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Abstract 
Classical logic Event Calculus, and the special purpose logical action language E, are both well established formalisms 
for describing actions and change. However, there is yet to be an account of ramifications in Event Calculus 
sufficiently general to represent the classes of domains expressible in E. Indeed, an adequately general ramification 
theory constructed in any general purpose logical language still awaits. Therefore, under the motivation of creating 
a flexible ramification theory in a universal language, suitable for integration into a rich action theory, a new 
enhanced version of classical logic Event Calculus named EC-R is proposed. EC-R supports representation and 
reasoning about domains containing ramifications for classes of domains more general than those possible under 
previous general purpose language formulations. 
This article makes two main contributions. The first, EC-R, is a narrative-based action formalism able to represent 
concurrent events, non-deterministic actions and indirect causal effects by virtue of an integrated solution to the 
frame and ramification problems. The formalism can reason about significant subclasses of domains containing both 
mutually interacting effects and cyclic causal dependencies. The formalism is elaboration tolerant and may be 
integrated with the standard variants of the Event Calculus. The second contribution is the definition of a semantic 
mapping between EC-R and E, and a proof of soundness and completeness of the EC-R theory with respect to E’s 
model theoretic specification. 

Keywords: Event calculus, ramifications, action language, narrative. 

1 Introduction 

This article develops a new enhanced version of classical Logic Event Calculus (EC-R) which 
is able to represent and reason about wide classes of domains involving indirect causal effects 
(ramifications). An equivalence is then shown between a particular instantiation of EC-R and 
the action language E’s semantic specification. EC-R generalizes the ramifications formalism 
in [1] by accepting domains with concurrent and non-deterministic actions and cyclic fluent 
causal dependencies such as the Gearwheel domain (shown in an example later). We have 
used E as a high level semantic specification for EC-R, and we thereby build upon the work on 
action languages in [30] and [32] as directly as possible. 

EC-R is a modular enhancement over previous versions of the Event Calculus, and may be 
instantiated with several existing axiom sets designed for particular domain classes. 
The soundness and completeness results for EC-R given subsequently do not limit EC-R’s 
application to only those domains expressible in E—EC-R is written in standard classical logic 
and this gives it an advantage in terms of ease of modification and extendibility. 
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Event Calculus narrative-based principles for reasoning about action have been 
expressed in a number of different logical frameworks. The original implementation [33] 
is formalized in logic programming. A classical logic-based EC has been developed by [56, 57], 
while [31] developed an argumentation-based variant. All versions of the formalism 
are connected by the same ontology, in which events act upon fluents within an 
independently defined time structure. However, default maintenance of persistence is 
achieved using different styles of non-monotonic reasoning: negation as failure, circumscrip­

tion and argumentation, respectively. The notion of an ‘Event’ is a general label for 
an occurrence of change, which may be due to an action performed, external stimulus or 
by chance. 

Language E, introduced in [29], and [30], is a specialized custom propositional logical 
language designed for the purpose of representing and reasoning about actions and change for 
a general class of causal ramification domain. It is based on an Event Calculus style narrative 
ontology of events (or actions), fluents and a time line. It gains its value through the succinct 
representation of knowledge about such domains, and a simple intuitively clear high-level 
semantics. While this ‘action language’ methodology does not hold well for all domain classes, 
and tends to break down for more difficult problems, it has proved useful for the classes of 
ramification domains discussed here. See [20, 38] for discussion about action language 
motivation and design. 

Ramifications are regarded here in a similar way to that proposed originally by 
Finger in [16] as the implicit effects of actions. Finger characterized the ramification 
problem as being a potentially ‘unbounded number of post-requisites’, or an unbounded 
number of consequential effects of an action. The wish is to be able to reason about 
such a large number of implicit effects of an action without the requirement for either 
the domain axiomatization or the reasoning system to enumerate them exhaustively. 
The means of defining explicitly only the most immediate effects of an action and 
efficiently defining secondary effects through constraints may form the essence of a 
solution to the ramification problem, provided that the design places no requirement on 
the reasoning system to enumerate any more implicit effects than are needed for the 
immediate reasoning task. 
There have been several different solutions developed in the literature for reasoning about 

ramifications using the Event Calculus (see [59] for a discussion). However, each variant has 
tackled only a relatively narrow class of problem. EC-R has been designed to correctly 
represent all the domains expressible in [59] as well as classes of domains which give rise to 
inconsistency and/or anomalous models in the previous general-purpose language-based 
action frameworks. This article demonstrates that by a structured extension of the principle 
of causality already embedded within EC, ramifications can be expressed by restricting 
changes to solely those propagated by causal effects. 
The most straightforward of methods used to represent ramifications is to specify state 

constraints [16, 47] (sometimes referred to by the more general term of domain constraint) 
to exist between fluents. This has the effect of making one fluent’s value dependent on 
the value of one or more other fluents. However, when a fluent is dependent on two or 
more other fluents, state constraints alone are insufficient to provide an unambiguous 
determination of the dependent fluent’s value. State constraints may potentially determine 
that one of a given set of fluent state changes must be consequential, but not say which one. 
Augmenting to state constraints the requirement that any change be directly caused by some 
action eliminates the ambiguity inherent in state constraints. It may be noted however, 
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that such an addition of the principle of causality does not render state constraints redundant. 
To see their necessity, it is sufficient to consider a domain description where no actions have 
yet taken place. 

Causality has usually been seen as a primitive atomic concept describing an interconnection 
of domain variables in terms of the effect of one upon another. The existence of a causal 
effect relation is an assumption that derives its value from a power of prediction over 
future domain behaviour. Causality was introduced into action theories by [26, 36] and 
further developed by [40, 44, 62]. [26, 60] describe methods for inferring such causality 
relation assumptions from observations taken from a physical system. Causal change can 
exist in two main forms: event triggered causation and (implicit event) fluent-triggered 
causation. Causality may be represented formally as a predicate (as we choose in this article) 
or alternatively as a modal operator, see e.g. [44]. 

The language E provides an account of ramifications based on a fixed point 
characterization. The conditions under which a least fixed point exists often reflect the 
circumstances under which a domain description makes intuitive sense from a physical 
causality point of view. In what follows, we make use of the well-known technical relationship 
between existence of fixed points and stratification. It may be useful to note that EC-R’s 
method of stratification by causal predicate (as described below), rather than by other means 
(e.g. by fluent) allows it to be applied to wider classes of domains than other formalisms also 
based upon a general purpose logic such as [45]. 

This article is organized as follows. In Section 2 we recap the syntax and semantics of the 
language E. Standard Event Calculus is recited in Section 3, rewritten in terms of causation 
points. The new EC-R theory is presented in Section 4, where different classes of ramification 
domains are also discussed. Section 5 gives two example axiomatizations of significant 
benchmark EC-R domains. Section 6 states the semantic definition of causation points and 
makes reference to a Least Fixed Point Logic definition in appendix, and uses this to prove 
a correspondence between EC-R and E. Section 7 relates EC-R to specific recent works, 
Section 8 addresses details of EC-R in relation to wider challenges in the field and Section 9 
summarizes and concludes the article. 

In the following, we make frequent use of electronic logic circuits as canonical examples of 
domain classes. We have found this to be a rich and intuitive source of domains requiring 
commonsense reasoning. The circuits give a good graphical representation of causal relations, 
and it is often possible to draw a circuit isomorphic to any practical commonsense real-world 
domain. 

2 Language E 

The basic definition of language E is reproduced here, taken mainly from [30]. Some 
modifications have been made to the structure of definitions to be more suitable for 
translation later on. 

2.1 Syntax of E 

E makes use of a set of fluent constants and a set of action constants along with the notion 
of the progression of time, represented using an ordering relation on a set of time points. 
Definitions 1–7 capture the syntax of the language. 



642 Ramifications in Event Calculus 

DEFINITION 1 (Domain Language)

A domain language for E is a tuple h�, � , �, �i, where � is a partial (possibly total)

ordering defined on the non-empty set � of time points, � is a non-empty set of action

constants, and � is a non-empty set of fluent constants.


DEFINITION 2 (Fluent literal)

A fluent literal L of E is an expression either of the form F or of the form :F,

where F 2 �.


DEFINITION 3 (h-propositions)

An h-proposition in E is an expression of the form


A happens-at T 

where A 2 � and T 2 �. 

DEFINITION 4 (t-propositions)

A t-proposition in E is an expression of the form


L holds-at T 

where L is a fluent literal of E, and T 2 �. 

DEFINITION 5 (c-propositions)

A c-proposition in E is an expression of the form


A initiates F when C 

or alternatively of the form 

A terminates F when C 

where F 2 �, A 2 � and C is a set of fluent literals of E. 

The definitions given so far are sufficient for defining simple domains without ramifications.

Definition 6 is needed to extend the basic language to cover cases where causal dependency

relations exist between fluents. A full domain description in terms of Definitions 1–6 is then

possible in Definition 7.


DEFINITION 6 (r-propositions)

An r-proposition in E is an expression of the form


L whenever C 

where L is a fluent literal, and C is a set of fluent literals of E.


DEFINITION 7 (Domain description)

A domain description in E is defined as the tuple h�, �, �, �i where � is a set of

r-propositions, � is a set of c-propositions, � is a set of h-propositions, � is a set of

t-propositions.
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In2 

FIGURE 1. Ternary ramification domain D1 at time 1 

2.2 Example E domain 

A ramification domain example of an electronic circuit is shown in Figure 1. It is constructed 
using a logical NAND and an AND gate. 

The E domain description for this circuit is as follows. 

:In1 holds-at 1 (Ex1.1) 
In2 holds-at 1 (Ex1.2) 

Close1 happens-at 3 (Ex1.3)

Open2 happens-at 5 (Ex1.4)


Close1 initiates In1 (Ex1.5)

Close2 initiates In2 (Ex1.6)


Open1 terminates In1 (Ex1.7) 
Open2 terminates In2 (Ex1.8) 

:In3 whenever fIn1, In2 (Ex1.9) 
In3 whenever f:In1

g 

(Ex1.10) 
In3 whenever f:In2

g 

(Ex1.11)g 

Light whenever fIn1, In3 (Ex1.12) 
:Light whenever f:In1

g 

(Ex1.13) 
:Light whenever f:In3

g

g (Ex1.14) 

Using whenever statements (Ex1.12–1.14) and appropriate fluent literals, both the ‘if ’ aspect 
of logical AND gate modelling is captured as well as the ‘only-if ’ behavior. (Ex1.13–1.14) 
specify what resemble ‘contrapositive’ conditions. The NAND gate is represented in a similar 
fashion to the AND gate (Ex1.9–1.11), with appropriate changes to causation polarity. 
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2.3 Semantics of language E 

E’s semantics are based on definitions of interpretations and models. Interpretations are 
defined as mappings of fluent, time-point pairs to true or false, representing the fluents 
holding or not holding, respectively at that time point (Definition 8). An interpretation 
satisfies a set of fluent literals at a time point if it assigns the relevant truth values to each of 
the corresponding fluent constants (Definition 9). 

DEFINITION 8 (Interpretation)

An interpretation of the language E is defined as a mapping


H : ��� 7! ftrue, falseg 

DEFINITION 9 (Point satisfaction)

Given a set of fluent literals C of E and a time point T 2 �, an interpretation H satisfies C

at T iff HðF, TÞ ¼ true for each fluent constant F 2 C, and HðF 0, TÞ ¼ false for each fluent

literal :F 0 2 C.


The semantics identifies which interpretations are models via the notion of initiation

and termination points, which we also refer to here together as causation points.

Causation points are defined to include both the possibility of fluents being directly

affected by events through c-propositions, and also indirectly affected by other

fluents through r-propositions. Intuitively, in order to find time points at which a fluent literal

L is triggered via the r-proposition L whenever C, we must look for time points at which one or

more of the conditions in C becomes established, and the remaining conditions are already

satisfied. This needs to be done recursively in order to capture effects via chains of

r-propositions, and the semantics must ensure that conditions already satisfied are not about

to change through further indirect effects (triggered at the same time point).


Definition 10 (below) uses a fixed point notion to capture these intuitions. The structure of 
Definition 10 has been modified from that in [30] due to our later formalization in Least Fixed 
Point Logic in appendix. Least Fixed Point Logic is useful in two respects. First, it provides 
an existing framework into which E’s semantic conditions can be inserted, resulting in a 
rigorous definition of the least fixed point. Secondly, it represents a formal language with 
sufficient power to directly express the full classes of domains expressible in E. Definition 10 is 
constructive, where the operator F is applied iteratively to collect effects successively deeper 
in the chain of ramifications until a fixed point is reached. 

DEFINITION 10 (Initiation/Termination point)

Let H be an interpretation of E ¼ h�, � , �, �i, D ¼ ð�, �, �, �Þ be a domain description,

and Ct be the set of symbols finit, termg. Let Cp ¼ ð���� CtÞ and W ¼ PðCpÞ, and let the

operator F : W 7! W be defined as follows. Given a (possibly empty) set InTe 2W, then for

any F 2 � and T 2 �, ðF, T, initÞ 2 FðInTeÞ (respectively ðF, T, termÞ 2 FðInTeÞ) iff either

of the following conditions are true:


(1) There exists an A 2 � and a set C of fluent literals such that both of the following are true. 

(a) There exists both an h-proposition in � of the form ‘A happens-at T ’ and a c-proposition 
in � of the form ‘A initiates F when C ’ (respectively ‘A terminates F when C ’). 

(b) H satisfies C at T. 
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(2) There	 exists an r-proposition in � of the form ‘F whenever C ’ (respectively ‘ :F 
whenever C ’) and a partition fC1, C2g of C such that both the following apply. 

(a)	 C1 is non-empty, and for all fluent constants where F 0 2 C1, (F 0, T, init) 2 InTe, and 
for all fluent literals where :F 0 2 C1, (F 0, T, term) 2 InTe. 

(b) There	 exists some T2 2 � where ðT � T2Þ such that for all T1, ðT � T1 � T2Þ, 
H satisfies C2 at T1. 

