0 = {(B, c) ∈ B′ | T0 ∈ TB},

• dec = {(B, c) ∈ B | c(TB) = dec},

• inc = {(B, c) ∈ B | c(TB) = inc},

•
(
T, (B0, c0), (B1, c1), . . . , (Bk, ck)) ∈ Γ iff TB0

= T , TB0
\ {TB0

} = {TB1
, . . . , TBk

},
TB0

∈ TBi
, ci(TBi

) = c0(TBi
), and dBi

(TB0
) ≤ dB0

(TBi
) for 1 ≤ i ≤ k, and for all

T ′ ∈ TBi
\ {TBi

},

– ci(T
′) = inc iff T <Bi

T ′,

– ci(T
′) = const iff T ′ ∼Bi

T ,

– ci(T
′) = dec iff T ′ <Bi

T .

Then the decision procedure is the same as above, but with AT replaced by A′
T .

5 Related logics

The operator ⇇ of the fragment CSL of SL without the absolute distance operators ∃<a and
∃≤a is closely related to the ‘implication’ > of conditional logics. According to Lewis’ [18]
semantics for conditionals, propositions are interpreted in a set W of possible worlds which
come together with orderings �w ⊆ W ×W , for w ∈ W , which can be understood as follows:
w′ �w w′′ if w′ is more similar or closer to w than w′′. A formula C > D is true at w iff,
for every �w-minimal v with v |= C, we have v |= D. Various authors (see, for example,
[7, 29]) have considered the case where the relations �w are induced by min-spaces (∆, d) (in
conditional logic, the requirement (min) is often called the limit assumption) by setting

w′ �w w′′ iff d(w,w′) ≤ d(w,w′′).

Under this interpretation the operators ⇇ and > have exactly the same expressive power: for
every min-model I = (∆I , dI , AI

1 , AI
2 , . . . ) we have

(A1 > A2)
I = ((A1 ⇇ (A1 ⊓ ¬A2)) ⊔ ∀¬A1)

I

(recall that the universal modality ∀ is definable using ⇇) and, conversely,

(A1 ⇇ A2)
I = (((A1 ⊔ A2) > A1) ⊓ (A1 > ¬A2) ⊓ ¬(A1 > ⊥))I .

Relations �w induced by symmetric distance spaces have not been considered in the con-
ditional logic literature. According to the classification of [9], our (nominal-free) logic of
arbitrary min-spaces corresponds to the conditional logic of frames satisfying the normal-
ity, reflexivity, strict centering, uniformity and connectedness condition. In particular, the
ExpTime upper bound for the nominal-free fragment of CSL over arbitrary min-models, was
obtained before in [9] in the framework of conditional logic.
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The requirement (min) on distance spaces is crucial for the complexity results obtained
for SL and CSL. Observe that in arbitrary metric models the operator 2 defined by taking
2C = (⊤ ⇇ ¬C) actually corresponds to the interior operator of the induced topology.
Thus, CSL contains the full logic S4u of topological spaces, and so can be used for spatial
representation and reasoning (see, e.g., [6]). The topological aspects of CSL will be considered
elsewhere. It will also be shown that even the nominal-free fragment of CSL is undecidable
when interpreted over R, Q, Z or their finite subspaces. The proof is by reduction of the
decision problem for Diophantine equations (Hilbert’s 10th problem).

The integration of description logic and similarity logic presented in this paper is closely
related to the well-established construction of adding concrete domains to description logics
[3, 20, 21, 13]. From the expressiveness point of view, the main difference between our
approach and the concrete domain approach is that in our integration the domains of the
similarity spaces are part of the ‘abstract’ domain of the description logic, whereas concrete
domains are separated from the abstract domain interpreting the description logic concepts
and roles. Thus, in contrast to concrete domains we can, for example, attach attributes and
properties to elements of the similarity spaces (in the example from the introduction, we
introduced the role has taste descriptor). The computational behaviour of DLs with concrete
domains is in general much worse compared to the results above: even rather weak languages
for the concrete domain can result in undecidable logics. Needless to say, however, that the
concrete domain approach is considerably more generic and applies to various formalisms
which we cannot cover.
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