Let InTe f be the least fixed point of the (monotonic) operator F starting from . T is an

initiation point (respectively termination point) for F in H relative to D iff ðF, T, init

;

Þ 2 InTe f


(respectively ðF, T, termÞ 2 InTef).


Definition 11 of a model specifies the persistence and causality properties we wish to

see embodied in the temporal framework. It states that fluents’ values do not spontaneously

change without cause, but do change when required to do so by a causation point.


DEFINITION 11 (Model)

For a domain description D ¼ ð�, �, �, �Þ, an interpretation H of E is a model of D iff,

for every F 2 �, and T, T 0, T1, T3 2 � such that T1 � T3, the following properties hold,


(1) Persistence. If there is no initiation point nor termination point T2 for F in H relative to D 
such that T1 � T2 � T3 then HðF, T1Þ ¼ HðF, T3Þ. 

(2) Initiation.	 If T1 is an initiation point for F in H relative to D, and there is 
no termination point T2 for F in H relative to D such that T1 � T2 � T3 then 
HðF, T3Þ ¼ true. 

(3) Termination.	 If T1 is a termination point for F in H relative to D, and there is 
no initiation point T2 for F in H relative to D such that T1 � T2 � T3 then 
HðF, T3Þ ¼ false. 

(4) Initial conditions and associated static ramification constraints. 

(a) For all t-propositions in	 � of the form ‘F holds-at T ’, HðF, T Þ ¼ true and for all 
t-propositions in � of the form ‘:F holds-at T ’, HðF, T Þ ¼ false. 

(b) For all r-propositions in � of the form ‘L whenever C ’, if H satisfies C at T then H 
satisfies fLg at T. 

Given the definition of a model, consistency and entailment can now be defined in a 
conventional way, in Definitions 12 and 13, respectively. 

DEFINITION 12 (Consistency)

A domain description is consistent iff it has an E model.


DEFINITION 13 (Entailment)

A domain description D entails the t-proposition ‘F holds-at T ’, written ‘D �E F holds-at T ’

iff for every E model H of D, HðF, T Þ ¼ true. D entails the t-proposition ‘ :F holds-at T ’,

iff for every E model H of D, HðF, T Þ ¼ false.


Referring back to the example domain definition illustrated in Figure 1, it is possible to use

the above Definitions 1–13 (paying particular attention to Definitions 10 and 11) to show the

following entailments (Ex1.15–1.19).


D1 �E :Light holds-at 2 (Ex1.15)

D1 �E :Light holds-at 3 (Ex1.16)
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D1 �E :Light holds-at 4 (Ex1.17) 
D1 �E :Light holds-at 5 (Ex1.18) 
D1 �E Light holds-at 6 (Ex1.19) 

3 Classical Logic Event Calculus 

The particular Event Calculus domain independent axiomatization presented here 
is deterministic, in the sense that any attempt to initiate and terminate a fluent 
simultaneously will lead to inconsistency in the theory. This is not an inherent 
restriction of the Event Calculus (nor of EC-R), but rather has been specifically chosen 
here to provide correspondence with E for the purpose of showing that ramifications are 
handled correctly. 

EC is written in a sorted predicate calculus with equality, with a sort A for actions 
(variables a, a1, a2, . . .), a sort F for fluents (variables f, f1, f2, . . .) and a sort T for timepoints 
(here either real numbers or integers, variables t, t1, t2, . . .). Although the time structure 
is thus assumed to be linear in this work, again this is not an inherent restriction of the 
Event Calculus. 
As described in [46, 57, 58], there are two parts to an Event Calculus theory. 

Domain Dependent Axioms (DDA) carry the causation relations along with event occurrence 
information specific to the domain, while Domain Independent Axioms (DIA) capture the 
general commonsense notions of persistence and causality. 

3.1 Domain dependent EC axioms 

An Event Calculus DDA theory takes the general form of (DD1), where � is a conjunction 
of clauses (‘causal laws’) specifying the positive instances of the predicates Initiates, 
Terminates, and � is a conjunction of positive instances (usually ground atomic formulae) 
of Happens. 

CIRC½�; Initiates, Terminates� ^ CIRC½�; Happens� ^ � ðDD1Þ 

� is a conjunction of time-independent formulae including uniqueness of names 
for actions and fluents, and �h � �, a conjunction of HoldsAt formulae 
representing initial conditions. For example, if we wish to describe a simple 
‘light switch’ domain in which the action PressSwitch results in the fluent 
LightOn as long as the fluent Connected holds, and in addition we know that at time 
1 Connected does indeed hold and that at time 2 the switch is pressed, we express this as 
(Ex2.1–2.4). 

InitiatesðPressSwitch, LightOn, tÞ HoldsAtðConnected, tÞ ðEx2:1Þ 

HappensðPressSwitch, 2Þ ðEx2:2Þ 

HoldsAtðConnected, 1Þ ðEx2:3Þ 

Connected ¼6 LightOn ðEx2:4Þ 
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If �Ex2 ¼ ðEx2:1Þ, �Ex2 ¼ ðEx2:2Þ, and �Ex2 ¼ ðEx2:3Þ ^ ðEx2:4Þ, the expression 
CIRC½�Ex2; Initiates, Terminates� ^ CIRC½�Ex2; Happens� ^�Ex2 is equivalent to (Ex2.5). 

½Initiatesða, f, tÞ �  ðEx2:5Þ 

ða ¼ PressSwitch ^ f ¼ LightOn ^HoldsAtðConnected, tÞÞ� 

^ 

½:Terminatesða, f, tÞ� 

^ 

½Happensða, tÞ � ða ¼ PressSwitch ^ t ¼ 2Þ� 

^ 

HoldsAtðConnected, 1Þ ^ Connected ¼ LightOn½ 6 � 

3.2 Domain independent EC axioms 

The Event Calculus DIA given in this section are a syntactic reformulation of the axioms 
given in [46] for ‘deterministic Event Calculus’. The only difference is that, unlike [46], 
we have used two extra auxiliary predicates InitiationPoint and TerminationPoint to express 
the axioms a little more succinctly, because they will be useful when we come to adapt the EC 
axiomatization for ramifications in later sections. Both predicates are used to identify 
causation points; InitiationPointðF, TÞ means ‘an action initiates fluent F at time T ’ 
while TerminationPointðF, TÞ means ‘an action terminates fluent F at time T ’, defined by 
(CP1 and 2). 

InitiationPointð f, tÞ � 9a:ðHappensða, tÞ ^ Initiatesða, f, tÞÞ (CP1) 

TerminationPointð f, tÞ � 9a:ðHappensða, tÞ ^ Terminatesða, f, tÞÞ (CP2) 

As in [46], we use four more auxiliary predicates. ClippedðT1, F, T2Þ (respectively 
DeclippedðT1, F, T2Þ) means ‘there is a termination point (respectively initiation point) 
for fluent F in the half-open time interval ½T1, T2�’. StoppedInðT1, F, T2Þ (respectively 
StartedInðT1, F, T2Þ) means ‘there is a termination point (respectively initiation point) for 
fluent F in the open time interval ðT1, T2Þ’: (EC1–4). 

def 
Clippedðt1, f, t2Þ � 9t:½t1 � t < t2 ^ TerminationPointð f, tÞ� (EC1) 

def 
Declippedðt1, f, t2Þ � 9t:½t1 � t < t2 ^ InitiationPointð f, tÞ� (EC2) 

def 
StoppedInðt1, f, t2Þ � 9t:½t1 < t < t2 ^ TerminationPointð f, tÞ� (EC3) 

def 
StartedInðt1, f, t2Þ � 9t:½t1 < t< t2 ^ InitiationPointð f, tÞ� (EC4) 

Change caused by events is captured by the following two axioms. (EC5) states that fluents 
initiated by an occurrence of an action continue to hold until an occurrence of an action 
which terminates them. Conversely, (EC6) states that fluents terminated by an occurrence 
of an action continue not to hold until an occurrence of an action which initiates them. 

HoldsAtð f, t2Þ  ½InitiationPointð f, t1Þ ^  t1 < t2 ^ :StoppedInðt1, f, t2Þ� (EC5) 
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:HoldsAtð f, t2Þ  ½TerminationPointð f, t1Þ ^ t1 < t2 ^ :StartedInðt1, f, t2Þ� (EC6) 

Persistence is expressed in axioms (EC7, 8), stating that fluents change their truth values only 
via the occurrence of initiating and terminating actions. 

HoldsAtð f, t2Þ  ½HoldsAtð f, t1Þ ^ t1 < t2 ^ :Clippedðt1, f, t2Þ� ðEC7Þ 

:HoldsAtð f, t2Þ  ½:HoldsAtð f, t1Þ ^ t1 < t2 ^ :Declippedðt1, f, t2Þ� ðEC8Þ 

Note that in a deterministic setting the use of both Clipped/Declipped and StoppedIn/StartedIn 
is necessary to capture both the principle that fluents cannot be simultaneously initiated 
and terminated, and the convention that causal effects manifest themselves only at times 
(immediately) after the corresponding causation points. 

In terms of the light switch example (Ex2.1–2.4), it is straightforward to show that 
(CP1 and 2) and (EC1–6), together with (Ex2.5), entail (for example) HoldsAtðLightOn, 3Þ. 

The solution to the Frame Problem1 comes from a forced (defined) separation of causal 
minimization from temporal projection. A causal domain closure assumption ensures 
that all effects are precipitated by an action, and do not occur otherwise. As shown in (DD1), 
causal minimization is performed by parallel circumscription on the two causal predicates 
Initiates and Terminates in the domain-dependent axiom set. For standard EC formulations 
such as (Ex2.1–2.4) this reduces to predicate completion, as illustrated in (Ex2.5). 
When ramifications are present, however, the situation changes. 

4 Ramifications in classical logic EC 

Where a domain has fluents with causal interdependencies, in which an event’s effect 
propagation depends on the presence or absence of other effects, then these can often be 
represented as language E ramifications. This section develops a classical logic Event Calculus 
capable of reasoning about ramifications expressed through a ‘whenever’ style construct from 
language E for classes of domains that encompasses those accepted by E. [59] examined 
potential Event Calculus-based solutions to ramification domains in terms of the concepts 
state constraints and effect constraints. These distinct methods were originally conceived to 
represent static relationships and dynamic triggered changes for transition-driven interacting 
events, respectively. 

A state constraint representing a static relationship that must always hold between fluents is 
represented in the Event Calculus by HoldsAt formulae, each using a single universally 
quantified time variable. The purpose of the formulae is to define one or more derived 
(non-frame, non-persisting) fluents. Such a state constraint is illustrated in (Ex3.1 and 3.2), 
whose purpose is to define the derived fluent F1 in terms of the frame fluent F 2. 

HoldsAtðF1, tÞ HoldsAtðF 2, tÞ ðEx3:1Þ 

:HoldsAtðF1, tÞ :HoldsAtðF 2, tÞ ðEx3:2Þ 

Effect constraints representing the dynamic propagation of event-triggered change are 
defined in the Event Calculus using Initiates and Terminates formulae, each using a single 

See section 8 for a wider discussion. 1



Ramifications in Event Calculus 649 

universally quantified action variable, as shown in (Ex3.3 and 3.4). (Ex3.5 and 3.6) are 
equivalent to formulae (Ex3.3 and 3.4) specifying the same effect constraint in terms of 
initiation points and termination points. 

Initiatesða, F1, tÞ Initiatesða, F 2, tÞ ðEx3:3Þ 

Terminatesða, F1, tÞ Terminatesða, F 2, tÞ ðEx3:4Þ 

InitiationPointðF1, tÞ InitiationPointðF 2, tÞ ðEx3:5Þ 

TerminationPointðF1, tÞ TerminationPointðF 2, tÞ ðEx3:6Þ 

Here we will present a combination and enhancement of the two approaches, chiefly because 
such a combination aligns well with the semantic definition of ramifications in the language E
using inductive fixed point definitions [2].2 

[46] provides a translation of a version of E without ramifications into the language of 
classical logic Event Calculus. However, when a mapping of the full version of E with 
ramifications described in [30] into classical logic Event Calculus is considered, the situation 
becomes considerably more complex. 

When using the ramification construct ‘whenever’ of language E, there arises a natural question 
over the classes of domains that can be properly represented. There are two particular classes that 
merit further consideration, which we refer to below as cycling domains and instantaneously 
propagated effect domains, one special case of which is the mutually coupled instantaneously 
propagated effect domain exemplified in the Gearwheel example (in a later section). 

4.1 Unstable ramification domains 

As an example of cycling domains, consider a domain description having two ‘complete’ 
ramifications, defined below. 

F2 whenever F1 

:F2 whenever :F1 

:F1 whenever F2 

F1 whenever :F2 

Under E’s semantics, a domain description comprising such a set of propositions is 
inconsistent. There are consequently no E models. Such a domain may arise in an electronic 
circuit containing two logic gates (a buffer and inverter), connected with each output 
connected to the other gate’s input (Figure 2). 

Clearly, if the logic gates are considered to be ‘ideal’ (with zero delay), then the circuit 
of Figure 2 is physically inconsistent. From an intuitive commonsense reasoning point 
of view, the circuit is not apparently seen as inconsistent. Instead, a small delay is assumed 
in the gates in order to make sense of the arrangement, and the circuit is found 
intuitively to cycle continuously. Therefore, even in a notional abstract sense, the 
logic circuit is assumed to have an arbitrarily small non-zero delay, because this is necessary 
to ascribe causality appropriately, and thereby reason about the behaviour in a 

See [61] for an alternative formulation of ramifications using inductive definitions. 2
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F1 F2 

FIGURE 2. Unstable negative cycling domain 

Light 

Sw In1 

In2 

FIGURE 3. Conditionally stable negative cycling domain 

meaningful way. In practice, a physical circuit of this type would oscillate continuously, and 
have no steady state. 

Now consider a modification of Figure 2, shown in Figure 3, where instability is 
conditional. 

Light whenever In1, In2 
:Light whenever :In1 
:Light whenever :In2 
:In2 whenever Light 
In2 whenever :Light 

Figure 3 has one input state for which the circuit is stable (In1 false), and one where it is 
not (In1 true). Note that in all allowable E models, In1 is false. 

While there are ways of handling this condition in an immediate logical sense (see [8]), 
it seems that examples like this are rare in the commonsense world (we had to resort to an 
esoteric electronic circuit). More usually, such conditionally stable domain descriptions raise 
questions over the correctness of the axiomatization. 

It is possible to detect an unstable cycling condition in the axiomatization using a causal 
ramification consistency check. Causal stratification (c-stratification) used in conjunction 
with a state constraint consistency check are sufficient to realize this function. Should 
a domain axiomatization fail this test, there is an opportunity for an agent to take measures 
to update or correct its knowledge of the domain before attempting any reasoning.3 

For this reason, and the fact that such examples go beyond E’s specification, we will not 
address domains of this nature here. If required, other methods could be brought to bear 
on unstable domains including the use of stability as a semantic condition for a proposition 
in a language, or alternatively a three level logic where the third level represents an 
unstable state. Here we will focus on the expressivity contained in E because it facilitates 
results in later sections. 

See section 8 for more information. 3
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Light 

Sw 

In1 

In2 

FIGURE 4. Mutually cancelling effect domain 

Arguably, the most important class of ramification domain is that containing instantaneously 
propagated interacting effects, addressed next. 

4.2 Instantaneously propagated effect domains 

Consistent and stable domains may have instantaneously propagated effects. Figure 4 
contains one example of this class. The light in Figure 4 should never illuminate, irrespective 
of the position of Sw. However, if reasoning does not handle instantaneously propagated 
effects correctly, this may not be indicated as so by the logical model. 

The example is set up so that one action causes more than one intermediate effect, 
but where these effects combine to self-cancel at some point down the ramification 
chain. An ideal logic circuit in the form of Figure 4 would have a steady state output 
always of 0, and so this is reflected in our approach. However, a real circuit contains 
what designers call a ‘hazard’ due to the delay of the inverter. Upon transition 0–1 of In1 
caused by action Sw, a real circuit will blip Light briefly at 1 until it settles again at 0.4 

A comparison may be made between this (unwanted) brief transition in the physical circuit 
and the stages of erroneous reasoning that may occur in faulty action theories concerning 
propagated effects. 

To capture instantaneously propagated interacting effects, it may be tempting to use 
Event Calculus causation axioms of the form below, where for every dependency on a fluent 
truth value, there is an associated check that it is not imminently about to change. This check 
curtails the extent of causation. 

Initiatesða, Light, tÞ  ½Initiatesða, In1, tÞ ^ HoldsAtðIn2, tÞ ðEx4:1Þ 

^ :9a1ðHappensða1, tÞ ^ Terminatesða1, In2, tÞ� 

However, if not handled carefully, the inclusion of the capability to handle instantaneously 
propagated effects in this way can cause difficulty. Causation descriptions in the form of 
(Ex4.1) are inherently open to ambiguity when predicates Initiates and Terminates are 
minimized in parallel. This ambiguity becomes apparent in a non-unique causal minimization 

Although the physical circuit exhibits artefacts, it would not be desirable to attempt to duplicate the consequent 
behaviour in a reasoning system based on a domain description describing merely the abstract logic gate behaviour. 
If such artefacts are considered an important part of the domain, they should be modelled explicitly through 
more detailed causation statements. 

4
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with competing model tradeoffs in Yale Shooting Problem style ([25]).5 The same 
problem can be seen in simpler domains providing the instantaneous propagation 
characteristic is retained. As an example, consider the following simple domain (Ex5.1–5.6) 
with one ramification, written in E. Note that in E, the domain has a unique model in which 
F holds at 2. 

A initiates F1 (Ex5.1) 
A happens-at 1 (Ex5.2) 
:F holds-at 1 (Ex5.3) 
:F1 holds-at 1 (Ex5.4) 
F 2 holds-at 1 (Ex5.5) 
F whenever fF1, F 2g (Ex5.6) 

The first five propositions of the domain description (Ex5.1–5.5) may be expressed in EC as 
follows (Ex5.7–5.9). 

InitiatesðA, F1, tÞ (Ex5.7) 
HappensðA, 1Þ (Ex5.8) 
:HoldsAtðF, 1Þ ^ :HoldsAtðF1, 1Þ ^HoldsAtðF 2, 1Þ (Ex5.9) 

In order to express (Ex5.7 and 5.8) in terms of causation points in a way suitable for 
minimization in this example, (CP1 and 2) are weakened to (CP3 and 4). 

InitiationPointð f, tÞ  9a:ðHappensða, tÞ ^ Initiatesða, f, tÞÞ (CP3) 

TerminationPointð f, tÞ  9a:ðHappensða, tÞ ^ Terminatesða, f, tÞÞ (CP4) 

To translate the ramification constraint (Ex5.6) into EC, we specify the cases where F is 
triggered by changes in F1 and F 2. Writing (Ex5.10) below in terms of InitiationPoint and 
TerminationPoint, the first disjunct in the condition says F is triggered if F1 is initiated and F 2 
is true, and F 2 is not about to be terminated (as it might if there were mutually defeating 
ramification effects or concurrent actions). 

InitiationPointðF, tÞ (Ex5.10) 
½InitiationPointðF1, tÞ ^ HoldsAtðF2, tÞ ^ :TerminationPointðF 2, tÞ� _
½InitiationPointðF 2, tÞ ^ HoldsAtðF1, tÞ ^ :TerminationPointðF1, tÞ� _
½InitiationPointðF1, tÞ ^ InitiationPointðF 2, tÞ� 

Before permitting a change in F, (Ex5.10) checks F 2 is not about to be terminated by a change 
in F1 caused by the original action. 

The solution to the frame problem in EC relies upon theory partitioning (syntactically 
defining a separation) of the causal predicates InitiationPoint and TerminationPoint from 
other parts of the theory. These predicates are then minimized in parallel within their 
partition. (Ex5.11) below is the complete domain-dependent part of the theory, where 
(DD1)’s � is (Ex5.7), � is (Ex5.8) and � includes (Ex5.9). It is produced by also minimizing 
direct effects of actions and events (in the usual way) in addition to indirect effects as 
expressed by the predicates InitiationPoint and TerminationPoint. 

CIRC[Ex5.10 ^ CP3 ^ CP4 ^ DD1; InitiationPoint, TerminationPoint (Ex5.11) 

In addition, (Ex4.1) would also preclude reasoning about domains with concurrent actions. 5



Ramifications in Event Calculus 653 

(Ex5.11) then allows the definitions of InitiationPoint and TerminationPoint to be reduced to 
the first order sentence (Ex5.12). 

½ðInitiationPointð f, tÞ � ðð f¼F1 ^ t¼1Þ _ ð f¼F ^ t¼1ÞÞÞ ^ (Ex5.12) 
:TerminationPointð f, tÞ� 
_

½ðInitiationPointð f, tÞ � ð f¼F1 ^ t¼1ÞÞ ^

ðTerminationPointð f, tÞ � ð f¼F 2 ^ t¼1ÞÞ�


The disjunctive form of (Ex5.12) effectively gives rise to two models. The second of these 
is an anomalous model, where the initiation of F has been traded for the termination of F 2. 
This tradeoff has obvious similarity to the Yale Shooting Problem. The example shows why 
we cannot just naively translate E’s r-propositions such as (Ex5.6) into expressions such as 
(Ex5.10), in which positives are defined in terms of negatives as regards the predicates 
InitiationPoint and TerminationPoint. 

4.3 Analysis 

E is constructed within a general framework of inductive definition that is capable of 
accepting domain descriptions that are stable (i.e. non-negative cycling). Inductive definitions 
specify a relation through a constructive process of iterating a function that defines a relation, 
given in terms of the presence or absence of specified tuples. Positive rule sets are 
straightforward, but cases where negation occurs within the body of rules (specifying absence) 
require special treatment. To properly account for the absence of rules (specified by negation), 
a closure assumption must be constructed separately for each individual constructive level, 
rather than over the entire theory. For ramification applications, this means causal effects 
are determined one layer at a time. 

The classes of domains acceptable to E thus include those in which the fluents can be 
ordered by layering in strata, one fluent per stratum. This results in one layer depending 
negatively only on effects in layers strictly lower.6 A fluent influence graph (produced 
from the domain’s whenever statements) would then show only acyclic dependency [4]. 
Fluent ordering of this type forms a syntactical analog to the causal nature of physical 
propagation. 

However, not all intuitively sensible physical domains having a clear causality path have a 
valid stratification under this fluent ordering representation. Some domains may have a fluent 
dependency graph that is positive cyclic, but not unstable (such as the Gearwheel domain, 
described in an example later). 

To rectify this anomaly, we will choose instead to apply stratification to the causal 
subtheory of EC-R. This gives conveniently good results, because owing to the difference in 
meaning of negation in E’s fluent effect propositions and negation in EC-R causal theories, 
stratification is possible for positive cyclic domains in EC-R, while guaranteeing the absence 
of negative cycles as desired. Algorithms to create a stratification are well known, and may be 
incorporated as part of an automated knowledge base coherency check. 

The choice of any alternative correct stratification would have no effect on the semantics of the theory. Although 
stratification assignment is not unique, any correct choice of stratification is equivalent to any other correct choice 
from a semantic standpoint. 

6
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The stratification precondition for domain acceptability is a test not easily reproducible 
at the language E domain description stage. A stratification process pays special attention to 
the occurrence of negation. However, the type of negation important for the assessment of 
a domain’s stability is invisible at the E domain specification level. It is not fluent negation 
but rather negation indicating the absence of a causation point that is important. This type of 
negation is only introduced through the translation into EC-R. Both the translation and 
stratification are syntactic functions, and it is possible to create a function composition to 
realize the precondition test on an E specification directly. However, in practice this method 
would be little simpler than applying both functions separately. 

4.4 Restricting the domain class: stratification 

In the previous sections we have seen that certain classes of domains can produce unstable 
fluent states, and that others while stable, can easily result in anomalous models. In E, 
cycling domains such as those in Figures 2 and 3 fail to yield models (i) because the 
r-propositions cannot be satisfied as ‘‘static constraints’’ (see condition 4(b) in Definition 
11 of a model), and (ii) because Definition 10 results in some time-points being both 
initiation and termination points for the same fluent. We wish to accept a class of domain 
for which a model is possible under E’s definitions. Such a class explicitly excludes 
domains with negative cycles, but does include other instantaneously propagated mutually 
interacting effect domains. 

To realize this domain class acceptance, it is necessary to formulate a classical logic 
theory by translation from E, where each causation-point predicate is unique to a fluent. 
This is achieved using predicate indexing on the fluent name. The theory is then subject to 
a stratification process, which attempts to allocate new predicate indices so as to create 
a stratified theory. If this cannot be done, then the E domain specification from which the 
mapping resulted is not stable, and thus not acceptable to EC-R. 

In addition to stratification of the causal subtheory of EC-R, the other precondition 
for a domain to be acceptable is consistency of the static component of the constraints 
(generated by translation from whenever statements in Definition 21 later on). Figure 2 is an 
example of a domain that has inconsistent static constraints. It may be helpful at this point 
to recall from the beginning of the section that ramifications are expressed by whenever 
statements translated into both classical causal effect and static constraint first-order 
formulae. This ensures that the effect and constraint formulae are always matched. 

4.5 Translation to a classical ramification theory 

Language E’s propositions t and h can be mapped into classical logic straightforwardly. 
With reference to �, � and � of the standard Event Calculus domain description (DD1), 
Definitions 14 and 15 define the mapping of these propositions. 

DEFINITION 14 (Initial conditions mapping)

The EC-R static constraint mapping from is the theory �h such that the following
E

conditions apply. 

� for each t-proposition ‘F holds-at T ’, �h contains the axiom HoldsAtðF, tÞ; 
� for each t-proposition ‘:F holds-at T ’, �h contains the axiom :HoldsAtðF, tÞ 
� �h contains no other formulae. 
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DEFINITION 15 (Event occurrence mapping)

The EC-R static constraint mapping from E is the theory � such that the following

conditions apply.


� for each h-proposition ‘A happens-at T ’, � contains the axiom HappensðA, tÞ; 
� � contains no other formulae. 

Language E has two types of causal constructs, one for direct actions (initiates, terminates) 
and another for expressing ramification relationships between fluents (whenever). 

If the causal description of a domain is expressed in terms of members A of the set of 
actions, and members F of the set of fluents, then the direct action constructs A initiates F 
when C, and A terminates F when C, (where C ¼ fL1, :::, Lmg), may be mapped into classical 
logic by Definition 16. 

DEFINITION 16 (Direct causation)

The EC-R direct action causation description is the theory � such that


� for each c-proposition ‘A initiates F when C ’ in  D, � contains the axiom V V 
InitiatesðA, F, tÞ 

Fn 2C 
HoldsAtðFn, tÞ ^

:Fn2C 
:HoldsAtðFn, tÞ; 

� for each c-proposition ‘A terminates F when C ’ in  D, � contains the axiom V V 
TerminatesðA, F, tÞ 

Fn2C 
HoldsAtðFn, tÞ ^

Fn2C 
:HoldsAtðFn, tÞ;


:


� � contains no other formulae. 

In translating a given ramification domain description D into EC-R, all individual 
c-propositions and r-propositions are included in the EC-R causation description. 
For the purposes of theory construction, a subscript is applied to causal predicates 
to maintain a unique predicate for each fluent. The translation process begins with 
the formation of a separated causation description CSd for direct actions, as expressed by 
Definition 17. 

DEFINITION 17 (Separated causationd)

The EC-R direct action causation description is the theory CSd such that


� for each c-proposition ‘A initiates F when C ’ in  D, CSd contains the axiom


InitiationPointFðF, tÞ  9a:ðHappensða, tÞ ^ Initiatesða, F, tÞÞ;


� for each c-proposition ‘A terminates F when C ’ in  D, CSd contains the axiom


TerminationPointFðF, tÞ  9a:ðHappensða, tÞ ^ Terminatesða, F, tÞÞ;

� CSd contains no other formulae. 

Indirect triggering of fluents by actions is then expressed by looking at the conditions 
under which whenever is triggered. A 2-precondition example, F whenever fF1, F 2g is triggered 
in three cases: if both preconditions are initiated, or if the first fluent is initiated while the 
second holds, and is not terminated. It is also triggered if the first fluent holds, and is not 
terminated while the second is initiated. To help build a formula describing the general case, it 
is useful to specify these triggering subconditions separately. 

Let �ið’, �Þ, �tð’, �Þ, �hpð’, �Þ and �hnð’, �Þ be the following subformulae expressed in 
terms of a fluent variable ’ and time �. 

def 
�ið’, �Þ � InitiationPoint’ð’, tÞ (C1) 
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def 
�tð’, �Þ � TerminationPoint’ð’, tÞ (C2) 

def 
�hpð’, �Þ � HoldsAtð’, tÞ ^ :TerminationPoint’ð’, tÞ (C3) 

def 
�hnð’, �Þ � :HoldsAtð’, tÞ ^ :InitiationPoint’ð’, tÞ (C4) 

Both �ið’, �Þ and �tð’, �Þ represent causation point relations. �hpð’, �Þ represents 
that the fluent denoted by ’ holds while not subject to imminent termination. 
�hnð’, �Þ represents that the fluent denoted by ’ does not hold while not subject to imminent 
initiation. 

Using the subconditions (C1–4), we may now enumerate the triggering conditions for an 
arbitrary whenever statement. To represent all conditions, a somewhat reduced powerset of 
the fluents listed in the whenever statement is formed, and then partitioned into two subsets, 
one of which is comprised of triggered fluents, the other of fluents whose state remains 
constant. The case in the powerset corresponding to none of the fluents being triggered is 
eliminated. 

For a set C of conditional fluent literals such that C , let the following subset of 6¼ ;

a powerset partition be defined between the locally scoped variables. 

P0ðC Þ ¼ f ðX, YÞ : X [ Y ¼ C, X \ Y ¼ ;, X 6¼ ; g  

Propagated effects between fluents due to a whenever statement will then occur under the 
trigger conditions expressed compactly in (C5), ! 

def _ ^ ^ 
	ðC, �Þ � �iðF, �Þ ^  �hpðF, �Þ ðC5Þ 

ðC1, C2Þ2P0ðCÞ F2C1 F2C2 ! !  ^ ^ 
^ �tðF, �Þ ^  �hnðF, �Þ
:F2C1 :F2C2 

In translating a given domain description D into EC-R, all individual c-propositions and 
r-propositions of the form L whenever C are included in the EC-R causation description. 

Given the above specification of the triggering conditions for an arbitrary 
whenever statement, we must now just specify the effect to be propagated upon 
triggering. In the case of a statement L whenever C this would specify the effect to be 
literal L. Definition 18 then forms the separated causation description CSi for indirect 
actions by utilizing (C5) to capture the conditions under which the whenever statements 
are triggered. 

DEFINITION 18 (Separated causationi)

The EC-R indirect action separated causation description is the theory CSi such that for each

c-proposition ‘L whenever C ’ in D,


� if L is F then CSi contains the axiom


InitiationPointFðF, tÞ 	ðC, �Þ;


� if L is :F then CSi contains the axiom 

TerminationPointFðF, tÞ 	ðC, �Þ; 

� CSi contains no other formulae. 
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To form a complete separated causation description, let theory CS represent CSd [ CSi, where 
CS is modified to be re-expressed in clausal form. This involves merely eliminating 
disjunctions in (C5), see (Ex6.15) for an instantiated example. 

Now that the translation of the language E statements into separated causation descriptions 
has been performed, stratification can be attempted. C-stratification (causal stratification) 
searches for an allocation of the unique causation point predicates to a stratum level. 
Definition 19 is adapted and specialized from the stratification conditions used in Answer Set 
logic programs presented in [38]. Function s from Definition 19 maps from fluents to stratum 
ordinals, defined such that the c-stratification conditions hold. (It may be helpful to consider 
that according to Definitions 17 and 18, CS may only include clauses with heads either 
InitiationPoint or TerminationPoint.) 

DEFINITION 19 (C-stratification) 
Given a non-empty set � of fluent constants, a theory C where each rule r 2 C is 
denoted by head(r), and body literals by pos(r) and neg(r), then C is c-stratified iff 
there exists a mapping s : � 7! N such that for all literals L1, L2, and all fluents F1, F2 the 
following apply: 

(1) if L1ðF1, tÞ 2 headðrÞ and L2ðF2, tÞ 2 posðrÞ then sðF1Þ � sðF2Þ

(2) if L1ðF1, tÞ 2 headðrÞ and L2ðF2, tÞ 2 negðrÞ then sðF1Þ > sðF2Þ. 

Let CECR be a c-stratified representation of CS (already in clausal form) by 
substituting predicates InitiationPointsðFÞ and TerminationPointsðFÞ appropriately according 
to stratification function s.7 If no stratification can be found, then the language 
E domain description is assumed to not meet the requirements for domain expression 
in EC-R. 

C-stratification of theory CS requires the replacement of each fluent-specific causation 
predicate with a stratum indexed causation predicate. Definition 20 defines the correct 
formulation of the causation theory subject to the stratification conditions. 

DEFINITION 20 (Causal theory)

Given a non-empty set � of fluent constants, a causal theory CECR is correctly formed iff

there exists a stratification function s : � 7! N such that,


� for every rule R1 in CS, there exists a rule R2 in CECR where R1 is equivalent to R2 subject 
to the substitution of all literals LF in R1, by  LsðFÞ in R2 where Lx represents a literal name 
L subscripted with x. 
� s is selected such that CECR is c-stratified according to Definition 19. 
� s produces strata numbered 0 to n. 

Having formulated the full causation description CECR in stratified form, causal domain 
closure must now be performed in stages. Each successive stage of ramification beginning with 
direct actions must be causally minimized separately before propagating to the next stage 
of effects. Prioritized parallel circumscription using the assigned stratification accomplishes 
this by expressing a preference for minimizing first the effects of direct actions, and then 

Technically, it is sufficient to stratify solely CSi because CSd is already stratified (by definition). For reasons of 
presentational clarity however, we choose to stratify the combined theory CS. 

7
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effects of successive levels of indirect actions. Circumscription policy to accomplish this 
prioritized minimization is described by (C6). 

CIRC[CECR ^ DD1; (C6) 
InitiationPoint0, TerminationPoint0 > > 
InitiationPointn, TerminationPointn] 

Further intuitive clarity may be gained from considering the identical minimization policy 
stated in a hierarchical form, (C7). This description becomes a conjunction of causal closures, 
where each conjunct represents one stratum of causal effects. An equivalence between (C6) 
and (C7) is proved in [37]. 

n 
CIRC[CECR ^ DD1; (C7) 

i¼0 InitiationPointi, TerminationPointi; 
InitiationPointiþ1, TerminationPointiþ1 ; � � � ; 
InitiationPointn, TerminationPointn] 

When considering Event Calculus causal theories, it is useful to use the property of 
circumscription in (Circ) below to freely factor Happens out of causal descriptions 
independently of the causal minimization process. For any sentence containing 
, where 
 
does not contain predicates P and Z, the property (Circ) holds. See [37] for more details on 
circumscription theory. 

CIRC CIRC½�ðP, ZÞ ^ 
 ; P ; R� � ½�ðP, ZÞ ; P ; R� ^ 
 

What remains now is to combine each stratum’s effect axiom into a single pair of 
minimized causal predicates containing the complete description of domain causality. 
Having created a set of predicates whose disjunction describes complete domain causality, it is 
possible to recombine into one pair of predicates as is usual in EC theories.8 

InitiationPointð f, tÞ �
_

InitiationPointsðFÞðF, tÞ ^ ð f ¼ FÞ ðC8Þ
F2� 

TerminationPointð f, tÞ �
_

TerminationPointsðFÞðF, tÞ ^ ð f ¼ FÞ ðC9Þ
F2� 

With the triggering of change of fluent state now axiomatized, the static component of the 
whenever statement must be handled in terms of it imposing a constraint between fluents. 
Definition 21 defines the static constraint theory mapped from the E r-propositions. 

DEFINITION 21 (Constraint mapping)

The EC-R static constraint mapping from E is the theory SECR such that the following

conditions apply.


� for each r-proposition ‘F whenever C ’, SECR contains the axiom 

^ ^ 
HoldsAtðF, tÞ HoldsAtðFn, tÞ ^ :HoldsAtðFn, tÞ; 

Fn2C :Fn2C 

Here it is necessary to assume a finite language describing a finite set of fluents. 8
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� for each r-proposition ‘:F whenever C ’, SECR contains the axiom 

^ ^ 
:HoldsAtðF, tÞ HoldsAtðFn, tÞ ^ :HoldsAtðFn, tÞ; 

Fn 2C :Fn2C 

� SECR contains no other formulae. 

Consistency of the static component of the constraints SECR is a pre-condition (in addition to 
stratification) for domain acceptance. 

The complete domain-dependent causation theory is then defined to be TEC. The full Event 
Calculus Ramification domain theory is further defined to be ECR. 

C7–9 ^ SECR (TEC) 

EC1–8 (DetEC) 

TEC ^ DetEC (ECR) 

The EC-R theory as presented is capable of representing ramifications in the classes 
of domains described using whenever statements, which are statically consistent and 
for which a c-stratification exists. In summary, direct effects (�) are represented in an 
equivalent way to those found in [46, 59]. Initial conditions and event occurrences 
along with causal minimization of direct actions are defined by (DD1). Indirect 
effects due to ramifications are translated to first order formulae (CSi). Full causal 
minimization is then achieved using (C6). (C8–9) captures causation points for the 
entire domain. Whenever statements are also translated into SECR to capture 
the static constraint component of ramifications. TEC forms a full domain 
dependent axiom set, while ECR adds the domain independent axiom set to represent the 
full theory. Domain acceptance is conditional upon successful stratification and the 
consistency of SECR. 

EC-R represents somewhat of a departure from traditional [58] style Event Calculus 
theories in two ways. First, there is a separation of definition for causation points 
due to a direct action from those propagated indirectly from another causation 
point. Secondly, causal minimization does not reduce to simple predicate completion. 
Instead, a prioritized minimization policy is used, forming predicate completion one 
stratum at a time. 

5 EC-R domain examples 

To illustrate EC-R as formalized in the previous sections, we axiomatize two example 
domains to show different aspects of the theory. The first example continues with the 
domain depicted in Figure 1 (defined in section 2.2) to provide an instance of a mutually 
(and instantaneously propagated) interacting effect ramification domain, known to be 
difficult to model correctly. (Figure 4 is also a simple instance of the same class of 
domain drawn for illustrative purposes. If Figure 1 can be solved, then Figure 4 can also, 
but not vice-versa.) 

The second example is chosen to illustrate how the Gearwheel example is supported in this 
formalism. The Gearwheel domain is positive cycling, and challenging for any formalism, but 
particularly so for those based on a general purpose language. 
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5.1 Mutually interacting effect domain 

Proceeding with the axiomatization of domain dependent features, the unique name axioms 
for the actions and fluents of D1 (Figure 1) are given in (Ex6.1 and 6.2). 

UNA[Open1, Open2, Close1, Close2] (Ex6.1) 

UNA[In1, In2, In3, Light] (Ex6.2) 

The domain’s two initial conditions, (Ex1.1 and 1.2), are expressed in the conventional way 
for Event Calculus (Ex6.3 and 6.4). 

:HoldsAtðIn1, 1Þ (Ex6.3) 

HoldsAtðIn2, 1Þ (Ex6.4) 

Causal relations describing direct actions for the initiation and termination of fluents defined 
in (Ex1.5–1.8) are written in Event Calculus as (Ex6.5–6.8). 

InitiatesðOpen1, In1, tÞ (Ex6.5) 

InitiatesðOpen2, In2, tÞ (Ex6.6) 

TerminatesðClose1, In1, tÞ (Ex6.7) 

TerminatesðClose2, In2, tÞ (Ex6.8) 

For the purposes of this example, we will choose event occurrences that illustrate some 
interesting transitions within the system. Axioms (Ex6.9 and 6.10) are added. 

HappensðClose1, 3Þ (Ex6.9) 

HappensðOpen2, 5Þ (Ex6.10) 

Domain closure for direct-effect causation and event occurrence are defined by (DD1). In this 
example, (DD1) is instantiated to become (Ex6.11). 

CIRC[Ex6.5–8; Initiates, Terminates] ^ CIRC[Ex6.9–11; Happens] ^ � (Ex6.11) 

� is a conjunction of (Ex6.1–6.4). This minimization is equivalent to formulae (Ex6.12–6.14) 
conjoined with �. 

Initiatesða, f, tÞ � ðða¼Open1 ^ f¼In1Þ _ ða¼Open2 ^ f¼In2ÞÞ (Ex6.12) 

Terminatesða, f, tÞ � ðða¼Close1 ^ f¼In1Þ _ ða¼Close2 ^ f¼In2ÞÞ (Ex6.13) 

Happensða, tÞ � ðða¼Open1 ^ t¼3Þ _ ða¼Close2 ^ t¼5ÞÞ (Ex6.14) 

Direct action separated causation description theory CSd is produced by Definition 17, while 
the indirect action separated causation point theory CSi is produced by Definition 18. 
(Ex6.15) is one example axiom from the CSi set, written down for illustrative purposes. 

TerminationPointIn3ðIn3, tÞ (Ex6.15) 
½InitiationPointIn1ðIn1, tÞ ^ HoldsAtðIn2, tÞ ^ :TerminationPointIn2ðIn2, tÞ� _
½InitiationPointIn2ðIn2, tÞ ^ HoldsAtðIn1, tÞ ^ :TerminationPointIn1ðIn1, tÞ� _
½InitiationPointIn1ðIn1, tÞ ^ InitiationPointIn2ðIn2, tÞ� 
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Representing (Ex6.15) in clausal form yields the following three rules (Ex6.16). 

TerminationPointIn3ðIn3, tÞ  ½InitiationPointIn1ðIn1, tÞ ^ HoldsAtðIn2, tÞ (Ex6.16) 
^ :TerminationPointIn2ðIn2, tÞ� 

TerminationPointIn3ðIn3, tÞ  ½InitiationPointIn2ðIn2, tÞ ^ HoldsAtðIn1, tÞ 
^ :TerminationPointIn1ðIn1, tÞ� 

TerminationPointIn3ðIn3, tÞ  ½InitiationPointIn1ðIn1, tÞ ^ InitiationPointIn2ðIn2, tÞ� 

The ramification constraint for the AND gate is expressed using a pair of axioms 
comprising a state constraint and an effect constraint. First, to demonstrate that this 
class of domain can be represented, a stratification assignment can be chosen pursuant to 
Definition 20, expressed by the function s : � 7! N . An example choice of function s would 
be the following. 

s ¼ fðIn1, 0Þ, ðIn2, 0Þ, ðIn3, 1Þ, ðLight, 2Þg 

CECR is then defined by Definition 20 (causal theory) to be CSd [ CSi modified by function s, 
resulting in (Ex6.17–6.23). Beginning with causation relations describing transitions occurring 
due to ramification constraints, (Ex1.9) is a ternary ramification constraint that maps to the 
(Ex6.18) causation formula. (Ex6.17) is mapped from direct actions (Ex1.3–1.8) and follows 
directly from CSd. 

InitiationPoint0ðIn1, 3Þ ^ TerminationPoint0ðIn2, 5Þ (Ex6.17) 

TerminationPoint1ðIn3, tÞ (Ex6.18) 
½InitiationPoint0ðIn1, tÞ ^ HoldsAtðIn2, tÞ ^ :TerminationPoint0ðIn2, tÞ� _
½InitiationPoint0ðIn2, tÞ ^ HoldsAtðIn1, tÞ ^ :TerminationPoint0ðIn1, tÞ� _
½InitiationPoint0ðIn1, tÞ ^ InitiationPoint0ðIn2, tÞ� 

(Ex1.10) and (Ex1.11) are simple ramification constraints, and map to (Ex6.19 and 6.20). 

InitiationPoint1ðIn3, tÞ InitiationPoint0ðIn1, tÞ (Ex6.19) 

InitiationPoint1ðIn3, tÞ TerminationPoint0ðIn2, tÞ (Ex6.20) 

(Ex1.12–1.14) are similar in mapping structure to (Ex1.9–1.11), and produce similar formulae 
to those above. (Ex1.12–1.14) map to (Ex6.21–6.23) respectively. 

InitiationPoint2ðLight, tÞ (Ex6.21) 
½InitiationPoint0ðIn1, tÞ ^ HoldsAtðIn3, tÞ ^ :TerminationPoint1ðIn3, tÞ� _
½InitiationPoint1ðIn3, tÞ ^ HoldsAtðIn1, tÞ ^ :TerminationPoint0ðIn1, tÞ� _
½InitiationPoint0ðIn1, tÞ ^ InitiationPoint1ðIn3, tÞ� 

TerminationPoint2ðLight, tÞ TerminationPoint0ðIn1, tÞ (Ex6.22) 

TerminationPoint2ðLight, tÞ TerminationPoint1ðIn3, tÞ (Ex6.23) 

Domain causal minimization is achieved using the prioritized Circumscription of (C6), 
instantiating to (Ex6.24) in this example. (Ex6.25) represents the same causal minimization 
expressed as hierarchical circumscription, generated from (C7). 
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CIRC[Ex6.17–23 ; (Ex6.24) 
InitiationPoint0, TerminationPoint0 > 
InitiationPoint1, TerminationPoint1 > 
InitiationPoint2, TerminationPoint2 ] 

CIRC[Ex6.17–23 ; (Ex6.25) 
InitiationPoint0, TerminationPoint0; 
InitiationPoint1, TerminationPoint1 

InitiationPoint2, TerminationPoint2] 
^ CIRC[Ex6.17–23 ;


InitiationPoint1, TerminationPoint1;

InitiationPoint2, TerminationPoint2]


^ CIRC[Ex6.17–23 ;

InitiationPoint2, TerminationPoint2]


The causal minimization (Ex6.25) for this example domain, reduces to first order logic 
(Ex6.26–6.31). 

InitiationPoint0ð f, tÞ � 9a:ðHappensða, tÞ ^ Initiatesða, f, tÞÞ (Ex6.26) 

TerminationPoint0ð f, tÞ � 9a:ðHappensða, tÞ ^ Terminatesða, f, tÞÞ (Ex6.27) 

InitiationPoint1ð f, tÞ � ðð f¼In3Þ ^ InitiationPoint0ðIn1, tÞÞ _ (Ex6.28) 
ðð f¼In3Þ ^ TerminationPoint0ðIn2, tÞÞ 

TerminationPoint1ð f, tÞ � ð f¼In3Þ ^ ð  (Ex6.29) 
½InitiationPoint0ðIn1, tÞ ^ HoldsAtðIn2, tÞ ^ :TerminationPoint0ðIn2, tÞ� _
½InitiationPoint0ðIn2, tÞ ^ HoldsAtðIn1, tÞ ^ :TerminationPoint0ðIn1, tÞ� _
½InitiationPoint0ðIn1, tÞ ^ InitiationPoint0ðIn2, tÞ� Þ 

InitiationPoint2ð f, tÞ � ð f¼LightÞ ^ ð  (Ex6.30) 
½InitiationPoint0ðIn1, tÞ ^ HoldsAtðIn3, tÞ ^ :TerminationPoint1ðIn3, tÞ� _
½InitiationPoint1ðIn3, tÞ ^ HoldsAtðIn1, tÞ ^ :TerminationPoint0ðIn1, tÞ� _
½InitiationPoint0ðIn1, tÞ ^ InitiationPoint1ðIn3, tÞ� Þ 

TerminationPoint2ð f, tÞ � ðð f¼LightÞ ^ TerminationPoint0ðIn1, tÞÞ _ (Ex6.31) 
ðð f¼LightÞ ^ TerminationPoint1ðIn3, tÞÞ 

Combining each stratum’s causal InitiationPoint and TerminationPoint predicates, according 
to (C8 and 9), yields a description of full domain causality, (contingent upon events), as 
described in (Ex6.32 and 6.33). 

InitiationPointða, f, tÞ � InitiationPoint0ða, f, tÞ _ (Ex6.32) 
InitiationPoint1ða, f, tÞ _
InitiationPoint2ða, f, tÞ 

TerminationPointða, f, tÞ � TerminationPoint0ða, f, tÞ _ (Ex6.33) 
TerminationPoint1ða, f, tÞ _
TerminationPoint2ða, f, tÞ 

So far, only dynamic triggered changes have been described. To complete the translation 
of the domain description, we must add the static constraints described in (Ex1.9–1.14). 
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Their mapping is described by SECR, within Definition 21 which generate (Ex6.34–6.39) in 
static constraints. We have thereby specified what resembles contrapositive conditions 
accruing through the logic gates’ functionality, both as causation axioms, and now, their 
associated state constraints. 

:HoldsAtðIn3, tÞ HoldsAtðIn1, tÞ ^ HoldsAtðIn2, tÞ (Ex6.34) 

HoldsAtðIn3, tÞ  :HoldsAtðIn1, tÞ (Ex6.35) 

HoldsAtðIn3, tÞ  :HoldsAtðIn2, tÞ (Ex6.36) 

HoldsAtðLight, tÞ HoldsAtðIn1, tÞ ^ HoldsAtðIn3, tÞ (Ex6.37) 

:HoldsAtðLight, tÞ  :HoldsAtðIn1, tÞ (Ex6.38) 

:HoldsAtðLight, tÞ  :HoldsAtðIn3, tÞ (Ex6.39) 

We may now prove that under initial conditions, the light is off, but most significantly,9 when 
action Open1 takes place, the light remains off. Then, when Close2 is performed, the light 
turns on. The example shows the logic theory to be free of unwanted propagations that can 
occur in the presence of mutually cancelling effect domains. 

:HoldsAtðLight, 2Þ (Ex6.40) 

:HoldsAtðLight, 4Þ (Ex6.41) 

HoldsAtðLight, 6Þ (Ex6.42) 

(Ex6.40) is proved simply using initial condition (Ex6.3) along with static constraint 
(Ex6.38). (Ex6.41) and (Ex6.42) are proved using both static constraints (Ex6.34–6.39) 
and dynamic transitions (Ex6.26–6.33) along with initial conditions (Ex6.3–6.4), event 
occurrence (Ex6.14) and EC axioms (EC). 

5.2 Gearwheel domain 

The Gearwheel domain example is significant in that its fluents cannot be partitioned into sets 
of fluents with primary and derived effects. Each fluent may affect the other, and in turn be 
the recipient of a direct action’s effect. From an intuitive point of view, the causality path is 
clear. However, just as no fluent is solely primary or derived, the fluents also cannot be laid 
out in a linear causation chain. As a consequence, proper stratification is not possible using 
any form of description where the causation paths are stated directly in fluent ramification 
terms (such as language E constructs). However, a finer-grained description of propagated 
causality is produced by the translation of language E ramifications into EC-R. Owing to its 
explicit representation of the non-existence of specific named effects through negation, and 
the use of negation for no other purpose, the stratification test on such a translated theory 
becomes an appropriate discriminator for intuitively meaningful (non-negative cycling) 
ramification domains. Figure 5 is axiomatized here to illustrate how such a domain class is 
handled in EC-R. 

This is the case where instantaneous propagated effects may provoke a wrong conclusion. 9
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F1 F2 

FIGURE 5. Gearwheel domain. 

Unique names for fluents and actions are stated in (Ex7.1 and 7.2). 

UNA[F1, F2] (Ex7.1) 

UNA[Push1, Push2, Stop1, Stop2] (Ex7.2) 

The domain’s two fluents have initial conditions of stationary (Ex7.3 and 7.4). 

:HoldsAtðF1, 1Þ (Ex7.3) 

:HoldsAtðF2, 1Þ (Ex7.4) 

Causal relations describing direct actions for the initiation and termination of both fluents F1 
and F 2 are defined in (Ex7.5–7.8). The action narrative used for example purposes is chosen 
to be Push1 followed by Stop1, (Ex7.9–7.10). 

InitiatesðPush1, F1, tÞ (Ex7.5) 

InitiatesðPush2, F 2, tÞ (Ex7.6) 

TerminatesðStop1, F1, tÞ (Ex7.7) 

TerminatesðStop2, F 2, tÞ (Ex7.8) 

HappensðPush1, 3Þ (Ex7.9) 

HappensðStop2, 5Þ (Ex7.10) 

Domain closure for direct effect causation and event occurrence are defined by (DD1). 
In this example, (DD1) is instantiated to become (Ex7.11), where � is a conjunction of 
(Ex7.1–7.4). 

CIRC[Ex7.5–8; Initiates, Terminates] ^ CIRC[Ex7.9-10 ; Happens] ^ � (Ex7.11) 

The (Ex7.11) minimization is equivalent to first-order completion formulae (Ex7.12 and 7.14) 
conjoined with �. 

Initiatesða, f, tÞ � ðða¼Push1 ^ f¼F1Þ _ ða¼Push2 ^ f¼F 2ÞÞ (Ex7.12) 

Terminatesða, f, tÞ � ðða¼Stop1 ^ f¼F1Þ _ ða¼Stop2 ^ f¼F 2ÞÞ (Ex7.13) 

Happensða, tÞ � ðða¼Push1 ^ t¼3Þ _ ða¼Stop2 ^ t¼5ÞÞ (Ex7.14) 

Ramifications for this domain are described by the following whenever statements. 

F1 whenever F2 

:F1 whenever :F2 

F2 whenever F1 

:F2 whenever :F1 
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Direct action separated causation description theory CSd is produced by Definition 17 and 
(Ex7.15) follows directly from CSd. The indirect action separated causation point theory CSi 

produced by Definition 18 is then given by (Ex7.16–7.19). 

InitiationPointF1ðF1, 3Þ ^ TerminationPointF 2ðF 2, 5Þ (Ex7.15) 

InitiationPointF1ðF1, tÞ InitiationPointF 2ðF 2, tÞ (Ex7.16) 

TerminationPointF1ðF1, tÞ TerminationPointF 2ðF 2, tÞ (Ex7.17) 

InitiationPointF 2ðF 2, tÞ InitiationPointF1ðF1, tÞ (Ex7.18) 

TerminationPointF 2ðF 2, tÞ TerminationPointF1ðF1, tÞ (Ex7.19) 

C-stratification of theory CSd [ CSi is given by Definition 19 using the level mapping 
function s ¼ fðF1, 0Þ, ðF 2, 0Þg. CECR is then produced through Definition 20 using the 
stratification function. CECR is identical in structure to CSd [ CSi, with the exception that 
predicates have been renamed to create a fully stratified causal theory for the domain 
(Ex7.20–7.24). 

InitiationPoint0ðF1, 3Þ ^ TerminationPoint0ðF 2, 5Þ (Ex7.20) 

InitiationPoint0ðF1, tÞ InitiationPoint0ðF 2, tÞ (Ex7.21) 

TerminationPoint0ðF1, tÞ TerminationPoint0ðF 2, tÞ (Ex7.22) 

InitiationPoint0ðF 2, tÞ InitiationPoint0ðF1, tÞ (Ex7.23) 

TerminationPoint0ðF 2, tÞ TerminationPoint0ðF1, tÞ (Ex7.24) 

Prioritized circumscription (C6) instantiates to (Ex7.25), which in turn reduces to first-order 
formulae (Ex7.26 and 7.27). 

CIRC[Ex7.20–24 ; InitiationPoint0, TerminationPoint0] (Ex7.25) 

InitiationPoint0ð f, tÞ � ðð f¼F1 ^ t¼3Þ _ ð f¼F 2 ^ t¼3ÞÞ (Ex7.26) 

TerminationPoint0ð f, tÞ � ðð f¼F1 ^ t¼5Þ _ ð f¼F 2 ^ t¼5ÞÞ (Ex7.27) 

(C8 and 9) applied to (Ex7.26 and 7.27) finish the causation description for 
the domain. Only static constraints remain. Definition 21’s SECR contains the following 
constraints (Ex7.28–31) for this domain. 

HoldsAtðF1, tÞ HoldsAtðF 2, tÞ (Ex7.28) 

:HoldsAtðF1, tÞ  :HoldsAtðF 2, tÞ (Ex7.29) 

HoldsAtðF 2, tÞ HoldsAtðF1, tÞ (Ex7.30) 

:HoldsAtðF 2, tÞ  :HoldsAtðF1, tÞ (Ex7.31) 

It should now be clear from inspection that we may use the domain description (Ex7.26–7.31) 
developed above, along with the Event Calculus axioms to perform general reasoning and 
inference about the state of the domain at time points along the timeline in response to 
particular initial conditions and events. 

This example illustrates how the class of interacting fluent problems such as the Gearwheel 
domain are handled correctly under the stratified EC-R causal description, while the use 
of direct stratification of fluents in E’s ramification conditions is not so. Stratification is 
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a syntactical condition, and is thus only able to be conditioned upon what is expressed 
explicitly. The classical logic causal description following translation to EC-R is at a lower 
level of abstraction, and consequently more expressive than E’s. It states explicitly in syntax 
what E contains in its semantics, and takes account of the fact that domain stability is 
conditional upon the polarity of fluent dependency (positive or negative) and crucially, 
specifies explicitly where causation point propagations must not exist. 

In the literature, another approach to stratification of ramification theories is described 
in [45]. Due to the choice of representation of ramifications at the stratification stage, 
the stratification pre-condition necessarily becomes stronger overall than it is for EC-R. 
Only acyclic domains are accepted, and no positive recursion is permitted. This prevents the 
formalism from accepting the mutually coupled instantaneously propagated effect class of 
domain exemplified here using gearwheels. In EC-R it may be helpful to note that 
stratification may allocate the same stratum number to multiple fluent predicates. This is 
actually required to properly represent domains of the type here. 

The above described translation from language E ramification domains, into classical logic 
EC-R can be proved to be sound and complete with respect to E’s semantics. A full proof is 
undertaken in the next sections. 

6 A correspondence result for E and EC-R 

In this section we build a semantic correspondence between a suitable instantiation of EC-R 
and language E. The reason for pursuing such a path is to exploit as far as possible the 
understanding of correct reasoning in ramification domains embodied in E to demonstrate 
that EC-R handles ramifications properly. 

6.1 Semantic constraints for translation 

To begin, we first give a set of definitions for conditions (assumptions), which if met, can be

used to show that the respective domain description theories of E and EC-R are equivalent.

Definition 22 is a condition for uniqueness of names in TEC whereby in all its models,

TEC maintains uniqueness of names for the fluents and actions referred to in D.


DEFINITION 22 (Name-matches)

D names-matches TEC iff for every model M of TEC, for every F, F 0 2 �, A, A0 2 �, the

following conditions hold,


if F ¼ F 0 then kFkM
0 and� 6 6¼ kF kM

if A ¼ A0 then kAkM
0kM.� 6 ¼ k6 A

Definitions 23–25 establishes an isomorphism condition for direct actions. The conditions are 
expressed relative to the interpretation of HoldsAt. 

DEFINITION 23 (h-satisfies)

Given a model M of TEC, a time-point T 2 �, a set C � �� of language E fluent literals,

then M h-satisfies C at T iff for all F 2 �, the following conditions hold,


� if F 2 C then ðkFkM, T Þ 2 kHoldsAtkM, and 
� if :F 2 C then ðkFkM, T Þ =2kHoldsAtkM. 
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DEFINITION 24 (Initiates-matches)

D Initiates-matches TEC iff for every model of TEC, every time point T
M

and every action � and fluent � in the domain of discourse of ,M

ð�, �, T Þ 2 kInitiateskM iff there exists F 2 �, A 2 � and C � �� such that the following 
conditions hold, 

� � ¼ kAkM, � ¼ kFkM, 
� M h-satisfies C at T,

� ‘A initiates F when C ’ 2�.


DEFINITION 25 (Terminates-matches)

D Terminates-matches TEC iff for every model M of TEC, every time point T and every action

� and fluent � in the domain of discourse of M, ð�, �, T Þ 2 kTerminateskM iff there exists

F 2 �, A 2 � and C � �� such that,


� � ¼ kAkM, � ¼ kFkM, 
� M h-satisfies C at T,

� ‘A terminates F when C ’ 2 �.


Definitions 26–29 provide the isomorphism conditions for ramification constraints. Before

defining the ramification mapping, Definition 26 is needed as a sub-definition specifying four

cases where triggering occurs.


DEFINITION 26 (Trigger-subconditions)

For time point T 2 � and F 2 � in the domain of discourse of M let statements be defined

as follows:


� �Mi ðF, T Þ ¼ ðkFkM, T Þ 2 kInitiationPointsðF ÞkM. 
� �Mt ðF, T Þ ¼ ðkFkM, T Þ 2 kTerminationPointsðF ÞkM. 
� �M 2kTerminationPointsðF ÞkM.hp ðF, T Þ ¼ M h-satisfies F at T and ðkFkM, T Þ =

� �M 2kInitiationPointsðF ÞkM.hn ðF, T Þ ¼ M does not h-satisfy F at T and ðkFkM, T Þ =

Definition 27 then conveniently specifies the resulting subdefinition for trigger points of

a whenever statement ‘L whenever C ’2 �.


DEFINITION 27 (Triggered)

For a set C of conditional fluent literals such that C ¼ ;6 , let the following subset of a powerset

partition be defined between the locally-scoped variables.


P , X0ðCÞ ¼ f ðX, YÞ : X [ Y ¼ C, X \ Y ¼ ; 6¼ ; g  

C is triggered at time point T with respect to iff there existsM ðC1, C2Þ 2

P0ðCÞ (where C1 is the set of fluent literals about to be satisfied, and C2 the set of fluent 
literals already satisfied) such that both the following conditions apply, 

� For all F 2 C1, it is the case that �Mi ðF, T Þ applies, and for all F 2 C2, it is the case that 

hp ðF, T Þ applies. 
� For all :F 2 C1, it is the case that �MðF, T Þ applies, and for all :F 2 C2, it is the case 

�M

t 
that �Mhn ðF, T Þ applies. 
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Definitions 26 and 27 can now specify the isomorphism conditions for ramification

constraints in terms of trigger points.


DEFINITION 28 (Whenever-mapsi)

D whenever-mapsi TEC iff for every model M of TEC, for every time point T and every fluent

� in the domain of discourse of M the following conditions apply: 

(1) ð�, T Þ 2 kInitiationPointsðF ÞkM iff there exists F 2 � and C � �� such that, 

(a) � ¼ kFkM, 
(b) There exists ‘F whenever C ’2 �, such that C is triggered at T with respect to M. 

(2) For every ‘F whenever C ’ 2 �, if  M h-satisfies C at T then M h-satisfies F at T.


DEFINITION 29 (Whenever-mapst)

D whenever-mapst TEC iff for every model M of TEC, for every time point T and every fluent

� in the domain of discourse of M the following conditions apply:


(1) ð�, T Þ 2 kTerminationPointsðF ÞkM iff there exists F 2 � and C � �� such that, 

(a) � ¼ kFkM, 
(b) There exists ‘:F whenever C ’ 2 �, such that C is Triggered at T with respect to M. 

(2)	 For every ‘ :F whenever C ’ 2 �, if  M h-satisfies C at T then M does not h-satisfy F at T. 

The final isomorphism condition, Definition 30, covers event occurrence. 

DEFINITION 30 (Happens-matches)

D Happens-matches TEC iff for every model M of TEC, every time point T and every action �

in the domain of discourse of M, ð�, T Þ 2 kHappenskM iff there exists A 2� such that

� ¼ kAkM and ‘A happens-at T ’ 2�.


Definitions 31, 32 and 33 state together that the constraints imposed on HoldsAt by TEC


are equivalent to those imposed on E’s interpretations by t-propositions. The extent of

HoldsAt is increased by inference about events through the EC axioms. Definition 32 forms

a function E-projection whose purpose is to define a model of E equivalent to initial

conditions as expressed in TEC. A holds-matches condition is then expressed chiefly in

condition 2 of Definition 33 after a condition for matching fluents whose effect is to make

condition 2 a complete condition.


DEFINITION 31 (t-model)

An interpretation H of E is a t-model of D iff for every F 2 � and T, T 0 2 �, the following

conditions hold,


�	for all t-propositions in � of the form ‘F holds-at T ’, HðF, T Þ ¼ true. 
�	for all t-propositions in � of the form ‘:F holds-at T ’, HðF, T Þ ¼ false, 
�	for all r-propositions in � of the form ‘L whenever C ’, if H satisfies C at T then H satisfies 
fLg at T. 

DEFINITION 32 (E-projection)

An E-projection of a model M of TEC is defined as the following language E

interpretation HM,


HMðF, T Þ ¼ ftrue if ðkFkM, T Þ 2 kHoldsAtkM false otherwiseg: 



Ramifications in Event Calculus 669 

DEFINITION 33 (Holds-matches)

D holds-matches TEC iff for every model M of TEC, the following conditions are satisfied,


(1) For every fluent	 � in the domain of discourse of M there exists F 2 � such that 
.� ¼ kFkM

(2) The E-projection of M is a t-model of D. 
(3) For every t-model Ht of D there is a model M H

t 
of TEC which differs from E only in the 

interpretation of HoldsAt and is such that Ht is the E-projection of M H
t 
. 

The final (composite) matching condition is stated in Definition 34.


DEFINITION 34 (Matches)

D matches TEC iff D name-matches, initiates-matches, terminates-matches, whenever-mapsi,

whenever-mapst, happens-matches and holds-matches TEC.


6.2 Causal correspondence 

As a prolog to the main correspondence theorem, this section will demonstrate that a causal 
correspondence exists between the definition of causal points (i.e. initiation point and 
termination points) in E’s semantics and those in the Event Calculus semantics. It is the 
causation point component of the theory which defines transitions of fluent states in response 
to events and fluents in the environment. 

We saw previously that a causation operator is induced by the conditions ofF

Definition 10 in E’s semantic specification. We may demonstrate causal correspondence 
by using induction on successive levels of indirect effect (i.e. n-steps of causation), 
knowing that there exists a limit ordinal where the least fixed point of F
is reached. This is sufficient to demonstrate that the two theories correspond fully in 
terms of causation. It is convenient to choose the stratum assignment number to achieve 
this indexing. 

To demonstrate causal correspondence, we must show that the operator F1 corresponds 
to the unique minimal model of TEC. This requires the descriptions of causation points 
contained in the extensions of InitiationPoint and TerminationPoint predicates to be 
equivalent to those causation points described in F1. This correspondence will be shown 
using induction on the stratification index. An operator with n steps of causation is 
represented by F n. 

First, we must unpack the composite operator F so as to separate the initiation from the 
termination causation points. 

F init ¼ fðF, T Þ j F 2 �, T 2 �, ðF, T, initÞ 2 F ngn


F term ¼ fðF, T Þ j F 2 �, T 2 �, ðF, T, termÞ 2 F ng
n 

Assuming a language E domain with definition D, and a model MC of EC causal axioms TEC 

causally minimized by hierarchical circumscription (as defined previously) such that 
equivalence conditions of Definitions 22–34 apply, then causal correspondence is shown to 
hold if and only if Proposition 1 holds. 

Using an inductive step for causal correspondence of indirect actions, we will then show 
that if there exists a correspondence for n-step causation then the (nþ1) stage also 
corresponds. The fluents are taken in index order to ensure that the intermediate causations 
are equivalent. 
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PROPOSITION 1 (Causal correspondence)

For a domain D and a model MC of TEC where D matches TEC, then:


initkInitiationPointkM ¼ F1C 

kTerminationPointkM ¼ F term 
C 1 

PROOF. Proof is by induction over the stratification of fluents. If the base case is proved, and 
the inductive case is proved, then under the schema of induction, Proposition 1 holds. 

(1) Base case: For	 a domain D, and any model MC of TEC, the base case holds iff the 
following propositions hold. 

kInitiationPoint0kM ¼ F init	 (a)
C 1 

kTerminationPoint0kM ¼ F term (b)
C 1 

(2) Inductive case: For all m � n, a domain D, and any model MC of TEC, the inductive case 
holds iff assuming (c) and (d) then (e) and (f) follow. 

kInitiationPointmkM
init	 (c)

C 
¼ Fmþ1 

kTerminationPointmkM
term (d)

C 
¼ Fmþ1 

kInitiationPointmþ1kM
init (e)

C 
¼ Fmþ2 

kTerminationPointmþ1kM
term (f)

C 
¼ Fmþ2 

Subproof of base case. 

� Since Definitions 16 and 17, (C7), and D name-matches, initiates-matches, terminates-

matches and happens-matches TEC, then by Definition 10 part 1 (equivalently appendix, 
(FP1-2), (FP5) and Definition A1) for the Causation Operator, then (a) and (b) hold. 

(End of subproof) 

Subproof of inductive case. 

� Since Definition 18, (C7), and D name-matches, whenever-mapsi and 
whenever-mapst TEC, then by Definition 10 part 2 (equivalently appendix 
(FP3-5) and Definition A1) for the Causation Operator, if (c) and (d) hold, then (e) 
and (f) hold. 

(End of subproof) 
(End of proof) 

Therefore, by induction, together with the assured existence of a limit ordinal, the least fixed 
point is reached exactly when there is correspondence in causation points between the two 
formalisms. Therefore, the theories match completely in terms of n-point causation, and hence 
by (C8-9) fully causally-correspond, and Proposition 1 holds. g 

6.3 Main proof of correspondence 

Making use of Proposition 1 for causal correspondence, we are now able to present a proof of 
full correspondence. This is achieved by further use of the previously defined isomorphisms 
between E and EC-R. 
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PROPOSITION 2 (Full correspondence)

For all time points T 2 � and for all fluents F 2 � in the domain of discourse D such that D

matches TEC, then 

D � E F holds-at T iff TEC [DetEC � HoldsAtðF, T Þ 

D � E :F holds-at T iff TEC [DetEC � :HoldsAtðF, T Þ 

PROOF. For (a), it is sufficient to prove the following conditions: 

(a) 

(b) 

(1) (Only-if case) If there exists a model H of D where HðF, T Þ ¼ true, then there also exists 
a model MH of TEC [DetEC where MH HoldsAtðF, T Þ

HoldsAtðF, T Þ, then 

/

/

. 
(2) (If case) If there exists a model	M of TEC [DetEC such that M

there exists an E-model HM of D where HMðF, T Þ ¼ true. 

For (b), it is sufficient to prove the following: 

(3) (Only-if case) If there exists a model H of D where HðF, T Þ ¼ false, then there also 
H :HoldsAtðF, T Þ/exists a model MH of TEC [DetEC where M

(4) (If case) If there exists a model 
. 

M of TEC [DetEC M :HoldsAtðF, T Þ
then there exists an E-model HM of D where HMðF, T Þ ¼ false. 

Subproof of condition (1): 

� Suppose there exists a model H of D where HðF, T Þ ¼ true. 
� Since TEC is consistent, then by definitions holds-matches, whenever-mapsi and 

whenever-mapst, there exists a model M

/such that , 

H of TEC such that H is the E-projection of MH. 
� Then, MH

� Since TEC 

/ HoldsAtðF, T Þ. 
does not mention the predicates Clipped, Declipped, StoppedIn, StartedIn, 

then we can assume MH satisfies (EC 1, 2, 7, 8). 
� Since D name-matches, causal-corresponds and happens-matches TEC then: 

– by condition 1 of Definition 11: model, MH satisfies (EC5-6). 
– by condition 2 of Definition 11: model, MH satisfies (EC3). 
– by condition 3 of Definition 11: model, MH satisfies (EC4). 

� Therefore MH is a model of TEC [DetEC. 

(End of subproof) 

Subproof of condition (2): 

� Suppose there exists a model M of TEC [DetEC 

definitions whenever-mapsi, whenever-mapst 

/
/

/

/such that M
and holds-matches, then the E-projection 

HM of M is a t-model of D and so HMðF, T Þ ¼ true. 
� Having established an equivalence of point-wise constraints arising from initial conditions, 

it remains to show that HM satisfies conditions 1, 2 and 3 of Definition 11: model. 
� Since D name-matches, causal-corresponds, happens-matches TEC then it follows from: 

– M
– M
– M

HoldsAtðF, T Þ, then by 

(EC3), that H satisfies condition 2 of {Def 11 model }, M

M satisfies condition 3 of {Def 11 model }, 
(EC5–6), that H satisfies condition 1 of {Def 11 model }. 
(EC4), that H

M

(End of subproof) 
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Subproof of condition (3): 

� This proof is identical to the proof of condition (1) with the exception that constant ‘false’ 
replaces mentioned instances of ‘true’ and literal ‘ :HoldsAtðF, T Þ’, replaces mentioned 
instances of ‘HoldsAtðF, T Þ’. 

(End of subproof) 
Subproof of condition (4): 

� This proof is identical to the proof of condition (2) with the exception that literal 
‘ :HoldsAtðF, T Þ’ replaces mentioned instances of ‘HoldsAtðF, T Þ’ and constant ‘false’ 
replaces mentioned instances of ‘true’. 

(End of subproof) 
(End of proof) 

7 Related work 

[59] presented a solution to the ramification problem that specifically used both causal 
minimization and event minimization to handle the indirect effect of actions. There are several 
examples presented in which the formalism is shown to be quite expressive, and able to handle 
domains with mutually interacting effects. 

The theory is based on the intuitive notion of introducing new events that update each 
fluent whose value is dependent on other fluents. Further formulae are then added to ensure 
that the new events are triggered under appropriate conditions. This method has a similar 
effect to defining indirect causation points in EC-R, with the difference that Shanahan names 
indirect events explicitly. 

However, under some circumstances, the theory does contain ambiguity in its 
construction of the physical effect propagation. A partial axiomatization of the domain in 
Figure 6 containing a single logical AND gate shows a case when this occurs. We choose 
to omit rules for the termination of F and F1, and the initiation of F 2, for reasons of clarity in 
this example. 

If we set up initial conditions (Ex8.1) so that F1 is true, while F 2 and F are false, then we 
may restrict the analysis to merely consider the conditions under which F makes a transition 
from low to high. 

HoldsAtðF1, tÞ ^ :HoldsAtðF 2, tÞ ^ :HoldsAtðF, tÞ (Ex8.1) 

According to Shanahan’s [59] method, a new (conditional) event F-on is introduced which 
upon occurrence causes fluent F to be initiated. For the purposes of domain manipulation, 
we will also add two direct actions acting upon input fluents F1 and F 2. (Ex8.2) contains the 
associated causation relations. 

InitiatesðA1, F1, tÞ ^ TerminatesðA2, F 2, tÞ ^ InitiatesðF-on, F, tÞ (Ex8.2) 

F1 
F 

F2 

FIGURE 6. Logical AND gate domain 
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An unconditional event occurrence can be specified for demonstration purposes as A1 
occurring at time 2 (Ex8.3). To specify the ramification constraint, a further conditional event 
is added that may occur depending on the state of fluents and other events (Ex8.4). 

HappensðA1, 2Þ (Ex8.3) 

HappensðF-on, tÞ (Ex8.4) 
½:HoldsAtðF, tÞ _ 9aðHappensða, tÞ ^ Terminatesða, F, tÞÞ� ^ 
½HoldsAtðF1, tÞ _ 9aðHappensða, tÞ ^ Initiatesða, F1, tÞÞ� ^ 

½:9aðHappensða, tÞ ^ Terminatesða, F1, tÞÞ� ^ 
½HoldsAtðF 2, tÞ _ 9aðHappensða, tÞ ^ Initiatesða, F 2, tÞÞ� ^ 

½:9aðHappensða, tÞ ^ Terminatesða, F 2, tÞÞ� 

A solution to the frame problem is then created using circumscription for causal minimization 
on event occurrence, minimizing the Happens predicate: CIRC[Ex8.3–4 ; Happens]. However, 
the minimization is not unique, forming (Ex8.5 Ex8.6). In the first case (Ex8.5), action F-on _

is triggered at time 2 causing F to become true, however, in the second case (Ex8.6), instead 
action A2 is triggered causing F 2 to transition to false, while F remains false. 

Happensða, tÞ � ðða¼A1 ^ t¼2Þ _ ða¼F-on ^ t¼2ÞÞ (Ex8.5) 

Happensða, tÞ � ðða¼A1 ^ t¼2Þ _ ða¼A2 ^ t¼2ÞÞ (Ex8.6) 

Therefore, under this formalism, after action A1 occurs, HoldsAtðF, 3Þ is not entailed. This is 
a typical competing models problem, as described earlier, trading action F-on with action A2. 
Due to the anomalous model occurring on event occurrence rather than causality, 
it is somewhat harder to see than was the case in the earlier illustrated example where the 
ambiguity occurred on Initiates and Terminates. 

Forth and Shanahan [17] introduce a formalism for ramifications that provides a solution 
to this problem, using the method of propagated causal effects rather than propagated events 
as with [59]. However it is a less general solution than provided here. The restrictions are of 
two types. 

First, concurrent or overlapping events are not accommodated. This is a consequence of 
actions being named explicitly. One action creates a propagated causal effect which can 
interact with its own ramifications, but not those of other actions. In the present article’s 
formalism, indirect actions are not named explicitly, but rather describe ramifications in terms 
of causation points. Interaction of propagated effects may then be modelled irrespective of 
the action causing them. It is therefore possible for two different actions to interact within the 
same ramification chain, and concurrent actions are thereby supported. 

Secondly, in order to provide a suitable pre-condition for the existence of a least fixed 
point, stratification in [17] is performed directly on a language E domain description. 
Although correct, this is overly restrictive in the class of domain descriptions permitted. 
In this article, by contrast, stratification is performed on a finer-grained causal theory 
formed after translation into classical logic. This provides a much closer match with the 
classes of domains that are meaningful in a practical causation sense. As a consequence 
of these limitations, [17] cannot support the benchmark positive cycling domain Gearwheel, 
as described in the prior example. 

McIlraith [45] presents a method of realizing ramifications in the classical logical language 
of Situation Calculus [50, 51]. First-order successor state axioms are used as a means to solve 
the frame problem and an understanding of ramifications is gained through a least fixed 
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point semantics. The formalism can reason about similar classes of domains as [17] 
above. A domain acceptance pre-condition depends on a direct stratification of fluents 
through solitary stratified theories. This imposes an acyclic fluent dependency requirement 
and thus makes the theory overly restrictive. Domains are not permitted to have cyclic fluent 
dependency, nor concurrent actions. Therefore, valid practical domains belonging to these 
classes (such as the Gearwheel example) also cannot be represented. 

Derecker et al. [8] provides a treatment of ramifications in a custom language called ER. 
This adopts Well-Founded semantics of logic programming [7] to provide an alternative 
justification of ramifications in which the static constraints can be specified independently 
from causation. The strength of this formalism is its flexibility in terms of domain acceptance. 
I inconsistent and unstable domains can be accepted for reasoning, possibly yielding a third 
level ‘unknown’ as an output. However, the method also contributes to a weakness because 
it does not identify and attempt to filter out causally non-sensical domain axiomatizations 
in a pre-reasoning phase. 

In an earlier phase of literature Thielscher [64] ramification formalism (described in the 
Fluent Calculus) uses a least fixed point understanding of ramifications. Similarly to language 
E, and [59], it does not directly specify the classes of domains acceptable for reasoning. Due to 
the least fixed point construction however, the domain specification must implicitly be 
assumed to be those for which a least fixed point exists. No pre-conditions are given for 
domain stability nor the associated existence of the least fixed point. 

The focus of this article has been on examining how expressed relationships between fluents 
can be used to determine knock-on or indirect effects of actions. A related, orthogonal issue is 
how expressed constraints between fluents may be used to determine implicit or extra 
qualifications for actions. It is outside the intended focus of the article to examine this 
problem in detail, however we note in passing that extensions of the Event Calculus and its 
action language equivalents exist which allow this kind of expressivity, and which are perfectly 
compatible with the techniques included here describing indirect effects, see e.g. [28, 46]. 
For example [28] shows how to incorporate a ‘Prevents’ relation between fluents in an Event 
Calculus-like framework, to express this type of constraint. 
Owing to the extent of the literature on formalizing dynamic domains using logical 

representations, we will here for the sake of completeness augment the citations already 
given by drawing attention to other related works. Prior to the formulization of 
Event Calculus in classical logic, the Situation Calculus was also extensively studied. 
See for example [3, 14, 26, 36, 47, 50, 54, 55]. Logic programming variants have also been 
developed in (for instance) [4, 15] which take advantage of results in logic programming 
semantics. Other types of formalizations include [18, 21, 49, 52]. Ramifications have 
also been addressed in [22, 23, 33, 41, 42, 44, 62]. Beyond general purpose logical 
representations (and in addition to E), custom logics have been designed to use intuitively 
clear propositions to represent dynamic domains. [5, 6, 8, 19, 24, 63, 65] are additional 
references to this line of work. 

8 Discussion 

8.1 Frame problem 

The frame problem was first recognized by [43] and has had a long history of research 
developments. In essence, the problem is that in a declarative action formalism, a challenge 
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was observed to occur in defining succinctly the large number of values in a domain that do 
not change as a result of an action. This challenge is important for two reasons. First, 
a domain description must be created, possibly by hand, requiring that the number of explicit 
axioms be maintained at a manageable level. Secondly, computational algorithms cannot 
handle an unbounded number of explicit axioms. A means had to be found therefore to 
represent and reason about domains in a way that overcame this inherent difficulty. A good 
review of the Frame Problem and its developments can be found in [57]. 

Event Calculus uses a non-monotonic logic formalism to make a complete information 
assumption on the effects of actions, defined through DDA. This (in combination with 
EC axioms) results in a default assumption of the persistence of fluents. The principle 
of persistence states that unless a given action specifically affects change through initiation or 
termination of a fluent, that fluent will retain its prior value. 
This is an instance of one of two major approaches to the frame problem employed in 

the literature. One of these approaches is based on non-monotonic logic, while the other 
is based on monotonic logic. Event Calculus along with (for example) [35, 40, 44] employ 
non-monotonicity to make a dynamic complete-knowledge assumption for causation, 
along with monotonic constructs (DIA in the case of the Event Calculus) to formalize 
frame axioms specifying the persistence characteristics of a fluent. EC uses circumscription 
as the non-monotonic formalism to solve the frame and elaboration tolerance problems. 
The other main approach to the frame problem (monotonic logic based) combines the two 
functions of effect completion and frame membership into a single axiom called the Successor 
State Axiom (see [50] for further details). 

It may be noted that there has been a close link between the development of action theories 
and general non-monotonic reasoning, see (for example) [48]. 

8.2 Representing ramifications 

In the ‘Introduction’, one property of a ramification solution was considered to be the ability 
to reason about the potentially large number of indirect effects of actions in a sparse way 
without the need for a full enumeration. It may be useful to consider that the process of causal 
stratification (c-stratification) involves searching (the space of explicit constraints) for an 
order in which the ramification constraints may be applied to direct actions. It does not 
involve searching the full space of effects, nor enumerating (or considering) all the indirect 
effects themselves of potential actions. 
Another property advanced (by [57]) for the purpose of assessing the suitability of 

a representation of ramifications, is that of representational parsimony. This is to say that 
the representation should be easily understandable by humans, and efficient for automation. 
For EC-R, the humans would interact with Whenever relations, while the automated system 
would reason with its translation. The size of this translation is linear with the number of 
Whenever statements, and is acceptably compact for automation. 

The causal approach to ramifications has been widely used in the literature, however it has 
been the subject of some criticism. In particular [53] advances an argument detailing an 
alleged limitation of causal approaches to ramifications. This argument derives from the 
causal approach’s division of the effects of actions into two classes: direct and indirect 
(sometimes referred to as the main and consequential effects). Direct effects are those 
considered to be the main result of an action and specified explicitly in an action’s definition, 
while indirect effects are assumed to lie downstream in a causal chain of effects beginning 
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with a direct action. The difficulty is said to occur when domain change propagates in both 
directions between two or more fluents. 

The argument assumes that since causality can only exist in one direction, then domains 
with bidirectional effects are incompatible with the method. However, the solution to the 
ramification problem employed by E and EC-R is able to deal with such domains by defining 
bidirectional causality, as demonstrated for instance in the Gearwheel example earlier. Such 
an example illustrates how the argument represents not a fundamental limitation of the causal 
approach, but rather an opportunity for suitable refinement of the causal approach. 

8.3 EC axiom sets 

The development of the EC-R ramification theory is modular with respect to the foundational 
Domain Independent EC Axiom set employed. Alternative axiom sets for various different 
classes of domains have been previously published in the literature. (EC1–8) were chosen for 
their application to deterministic domains so that a correspondence between EC-R and 
E could potentially be established (conditional upon matching ramification behaviour). 

Although event (action) pre-conditions are not specifically expressible in E, they are 
expressible in Event Calculus generally. It is therefore possible to use an EC axiom set 
designed with the capability to reason about preconditions as a substitute for the EC axiom 
set used in this article. Such a change would then allow EC-R to reason about pre-conditions. 

The same is true for other extensions such as the representation of non-deterministic actions 
and concurrent actions. If a suitable (existing) axiom set designed for non-deterministic 
domains and/or concurrency is chosen (e.g. from [46]), then EC-R may represent domains 
containing non-determinism and concurrency. Several design choices in EC-R were taken 
specifically to allow for reasoning in concurrent-event domains. 

8.4 Unstable domains 

The ramification causal consistency of a domain description is defined to be the 
representation of those domains whose physical instantiation would never continually 
oscillate in state. Causal stratification (as defined earlier) serves both to create the 
foundational arrangement for causal reasoning, but in the process to also perform one part 
of a check for ramification causal consistency on the domain description. The domain 
description is ramification causally consistent if and only if it can be stratified and it is found 
to be statically consistent. 

When axiomatizing (or updating) a domain theory, there is a possibility of formalizing a 
domain which is inherently unstable (continually oscillating with no steady state). It would 
appear to be advantageous to have a way to detect the presence of such domains. 

This problem has been addressed in [66] where the concept of a ‘safe’ domain is specified. 
When determining safety for ramification domains, there are two approaches. The first, 
(adopted by [66]) is to exclude conditions which may potentially lead to instability. 
An example of such a condition, and the choice made by the authors, is to exclude any set of 
ramification constraints causing a recursive propagation of effects among the fluents. 
Eliminating such sets will guarantee the absence of instability, but at the cost of excluding 
many casually meaningful domains (such as those with positive recursion). The second 
approach is to provide for a more discriminating test, which we have referred to as a causal 
ramification consistency check. Such a test is sensitive to the causal pathways of influence 
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between fluents established by ramification constraints, and determines if there exists an 
unstable configuration. 

The causal stratification process (c-stratification, defined earlier) in combination 
with state constraint consistency is one way of realizing such a causal ramification 
consistency check. 

8.5 Knowledge updates 

Using EC-R, an agent can perform updates on a knowledge base by adding or deleting 
the causation predicates Initiates and Terminates or the formulae corresponding to the 
translated ramification constraints Whenever. Since Whenever is merely translated into 
formulae in a way similar to a macro expansion, each expansion instance can be simply added 
or removed in just the same way as a Whenever statement itself. It may be effective 
to maintain a reference link between Whenever statements and their corresponding translated 
formulae. 

When performing a domain description update, there are two aspects of causal consistency 
that are of interest. The first is ensuring that within a sequence of actions, there are no actions 
that interfere with each other in a conflicting way (such as two concurrent actions achieving 
opposite results on a fluent, or a single action conflicting with a ramification constraint). This 
problem is addressed by, for example [11–13]. The second problem is identifying any mutually 
unstable set of ramification constraints. 

The first problem is addressed in EC-R by the use of a non-deterministic EC axiom set. The 
second problem is addressed in EC-R by using the process of c-stratification (defined earlier) 
and state constraint consistency checking to achieve together a causal ramification 
consistency check. Extracting from the c-stratification search the ramification constraints 
that were involved in instability would appear to be relatively straightforward. 

The final aspect of knowledge update we should consider is elaboration tolerance. This is 
the means by which a domain description supports the property that the degree of difficulty 
in making a knowledge update is only proportional to the changes involved, and not on the 
total size of the domain. EC-R supports this capability through the use of causal completion 
that allows changes in the domain description to be made incrementally. This applies both to 
event-triggered causation and fluent-triggered causation. A new stratification must be found 
after changes are made to the domain description, however this may be regarded as part of 
a ‘safety check’ in the knowledge update process. 

9 Conclusion 

In comparison with prior literature discussed in section 7, we have shown that a well-known 
ramification formalism for the Event Calculus has a technical flaw. We have also discussed 
another classical logic ramification formalism based on the Situation Calculus which displays 
many desirable qualities as a flexible ramification theory, however, it is prevented from 
reasoning about positive cycling domains, or domains with concurrent actions. 
This article has presented a new version of classical logic Event Calculus EC-R, with the 

capability to reason about a wide range of ramification domains. In order to obtain some 
purchase on the new representational power, a correspondence proof has been undertaken 
with language E’s semantics. This shows that the classes of domains for which the new EC-R 
theory applies is at least as large as those for which language E applies. 
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The relevance and value of this particular formalization is enhanced by its ability to 
(optionally) handle ramification domains in a way corresponding with language E. 
The soundness and completeness result, with respect to E’s semantics, provides both a solid 
justification for the design choices made in EC-R, and also an inheritance pathway between 
EC-R and the provably correct automated proof procedures [29] developed for E. 

A classical logic description is often considered a useful foundation for extensions and 
incorporation into larger integrated theories. It also serves as a point of comparative reference 
between alternative formalisms because it avoids the possibility of artefacts associated with 
specific custom formalisms clouding the picture. Importantly, a classical logic description 
of ramifications also allows immediate integration with existing EC theory and sub-theory 
extensions in a modular way. 
All solutions to the ramifications problem inherit the characteristics of their underlying 

action formalisms. Both E and EC-R share a narrative-based semantics where reasoning 
occurs with respect to a time line. This has particular advantages when representing multiple 
concurrent domain events (or actions) with duration. In further work, it would be valuable 
to examine how EC-R can be extended with compound actions and actions with duration as 
found in [58] in a way independent of E. 

The demonstration of correspondence between the two formalisms is also useful in that the 
resulting specification of a ramification domain in classical logic may be used to integrate and 
develop a far wider scope of applications than those expressible solely under E. Owing to the 
modular way in which the extension has been devised, a full integration of ramifications with 
many other capabilities engineered into Event Calculus (see [46] for a guide to extensions) can 
be achieved in a structured way. E may serve as a high level abstract semantics for the Event 
Calculus theory presented here, thus integrating and consolidating theoretical development. 
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Appendix 

We introduce Least Fixed Point Logic (LFP) as a means of stating the specification of 
language E in a formal language. This is useful for gaining further insight and understanding, 
and for proving properties of the E formalism. A mapping may be constructed between the 
resulting LFP logic axiomatization and EC-R using the causation operator induced by LFP 
logic. A consequence of axiomatizing E’s semantics in such a way is a demonstration that LFP 
logic has the expressive power to represent ramification domains for the full classes of 
domains acceptable to E. 
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A.1 Least Fixed Point Logic 

Fixed point logics are a member of the class of definition logics within constructive 
mathematics, finding applications in database theory among others e.g. [1]. LFP Logic can be 
used to express properties that are not first-order expressible. A prototypical example is 
representing the transitive closure of a relation. Refer to [9] and [10] for an in-depth discussion 
of LFP logic. LFP logic is useful because it is guaranteed to be expressive enough to directly 
capture the conditions forming E’s semantics. 

Language E causal points are specified inductively through the induced construction 
of an operator. We will make use of LFP Logic to provide a formal account of the 
construction of this operator. We begin the formal mapping of language E semantics 
into classical logic EC with a direct statement of E’s specification of causation points in 
LFP Logic. 

A.2 Mapping causation points into LFP logic 

In this section, we map Definition 10 into a LFP meta-formula. As seen previously, language 
E’s semantics are based on an inductive definition that leads to the construction of an 
operator. When iterated sufficiently to form a least fixed point, a complete set of domain 
causation points are constructed. To facilitate the correspondence proof in later sections, 
it is useful to use the framework of LFP Logic to provide a formal definition of the operator 
resulting from the inductive definition specified in E’s semantics. The LFP logic framework 
also provides insight to conditions under which the least fixed point can be constructed. 
This is important because it affects the classes of domains over which the entire ramification 
theory of E and EC-R can be expected to hold. 

Definition 10 (Initiation/Termination point) contained the definition of causation points 
for direct actions (part1) and indirect actions (part2) with respect to interpretation H. We will 
rewrite these directly as subformulae of LFP logic. Using uppercase symbols to represent 
meta-variables, implicitly universally quantified, part 1a and 1b of Definition 10 are FP1 and 
FP2, respectively. 

def 
�1ðF, T, initÞ� (‘A initiates F when C ’2 �Þ (FP1) V V 
^ ð

F 02C
HðF 0, T Þ ¼ trueÞ ^ ð  

:F 02C
HðF 0, T Þ ¼ falseÞ 

^ (‘A happens-at T ’2 �Þ 
def 

�1ðF, T, termÞ� (‘A terminates F when C ’2 �Þ (FP2) V V 
^ ð

F 02C
HðF 0, T Þ ¼ trueÞ ^ ð  

:F 02C
HðF 0, T Þ ¼ falseÞ 

^ (‘A happens-at T ’2 �Þ 

The second part of Definition 10 defines causation points generated through the whenever 
statements by indirect actions. Intermediate variable definitions will assist a simple written 
structure. For formulae FP3 and FP4, and a set C of conditional fluent literals such that 
C ¼ ;6 , let the following subset of a powerset partition be defined between the locally scoped 
variables. 

P0ðC Þ ¼ f ðX, Y Þ : X [ Y ¼ C, X \ Y ¼ ;, X 6¼ ; g  
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For a relation InTe defining initiates or terminates causation points by the introduction 
of constants init and term, parts 2a and 2b of Definition 10, the corresponding LFP logic 
subformulae are FP3 and FP4, respectively: 

def W 
�2ðF, T, init, InTeÞ� ð‘F whenever C ’ 2� (FP3) 

ðC1, C2Þ2P0ðCÞV 
^ InTeðF 1

0 , T, initÞ ^  InTeðF 01, T, termÞ
F 0

1
2C1 :F 

1
0 2C1 

^ 9T2ðT � T2 ^ ð8T1ðT � T1 � T2Þ !V V 
F 0

2
2C2 

HðF 2
0 , T1Þ ¼ true ^

:F 0
2
2C2 

HðF 2
0 , T1Þ ¼ false ÞÞÞ 

def W 
�2ðF, T, term, InTeÞ� ð‘ :F whenever C ’ 2� (FP4) 

ðC1, C2Þ2P0ðCÞV V 
^ InTeðF 1

0 , T, initÞ ^  InTeðF 1
0 , T, termÞ

F 0
1
2C1 :F 

1
0 2C1 

^ 9T2ðT � T2 ^ ð8T1ðT � T1 � T2Þ !  V V 
HðF 02, T1Þ ¼ true HðF 02, T1Þ ¼ false ÞÞÞ^ 

F 0
2
2C2 :F 0

2
2C2 

Combining FP1–4 into a single definition formula corresponding to Definition 10 in full, 
a new variable Caus is introduced to represent the type of causation point. 

def 
ðF, T, Caus, InTeÞ� �1ðF, T, CausÞ _ �2ðF, T, Caus, InTeÞ (FP5) 

Causation is then represented in LFP logic by FP6 where � is the fixed point formula 
designator defining a new predicate �½ ðF, T, Caus, InTeÞ�. 

�½ ðF, T, Caus, InTeÞ�ðF, T, CausÞ (FP6) 

DEFINITION A1 (Causation-operator) 
For a domain description D ¼ ð�, �, �, �Þ and an interpretation H : ��� 7!ftrue, falseg, 

the set of constants Ct ¼ finit, termg where init ¼6 term, the set Cp ¼ ð���� CtÞ, the set 
W ¼ PðCpÞ, the LFP logic model A, a recursive variable defining sets of causation points 
InTe � Cp, a member of fluent literals F, timepoint �, T 0 in �, then the monotonic operator 
F ¼ F : W 7!W is induced according to LFP logic definitions as follows: 

/F ðInTeÞ ¼ fðF, T, CausÞ 2 Cp j ðA, InTeÞ ðF, T, Caus, InTeÞg 

/

The formula ðF, T, Caus, InTeÞ meets the syntactical requirement for monotonicity as 
required by LFP logic. Therefore, operator F is monotone and it follows directly that 
W1 �W2 � Cp implies F ðW1Þ � F ðW2Þ and that operator F as defined above gives rise 
to a sequence of sets ;, F ð;Þ, F ðF ð;ÞÞ, ::: denoted by F 0 ¼ ;, F 1 ¼ F ð;Þ which contains 
the effects of direct actions, and F nþ1 ¼ F ðF n Þ which contains the effects of subsequent 
successive stages of indirect actions. F1 ¼ InTe f 2W represents the least fixed point of S 
operator F and is defined as F1 ¼ n�0 F . Through the semantics of LFP logic the model n 
A is then defined by FP7. 

A �½ ðF, T, Caus, InTeÞ�ðF, T, CausÞ iff ðF, T, CausÞ 2 F1 ðFP7Þ 
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ðF, T, CausÞ is therefore defined to be a causation point iff ðF, T, CausÞ 2 F1 or equivalently, 
iff FP6 holds true. 

We saw previously that by Definition A1 for the causation operator and FP1–6, operator 
F is induced by the sentences of the LFP logic. ðF, T, Caus, InTeÞ (FP5) meets LFP logic’s 
requirement for monotonicity, confirming that a LFP exists. A model of a LFP formula is 
given by the least fixed point F1 of this induced operator. 
This operator may form the basis of an inductive model-theoretic soundness and 

completeness proof of correspondence with the circumscribed classical-logic Event Calculus 
theory EC-R in exactly the same way as that described in the second half of this article. 
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